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Abstract

The growing interest in using dual Youla Kucera plant parametrization for mod-

eling plant uncertainties raises the need for recursive identification algorithms

dedicated to the identification of these structures in closed loop operation in

view of developing appropriate iterative tuning and adaptive control strategies.

The paper presents recursive algorithms for identification in closed loop opera-

tion of dual Youla-Kucera parametrized plant models. These algorithms assure

global asymptotic stability in the deterministic environment and allow to obtain

unbiased parameter estimation in the presence of measurement noise when the

plant model is in the model set. The paper also re-visit the Hansen scheme

which allows to associate open loop type recursive identification algorithms for

the identification of these structures in closed loop operation. When the plant

model is not in the model set, comparison of the various algorithms is done in

terms of the bias distribution . Further comparisons and performance evaluation

is provided by simulations on some relevant examples.
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1. Introduction

There is a growing interest for modeling plant uncertainties using the dual

Youla- Kucera plant parametrization [1], [2] when operating in closed loop. Dual

Youla-Kucera parametrization appears to be an efficient way for evaluating ro-

bustness of adaptive regulation schemes ([3]). Certainly this representation can5

be used as well for evaluating the robustness of adaptive feedforward disturbance

compensation schemes in the presence of plant uncertainties. Application in the

field of active noise control have been reported ([3]).

Moving towards handling large plant model uncertainties in adaptive regula-

tion and adaptive feedforward disturbance compensation1 will require identifi-10

cation in closed loop of dual Youla Kucera parametrized plant models in order

to implement iterative tuning and adaptive control strategies. As far as the

authors’ knowledge goes, the standard way of recursively identifying a dual

parametrized Youla-Kucera plant model in closed loop operation is to use the

so called ”Hansen scheme” [1],[4] which transforms this operation in an open15

loop type identification scheme. This approach however does not take advantage

of using dedicated methods for recursive identification in closed loop operation

where the aim is to find a plant model estimate which allows to obtain the best

closed loop predictor [5],[6]. The objective is also to get a better approximation

in the frequency region close to the Nyquist point when the plant model is not20

in the model set. There are number of off-line identification procedure for iden-

tification of dual Youla Kucera parametrized models in closed loop([7]).

The objective of this paper is to introduce novel recursive identification algo-

rithms dedicated to the identification in closed loop operation of dual Youla

Kucera parametrized models which try to minimize the closed loop output pre-25

diction error. The algorithms will be developed under the assumptions that the

controller is constant and known and that the plant model is in the model set.

1These schemes are adaptive with respect to variations of dynamic characteristics of the

disturbances but the plant model is assumed to be known and almost invariant
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The algorithms will assure:

� global asymptotic stability for any initial parameter estimate and closed

loop error prediction,30

� asymptotically optimal prediction for different types of measurement noise,

� unbiased parameter estimation in the presence of measurement noise under

appropriate richness conditions on the excitation signal

Then the behavior of the algorithms in the case when the plant model is not in

the model set will be analyzed by evaluating the bias in the frequency domain.35

The ”Hansen scheme” will be re-visited with the objective of enhancing the

qualities of the estimated models from the perspective of the bias distribution

in the frequency domain when the plant model is not in the model set. A com-

parison of the various algorithms in terms of bias distribution will be provided.

Simulations on relevant examples will further illustrate the performance of the40

various algorithms.

The paper is organized as follows: Basic equation will be presented in Section 2.

The algorithms will be developed and analyzed in Sections 3 through 6 under

the hypothesis that the plant model is in the model set. The bias distribution

in the frequency domain when the plant is not in the model set will be discussed45

in Section 7. Section 8 will present simulation results .

2. Basic Equations

The closed loop output error configuration for the identification of a dual

Youla-Kucera parametrized plant models is shown in Figure 1

The initial available plant model (nominal model) is described by the transfer

operator:

Go(q
−1) =

q−doB′o(q
−1)

Ao(q−1)
=
Bo(q

−1)

Ao(q−1)
(1)
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Figure 1: Closed loop ouput error identification of dual Youla Kucera parametrized model
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with:

d0 = the plant pure time delay in

number of sampling periods

Ao = 1 + a1q
−1 + · · ·+ anAq

−nA = 1 + q−1A∗0 ;

Bo = b1q
−1 + · · ·+ bnBq

−nB = q−1B∗0 ;

B∗o = b1 + · · ·+ bnBq
−nB+1 ;

where A0(q−1), B0(q−1), B∗0(q−1) are polynomials in the delay operator q−1 and

nA0
, nB0

and nB − 1 represent their orders2. The feedback fixed polynomial

controller K is given by:

K(q−1) =
R(q−1)

S(q−1)
(2)

with:

S = 1 + s1q
−1 + · · ·+ snSq

−nS = 1 + q−1S∗ ;

R = r0 + · · ·+ rnRq
−nR ;

It will be assumed that S is an asymptotically stable polynomial

The unknown part of the plant model is described by the input output block Π:

Π(q−1) =
∆(q−1)

Γ(q−1)
(3)

where:

Γ = 1 + γ1q
−1 + · · ·+ γnΓq

−nΓ = 1 + q−1Γ∗ ;

∆ = δ1q
−1 + · · ·+ δn∆

q−n∆ = q−1∆∗ ; (4)

The unknown plant model is described by:

G(q−1) =
B(q−1)

A(q−1)
(5)

2The complex variable z−1 will be used for characterizing the system’s behavior in the

frequency domain and the delay operator q−1 will be used for describing the system’s behavior

in the time domain.
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and can be expressed as3

G(q−1) =
ΓB0 + ∆S

ΓA0 −∆R
(6)

The closed loop output predictor can be described similarly except that one

uses an estimation of Π:

Π̂(q−1) =
∆̂(q−1)

Γ̂(q−1)
(7)

where:

Γ̂ = 1 + γ̂1q
−1 + · · ·+ γ̂nΓ

q−nΓ = 1 + q−1Γ̂∗ ;

∆̂ = δ̂1q
−1 + · · ·+ δ̂n∆

q−n∆ = q−1∆̂∗ ; (8)

The input and output of Π will be denoted α(t) and β(t) respectively and the

input and output of Π̂ will be denoted α̂(t) and β̂(t) respectively.

In the time domain the following input/output relationships will be used:

y(t) =
ΓB0 + ∆S

ΓA0 −∆R
u(t) (9)

u(t) = r(t)− R

S
y(t) (10)

where r(t) is the external excitation.

ŷ(t) =
Γ̂B0 + ∆̂S

Γ̂A0 − ∆̂R
û(t) (11)

û(t) = r(t)− R

S
ŷ(t) (12)

Note that:

α(t) = Su(t) +Ry(t) (13)

β(t) = A0y(t)−B0u(t) =
∆

Γ
α(t) (14)

3In order to simplify the writing the argument q−1 has been dropped out in many equations
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α̂(t) = Sû(t) +Rŷ(t) (15)

β̂(t) = A0ŷ(t)−B0û(t) =
∆̂

Γ̂
ˆα(t) (16)

The closed loop output error is defined as:

εCL = y(t)− ŷ(t) (17)

and the filtered closed loop output error is defined as:

νCL = β(t)− β̂(t) (18)

Using Eqs. (10), (12),(14) and (16) one effectively gets:

νCL(t) =
P0

S
εCL(t) (19)

where:

P0 = A0S +B0R (20)

is a Hurwitz polynomial. Define:

θT = [γ1, γ2 . . . δ1, δ2, . . . ] ; (21)

θ̂T = [γ̂1, γ̂2 . . . δ̂1, δ̂2...], (22)

ϕT (t) = [−β̂(t),−β̂(t− 1), . . . α̂(t), α̂(t− 1), . . . ] (23)

For developing the identification algorithm it will be assumed that the plant

model is in the model set. The algorithms will be analyzed first in this context50

and then in the case when the plant model is not in the model set.

3. Dual-CLOE Algorithms

In a deterministic context (w = 0 in Fig. 1), for the case of a constant

estimated parameter vector θ̂ using the predictor given in Eq (11) one has the
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following result:

Lemma 1 For a constant estimated vector θ̂ in a deterministic environment

(w(t) = 0) the closed loop output error is given by:

εCL(t+ 1) =
S

ΓP0
(θ − θ̂)Tϕ(t) (24)

and the filtered closed loop output error is given by:

νCL(t+ 1) =
1

Γ
(θ − θ̂)Tϕ(t) (25)

The proof of this lemma is given in appendix A.

In the presence of time varying parameter estimates one can define an a priori

and and a posteriori filtered closed loop output error, i.e.

ε0
CL(t+ 1) =

S

ΓP0
[θ − θ̂(t)]Tϕ(t) (26)

εCL(t+ 1) =
S

ΓP0
[θ − θ̂(t+ 1)]Tϕ(t) (27)

Similarly one can define an a priori and and a posteriori filtered closed loop

output error, i.e.

ν0
CL(t+ 1) =

1

Γ
[θ − θ̂(t)]Tϕ(t) (28)

νCL(t+ 1) =
1

Γ
[θ − θ̂(t+ 1)]Tϕ(t) (29)

Eqs. (27)and (29) have the standard form for using parameter adaptation algo-

rithms (PAA) of the form: [6, 8]

Θ̂(t+ 1) = Θ̂(t) + F (t)φ(t)ν(t+ 1) (30)

ν(t+ 1) =
νo(t+ 1)

1 + φTF (t)φ(t)
(31)

F (t+ 1)−1 = λ1F (t)−1 + λ2φ(t)φT (t) (32)

9



0 < λ1 < 1 0 ≤ λ2 < 2, F0 > 04 (33)

In the case of using the closed loop output error one has:

Dual − CLOE algorithm:

Θ̂(t) = θ̂(t), φ(t) = ϕ(t) and ν(t) = εCL(t).55

In the case of using the filtered closed loop output error one has:

FDual − CLOE algorithm:

Θ̂(t) = θ̂(t), φ(t) = ϕ(t) and ν(t) = νCL(t).

3.1. Stability Analysis60

Using the Theorem 4.1 [6] or Theorem 3.3 [8] one can straightforwardly

conclude that:

Lemma 2 : Using the PAA given in Eqs. (30) through (33) with Θ̂(t) = θ̂(t)

and φ(t) = ϕ(t) and assuming that S is stable and the external excitation r(t)

is bounded, one has :

for the case ν(t) = εCL(t):

lim
t→∞

εCL(t+ 1) = lim
t→∞

ε0
CL(t+ 1) = 0 (34)

together with the boundedness of εCL(t), and ϕ(t) for any initial conditions,

provided that:

S(z−1)

Γ(z−1)P0(z−1)
− λ

2
; maxλ2(t) ≤ λ2 ≤ 2 (35)

is a strictly positive real (SPR) transfer function.

and for the case ν(t) = νCL(t):

lim
t→∞

νCL(t+ 1) = lim
t→∞

ν0
CL(t+ 1) = 0 (36)

4λ1(t) and λ2(t) allow to obtain various profiles for the evolution of the adaptation gain

F (t)
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together with the boundedness of εCL(t), νCL(t) and ϕ(t) for any initial condi-

tions, provided that:

1

Γ(z−1)
− λ

2
; maxλ2(t) ≤ λ2 ≤ 2 (37)

is a strictly positive real (SPR) transfer function.

Remark 1 :For Γ = 1, which corresponds to uncertainties modeled as a FIR fil-

ter, the SPR condition is suppressed for the algorithm using the filtered closed

loop output error

Remark 2 : If an a priori estimation of Γ denoted Γ0 is available one can relax65

the SPR condition by filtering the adaptation error through Γ0 or filtering the

observation vector ϕ(t) through 1/Γ0 (see next section).

4. The Dual - FCLOE algorithms

Consider now Eq. (24), for the case with time varying estimated parameters.

Neglecting the non-commutativity of the time-varying operators (but an exact

algorithms can be derived - see [8]) one can consider to filter the observation

vector as follows:

ϕf (t) =
S

Γ0P0
ϕ(t) (38)

where Γ0 is an a priori estimation of Γ (Γ0 =1 in the absence of a priori

information or in the case of FIR models). In this case one gets:

εCL(t+ 1) =
Γ0

Γ
[θ − θ̂(t+ 1)]Tϕf (t) (39)

This equation has the standard form for using the PAA given in Eqs. (30)

through (33) with:

Dual − FCLOE algorithm:

Θ̂(t) = θ̂(t), φ(t) = ϕf (t) and ν(t) = εCL(t).

The stability condition in this case will be that the transfer function:

Γ0(z−1)

Γ(z−1)
− λ

2
; max λ2(t) ≤ λ2 ≤ 2 (40)
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be strictly positive real

For the case of using the filtered closed loop output error one can define the

regressor vector as:

ϕff (t) =
1

Γ0
ϕ(t) (41)

Eq. (25) becomes:

νCL(t+ 1) =
Γ0

Γ
(θ − θ̂(t+ 1))Tϕff (t) (42)

In this case, the algorithm will take the form:70

FDual -FCLOE algorithm:

Θ̂(t) = θ̂(t), φ(t) = ϕff (t), ν(t) = νCL(t)

and the stability condition will be that the transfer function given in Eq. (40)

is a strictly positive real (SPR) transfer function.

Remark: One can also consider to filter the regressor vector through the current75

estimation of Γ̂(t) but including a stability test (Dual-AFCLOE algorithm). .

4.1. The Noisy Case

In the presence of measurement noise w(t) , the output of the plant will be

given by:

y((t+ 1) = −Ay(t) +Bu(t) +Aw(t+ 1) (43)

One assumes that the measurement noise w(t) is bounded and independent with

respect to the external excitation r(t) and that one uses a decreasing adaptation

gain (λ1(t) ≡ 1, λ2(t) > 0). One can use for analysis, the ODE approach [9].

Following a similar path as for the proof of Lemma 1 it can be shown that the

closed loop output prediction error and the filtered closed loop output error for

a fixed value of the estimated parameter vector will be given by:

εCL(t+ 1) =
S

ΓP0
(θ − θ̂)Tϕ(t) +

AS

ΓP0
w(t+ 1) (44)

νCL(t+ 1) =
1

Γ
(θ − θ̂)Tϕ(t) +

A

Γ
w(t+ 1) (45)
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For the Dual-FCLOE algorithm the expression of the adaptation error for a

constant estimated paramter vector will take the form:

εCL(t+ 1) =
Γ0

Γ
(θ − θ̂)Tϕf (t) +

AS

ΓP0
w(t+ 1) (46)

νCL(t+ 1) =
Γ0

Γ
(θ − θ̂)Tϕff (t) +

A

Γ
w(t+ 1) (47)

One observes that ϕ(t), ϕf (t) and ϕff (t) are independent with respect to w(t+1)

(by the way that they are generated) and one can straightforwardly use Theo-

rem 4.1 [8] leading to the following conclusions:80

� Assume that the stationary process φ(t, θ̂) and ν(t + 1, θ̂) can be defined

for θ̂(t) ≡ θ̂.

� Assume that θ̂(t) generated by the algorithm belongs infinitely often to

the domain (Ds) for which the stationary processes φ(t, θ̂) and ν(t+ 1, θ̂)85

can be defined.

� Assume that either w(t + 1, θ̂) is a sequence of independent equally dis-

tributed normal random variables (0, s), or E{φ(t, θ̂), w(t+ 1, θ̂)} = 0

Then, if the strictly positive real condition of Eq. (35) for Dual-CLOE, of

Eq. (37) for FDual-CLOE, of Eq. (40) Dual-FCLOE and FDual-FCLOE are

satisfied, one has:

Prob{ lim
t→∞

θ̂(t) ∈ Dc} = 1 (48)

where the convergence domain Dc is defined as :

Dc : θ̂ : φT (t, θ̂)[θ − θ̂] = 0 (49)

Under richness conditions the domain Dc reduces to θ̂ = θ and one gets unbiased

parameter estimates i.e.

Prob{ lim
t→∞

θ̂(t) = θ} = 1 (50)
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5. Dual - XCLOE Algorithm

In order to remove the SPR condition (37) depending upon the unknown

polynomial Γ(q−1) one can consider to use an extended estimation model. How-

ever, the independence between the measurement noise and the regressor vector

will be lost in the noisy case even for constant estimated parameters. So in

order to remove the SPR condition (37) and to assure unbiased estimates in

the presence of noise, we will consider an ARMAX model representation for the

plant + noise:

y((t+ 1) = −Ay(t) +Bu(t) + Ce(t+ 1) (51)

where e(t) is a gaussian discrete time white noise (0,σ) and C = 1 + q−1C∗ is

an asymptotically stable polynomial. The objective will be first to construct

an optimal predictor for the case of known parameters which will assure that

the prediction error will become asymptotically white and then an adaptation

algorithm will be developed for the case of unknown parameters. One has the

following result:

Lemma 3 Under the hypotheses that A0, B0, R, S,∆,Γ and C are perfectly

known, the asymptotically optimal one step ahead closed loop output predictor

is given by:

Γ̂β̂(t+ 1) = ∆̂∗α̂(t) + Ĥ∗
εCL
S

(52)

ŷ(t+ 1) = −A∗0ŷ(t) + β̂(t+ 1) +B∗0 û(t) (53)

where:

H∗ = C∗S − (ΓA0)∗S − Γ∗B∗0R : H = 1 + q−1H∗

Ĥ∗ = ĥ1 + ĥ2q
−1 + ...+ ĥnH q

−nH+1;

Ĥ = 1 + q−1Ĥ∗

nH = max(nC + nS , nΓ + nA0 + nS , nΓ + nB0 + nR); (54)

leading to:

lim
t→∞

[εCL(t+ 1)− e(t+ 1)] = 0 (55)
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for θ̂ = θ and Ĥ = H. The proof of this lemma is given in Appendix B.

Note that Eq. (52) can be rewritten as:

β̂(t+ 1) = θ̂Te ϕe(t) (56)

where:

θ̂Te = [θ̂T , ĥ1, ĥ2, ..., ĥnH ] (57)

ϕTe (t) = [ϕT , εCLf (t), ...εCLf (t− nH + 1)] (58)

εCLf (t) =
1

S
εCL(t) (59)

To identify the vector of parameter, one replaces θ̂e in the predictor by a time-

varying vector θ̂e(t) which will be estimated.

In a deterministic context e(t + 1) = 0 and C = 1. From Eqs. (99) through

(102) it results that the a posteriori output of the Π̂ predictor will be given by:

β̂(t+ 1) = θ̂Te (t+ 1)ϕe(t) (60)

and the a posteriori closed loop prediction error will be given by:

εCL(t+ 1) = [θe − θ̂e(t+ 1)]Tϕe(t) (61)

This equation has the standard form leading to the use of the parameter adap-

tation algorithm given in Eqs. (30) through (33) with;

Dual-XCLOE algorithm:

Θ̂(t) = θ̂e, φ(t) = ϕe(t), ν(t) = εCL(t).

Lemma 3bis Under the hypotheses that A0, B0, R, S,∆,Γ and C are perfectly

known, the asymptotically optimal one step ahead filtered closed loop output

predictor is given by:

Γ̂β̂(t+ 1) = ∆̂∗α̂(t) + Ĥ∗νCL (62)

15



where:

H∗ = C∗ − Γ∗; Ĥ∗ = C ∗ −Γ̂∗; Ĥ = 1 + q−1Ĥ∗

= ĥ1 + ĥ2q
−1 + ...+ ĥnH q

−nH+1;

nH = max(nC , nΓ);

(63)

leading to:

lim
t→∞

[νCL(t+ 1)− e(t+ 1)] = 0 (64)

for θ̂ = θ and Ĥ = H. The proof of this lemma is given in Appendix B. Note

that Eq. (62) can be rewritten as:

β̂(t+ 1) = θ̂Tefϕef (t) (65)

where:

θ̂Tef = [θ̂T , ĥ1, ĥ2, ..., ĥnH ] (66)

ϕTef (t) = [ϕT , νCL(t), ...νCL(t− nH + 1)] (67)

To identify the vector of parameters, one replaces θ̂ef in the predictor by a

time-varying vector θ̂ef (t) which will be estimated.

In a deterministic context e(t + 1) = 0 and C = 1, the a posteriori output of

the predictor will be given by:

β̂(t+ 1) = θ̂Te (t+ 1)ϕef (t) (68)

and the a posteriori prediction error will be given by:

νCL(t+ 1) = [θef − ˆθef (t+ 1)]Tϕef (t) (69)

This equation has the standard form leading to the use of the parameter adap-90

tation algorithm given in Eqs. (30) through (33) with:

FDual-XCLOE algorithm:

Θ̂(t) = θ̂ef , φ(t) = ϕef (t), ν(t) = νCL(t).

16



Remark: The algorithm using the adjustable predictor for the filtered closed

loop output error will need less parameters to estimate than the algorithm us-95

ing the adjustable predictor for the closed loop output error.

5.1. Stability analysis

Using the Theorem 4.1 [6] or Theorem 3.3 [8] one can straightforwardly

conclude that:

Lemma 4 : Using the predictor given in Eqs. (52) and (53) with adjustable

parameters and the PAA given in Eqs. (30) through (33) with Θ̂(t) = θ̂e, φ(t) =

ϕe(t) and ν(t) = εCL, one has :

lim
t→∞

εCL(t+ 1) = lim
t→∞

ε0
CL(t+ 1) = 0 (70)

together with the boundedness of εCL and ϕe(t) for any initial conditions.

Lemma 4bis: Using the predictor given in Eq. (62) with adjustable parameters

and the PAA given in Eqs. (30) through (32) with Θ̂(t) = θ̂ef , φ(t) = ϕef (t)

and ν(t) = νCL. one has :

lim
t→∞

νCL(t+ 1) = lim
t→∞

ν0
CL(t+ 1) = 0 (71)

together with the boundedness of νCL and ϕe(t) for any initial conditions.

5.2. The noisy case

In the noisy case, using Eqs. (99) and (100)from Appendix B, the prediction

error equation takes the form:

εCL(t+ 1) = [θe − θ̂e(t+ 1)]Tϕe(t) + Ce(t+ 1)− C∗εCL(t) (72)

which leads to:

εCL(t+ 1) =
1

C
[θe − θ̂e(t+ 1)]Tϕe(t) + e(t+ 1) (73)

One can use for analysis the ODE method [9]. Since e(t+1) is a white noise

sequence, ϕe(θ̂e, t) will be independent with respect to e(t+1) and applying The-

orem 4.1 from [8] one concludes that asymptotic unbiased parameter estimates

17



Figure 2: Dual YK identification from a YK structure (without Q-filter)

are obtained under richness conditions provided that

1

C
− λ2

2
, λ2 = maxλ2(t) (74)

is a strictly positive real transfer function. The same convergence result is ob-100

tained when using the predictor of Eq. (62) (filtered closed loop output predic-

tor) with adjustable parameters and the corresponding parameter and regressor

vector.

A summary of the algorithms presented above is given in Table 1.

6. Modified Hansen approach for recursive identification of Youla105

Kucera structure in closed loop operation

Adding a Youla-Kucera observer whose output is {l(t)} (it is the input to

a Youla-Kucera control filter), a direct identification of the Dual-Youla Kucera

structure is possible by introducing an excitation sequence {p(t)} and collecting

the sequence {l(t)} as shown in Fig. 2. The identification can be performed

with any open-loop type algorithm. One has indeed
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p(t) = Su(t) +Ry(t) (75a)

l(t) = −B0u(t) +A0y(t) (75b)

and on the other hand

α(t) = Su(t) +R(y(t)− w(t)) (76a)

β(t) = −B0u(t) +A0(y(t)− w(t)) (76b)

But since

β(t) =
∆

Γ
α(t) (77)

and combining with (5) and (6), one obtains:

l(t) =
∆

Γ
p(t) +

A

Γ
w(t) (78)

If one uses F-OLOE algorithm [8] in order to identify the Dual-YK filter with

this scheme, the parameters vectors remain the one given by (21) and (22),

the observation vector is ϕT (t) = [−l̂(t), −l̂(t − 1) · · · p(t), p(t − 1) · · · ], the

predicted output is l̂(t + 1) = θ̂T (t)ϕ(t), the regressor vector is ϕ(t) filtered

by 1
Γ0

, and the adaptation error is given by ν(t + 1) = ε(t + 1) = l(t + 1) −

l̂(t+ 1) (MH-FOLOE algorithm). Another choice consists in using an ARMAX

predictor model, and one can use the recursive extended least-squares (RELS-

see [8]), where the regressor and the observation vector are in this case: ϕTe (t) =

[ϕT (t), ε(t), ε(t− 1) · · · ], and the parameter vector is θ̂Te = [θ̂T , ĉ1, ĉ2 · · · ].

This structure can be compared to the well-known Hansen scheme where an

open-loop identification is performed with input-output sequences {x(t)} and

{z(t)} defined as

x(t) =
S2

P0
r(t) (79a)

z(t) = y(t)− B0S

P0
r(t) (79b)

One can verify that

z(t) =
∆

Γ
x(t) +

AS

ΓP0
w(t) (80)

19



Consequently the Hansen structure induces an implicit frequency weighting by∣∣∣S2(eiω)
P0(eiω)

∣∣∣ with respect to the excitation sequence {r(t)} which in general has

not a specific interest, whereas the scheme proposed in this section is a truly

open-loop procedure (without any weighting) for the identification of the the110

Dual Youla-Kucera model in closed loop operation.

Alg. Dual-CLOE Dual-FCLOE Dual-XCLOE FDual-CLOE FDual-FCLOE FDual-XCLOE

Plant+Noise y = B
A

+ w y = B
A

+ w y = B
A

+ C
A
e y = B

A
+ w y = B

A
+ w y = B

A
+ C
A
e

Adj. Par.

Vect. Θ̂

θ̂T = [γ̂1.δ̂1.] θ̂T == [γ̂1.δ̂1.] θ̂Te =

[γ̂1.δ̂1.ĥ1.]

θ̂T = [γ̂1.δ̂1.] θ̂T = [γ̂1.δ̂1.] θ̂Te =

[γ̂1.δ̂1.ĥ1.]

Obs. vect. ϕ [−β(i), α(i)] [−β(i), α(i)] [−β(i), α(i), εf (i)] [−β(i), α(i)] [−β(i), α(i)] [−β(i), α(i), νf (i)]

Pred.out.ŷ0(t+

1)

−A∗
0y + B∗

0 û +

β̂0

−A∗
0y + B∗

0 û +

β̂0

−A∗
0y + B∗

0 û +

β̂0

β̂ = θ̂T (t)ϕ(t) β̂ = θ̂T (t)ϕ(t) β̂ = θ̂T (t)ϕ(t)

Adapt err. y − ŷ y − ŷ y − ŷ β − β̂ β − β̂ β − β̂

Regr.vect. φ ϕ S
Γ0P0

ϕ ϕ ϕ S
Γ0P0

ϕ ϕ

Stab.cond. S
ΓP0

− λ2
2

Γ0
Γ

− λ2
2

None 1
Γ

− λ2
2

Γ0
Γ

− λ2
2

None

(deterministic) SPR SPR SPR SPR

Conv. cond.) S
ΓP0

− λ2
2

Γ0
Γ

− λ2
2

1
C

− λ2
2

1
Γ

− λ2
2

Γ0
Γ

− λ2
2

1
C

− λ2
2

(stochastic) SPR SPR SPR SPR SPR SPR

Table 1: Summary of closed loop identification algorithms for dual Youla Kucera plant models

7. Asymptotic bias distribution in the frequency domain

It is important to assess the bias distribution in the frequency domain of

the estimated model when the plant model is not in the model set. Contrary to

prediction error methods which aim at minimizing the prediction error variance115

asymptotically, it has been shown in [10], that in general this is not the case

for the algorithms belonging to the Pseudo-Linear Regression (PLR) class, like

Dual-CLOE. The non-measurable signal whose variance is asymptotically min-

imized by algorithms of the PLR class, is called the equivalent prediction error

denoted as εE , and from the expression of this latter signal it is possible to infer120
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a limit model in the frequency domain, useful to analyze the bias distribution

of the algorithm.

7.1. Limit model for the Dual-CLOE algorithm

One has the following result125

Lemma 4 The limit model for Dual−CLOE algorithm ( ν(t) = εCL(t)) or

for the FDual − CLOE algorithm ( ν(t) = νCL(t)) is given by

θ̂∗ = Argmin

∫ +π

−π

∣∣∣Â(eiω)
∣∣∣2 ∣∣∣G(eiω)− Ĝ(eiω)

∣∣∣2 ∣∣Syw(eiω)
∣∣2 Ψr(ω)dω (81)

where Syw = AS
ΓP0 is the output sensitivity function and Ψr(ω) is the PSD

(Power Spectral Density) of the external excitation signal.

The proof is given in Appendix C (section13).

7.2. Limit model for the Dual-FCLOE algorithm130

Lemma 5 The limit model of Dual-FCLOE algorithm is given by

θ̂∗ = Argmin

∫ +π

−π

∣∣∣∣∣ Â(eiω)S(eiω)

Γ0(eiω)P0(eiω)

∣∣∣∣∣
2

∣∣∣G(eiω)− Ĝ(eiω)
∣∣∣2 ∣∣Syw(eiω)

∣∣2 Ψr(ω)dω (82)

The proof is given in Appendix D (section 14).

7.3. Limit model for the FDual-FCLOE algorithm

Lemma 6 The limit model of FDual-FCLOE algorithm is given by

θ̂∗ = Argmin

∫ +π

−π

∣∣∣∣∣ Â(eiω)

Γ0(eiω)

∣∣∣∣∣
2

∣∣∣G(eiω)− Ĝ(eiω)
∣∣∣2 ∣∣Syw(eiω)

∣∣2 Ψr(ω)dω (83)

The proof is obtained by combining results of Appendices C and D (sections

13 and 14).
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7.4. Limit model for the Dual-XCLOE algorithm135

Lemma 7 The limit model of Dual-XCLOE algorithm is given by

θ̂∗ = Argmin

∫ +π

−π

∣∣∣Â(eiω)
∣∣∣2∣∣∣G(eiω)− Ĝ(eiω)

∣∣∣2 ∣∣Syw(eiω)
∣∣2 Ψr(ω)+∣∣∣Â(eiω)

∣∣∣2 ∣∣∣∣∣W (eiω)
A(eiω)Γ̂(eiω)

Â(eiω)Γ(eiω)
− Ĉ(eiω)

Â(eiω)

∣∣∣∣∣
2

Ψe(ω)dω (84)

where Ψe(ω) is the PSD of the noise The proof is given in Appendix E (section

15)

7.5. Limit model for the MH-FOLOE

Lemma 8 The limit model of this algorithm is given by

θ̂∗ = Argmin

∫ +π

−π

∣∣∣∣∣ Â(eiω)

Γ0(eiω)

∣∣∣∣∣
2

∣∣∣G(eiω)− Ĝ(eiω)
∣∣∣2 ∣∣∣∣ A(eiω)

P0(eiω)Γ(eiω)

∣∣∣∣2 Ψp(ω)dω (85)

where Ψp(ω) is the PSD of the excitation p, when the identification of the Dual-

YK filter is performed with F-OLOE [8] (where the filter of the observation

vector is 1/Γ0), or with H-OLOE [11] (where the basis poles are the roots of

Γ0). The proof is given in Appendix F (section 16).

By comparison, the limit model of the Hansen scheme, when identified with

F-OLOE where the observation vector is the regressor filtered through 1
Γ0

, or

with H-OLOE where the basis poles are the roots of Γ0 (it can be inferred from

the one of PEM [9]), is given by:

θ̂∗ = Argmin

∫ +π

−π

∣∣∣∣∣ Â(eiω)S(eiω)

Γ0(eiω)P0(eiω)

∣∣∣∣∣
2

∣∣∣G(eiω)− Ĝ(eiω)
∣∣∣2 ∣∣Syw(eiω)

∣∣2 Ψr(ω)dω (86)
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7.6. Comparison of the various algorithms in terms of bias

The Dual-FCLOE algorithm seems to offer the best approximation proper-140

ties since the model errors in the frequency domain are weighted by the true and

the estimated sensitivity function. This means that the best approximation is

obtained in the the frequency zone close the Nyquist point (where the modulus

of the output sensitivity function has its maximum). The other algorithms from

the CLOE family induce a larger penalty in high frequencies.145

8. Simulations

One considers the following configuration:

B0(q−1) = q−1 + 0.5q−2 A0(q−1) = 1− 1.5q−1 + 0.7q−2

R(q−1) = 0.2419− 0.1491q−1 − 0.2144q−2 + 0.1766q−3
150

S(q−1) = 1− 0.5043q−1 − 0.3696q−2 − 0.1262q−3

∆(q−1) = 2.8q−1 − 0.7q−2

Γ(q−1) = 1− 1.1q−1 + 0.3q−2

The simulations are performed under the following conditions:

The excitation is a PRBS (2048 samples, decimation 1). The sequence {w(t)}155

is a centered gaussian white noise, and in closed-loop the noise/noise ratio is

about 32% (-10dB) (output variance/noise variance) for all simulations 5. In this

context we are far from the asymptotic behaviour of the algorithms but closer

to real situations. Fig. 3 displays the Bode Diagrams of the nominal system

(B0, A0), and the current one (note that this latter is unstable in open-loop,160

but is stabilized by the controller), and Fig. 4 compares the output sensitivity

functions of the loops including these two systems. Note that the maximum

of the sensitivity function including the true system is roughly equal to 10 dB,

which implies a modulus margin lower than 0.32.

5It corresponds to a high level of the measurement noise compared to the usual ratio used

in the literature which is around 10% (-20 dB)
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Figure 3: Bode diagrams of the nominal system and the current one

Figure 4: Sensitivity functions for the closed-loop including the nominal system and the

current one
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Figure 5: Identification result (50 realizations) for the Hansen scheme, estimation performed

with F-OLOE

The first set of simulations compares 50 realizations in the case ”plant model is165

in the model set” for the following algorithms:

a) The Hansen scheme where the identification routine is F-OLOE (or equiva-

lently H-OLOE see [11]), where the zeros of the filter (or the basis poles of

H-OLOE) are equal to 0.5 (Fig. 5),170

b) The modified Hansen scheme, where the parameter estimation is performed

with F-OLOE or H-OLOE, and where the zeros of the filter (or the basis

poles of H-OLOE) are equal to 0.5 (Fig. 6),

c) Dual-FCLOE, where the roots of Γ0 are set to 0.5 (Fig. 7),

d) FDual-FCLOE, where the roots of Γ0 are set to 0.5 (Fig 8).175

These figures reveal that in this highly noisy context the Hansen scheme pro-

vides the lowest variance in the low and high frequency ranges and the modified

Hansen Scheme is the one yielding the larger variance in the low and high fre-

quency range. However these frequencies domains are not essential for control.

In the critical frequency range (around the maximum of the sensitivity func-180

tion and of the system resonance) all algorithms show a very little difference
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Figure 6: Identification result (50 realizations)for the modified Hansen scheme, estimation

performed with F-OLOE (MH-OLOE)

Figure 7: Identification result (50 realizations) for Dual-FCLOE
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Figure 8: Identification result (50 realizations) for FDual-FCLOE

in performance in terms of variance. These observations are confirmed if one

considers the standard deviation of the estimated parameters around their true

values, as shown in Tab. 2, and the additional indicators:

¯̃
θ = 1

nθ

∑nθ
j=1

∣∣∣ ¯̂θ(j)− θ(j)∣∣∣185

σ̄ = 1
nθ

∑nθ
j=1 σ(j)

v̄ = 1
nθ

∑nθ
j=1 σ

2(j)

displayed in Tab. 3 (the bar corresponds to the mean value, nθ is the lenght of

θ, σ(j) the standard deviation of the ith parameter )

True

Parameters

MH-OLOE Dual-

FCLOE

FDual-

FCLOE

Hansen

Scheme/F-

OLOE

γ1 = −1 0.1939 0.1121 0.1981 0.1137

γ2 = 0.3 0.1393 0.0783 0.1443 0.0820

δ1 = 2.8 0.1569 0.0880 0.0965 0.0580

δ2 = −0.7 0.5938 0.4096 0.6602 0.3894

Table 2: Standard deviation of the estimated parameters

190

The second set of simulations consists in performing identification in the case

where the true Dual-Youla parameter is not in the model set (here ∆̂ and Γ̂
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Indicators MH-OLOE Dual-

FCLOE

FDual-

FCLOE

Hansen

Scheme/F-

OLOE

¯̃
θ 0.3502 0.0687 0.0597 0.0566

σ̄ 0.2631 0.1790 0.2471 0.1476

v̄ 0.1050 0.0523 0.0992 0.0364

Table 3: Standard indicators of the parameters’ dispersion

Figure 9: Resulting model for a Dual-YK Filter of order one, Hansen scheme

have a degree equal to 1), thus the identified models are necessarily biased.

One can observe that the asymptotic models are identical for the schemes a),

c), (see Fig. 9 and Fig. 10) and this is explained by the expressions of the195

bias in the frequency domain given in Eqs. (82) and (86) which are the same.

One can notice that the misfit is strongly penalized for the frequencies around

the maximum of the sensitivity function. As expected from expression (83) ,

FDual−CLOE penalizes more significantly the fit in high frequency (Fig. 11),

whereas the modified Hansen scheme, in accordance with Eq. (85) spreads the200

bias over the all spectrum, as shown in Fig. 12.

28



Figure 10: Resulting model for a Dual-YK Filter of order one, Dual-FCLOE

Figure 11: Resulting model for a Dual-YK Filter of order one, FDual-FCLOE
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Figure 12: Resulting model for a Dual-YK Filter of order one, scheme b) with the modified

Hansen Scheme (MH-OLOE)

9. Validation of the identified models

The techniques presented in [6] and [8] can be used also in this context.

10. Conclusions205

The paper has presented a set of recursive algorithms for identification in

closed loop operation of plant models represented in dual Youla Kucera form.

The algorithms have been analyzed, compared and evaluated by simulations. In

this context it appeared that there are three basic options for the choice of the

prediction error:1) the closed loop output error 2) the closed loop error between210

the outputs of the true and estimated dual YK block which corresponds to a

filtered closed loop output error) and 3) The Hansen scheme (and its modifi-

cation) combined with open loop recursive identification algorithms. Some of

these algorithms fully exploit the fact that one operates in closed loop allowing

to get identified models which provide a better approximation in the crucial215

frequency regions close to the Nyquist point since the bias is heavily weighted

by the sensitivity functions. Some of the algorithms allow to get models without

any positive real condition related to a priori estimates.
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11. Appendix A: Proof of Lemma 1

Proof : From Eq. (14) one has

(1 + q−1Γ∗)β(t+ 1) = ∆∗α(t) (87)

which can be alternatively written as:

β(t+ 1) = −Γ∗β(t) + ∆∗α(t) (88)

Adding and subtracting the term −Γ∗β̂(t) + ∆∗α̂(t) one gets:

β(t+ 1) = −Γ∗β(t) + ∆∗α(t)± [−Γ∗β̂(t) + ∆∗α̂(t)]

= −Γ∗[β(t)− β̂(t)] + ∆∗[α(t)− α̂(t)]− Γ∗β̂(t) + ∆∗α̂(t)

(89)

From Eq. (16) one gets

β̂(t+ 1) = −Γ̂∗β̂(t) + ∆̂∗α̂(t) (90)

Subtracting Eq. (90) from Eq. (89) and using Eq. (18) one gets:

νCL(t+ 1) = −Γ∗νCL(t) + ∆∗[α(t)− α̂(t)]

−(Γ∗ − Γ̂∗)β̂(t) + (∆∗ − ∆̂∗)α̂(t)

(91)

By using Eqs.(10),(12),(13),(15) one concludes that:

α(t)− α̂(t) = 0 (92)

and using now Eqs. (21) through (23), it results that Eq. (91) takes the form:

ΓνCL(t+ 1) = (θ − θ̂)Tϕ(t) (93)

from which Eq. (25) results. Using now Eqs. (18),(14),(16), (10),(12),(17), one

gets

νCL(t) = A0[y(t)− ŷ(t)] +
B0R

S
[y(t)− ŷ(t)] =

P0

S
εCL(t). (94)

Combining Eqs. (93) and (94) one gets Eq. (24)220

End of the proof.
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12. Appendix B: Proof of Lemmas 3 and 3bis

From Eq. (51) using the expression of A and B given in Eq. (6) one gets:

Γ[A0y(t+ 1−B0u(t+ 1] = ∆[Su(t+ 1) +Ry(t+ 1] + Ce(t+ 1) (95)

which can be alternatively written as:

y(t+ 1) = −(ΓA0)∗y(t) + ΓB0u(t+ 1)

+∆∗[Su(t) +Ry(t)] + Ce(t+ 1) (96)

where:

ΓA0 = 1 + q−1(ΓA0)∗ (97)

Adding and subtracting −(ΓA0)∗ŷ(t) + ΓB0û(t + 1) + ∆∗[Sû(t) + Rŷ(t)] one

gets:

y(t+ 1) = −(ΓA0)∗εCL(t)− ΓB∗0
R

S
εCL(t)

−(ΓA0)∗ŷ(t) + ΓB0û(t+ 1) + ∆∗[Sû(t) +Rŷ(t)] + Ce(t+ 1)

+∆∗[RεCL(t)− SR
S
εCL(t)] (98)

where the last parenthesis is null. Adding and subtracting the term C∗εCL(t),

Eq. (98) will take the form:

y(t+ 1) = [C∗S − (ΓA0)∗S − Γ∗B∗0R]
εCL(t)

S

−(ΓA0)∗ŷ(t) + ΓB∗0 û(t) + ∆∗[Sû(t) +Rŷ(t)]

−C∗[εCL(t)− e(t)] + e(t+ 1)

(99)

From Eq. (52) one gets:

ŷ(t+ 1) = −(Γ̂A0)∗ŷ(t) + Γ̂B∗0 û(t)

+∆̂∗[Sû(t) +Rŷ(t)] + Ĥ∗
εCL
S

(100)
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Subtracting now Eq. (100) from Eq.(99) for θ̂ = θ and taking into account that:

(ΓA0)∗ − (Γ̂A0)∗ = (Γ∗ − Γ̂)A0 (101)

(Γ− Γ̂) = q−1(Γ∗ − Γ̂∗) (102)

yields:

εCL(t+ 1) = −C∗(εCL(t)− e(t) + e(t+ 1) (103)

which implies that (55) holds since C(z−1) has all his roots inside the unit

circle. Proof of lemma 3bis

Eq.(95) can be rewritten using Eqs.(13) and (14):

β(t+ 1) = −Γ∗β(t) + ∆∗α(t) + Ce(t+ 1)

= −Γ∗νCL(t)− Γ∗β̂(t) + ∆∗α̂(t) + Ce(t+ 1) (104)

by adding and subtracting the term−Γ∗β̂(t)+∆∗α̂(t). Eq. (62) can be rewritten

as:

β̂(t+ 1) = −Γ̂∗β̂(t) + ∆̂∗α̂(t) + [−Γ̂∗ + C∗]νCL(t) (105)

Subtracting Eq. (105) from Eq. (104) one gets for the known parameter case:

νCL(t+ 1) = −C∗(νCL(t)− e(t) + e(t+ 1) (106)

which implies that Eq. (64) holds.

13. Appendix C: Proof of Lemma 4225

Case 1: ν(t) = εCL(t). As in [10], let us defineQ(q−1, θ̂) such thatQ(q−1, θ̂)∂εCL
∂θ̂

=

−ϕ(t, θ̂). Notice that we have β̂(t+ 1) = P0

S ŷ(t+ 1, θ̂)−B0r(t), and β̂(t+ 1) =

θ̂Tϕ(t). Therefore ∂ŷ(t+1,∂θ̂)

θ̂
= S

P0

[
ϕ(t) + θ̂T ∂ϕ(t)

∂qε
∂qε

∂θ̂

]
, and

[
P0

S + θ̂T ∂ϕ
∂qε

]
∂ε(t+1,θ̂)

∂θ̂
=

−ϕ(t). Therefore Q(q−1, θ̂) = P0

S + θ̂T ∂ϕqε = P0Γ̂
S . Now, Theorem 1 of [10]

can be used with the present expression of Q(q−1, θ̂) = P0Γ̂
S . Since from [8],230

p.308, εCL(t) = ÂS
P0Γ̂

[
G− Ĝ

]
AS
ΓP0

r(t) + AS
ΓP0

w(t). One obtains, the equiva-

lent prediction error εE(t) = Â
[
G− Ĝ

]
AS
ΓP0

r(t) + AS
ΓP0

w(t), and one has θ̂∗ =
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Argmin
∫ +π

−π ΨεE (ω)dω, where ΨεE (ω) is the PSD of εE , hence the limit model

in the frequency domain.

Case 2: ν(t) = νCL(t). The expression of Q(q−1, θ̂) such that Q(q−1, θ̂)∂νCL
∂θ̂

=235

−ϕ(t, θ̂) leads to Q(q−1, θ̂) = Γ̂, since β̂(t + 1) = θ̂Tϕ(t, θ̂). One has νCL(t) =

P0

S εCL(t), and the equivalent prediction error εE(t) is given by εE(t) = Q(q−1, θ̂)νCL(t)+

(1−Q(q−1, θ)) ASΓP0
w(t+ 1), and one gets εE(t) = Â

[
G− Ĝ

]
AS
ΓP0

r(t) + AS
ΓP0

w(t),

leading to the same limit model as in case 1.

14. Appendix D: Proof of Lemma 5240

Like in case 1 of Dual−CLOE (where ν(t) = εCL(t)), one has Q(q−1, θ̂) =

P0Γ̂
S . On the other hand, one has ϕf (t) = S

P0Γ0
ϕ(t) = 1

Qf (q−1)ϕ(t), where

Qf (q−1) = P0Γ0

S . Therefore one can apply Theorem 2 in [10], with the present

expressions of Q(q−1, θ̂) and Qf (q−1), and the equivalent prediction error is

εE(t) = Q(q−1, θ̂)νCL(t) + (1 − Q(q−1, θ)) AS
Γ0P0

w(t + 1), and one gets εE(t) =245

ÂS
Γ0P0

[
G− Ĝ

]
AS
ΓP0

r(t)+ AS
ΓP0

w(t), hence the limit model in the frequency domain.

15. Appendix E: Proof of Lemma 7

Let us determine Q(q−1, θ̂) such that Q(q−1, θ̂)∂εCL
∂θ̂

= −ϕ(t, θ̂). One has

β̂(t + 1) = θ̂Te φe(t), and ŷ(t + 1) = S
P0
θ̂Te φe(t). Therefore ∂ŷ(t+1)

θ̂
= S

P0
ϕe(t) +

S
P0

∂ϕe(t)
∂qε

qε

∂θ̂
, and Q(q−1, θ̂) = P0

S + θ̂ ∂ϕe∂qε = P0

S + Γ̂∗P0

S + Ĥ∗

S = Ĉ. Therefore250

εE(t) = Â
[
(G− Ĝ) ASP0Γr(t) +

(
W AΓ̂

ÂΓ
− Ĉ

Â

)
e(t)

]
, like in the classical X-CLOE

algorithm.

16. Appendix F: Proof of Lemma 8

One has l(t) = ∆
Γ p(t) + A

Γw(t). Let us define l̂(t) as the predicted output

of F-OLOE (or H-OLOE), one has l̂(t) = ∆̂
Γ̂
p(t). Set ν(t) the prediction error255

of F-OLOE (or H-OLOE) such that ν(t) = l(t) − l̂(t). On the other hand

l(t) = −B0u(t) + A0y(t) and u(t) = −RS y(t) − 1
S p(t). Therefore one obtains

ν(t) = P0

S ε(t), where ε(t) = y(t)− ŷ(t). Moreover, one has r(t) = − 1
S p(t). Thus
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one has ν(t) = Â
Γ

(
G− Ĝ

)
A
P0Γp(t) + A

Γw(t). Now the equivalent prediction

error νE(t) of F-OLOE or H-OLOE is given by νE(t) = Γ̂
Γ0ν(t) + (1− Γ̂

)
A
Γw(t).260

And finally νE(t) = Â
γ0

(G − Ĝ) A
P0Γp(t) + A

Γw(t), hence the limit model in the

frequency domain, and this ends the proof.
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