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Abstract

This paper deals with robust planning and scheduling of activities in agriculture and in particular

the application of phytosanitary treatments. The crops are subject to many diseases that may arise

during different time windows of the planning horizon. In response, a phytosanitary treatment can

be applied to protect against a subset of these diseases. However, the effective duration of some

treatments is uncertain, it depends on the type of treatment applied as well as on the weather

conditions. In this study we introduce a penalty function based approach to handle this uncertainty

without being overly conservative akin to light robustness approach proposed in the literature. We

discuss different forms for this penalty function and elaborate on solution methodologies for the

resulting models. We test the effectiveness of our approach with realistically-sized instances, which

correspond to a typical vineyard in Bordeaux area, and present a numerical analysis of different

optimization models and solution methods.

Keywords: Robust optimization, Light robustness, Penalty function, Phytosanitary treatment

planning.
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Nomenclature

Indices and sets

S set of sites

T set of time periods of the planning horizon

R set of diseases (requests) against which the sites must be protected

P set of treatment mixtures

C set of components that make up treatment mixtures

M set of machines that can be used to apply treatment (product) mixtures

Ω precomputed set of site clusters

Zs precomputed set of meta-treatment-sequences for site s

Subsets

Ωm ⊆ Ω set of clusters that can be treated by machine m

Ωs ⊆ Ω set of clusters that include site s

Mω ⊆M set of machines that can be used to treat ω

Rs ⊆ R set of diseases that affect site s

Rst ⊆ Rs set of diseases that must be covered at site s in time period t

Rps ⊆ Rs set of diseases that can be treated by treatment mixture p at site s

PS/NS ⊆ P set of systemic/non-systemic treatments

Ps ⊆ P set of treatment mixtures that can be used at site s

Prs ⊆ P set of treatment mixtures that can treat disease r at site s

Tps ⊆ T set of time periods in which treatment mixture p can be applied at site s

Trs ⊆ T set of time periods in which disease r should be treated at site s

Zsp ⊆ Zs set of all sequences of site s that contain mixture p

Kζsp set of all indices k in sequence ζ ∈ Zsp that are associated with mixture p

Succp ⊆ P set of mixtures that can be applied directly following mixture p
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Parameters

Dsrpt active duration of treatment mixture p at site s in time period t for request r

Dmax
pst maxr∈Rps Dsrpt

ςsp cost of applying mixture p at site s

fm fixed cost of utilizing machine m

tols toxicity tolerance of site s

ςω cost associated with treating cluster ω

toxsp toxicity induced by using mixture p ∈ Ps at site s

toxζ cumulative toxicity level induced by sequence ζ ∈ Zs

pζk kth mixture in sequence ζ

[eζk, l
ζ
k] time window in which pζk can be applied using sequence ζ

Decision Variables

xm ∈ {0, 1} 1 if machine m is leased

λζs ∈ {0, 1} 1 if meta-sequence ζ ∈ Zs is selected for the planning of treatments at site s

δspt ∈ {0, 1} 1 if treatment mixture p is to be spread at site s in period t

µωmpt ∈ {0, 1} 1 if machine m is allocated to spread treatment mixture p in period t at cluster ω
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1 Introduction

In this paper, we consider the planning and scheduling of phytosanitary treatments in agriculture.

Crops are subject to many diseases that may arise over different time windows during the season. Phy-

tosanitary treatments are applied as a preventive measure, where each treatment is effective against

a subset of these diseases, and has a nominal duration of “guaranteed protection” that can vary de-

pending on the type of the treatment as well as the disease. But the effective duration of protection

depends largely on the weather conditions. While treatments may appear to be helpful to the produc-

ers, in the recent years growing concern of the consumers as well as of public health organizations has

led the governments to impose more strict regulation on their use that the production practices must

adapt to (5). Apart from environmental and health considerations, the topic also plays an important

role in international trade relations (2). Government regulations pose restrictions on the repetitive

usage of certain toxic treatments and limit the total amount of toxicity of a treatment plan. Addi-

tionally, treatments are categorized as systemic or non-systemic. The latter are surface treatments

that are much more sensitive to the effects of rainfall. On the other hand, non-systemic treatments

are cost-effective and more environmentally friendly. An important issue for producers is therefore to

establish a reasonable use of protection treatments by phytosanitary products that protect the crops

as effectively as possible while respecting the environment and government regulations. The goal is

to reduce the use level of phytosanitary products by means of a better selection of products and time

spacing between treatments, as well as allocation of equipment to treatments, assuring that the crops

are protected during the season, while minimizing the cost of products and equipment and taking the

uncertainty caused by the usage of non-systemic treatments into account.

The rest of the paper is organized as follows: in Section 2 we introduce the deterministic mathematical

model for the phytosanitary treatment planning problem, in Section 3 we discuss the uncertainty we

consider and give details about the modeling of robustness along with a review of the related literature,

introducing our penalty measure approach and ensuing solution methodologies, in Section 4 we discuss

further improvements to the model to implicitly improve robustness of solutions, in Section 5 we

present our computational results with instances from an industrial partner, finally we conclude in

Section 6.
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2 Deterministic Mathematical Model

Given a set of sites, a set of diseases to be treated at each site, a set of site clusters that correspond

to a subset of sites that can be treated together on the same day by the same machine, as defined

in Section 2.1, and, a set of treatment sequences for each site that correspond to a disease coverage

plan for the site as defined in Section 2.2, the strategic phytosanitary treatment planning problem is

to determine the timing of treatments at each site and to allocate machine resources to perform these

treatments. The objective is to minimize the costs associated with the use of phytosanitary products

as well as the use of the machines over the season.

2.1 Site clusters

One of the critical resources in the agricultural planning problem is the machines that are used to

apply treatments. The costs associated with dispatching machines (along with their operators) to

sites are significant. They include hourly charges for the time spent traveling to sites and spreading

treatments to sites, as well as fixed leasing costs. Promoting simultaneous treatment of multiple sites

is therefore imperative to reduce the number of trips and hence the number of machines required.

The set of sites that can be treated in one trip are restricted by a combination of factors such as the

site surface areas and distances, as well machine tank capacities. Our model assumes that a feasible

groupings of sites, that we call clusters, have been pre-generated. When there are a huge number of

possible clusters, a subset is heuristically selected prior to optimization. A site typically belongs to

multiple clusters, and not all machines can serve a certain cluster. In our optimization model, we

assume that a site can only be treated on a given day if a machine is assigned that day to one of the

clusters containing it. The following definition formalizes the concept of site clusters.

Definition 2.1. Given a machine m, a cluster ω ∈ Ωm is defined by a set of contiguous sites, ω ⊆ S,

that can be treated within a work shift by machine m, ensuring that the machine has enough tank

capacity to carry the product quantity required for treating all the sites of ω.

We consider only maximal clusters with respect to both work shift and tank capacity, i.e., one cannot

add a site s ∈ S to ω ∈ Ω without violating one of the two capacity constraints.

2.2 Treatment sequences

Another input to our model is the set of treatment sequences for each site. A treatment sequence is a

selection of phytosanitary treatments to be applied consecutively over the agricultural season. Given
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that each treatment can be used to protect against multiple diseases, that different treatments have

different protection durations, that some treatment pairs cannot be applied consecutively, and that

government regulations restrict the use of some of the treatments, this problem is highly complex. We

assume that a set of sequences has been pre-generated for each site. As there is possibly a huge number

of such sequences, a subset is selected by experts of the application prior to optimization. These

sequences are generated by taking the toxicity, precedence and application time-window restrictions

of each treatment into account. Therefore, each treatment sequence is constructed to yield a feasible

treatment solution, which means that there exists a planning of the treatments prescribed by the

sequence that allows to cover all the diseases of the site over the season in the absence of weather

perturbations. The feasibility of the treatment sequence translates into a time window of application

for each treatment of the sequence. These time windows do not overlap to guarantee that the ordering

of the treatments in the sequence is obeyed. A treatment sequence yields a feasible treatment planning

for any timing that obeys the associated time window restrictions. As a given treatment sequence

can yield many feasible treatment plans, we call it a meta-treatment-sequence. The following two

definitions formalize these concepts.

Definition 2.2. Given site s ∈ S and request r, a request treatment sequence ζrs for a request r

is an ordered list of mixtures < p1, p2, . . . , p|ζrs | > that treat request r at site s for which there exists

a feasible planning. That is, the time windows of application and efficacy duration of treatments

< p1, p2, . . . , p|ζrs | > permit treating request r at site s for t ∈ Trs.

Definition 2.3. Given site s ∈ S, a meta-treatment-sequence ζ ∈ Zs is a partially ordered list of

mixtures such that for all requests r ∈ Rs, the mixtures that treat r form a valid request-treatment-

sequence ζrs and there exists a feasible planning for the mutual realization of treatments in ζs.

2.3 Formulation

Finally, using the above inputs and the notations introduced in the Nomenclature, the treatment

planning problem can be formulated as:

min
∑
m∈M

fmxm +
∑

s∈S,p∈Ps,t∈Tps

ςspδspt +
∑
ω∈Ω

ςω
∑

m∈MΩ,p∈P,t∈T
µωmpt (1)

s.t.
∑

p∈P,ω∈Ωm

µωmpt ≤ xm ∀t ∈ T,m ∈M (2)

∑
ζ∈Zs

λζ = 1 ∀s ∈ S (3)

∑
p∈Prs,τ∈Tps | τ∈[t−Dsrpτ+1,t]

δspτ ≥ 1 ∀s ∈ S, r ∈ Rs, t ∈ Trs (4)
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δspt ≤
∑

ω∈Ωs,m∈Mω

µωmpt ∀s ∈ S, p ∈ Ps, t ∈ Tps (5)

δspt ≤
∑

ζ∈Zs | p=pζk,t∈[eζk,l
ζ
k]

λζ ∀s ∈ S, p ∈ Ps, t ∈ Tps (6)

x,λ,µ, δ ∈ {0, 1}. (7)

The objective function (1) minimizes the global cost of planning, including machine usage cost and

treatment cost. Constraints (2) enforce that machines can only be used to apply treatments if they are

leased for the treatment campaign. Constraints (3) impose that a single treatment sequence should

be chosen for each site s. Constraints (4) ensure that each request r ∈ Rst is covered at each site s

in each time period t. Constraints (5)-(6) impose the relationship between treatment and cluster and

sequence selection variables, respectively. Accordingly, a treatment of mixture p can only be applied

at site s in time period t if a machine is allocated to apply treatment p at cluster ω ∈ Ωs in time period

t, and a compatible treatment sequence is selected. A treatment sequence is considered compatible

with applying treatment δspt if mixture p is in the sequence (p = pζk) and time period t is within the

time window in which this mixture can be applied (t ∈ [eζk, l
ζ
k]).

We next introduce a set of valid inequalities that generalize and strengthen constraints (6) and sig-

nificantly reduce the computational time required to solve the above model. To describe them, for

each p ∈ Ps, let us sort in increasing order the combined list of eζk and (lζk + 1) values for all ζ ∈ Zsp

and all k ∈ Kζsp. Let this sorted list be denoted by {d1, . . . , dn}. We then create the time windows

ai = [di, di+1−1] for i = 1, . . . , n−1. Let Asp denote the collection of application time windows of mix-

ture p at site s over all treatment sequences ζ ∈ Zsp constructed in this manner, i.e., Asp =
⋃n−1
i=1 ai.

Moreover, for a ∈ Asp, let Zsp(a) be the set of sequences that allow for the application of mixture p

during time window a, i.e., ζ ∈ Zsp(a) satisfies a ⊆ [eζk, l
ζ
k] for some k ∈ Kζsp. Using this notation, we

write

∑
t∈a

δspt ≤
∑

ζ∈Zsp(a)

λζs ∀s ∈ S, p ∈ Ps, a ∈ Asp, (8)

where the sum on the right-hand-side is assumed to be zero if Zsp(a) = ∅. These inequalities are valid

and generalize the special case of constraints (6) where a is a singleton. Therefore, in the sequel we

replace constraints (6) with constraints (8). We illustrate these constraints on a small example.

Example 2.1. Consider the treatment sequences given in the table below. The following inequalities
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ζ = 1 e1 l1 ζ = 2 e2 l2 ζ = 3 e3 l3

p1 9 12 p2 9 12 p2 7 12
p1 17 20 p2 17 20 p2 13 16
p1 25 28 p2 25 28 p2 17 28

are valid for the treatment planning problem where we eliminate the site index for ease of lecture:

δp19 + δp110 + δp111 + δp112 ≤ λ1 δp29 + δp210 + δp211 + δp212 ≤ λ2 + λ3

δp117 + δp118 + δp119 + δp120 ≤ λ1 δp213 + δp214 + δp215 + δp216 ≤ λ3

δp125 + δp126 + δp127 + δp128 ≤ λ1 δp217 + δp218 + δp219 + δp220 ≤ λ2 + λ3

δp27 + δp28 ≤ λ3 δp221 + δp222 + δp223 + δp224 ≤ λ3

δp225 + δp226 + δp227 + δp228 ≤ λ2 + λ3.

3 Robust Mathematical Model

We next describe the nature of uncertainty present in the phytosanitary treatment planning problem.

Based on this description, we introduce a naive robust model with no recourse action (i.e., static) and

outline the challenges posed by column-wise uncertainty in the context of robust optimization. We

then present a review of relevant work in the literature, and present our approach based on a penalty

function for static robust optimization.

3.1 Characterizing the uncertainty

The uncertainty we consider affects the active duration of non-systemic treatments and is caused by

weather conditions. A non-systemic treatment will loose its effectiveness if the total amount of rainfall

in a day exceeds a certain threshold, which practitioners estimate to be around 20 centimeter cubes

per meter square. The event of loosing all non-systemic treatments as a result of such rainfall will be

referred to as a “wash-out” in the sequel.

The robust optimization approach in the context of phytosanitary treatment planning problem is

appropriate for several reasons. The first is the risk-averse behavior expressed by agricultural experts

who stand to loose their crops in the case of a wash-out. The second is the difficulty associated

with describing a distribution that governs meteorological conditions. We further remark that, risk-

averse stochastic optimization based on chance-constrained models are highly non-convex and are very

challenging to solve.
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Our naive robust approach models the uncertainty associated to the wash-out events with the help of

discrete uncertain parameters. Let ξt be equal to 1 if a wash-out occurs in period t and 0 otherwise,

and let Ξ be the associated uncertainty set. The impact of a wash-out is to reduce the effective

duration of a treatment. We write

Dsrpτ (ξ) = min{Dsrpτ , t
′ − τ} ξ ∈ Ξ,

where t′ = min{t ∈ [τ, τ +Dsrpτ −1] | ξt = 1} is the first wash-out period during the effective duration

of a treatment and Ξ is the considered uncertainty set. We remark that t′ is set to τ + Dsrpτ when

{t ∈ [τ, τ +Dsrpτ − 1] | ξt = 1} = ∅. A (strictly) robust solution should be feasible for all realizations

of the uncertain parameters in the uncertainty set Ξ.

3.2 A naive robust model

The robust counterpart of the planning problem presented in Section 2.3 is obtained by replacing

constraints (4) with their robust counterpart:

∑
p∈PSrs,τ∈Tps | τ∈[t−Dsrpτ+1,t]

δspτ +
∑

p∈PNSrs ,τ∈Tps | τ∈[t−Dsrpτ (ξ)+1,t]

δspτ ≥ 1 ∀s ∈ S, r ∈ Rs, t ∈ Trs, ξ ∈ Ξ,

As the uncertainty is column-wise, i.e., row-wise dependent, each uncertain parameter will assume

its worst-case realization (see for instance (4),(28)). As a result, assuming that, for each time period

t ∈ T , there is a wash-out event in at least one scenario ξ ∈ Ξ, this constraint is equivalent to

imposing ∑
p∈PSrs,τ∈Tps | τ∈[t−Dsrpτ+1,t]

δpsτ ≥ 1 ∀s ∈ S, r ∈ Rs, t ∈ Trs.

This model is unrealistically conservative as it immunizes against the possibility that all non-systemic

treatments may be washed-out as soon as they are applied, and imposes therefore that only systemic

treatments should be used. Alternatively, we may consider an adaptive robust model where treatment

and cluster selection decisions are taken after the realization of uncertainty. However, as the recourse

problem is a mixed integer program and the recourse matrix is uncertain, the resulting model is

extremely difficult to solve. Indeed, even in the simple case of two-stage adjustable robust optimization

with linear programming problems in both stages, and a polyhedral uncertainty set, the problem is

shown to be NP-Hard (7).

In the following, we present a review of the existing literature on two-stage adjustable robust opti-
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mization, and methodologies proposed to mitigate the conservativeness of static robust optimization,

as well as cutting plane methods in robust optimization.

3.3 Literature review

Robust optimization is an approach to handling uncertainty in optimization where the probability

distributions are replaced with uncertainty sets. In robust optimization, constraints are imposed for

all realizations whereas the objective function is evaluated for the worst-case realization within the

uncertainty set. As such, in applications where the effects of uncertainty can be catastrophic, ro-

bust optimization presents itself as a viable modeling approach. The idea behind robust optimization

was first proposed by (28), who described linear programming models with column-wise uncertainty

that should be feasible for all realizations of columns within a convex compact set, and proved that

these models are equivalent to each uncertain parameter assuming its worst-case value, and are there-

fore too conservative. The interest in robust optimization was later revived by the seminal works of

(8; 15) that proposed row-wise uncertainty with smaller uncertainty sets that would still guarantee

satisfaction of uncertain constraints with high probability, and developed complexity-preserving de-

terministic equivalent formulations. Advances in static robust optimization are presented in (6),(9)

and (21).

On the other hand, as outlined above, robust optimization can sometimes be “over-conservative”,

especially when uncertainty does not have a row-independent structure. To remedy this problem,

one might consider introducing recourse (or adjustability/adaptability) after the realization of un-

certainty. Unfortunately, there are no exact solution methods for two-stage robust optimization with

integer recourse that can be effective with large scale formulations. In (31), the constraint-and-column

generation idea presented in (32) is extended to the mixed-integer recourse case where the authors

propose a nested constraint-and-column generation scheme. In this framework, violated uncertainty

realizations are added to a restricted master as needed along with the second stage constraints that

are concerned. However, finding a violated realization is equivalent to solving a bilevel problem with

a mixed-integer second level, and is therefore extremely difficult. Handling the addition of columns

and constraints at the same time further undermines the efficiency of this method (in a typical imple-

mentation the optimization is restarted after adding the violated realizations).

Given the evident difficulty of solving two-stage robust optimization problems with mixed-integer

recourse, most studies in the literature focus on obtaining approximate solutions. In (30), authors

develop a conservative approximation for multistage robust MILPs presented in the context of in-
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formation discovery in multistage stochastic programming. They partition the uncertainty set into

hyperrectangles and restrict the continuous and binary recourse decisions to piecewise affine and

constant functions of the uncertain parameter over each hyperrectangle, respectively. The resulting

conservative approximation can be formulated as an MILP; see also (23). In (13), authors propose

a piecewise constant decision rule for binary recourse variables used in conjunction with a scenario

generation scheme resulting in an endogenous design of the decision rule. In (14), piecewise constant

functions are again used to describe linearly parametrized binary decision rules. Another line of recent

research in the approximate solution methods literature is “K−adaptability” or “finite adaptability”.

The K−adaptability problem consists of selecting a first-stage solution along with K recourse solu-

tions at the first stage. In the second stage, after the realization of uncertainty, the recourse problem

reduces to selecting the best solution among these K solutions. The authors of (24) extend the idea

of finite adaptability introduced in (10), for two-stage robust optimization with pure binary recourse

under objective function and right-hand-side uncertainty. In (29), the concept of K-adaptability is

extended to problems with mixed-integer first- and second-stage feasible regions as well as uncertainty

affected technology and recourse matrices. While in these papers, a partition of the uncertainty set

and an assignment of K recourse policies to subsets defined by this partition is sought concurrently,

it is also possible to define the finite adaptability problem for a given partition of the uncertainty

set. This partition is then iteratively improved using the information from the solution obtained.

This idea is explored in (11) and (26) in the context of multi-stage adjustable robust mixed-integer

optimization. Recently, exact solution methods have been proposed for two-stage robust optimization

problems with binary recourse in the case of only objective function uncertainty and some structural

properties ((3),(25)).

Trying to bridge the gap between the conservativeness of robust optimization and the difficulty of

solving adaptable robust optimization problems, (18) proposed the concept of light robustness, of

which the methods are utilized in the context of railway timetable optimization in (20). The idea

behind light robustness is to introduce slacks to constraints while at the same time imposing feasibility

for all realizations of uncertain parameters in the Bertsimas-Sim budgeted uncertainty set expressed

through the linear programming dual. The slacks are then minimized while keeping the cost within

a tolerance of the nominal cost. A heuristic version is also proposed associating the robustness of a

given solution with the amount of slack on the left-hand-side of each constraint. The minimum slack

is then maximized and distributed among constraints in as much of an equivalent way as possible.

In (27), authors generalize the concept of light robustness by introducing a norm in the objective

function. They additionally show that, light robustness can be used to find Pareto optimal solutions
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to the bi-objective optimization problem with cost and robustness as the objectives. In (22), authors

explore the price of robustness, i.e., the increase in travel time, for strict versus light robustness in

the context of train timetable information.

Finally, the use of cutting plane methods for solving static robust optimization problems was explored

in (19) and (12), where the authors numerically compared this method to the widely utilized refor-

mulation method. In (19), the authors additionally present an uncertain covering problem where the

columns may disappear with a certain probability, which they model as a robust optimization problem

with a binary uncertainty set. Although this problem is similar to phytosanitary treatment planning

problem, we remark that in our version columns do not disappear completely but starting from a

certain time index.

3.4 Penalty measure approach

To tackle the conservativeness of the naive robust model, we propose an alternative model, imple-

menting a heuristic measure of robustness, assuming that the treatment coverage is not completely

lost, but that the rainfall exposes the crops to a risk of developing diseases. We associate an uncertain

cost, that we call a “penalty measure” in the sequel, to non-systemic treatments that depends on the

amount and timing of the rainfall during the activity of each treatment.

To allow for a linear expression of this cost, we introduce the binary variables

δsptt′ = 1 if site s is treated with mixture p in time period t until the end of time period t′,

for s ∈ S, p ∈ Ps, t ∈ Tps and t′ ∈ [t, t + Dmax
pst − 1]. We additionally define the function aprs(t, t

′, τ)

that computes the number of days of coverage affected by rainfall in period τ ∈ [t, t′] if δsptt′ = 1,

and request r ∈ Rs is being covered by treatment p ∈ PNS at site s ∈ S. This latter condition

is satisfied when p ∈ Prs and Trs ∩ [t, t′] 6= ∅. We let for s ∈ S, r ∈ Rs, p ∈ PNSrs , t ∈ Tps and

t′ ∈ [t, t+Dmax
pst − 1]

aprs(t, t
′, τ) =


0 if Trs ∩ [t, t′] = ∅,

max
{

0,min{t′, t+Dsrpt − 1,maxκ∈Trs∩[t,t′] κ} −max{τ,minκ∈Trs∩[t,t′] κ}+ 1
}
.

Here the expression min{t′, t+Dsrpt− 1,maxκ∈Trs∩[t,t′] κ} determines the earliest of three events: end

of the decided coverage of treatment p, end of the effective duration of treatment p, end of the coverage

requirement for disease r, respectively. Whereas the expression max{τ,minκ∈Trs∩[t,t′] κ} determines
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the latest of two events: the rainfall event and the beginning of the coverage requirement for disease r,

respectively. Therefore the difference between these two expressions (plus one) gives the total number

of days of coverage lost for disease r. We remark that if this quantity is negative, meaning that the

rainfall event comes after the end of coverage, then the lost coverage is set to 0.

Let ξt represent the volume of rainfall in period t and let Ξ be the associated uncertainty set. We

then define for ξ ∈ Ξ, the penalty measure

θ(ξ, δ) =
∑
τ∈T

∑
s∈S,r∈Rs,p∈PNSrs

t∈Tps | t∈[τ−Dsrpt+1,τ ], t′∈[τ,t+Dmax
pst −1]

aprs(t, t
′, τ)δsptt′%(ξτ ), (9)

where %(·) : R → R is a function that associates a certain cost representing the risk of developing a

disease to a given volume of rainfall (we do not yet pose any assumptions on the form of %(·)). Using

the variables δsptt′ , we may then rewrite the robust treatment planning problem as

min
∑
m∈M

fmxm +
∑

s∈S,p∈Ps

ςsp
∑
t∈Tps

t′∈[t,t+Dmax
pst −1]

δsptt′ +
∑
ω∈Ω

ςω
∑

m∈MΩ,p∈P,t∈T
µωmpt + max

ξ∈Ξ
θ(ξ, δ) (10)

s.t. (2)− (3) ∑
p∈Prs,τ∈Tps | τ∈[t−Dsrpτ+1,t],τ ′∈[t,τ+Dmax

psτ −1]

δspττ ′ ≥ 1 ∀s ∈ S, r ∈ Rs, t ∈ Trs (11)

∑
t′∈[t,t+Dmax

pst −1]

δsptt′ ≤
∑

ω∈Ωs,m∈Mω

µωmpt ∀s ∈ S, p ∈ Ps, t ∈ Tps (12)

∑
t∈a,t′∈[t,t+Dmax

pst −1]

δsptt′ ≤
∑

ζ∈Zsp(a)

λζs ∀s ∈ S, p ∈ Ps, a ∈ Asp (13)

∑
t∈[eζk,l

ζ
k]

t′∈[t,t+Dmax
pst −1]

δ
spζktt

′ ≤
∑

ζ′∈Z
sp
ζ
k

N ζ′

spζk[eζk,l
ζ
k]
λζ
′
s ∀s ∈ S, ζ ∈ Zs, k = 1, . . . , |ζ| (14)

x,λ,µ, δ ∈ {0, 1}, (15)

where N ζ
sp[e,l] =

∣∣∣{k ∈ Kζsp | [eζk, lζk] ∩ [e, l] 6= ∅}
∣∣∣ is the number of times mixture p can be applied at

site s with treatment sequence ζ in the time window [e, l].

Additional constraints (14) are required to impose that a mixture can only be applied as many times

as the cardinality of the set Kζsp using sequence ζ ∈ Zsp. This set of constraints are not necessary for

the deterministic model since there is no economic incentive to apply additional treatments. However,

in the case of the robust model it is profitable to introduce additional treatments as long as the cost of

the treatment is less than the reduction obtained in the penalty measure as a result of its application.
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In this case, without the addition of constraints (14), it is possible to apply more treatments than

allowed by the selected sequence.

We remark here that, once the model is written in this form, bi-objective optimization methods

may also be used, just like in light robustness, to find the most robust solution corresponding to a

certain threshold deviation from the nominal cost. Similarly, one may find the minimum cost solution

corresponding to a certain threshold deviation from the minimum robustness (value θ(ξ, δ) obtained

without taking the cost into account).

We illustrate next the reason why this approach is less conservative than the naive model presented

in Section 3.2, as well as the light robustness approach.

Example 3.1. Consider the following example where we drop the site and treatment indices, we

consider a single disease to treat over 5 periods, with a single treatment mixture of effective duration

3 applied twice over the 5 periods. Assume that the first treatment can only be applied in period 1,

whereas the second treatment can be applied anytime in the time window [3,4]. Further assume that

the uncertainty set Ξ = {ξ ∈ {0, 1}5 |
∑5

i=1 ξt ≤ 1} is given. The deterministic coverage constraints

can be written as:

δ11 + δ12 + δ13 ≥ 1 (16)

δ12 + δ13 ≥ 1 (17)

δ13 + δ33 + δ34 + δ35 ≥ 1 (18)

δ34 + δ35 + δ44 + δ45 + δ46 ≥ 1 (19)

δ35 + δ45 + δ46 ≥ 1 (20)

where the variables δtt′ represent a treatment from time period t to t′. When naive robustness is

applied to these constraints the problem becomes infeasible as vectors (1, 0, 0, 0, 0), (0, 0, 1, 0, 0) and

(0, 0, 0, 1, 0) belong to the uncertainty set Ξ. On the other hand, a light robust version can be obtained

by introducing slacks to each constraint with an optimal solution s ≥ (1, 1, 1, 1, 1) when the sum of

the slack variables is minimized. Assuming that %(ξ) = ξ, the penalty measure approach we propose is

expressed as (omitting the cost from the objective function for ease of exposition):

min max
ξ∈Ξ

ξ1δ11 + 2ξ1δ12 + 3ξ1δ13 + ξ2δ12 + 2ξ2δ13 + ξ3δ13 + ξ3δ33 + 2ξ3δ34 + 3ξ3δ35 (21)

+ ξ4δ34 + 2ξ4δ35 + ξ4δ44 + 2ξ4δ45 + 2ξ4δ46 + ξ5δ35 + ξ5δ45 + ξ5δ46

14



(16)− (20)

We remark that the uncertainty is now concentrated in one row, and becomes therefore row-wise

independent. As a result, only one parameter ξt for t = 1, . . . , 5 can take the value 1. Therefore, a

feasible solution with a penalty score of 3 can be obtained by taking δ13 = 1 and δ45 = 1.

We also highlight the parallels with the heuristic light robustness approach presented in (18). They

proposed that the robustness of a solution is associated with the amount of slack in the uncertain

rows, and tried to maximize this slack first, then distributing it among the constraints as equivalently

as possible. We remark that, the function a we introduce can be seen as a calculation of the total slack

that needs to be introduced to constraints to render them feasible again, where we use our knowledge

of the problem structure in its closed form calculation without introducing slack variables. In this

sense, our methodology poses the question of what makes a solution susceptible rather than what

makes a solution robust. We then try to minimize this susceptibility as much as possible also scaling

it with a function of the amount of rainfall.

We believe that this type of methodology can be carried over to problems that present a network

structure to mitigate conservativeness stemming from the row-wise independence assumption, see for

example (4).

3.4.1 Using a linear penalty function

One variant of the above static robust model is to define the function %(·) as a linear function. We

assume that

%(ξt) = 0.05ξt for t ∈ T .

Here, the number 0.05 is chosen so that exactly aprs(τ, τ
′, t) days of coverage is lost when ξt is equal

to twenty centimeter cubes. Consider the uncertainty set

ΞL = {ξ ∈ RT | ξt ≤ ut ∀t ∈ T ,
∑
t∈Ti

ξt ≤ Γi ∀i = 1, . . . ,K}. (22)

In this setting, ut represents an upper bound on the amount of rainfall per day, and Ti for i = 1, . . . ,K

represent a set of time-windows. The parameter Γi represents a budget of uncertainty over time-
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window Ti for i = 1, . . . ,K. We may then write the inner maximization problem in (10) as

max
ξ∈ΞL

∑
τ∈T

∑
s∈S,r∈Rs,p∈PNSrs

t∈Tps |t∈[τ−Dsrpt+1,τ ],t′∈[τ,t+Dmax
pst −1]

aprs(t, t
′, τ)δsptt′0.05ξτ (23)

Here the choice to define %(·) as a linear function is not superfluous, as (23) is a linear program over

ξ ∈ ΞL, and therefore reformulation through the linear programming dual is possible. We associate the

dual variables χ with bound constraints and π with budget constraints of (22) and obtain (10)-(15)

equivalently as

min
∑
m∈M

fmxm +
∑

s∈S,p∈Ps

ςsp
∑
t∈Tps

t′∈[t,t+Dmax
pst −1]

δsptt′ +
∑
ω∈Ω

ςω
∑

m∈Mω ,p∈P,t∈T
µωmpt +

K∑
i=1

Γiχi +
∑
t∈T

πtut

s.t.
∑
i∈Nt

χi + πt ≥
∑

s∈S,r∈Rs,p∈PNSrs
τ∈Tps |τ∈[t−Dsrpτ+1,t],τ ′∈[t,τ+Dmax

psτ −1]

0.05aprs(τ, τ
′, t)δspττ ′ ∀t ∈ T

(2)− (3), (11)− (15).

where Nt = {i = 1, . . . ,K | t ∈ Ti} is the set of budget constraints that apply to ξt for t ∈ T . This

problem is of the same theoretical difficulty as its nominal counterpart. Although %(ξt) = 0.05ξt is

an oversimplification and overestimation of the true penalty function, it allows for reformulation and

solution with off-the-shelf optimization software. One can solve directly the deterministic equivalent

formulation, or employ a row-generation approach. However, our preliminary results showed that

reformulation was a much more effective solution method for this model. In our numerical tests in

Section 5, we therefore solve this model directly using its reformulation.

3.4.2 Using a piecewise linear penalty function

The main shortcoming of the linear penalty measure is that it does not reflect the disproportionate

difference between higher volumes of rain that cause wash-outs and lower volumes of rain that are

assumed not to affect the coverage of treatments. Hence, it overestimates the true risk, therefore

potentially leading to over-conservative decisions. To overcome this drawback, we introduce a piece-

wise linear function of the volume of rainfall with I pieces defined as follows:

%(ξt) =


aiξt + bi for li ≤ ξt < li+1, i = 1, . . . , I − 1

1 for lI = 20 ≤ ξt < lI+1 = ξmax

(24)
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with l1 = 0, where ξmax is the maximum value ξt for t ∈ T can take.

To model this function (and obtain a linear robust equivalent formulation), we represent ξt for t ∈ T as

a convex combination of the breakpoints l1, . . . , lI+1. We introduce the uncertain parameters ξt,i ≥ 0

for t ∈ T and i = 1, . . . , I + 1, and write ξt =
∑I+1

i=1 liξt,i and %(ξt) =
∑I+1

i=1 %(li)ξt,i such that∑I+1
i=1 ξt,i = 1. In order for the function %(ξt) to be evaluated correctly, we need to impose additional

constraints to ensure that at most two variables ξt,i, ξt,i+1 are positive. To this end, we introduce

the binary uncertain parameters wt,i for t ∈ T and i = 1, . . . , I + 1, and construct the uncertainty

set

ΞPW,I =


ξ ∈ RT×I+1,w ∈ ZT×I+1

∑I+1
i=1 liξt,i ≤ ut ∀t ∈ T∑
t∈Tk

∑I+1
i=1 liξt,i ≤ Γk ∀k = 1, . . . ,K

ξt,i ≤ wt,i ∀t ∈ T, i = 1, . . . , I + 1∑I+1
i=1 wt,i ≤ 2 ∀t ∈ T

wt,i + wt,j ≤ 1 ∀t ∈ T, i = 1, . . . , I

j = i+ 2, . . . , I + 1


.

The set of constraints that are imposed on the binary uncertain variables w are known as SOS2

constraints which can be efficiently handled by many commercial mixed integer programming solvers.

As ΞPW,I involves binary parameters, we resort to a row-generation approach to solve (10), writing it

in the form

min
∑
m∈M

fmxm +
∑

s∈S,p∈Ps

ςsp
∑

t∈Tps,t′∈[t,t+Dmax
pst −1]

δsptt′ +
∑
ω∈Ω

ςω
∑

m∈Mω ,p∈P,t∈T
µωmpt + Θ (25)

s.t. Θ ≥ θ((ξ,w)i, δ) ∀i = 1, . . . , k

(26)

(2)− (3), (11)− (15),

where cuts (26) are generated by solving the mixed integer linear separation problem

max
(ξ,w)∈ΞPW,I

∑
t∈T

∑
s∈S,r∈Rs,p∈PNSrs

τ∈Tps |τ∈[t−Dsrpτ+1,t],τ ′∈[t,τ+Dmax
psτ −1]

aprs(τ, τ
′, t)δpsττ ′

5∑
i=1

%(li)ξt,i.

Thus, the piecewise linear representation of the penalty function comes at the additional cost of in-

troducing more variables in the uncertainty set, including the binary variables to model the SOS2

constraints. These binary variables in turn necessitate using a cut-generation approach (as a deter-
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ministic equivalent reformulation through the linear programming dual is not possible) which induces

an increase in the solution time and slows down the convergence to an optimal solution. In our

computational section we evaluate whether or not this additional computational burden is justified

by comparing the performance and cost of solutions obtained with this model to those of the linear

penalty function model.

4 Improving the robustness of treatment sequences

In this section, we consider enlarging the input set of treatment sequences to generate further sequences

that take the robustness objective of the problem into account. This process is implemented in our

model by considering the option of exchanging each non-systemic treatment in the sequence with a

“compatible” treatment that is preferable in terms of robustness (akin to local search heuristics). This

new treatment can be either systemic or non-systemic.

To this end, we introduce the set P ζ,sk , the set of compatible mixtures that can replace the kth treatment

pζk of sequence ζ ∈ Zs. Let k′ and k′′ be the indices preceding and succeeding index k in ζ, respectively.

We assume that the replacing treatment p will be applied within the same time window as pζk, that

is [eζk, l
ζ
k], so as not to disturb the precedence relations satisfied by sequence ζ ∈ Zs. Thus, p ∈ P ζ,sk if

and only if:

(i) p ∈ Succ
pζ
k′

and pζk′′ ∈ Succp, i.e., mixture p satisfies the precedence relationships with pζk′ and

pζk′′ ,

(ii) toxsp − tox
spζk
≤ tols − toxζ , i.e., the level of toxicity induced by replacing pζk with p does not

violate the toxicity tolerance constraint of site s,

(iii) Rp = R
pζk

, i.e., p treats all of the requests that pζk treats,

(iv) Dsrpt ≥ Dsrpζkt
for r ∈ Rs and t ∈ [eζk, l

ζ
k], i.e., the activity duration of p is long enough to allow

for a feasible treatment solution using the current application time windows,

(v) Tps ∩ [eζk, l
ζ
k] 6= ∅, i.e., p can be applied at site s during the time window [eζk, l

ζ
k].

We then introduce binary decision variables yζskp for s ∈ S, ζ ∈ Zs, k = 1, . . . , |ζ| and p ∈ P ζ,sk to

represent the decision of replacing treatment mixture pζk in sequence ζ ∈ Zs with treatment mixture

p ∈ P ζ,sk . The following set of constraints are added to the model:

∑
p∈P ζ,sk

yζskp ≤ λ
ζ
s ∀s ∈ S, ζ ∈ Zs, k = 1, . . . , |ζ| (27)
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∑
k=1,...,|ζ|,p∈P ζ,sk

(toxsp − tox
spζk

)yζskp ≤ (tols − tox|ζ|)λ
ζ
s ∀s ∈ S, ζ ∈ Zs (28)

yζskp + yζsk′′p′ ≤ λ
ζ
s ∀p, p′ | p ∈ P ζ,sk , p′ ∈ P ζ,sk′′ , p

′ /∈ Succp (29)

Constraints (27) impose that we can replace a treatment in sequence ζ ∈ Zs only if the sequence

is selected to treat site s, while limiting the choice of replacement treatment to one of p ∈ P ζ,sk .

Constraints (28) make sure that the toxicity introduced by new treatments does not exceed the toxicity

tolerance on site s after accounting for the toxicity of removed treatments. Finally, constraints (29)

ensure that the added treatment mixtures satisfy the precedence constraints.

We next generalize constraints (13) and (14) in order to incorporate the mixture exchange decisions.

To do so, we first introduce relevant notation, we repeat some of the notation from Section 2.3 for

convenience.

For p ∈ Ps, let Z̄sp be the set of all sequences of site s such that p ∈ P ζ,sk for some k = 1, . . . , |ζ|.

Further, for ζ ∈ Z̄sp, let K̄ζsp be the set of all indices such that p ∈ P ζ,sk for k ∈ K̄ζsp. For p ∈ Ps, we

first sort the combined list of eζk and (lζk + 1) values for ζ ∈ Zsp ∪ Z̄sp, and k ∈ Kζsp ∪ K̄ζsp in increasing

order, let this list be denoted by {d1, . . . , dn}. We then create the time windows ai = [di, di+1 − 1]

for i = 1, . . . , n− 1. Let Asp denote the collection of application time windows of mixture p at site s

over all treatment sequences ζ ∈ Zsp ∪ Z̄sp constructed in this manner, i.e., Asp =
⋃n−1
i=1 ai. Moreover,

for a ∈ Asp, let Zsp(a) be the set of sequences that allow for the application of mixture p during time

window a and let Z̄sp(a) be the set of pairs (ζ, k) that allow for the application of mixture p during

time window a when mixture p is substituted for pζk, i.e., a ⊆ [eζk, l
ζ
k]. We remark that each of these

sets maybe empty for a given time window a. Finally, we let C[e,l] = {(ζ, k) | [eζk, l
ζ
k] ∩ [e, l] 6= ∅}, and

write

∑
t∈a

t′∈[t,t+Dmax
pst −1]

δsptt′ ≤
∑

ζ∈Zsp(a)

λζs −
∑

k∈Kζsp | a⊆[eζk,l
ζ
k],p′∈P ζ,sk

yζskp′ +
∑

(ζ,k)∈Z̄sp(a)

yζskp ∀s ∈ S, p ∈ Ps, a ∈ Asp

(30)∑
t∈[eζk,l

ζ
k]

t′∈[t,t+Dmax
pst −1]

δ
spζktt

′ ≤
∑

ζ′∈Z
sp
ζ
k

N ζ′

spζk[eζk,l
ζ
k]
λζ
′
s −

∑
(ζ′,k′)∈C

[e
ζ
k
,l
ζ
k

]
| ζ′∈Z

sp
ζ
k

∑
p∈P ζ

′,s
k′

yζ
′

sk′p (31)

+
∑

(ζ′,k′)∈C
[e
ζ
k
,l
ζ
k

]
| ζ′∈Z̄

sp
ζ
k

,pζk∈P
ζ′,s
k′

yζ
′

sk′pζk
∀s ∈ S, ζ ∈ Zs, k = 1, . . . , |ζ|
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We write the robust sequence generation model as:

min
∑
m∈M

fmxm +
∑

s∈S,p∈Ps

ςsp
∑

t∈Tps,t′∈[t,t+Dmax
pst −1]

δsptt′ +
∑
ω∈Ω

ςω
∑

m∈Mω ,p∈P,t∈T
µωmpt + max

ξ∈Ξ
θ(ξ, δ)

s.t. (2)− (3), (11)− (12), (27)− (31)

x,y,λ,µ, δ ∈ {0, 1}.

This model can be used with both of the penalty measures presented in Section 3.4.1 and Section 3.4.2.

In the next section, we do so to compare the solutions obtained using pregenerated sequences with

those obtained using the robust sequence improvement model.

5 Computational Results

In this section, we present our computational experience on realistically-sized instances, which corre-

spond to a typical vineyard in Bordeaux area. We are interested in comparing the time required to

solve each model, the cost of operations using each model, and the effectiveness of the two different

penalty measures introduced in Section 3.4.1 and Section 3.4.2, as well as comparing the performance

with pre-generated treatment sequences to that of the treatment sequence improvement model of Sec-

tion 4. In particular, we would like to evaluate whether the more sophisticated calculation of the

penalty measure and treatment sequences leads to more effective decision-making.

In our computations, we use the uncertainty set ΞL for the robust model of Section 3.4.1, and the

piecewise linear function

%(ξt) =



0 for l1 = 0 ≤ ξt < l2 = 10

0.03ξt − 0.3 for l2 = 10 ≤ ξt < l3 = 15

0.17ξt − 2.4 for l3 = 15 ≤ ξt < l4 = 20

1 for l4 = 20 ≤ ξt ≤ l5 = ξmax,

(32)

with the uncertainty set ΞPW,4 for the robust model of Section 3.4.2. We let Ti = {7(i−1)+1, . . . , 14+

7(i − 1)}, therefore each Ti represents a two-week time window, with Ti and Ti+1 overlapping over

a week. In order to determine the parameters u and Γ of the uncertainty set, we utilize part of the

historical data available for the past ten years for Bordeaux, France (Met). Let H = {1, . . . , 10} and

H ′ ⊂ H denote the set of years selected to construct the uncertainty set. Further let ξht denote the
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amount of rainfall in period t ∈ T in year h ∈ H ′, and define ξmax
t = maxh∈H′ ξ

h
t for t ∈ T . In con-

structing the uncertainty set, we let ut = maxt′∈[t−2,t+2] ξ
max
t′ , estimating that the weather conditions

on a given day of the year can be expected to be similar within a five-day interval over different years.

Further, we let Γi = maxt′∈[7(i−2),28+7(i−2)] ξ
max
t′ , estimating that the weather conditions over two given

weeks of the year can be expected to be similar within a four-week interval over different years.

We let

cost =
∑
m∈M

fmxm +
∑

s∈S,p∈Ps

ςsp
∑

t∈Tps,t′∈[t,t+Dmax
pst −1]

δsptt′ +
∑
ω∈Ω

ςω
∑

m∈Mω ,p∈P,t∈T
µωmpt

and

penalty measure = max
ξ∈Ξ

θ(ξ, δ)

for each model and introduce parameter α to balance these two components of the objective function.

We test each robust model with the objective function α × cost + (1 − α) × penalty measure where

α ∈ {0.1, 0.05, 0.01}.

We use three instances for different characteristics to present our results. For each of these instances

number of requests is 5, number of machines is 6, number of mixture sequences is 32, and the number

of periods is 152. Instance dependent characteristics, number of sites, average number of treatment

sequences generated per size, and number of site clusters, are summarized in Table 1. These instances

are inspired by a collaboration with an agricultural partner.

Instance 1 Instance 2 Instance 3
|S| 21 23 10
|Zavg
s | 7 11 15
|Ω| 7 10 3

Table 1: Instance summary

All our implementations are done using the Julia (16) language along with the mathematical pro-

gramming package JuMP (17). All our experiments are conducted using a 2 Dodeca-core Haswell

Intel Xeon E5-2680 v3 2.5 GHz machine with 128Go RAM running Linux OS. The resources of this

machine are strictly partitioned using Slurm Workload Manager1 to run several tests in parallel. The

resources available for each run (algorithm-instance) are set to two threads and a 20 Go RAM limit.

This virtually creates 12 independent machines, each running one single instance at a time.

In our computations, we use the CPLEX solver in its default settings, imposing a four hour time limit

1https://slurm.schedmd.com/ (accessed June 2019)
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(14400 seconds) and a 0.5% optimality gap. We implement cutting plane algorithms with the lazy cut

callback functionalities of the CPLEX solver, therefore searching for violated cuts at each node where

an integer feasible solution is found. In comparing different methods, we use H \H ′ (set of available

realizations that have not been used to construct the uncertainty set) to evaluate the performance of

solutions. As such, we report our results as a summary of 100 replications, each time constructing the

uncertainty set based on five years of available data and then evaluating the resulting solution with

each of the realizations of the five years that remain.

5.1 Comparing deterministic and robust approaches

In this section, we compare the deterministic optimal solution (D) obtained by solving the extended

model of Section 3 to those obtained by solving the linear robust model (L) of Section 3.4.1 and the

piecewise linear robust model (PW) of Section 3.4.2 using the three instances of different characteristics

introduced in the previous section.

In Table 2, we present the solution time, the percentage optimality gap, the cost component of the

objective function, and the penalty measure component of the objective function for each model, each

instance and each value of α. For each of these parameters we report the mean, median, and standard

deviation over one hundred replications.

Results presented under the header “Solution Time” clearly indicate the additional computational

burden for the piecewise linear penalty robust model both compared to its deterministic counterpart

and the reformulation solution of the linear robust model. We remark also that all instances are

solved within seconds using the deterministic model, whereas both robust models may reach the time

limit for some instances. Results presented under the header “Cost” confirm our observation from

Section 3.4.2 that the linear robust model will tend to be more conservative. The cost of treatment

decisions using this model is higher on average and can be as much as %25 more expensive compared

to the piecewise linear model. The results presented under the header “Measure” give further insight

to this comparison, we observe that the penalty measure for the linear robust model can be twice as

large as its piecewise linear counterpart. As such, the linear robust model justifies further investment

in expensive systemic treatments in order to minimize the overestimated penalty measure.

We present, in Figure 1, an analysis of the performance of solutions obtained by each model using

the historical realizations of data. We plot the penalty measure of both robust models along with

what we will refer to as the “realized measure” for both the deterministic and robust models. This is

computed as
∑

t∈T
∑

s∈S,r∈Rs,p∈PNSrs ,τ∈Tps |τ∈[t−Dsrpτ+1,t],τ ′∈[t,τ+Dmax
psτ −1] %(ξht )aprs(τ, τ

′, t)δ̄spττ ′ for year
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Solution Time Gap Cost Measure

Instance 1 D L PW L PW D L PW L PW

α = 0.1
mean 1.1 5.2 109.3 0.22 0.40 27647 27962 27857 1551 1014
med 1.1 4.6 91.0 0.20 0.41 27647 27960 27938 1561 1045
std 0.0 2.5 72.8 0.13 0.09 0 29 114 178 235

α = 0.05
mean 1.1 19.2 313.5 0.48 0.48 27647 40449 32451 712 675
med 1.1 15.9 251.0 0.49 0.49 27647 40829 34774 715 692
std 0.0 11.9 259.4 0.04 0.03 0 2621 4700 84 159

α = 0.01
mean 1.1 2.5 331.3 0.19 0.46 27647 48427 46368 435 272
med 1.1 2.5 134.9 0.14 0.48 27647 48331 47714 438 276
std 0.0 0.6 585.5 0.16 0.08 0 189 2445 48 55

Instance 2 D L PW L PW D L PW L PW

α = 0.1
mean 19.6 127.1 956.1 0.29 0.32 39638 40758 40018 1714 985
med 19.6 121.6 582.8 0.37 0.39 39638 40847 40070 1689 995
std 0.7 77.9 1311.8 0.18 0.17 0 368 186 200 160

α = 0.05
mean 19.6 947.3 4579.6 0.50 0.74 39638 49215 41982 1121 841
med 19.6 996.7 3462.4 0.50 0.49 39638 50394 41235 1099 839
std 0.7 490.4 3904.1 0.00 1.21 0 3417 1431 99 141

α = 0.01
mean 19.6 4732.0 13205.8 0.51 3.96 39638 65878 58669 616 399
med 19.6 2033.1 14400.1 0.50 2.77 39638 65930 58239 604 398
std 0.7 5428.4 2697.8 0.04 3.71 0 270 3869 78 86

Instance 3 D L PW L PW D L PW L PW

α = 0.1
mean 2.0 1783.9 8116.4 0.50 0.61 27602 28101 27997 520 322
med 1.9 1157.4 8425.5 0.50 0.50 27602 28099 27996 529 340
std 0.2 2172.5 6240.3 0.00 0.19 0 31 48 57 68

α = 0.05
mean 2.0 4979.9 10455.1 0.53 0.86 27602 28210 28198 511 307
med 1.9 2117.1 14400.0 0.50 0.76 27602 28204 28088 519 283
std 0.2 5384.0 5628.4 0.06 0.38 0 35 244 57 67

α = 0.01
mean 2.0 7038.9 8609.2 0.54 1.99 27602 34120 33635 409 193
med 1.9 6467.4 14400.0 0.50 1.13 27602 33909 33907 428 182
std 0.2 5186.7 6579.0 0.10 1.80 0 1934 2953 76 62

Table 2: Comparison of the deterministic, linear robust and piecewise linear robust models with a
priori generation of sequences.
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h ∈ H \H ′ where δ̄ is the optimal treatment solution of the respective model. The realized measure

is the computation of the penalty observed in year h ∈ H \H ′ assuming that the cost function %(w)

takes the form given in (32). In Figure 1, we present each measure using a box-and-whiskers plot. On

each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the 5th and 95th percentiles.
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(a) Penalty measure analysis for Instance 1.
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(b) Penalty measure analysis for Instance 2.
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(c) Penalty measure analysis for Instance 3.

Figure 1: Penalty measure analysis for deterministic, linear and piecewise linear robust models with
a priori generation of sequences. Values (L) and (PWL) correspond ,respectively, to the risk measure
obtained from the objective function of the linear and piecewise linear robust models. Values (DR),
(LR) and (PWLR) correspond to the simulated penalty measure obtained, respectively, using the
solutions of deterministic, linear robust and piecewise linear robust models.

Results presented in Figure 1 clearly show the improvement in the realized penalty measure compared

to the deterministic model (for parameter settings α = 0.05 and α = 0.01). They further provide
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confirmation that the linear robust model overestimates the true penalty measure. This is evident

from the significant gap between the distribution of the measure coming from the objective function of

this model versus its realized measure. Whereas when comparing the piecewise linear robust measure

to its realized counterpart we see that the mean value of the measure coming from the objective

function is close to the worst-case realized measure. We also remark that although solutions provided

by the piecewise linear robust model are less costly they can perform as well as the more expensive

solutions provided by the linear robust model. We conclude that a sophisticated estimation of the

penalty measure provides high quality solutions with reduced investment therefore justifying the more

significant solution time for the piecewise linear robust model.

5.2 Comparing treatment sequences

We next present the results obtained using the sequence improvement model of Section 4 with both

the linear and piecewise linear penalty measures. In Table 3, we present the results for the linear

robust model (L) and the piecewise linear robust model (PW) using the same three instances as

in the previous section. Results presented under the headers “Solution Time” and “Gap” clearly

indicate that the piecewise linear model becomes more and more difficult to solve in this case with

the optimality gap becoming as high as %29 on average for Instance 2. On the other hand, the linear

penalty approach allows us to solve most instances to optimality while its average optimality gap is

below %3. As in the previous section, the cost difference between the two models remains significant

while the difference between the penalty measures is less pronounced compared to those obtained

using pregenerated sequences. We remark however that there is bias coming from the suboptimality

of the piecewise linear model.

We conclude that although the piecewise linear model with sequence improvement may be the most

realistic representation of the problem our capacity to solve it to optimality is limited. In this case

the linear model with the sequence improvement turns out to be a good alternative to obtain robust

solutions in an acceptable amount of solution time.

5.3 Measuring the price of robustness

We present in Table 4, the mean percentage increase in cost and the mean percentage decrease in

the realized penalty measure compared to the deterministic model for both the linear and piecewise

linear robust models with a priori generation of sequences versus the sequence improvement model.

Our results show the importance of considering the selection of treatments within the optimization
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Solution Time Gap Cost Penalty

Instance 1 L PW L PW L PW L PW

α = 0.1
mean 44.8 554.7 0.45 0.46 30730 28674 1119 853
med 29.4 381.6 0.49 0.49 30759 28318 1128 838
std 46.9 787.7 0.07 0.06 920 829 100 166

α = 0.05
mean 85.0 2354.5 0.49 0.48 35907 33654 747 497
med 59.5 1827.5 0.50 0.50 35878 31473 727 471
std 57.3 1963.8 0.02 0.03 1603 3836 116 110

α = 0.01
mean 13.9 2495.6 0.49 0.50 51053 45089 226 148
med 17.7 4358.0 0.05 0.02 923 2584 29 22
std 686.8 7375.7 0.39 2.62 41821 41430 1570 940

Instance 2 L PW L PW L PW L PW

α = 0.1
mean 686.8 7375.7 0.39 2.62 41821 41430 1570 940
med 725.1 6687.5 0.47 0.48 41646 40227 1580 966
std 327.0 5108.2 0.16 6.30 1126 3569 153 167

α = 0.05
mean 11853.8 13873.7 1.22 10.22 51651 44706 820 711
med 14404.9 14400.1 0.89 10.65 51432 42746 815 711
std 3980.4 1978.5 0.92 6.28 3054 5478 90 259

α = 0.01
mean 14355.7 14400.3 2.30 29.17 69340 58600 274 365
med 14411.0 14400.1 1.71 27.39 69490 59602 284 339
std 389.9 1.0 1.75 9.00 638 9716 33 214

Instance 3 L PW L PW L PW L PW

α = 0.1
mean 14413.1 13989.1 1.08 1.25 28532 28139 456 305
med 14414.6 14400.1 1.03 1.22 28500 28141 462 323
std 10.5 1735.6 0.33 0.50 236 121 57 62

α = 0.05
mean 14415.7 14250.1 1.45 2.90 30612 29167 298 237
med 14416.2 14400.1 1.25 2.91 30695 29128 296 238
std 6.3 1043.6 0.56 1.23 375 491 55 54

α = 0.01
mean 12092.4 13050.7 2.58 5.48 36683 34947 153 88
med 14410.0 14400.1 1.18 3.73 36754 33991 149 78
std 4292.5 4001.2 3.40 5.22 960 2230 24 40

Table 3: Comparison of the linear robust and piecewise linear robust sequence improvement models.
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framework when robustness is a concern. The sequence improvement model is able to reduce the

penalty measure significantly while extending the same amount of investment as the a priori selection

of treatments. Consider Instance 2 with α = 0.05, here the percentage increase from the nominal cost

is %24.16 for a priori selection, and %30.31 for the sequence improvement model whereas the reduction

in the realized penalty measure is %39.53 percent for the former and %60.70 for the latter.

% Cost increase % Penalty decrease

A priori Seq Imp A priori Seq Imp

Instance 1 L PW L PW L PW L PW

α = 0.1 1.14 0.76 11.15 3.72 13.58 12.05 34.28 19.84
α = 0.05 46.31 17.38 29.88 21.73 59.79 27.57 60.24 40.08
α = 0.01 75.16 67.72 84.14 64.28 78.54 74.99 87.86 76.91

Instance 2 L PW L PW L PW L PW

α = 0.1 2.82 0.96 5.51 4.52 14.52 10.38 16.02 13.57
α = 0.05 24.16 5.91 30.31 12.79 39.53 16.58 60.70 31.20
α = 0.01 66.20 48.01 74.93 47.84 68.55 59.50 85.56 61.14

Instance 3 L PW L PW L PW L PW

α = 0.1 1.81 1.43 3.37 1.95 18.19 20.21 27.66 26.01
α = 0.05 2.21 2.16 10.91 5.67 18.49 22.61 55.80 38.57
α = 0.01 23.62 21.86 32.90 26.61 50.41 55.83 86.43 74.21

Table 4: Comparison of the deterministic, linear robust and piecewise linear robust models.

6 Conclusions

In this paper, we present an application of robust optimization to the strategic planning of phytosani-

tary treatments in agriculture. We discuss how to model the uncertainty as well as how to incorporate

it into a meaningful robust model. We show that a naive application of robust optimization is too

conservative as the uncertainty does not have a row-wise independent structure. We therefore pro-

pose an approach to handle robustness without being overly conservative using a penalty measure

approach. We propose to use this approach with different penalty functions that require potentially

adapting the solution method. We provide numerical insights in our computational section with

realistic instances.
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