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Abstract: Irrigation represents one of the most impactful human interventions in the terrestrial water
cycle. Knowing the distribution and extent of irrigated areas as well as the amount of water used
for irrigation plays a central role in modeling irrigation water requirements and quantifying the
impact of irrigation on regional climate, river discharge, and groundwater depletion. Obtaining
high-quality global information about irrigation is challenging, especially in terms of quantification
of the water actually used for irrigation. Here, we review existing Earth observation datasets, models,
and algorithms used for irrigation mapping and quantification from the field to the global scale. The
current observation capacities are confronted with the results of a survey on user requirements on
satellite-observed irrigation for agricultural water resources’ management. Based on this informa-
tion, we identify current shortcomings of irrigation monitoring capabilities from space and phrase
guidelines for potential future satellite missions and observation strategies.
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1. Introduction

Irrigated agriculture accounts for more than 70 percent of the water withdrawn
worldwide from lakes, rivers, and aquifers [1], in many countries even for more than
90 percent, thus being the greatest human disturbance in the terrestrial water cycle [2].
Even though only 17 percent of global crop land is irrigated, these lands already produce
40 percent of the world’s food [3]. Since the global demand for food will further increase
in the next decades due to population growth and dietary shifts, keeping pace with this
growing demand will require even further expansion and intensification of irrigated
agriculture [4,5].

At the same time, urbanization pressure, market volatility, and climate variability
associated with an increased recurrence and intensity of drought periods [6–8] have led
to a call for improved water management involving reducing water withdrawals and
increasing irrigation efficiency.

Meeting these ends will require: (1) modeling irrigation water requirements at the
global scale [9], (2) assessing irrigated food production [10], (3) quantifying the impact
of irrigation on climate [11], river discharge [12], and groundwater depletion [13,14], and
(4) building plans for an optimal water resource allocation so that managers can accurately
account for water use [15–17]. Central to all these steps is accurate knowledge about the
spatial extent of irrigated lands, the amount of water applied as irrigation, and the timing
when irrigation is applied.

Obtaining this information with a high quality and on a global scale, however, is not
trivial. Many wells are located on private lands, are used for small-scale agriculture, and
are often illegal due to the reluctance of farmers to drill wells with official permission to
avoid regulations [18].

Consequently, the overwhelming majority of agricultural water use worldwide—both
from groundwater and surface water—remains unmetered [19].

Earth observing satellites provide the unique ability to monitor various processes
strongly related to irrigation, e.g., soil moisture, land cover, or vegetation activity, quasi-
globally and frequently. In the last decade, there has been a significant interest in using
satellite Earth observations to retrieve information on irrigation extent, frequency, and
amount. This has led to a proliferation of studies using new satellite platforms able to
measure surface variables with relatively high spatial resolutions (i.e., less than 1 km) [20].
Many studies have also attempted to include irrigation modules in land surface models or
ingest satellite observations to correct for the lack of irrigation representation.

The main objectives of this study are:

• To provide a comprehensive review of studies that have attempted to map irriga-
tion, more specifically (i) where irrigation occurs, i.e., mapping methods, (ii) when
irrigation occurs (frequency of irrigation), i.e., timing methods, and (iii) how much
irrigation is applied. Reviewed studies include: (i) methods based on ground measure-
ments and local statistics, (ii) remote sensing-based methods including multispectral,
microwave, and gravimetric measurements, and (iii) methods based on modeling and
data assimilation.

• To report the results of a survey about user requirements on irrigation management in
small-scale farming that targeted ten companies and organizations representative of
the Mediterranean area (Spain, Italy, and France).

• To confront the review of irrigation mapping studies with the user requirements survey
in order to assess whether current remote sensing and modeling-based irrigation
products can meet the requirements of actors working in the field of water resource
management and agriculture.

• To provide recommendations and guidelines for the future development of improved
irrigation mapping techniques to help us meet the demands of farmers and stakeholders.

The manuscript is organized as follows: Section 2 lists previous efforts to map ir-
rigation using national statistics and ground observations. Section 3 presents methods
and techniques used to retrieve irrigation information from Earth observation. Section 4



Remote Sens. 2021, 13, 4112 3 of 26

reviews irrigation mapping studies that are based on modeling and data assimilation.
Section 5 discusses user needs and the degree to which current irrigation information
retrieved from satellites (and models) meet them. Section 6 provides a synthesis of the
review results and future perspectives and can guide the reader to disentangle among the
huge number of studies in the field by listing the main results and conclusions (the reader
interested in a general overview of the topic can skip directly to this section).

2. Irrigation Mapping with Ground Observations and National Statistics

The first digital global map of Irrigated Areas (GMIA, [9]) was produced at a resolution
of 0.5◦ (see Figure 1a as an example for India). The map was mainly based on a compilation
of outlines of main irrigation areas and the FAO total area in a country between 1990 and
1995 and is based on an inventory of subnational irrigation statistics.
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Figure 1. Mapping of irrigation in India according to (a) GMIA 5.0 [9], (b) Global Land Cover Characteristic (GLCC) USGS
Land Use/Land Cover System [21], (c) GLC2000 for South Asia [22], (d) GIAM v2.0 [23], and (e) ESA CCI for the year
2000 [24].

This dataset was also the base for a derived dataset including crop calendars of
irrigated crops [25]. Later, Siebert et al. [26,27] developed the global Historical Irrigation
dataset (HID) by collecting subnational irrigation statistics from various sources to estimate
the temporal development of irrigated areas between 1900 and 2005 at a resolution of
5 arcmin.

All of these maps provide the so-called “Area Equipped for Irrigation (AEI)”, as
defined by FAO, which was inventoried by national or local authorities (Figure 1 shows
an example of the AEI of the different datasets plotted over India). However, despite
being very important, AEI are based upon agricultural statistics which may be outdated or
inaccurate [26]. For example, the abandonment of irrigation infrastructures in former soviet
countries is not accounted for, while the expansion of irrigated areas based on groundwater
is often not included in the AEI. Despite these limitations, this dataset remains a reference
for many potential applications, including global hydrological modeling, the modeling of
changes in crop productivity, or climate impact assessments.

3. Irrigation Remote Sensing

Since the 1970s, studies have started using remotely sensed images from Landsat-1 to
map irrigated areas and estimate water use [28]. While first images were analyzed visually,
research has advanced rapidly in the last decades, where now a multitude of methods
are available.
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We reviewed the status of research in methods for retrieving irrigation information
from space by systematically reviewing relevant literature in the topic resulting from the
most important databases, such as Scopus, Web of Science, and Google Scholar. Only
papers after 2000 were taken into consideration and we selected those (i) introducing
innovative techniques to retrieve irrigation information, and (ii) using new type of Earth
observation in relation to the publication period. More than 50 manuscripts were reviewed,
from which we extracted details on the type of information retrieved (i.e., mapping or
quantification), study area, method and type of Earth observation used, spatial scale at
which this information was provided, and, when available, the associated accuracy (see
Table 1 for a summary of the results). Below, we provide a synthesis of the methodological
approaches reviewed, organized based on the main Earth observation technique.

Table 1. Summary of relevant literature on the irrigation detection and quantification using satellite amount. Key results
indicate the ability of the technique to map (“mapping”, i.e., detect irrigated areas) and quantify applied irrigation volumes
(“quantification”). The technique column indicates the main method used among visible- and near-infrared sensors
(VIS/NIR), Microwave (MW), Land Surface models (LSM), and Energy balance models (EBM).

Technique Spatial Scale/Sampling
(Sensor Used) Key Results Reference

VIS/NIR

30 m
Landsat Mapping

Thenkabail et al. (2006),
Peña-Arancibia et al. (2014),

Deines et al. (2017), Deines et al.
(2019)

250 m, 500 m
MODIS, MERIS Mapping

Ambika et al. (2016), Ozdogan
and Gutman (2008), Pervez et al.

(2010), Salmon et al. (2015)

~1 km
AVHHR Mapping Thenkabail et al. (2006)

30 m
HJ-1A/B Mapping Jin et al. (2016)

30 m
MODIS + Landsat OLI Mapping Chen et al. (2018)

500 m
MODIS Quantification Vogels et al. (2020)

20 m—plot scale
Sentinel 2 Quantification Maselli et al. (2020)

Mix of
VIS/NIR, MW, LSM and

EBM

~30 min
Meteosat-9 ET + Water balance Quantification Romaguera et al. (2014)

Basin-scale
MODIS plus WEAP and

MODFLOW models
Quantification Le Page et al. (2012)

~25 km
ERA5 + MODIS Mapping Zohaib et al. (2019)

30 m
SEBS + Landsat Mapping Pun et al. (2017)

30 m
Landsat data + SWAP Quantification Droogers et al. (2010),

Olivera-Guerra et al. 2020

500m
Noah-MP + MODIS Mapping and quantification Ozdogan et al. (2010)

Basin-wide results
MODIS, MeteoSat Second
Generation (MSG), SEBAL

Quantification Van Eekelen et al. (2015)
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Table 1. Cont.

Technique Spatial Scale/Sampling
(Sensor Used) Key Results Reference

0.05◦

ALEXI based on GOES satellite +
Noah LSM

Quantification Yilmaz et al. (2014)

~4 km
ALEXI based on GOES satellite +

Noah LSM
Quantification Hain et al. (2015)

MODIS ET + Hydrological model
Basin scale Quantification Peña-Arancibia et al.

3 m
CubSats + PT-JPL model Quantification Aragon et al. (2018)

1 km
ET-Look Quantification Bastiaanssen et al. (2014)

MW+LSM

~25–50 km
AMSR-E, AMSR2, ASCAT, SMOS,

WindSat + Noah LSM
Mapping Kumar at al. (2015)

1/5/25 km
AMSR2, ASCAT, SMOS +

SURFEX LSM
Mapping Escorihuela and Quintana-Seguí

(2016)

25 km
AMSR2, ASCAT, SMAP +

MERRA-2 reanalysis
Quantification Zaussinger et al. (2019)

1/9/12.5 km
ASCAT, Sentinel-1, SMAP, SMOS

+ SURFEX LSM
Mapping Dari et al. (2021)

Gravimetric
measurements + LSM

0.125◦

Noah-MP +GRACE Quantification Nie et al. (2019)

36 km
CLSM + GRACE Quantification Girotto et al. (2017)

MW + VIS/NIR

1–25 km
AMSR-E + SPOT-VEG Mapping Singh et al. (2017)

10–20 m
Sentinel 1 + Sentinel 2 Mapping

Ferrant et al. (2017), Ferrant
et al. (2019), Pageot et al. (2020),

Le Page et al. (2020)

Plot-scale
Sentinel 1 + Sentinel 2 Mapping Bousbih et al. (2018)

Plot-scale
Sentinel 1 + Sentinel 2 Mapping Bazzi et al. (2019)

Plot-scale
Sentinel 1 + Sentinel 2 Mapping Bazzi et al. (2020)

30 m
Sentinel 1 + Landsat Mapping Demarez et al. (2019)

MW

3 m TSK
8 m CSK Mapping El Hajj et al. (2014)

9 km
SMAP Mapping Lawston et al. (2017)

Plot-scale
Sentinel 1 Mapping Gao et al. (2018)

25 km
AMSR2, ASCAT, SMAP, SMOS Quantification Brocca et al. (2018)
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Table 1. Cont.

Technique Spatial Scale/Sampling
(Sensor Used) Key Results Reference

25 km
AMSR2 Quantification Jalilvand et al. (2019)

1 km
SMOS Mapping Malbéteau et al. (2018)

0.25◦

AMSR-E, AMSR2, ASCAT, ESA
CCI

Mapping Zhang et al. (2018)

1 km
SMAP, SMOS Quantification Dari et al. (2020)

500 m
Sentinel 1 Quantification Zappa et al. (2021)

3.1. Visible- and Near-Infrared-Based Methods

Visible- and near-infrared measurements can be used (i) to detect changes in vegetation
greenness, health, and water content represented by empirical vegetation indices, (ii) to
retrieve land surface temperature, and (iii) to model evapotranspiration. All these types
of information potentially facilitate irrigation mapping and monitoring and indeed, many
different strategies have been developed to do so, as will be described in the following sections.

3.1.1. Mapping Methods

Data from optical sensors including Landsat, MODIS (Moderate Resolution Imag-
ing Spectroradiometer), AVHRR (Advanced Very High-Resolution Radiometer), MERIS
(Medium, Resolution Imaging spectrometer), and SPOT (Satellite pour l’Observation de
la Terre) [4,29–32], and their combination with other model-based and ground-based an-
cillary data [33], have been extensively used to map irrigated areas, making use of the
difference in the spectral responses of irrigated and non-irrigated croplands. One of the
first explicit attempts to use visible- and near-infrared remote sensing information for
the detection of irrigated areas at the global scale is the International Water Management
Institute Global Irrigated Area Map [23]. This dataset represented the irrigated areas of the
world in 1999 with a resolution of 10 km and 28 classes. The algorithm was applied to more
than 20 years of resampled AVHRR monthly time series of reflectance, combined with one
year of monthly Normalized Difference Vegetation Index (NDVI) from Spot Vegetation,
mean annual rainfall, a forest cover map, and a Digital Elevation Model (DEM).

Since then, there have been many other notable attempts to provide information on
irrigation from the regional to the continental/global scale. For instance, Ozdogan and Gut-
man [32] used a supervised classification to map the irrigated area in 2001 over the contigu-
ous United States by using a combination of Landsat and MODIS data. Ambika et al. [34]
developed yearly maps (2000–2015) of irrigated areas in India based on a thresholding of
16-day composite NDVI time series from MODIS. The decision tree between irrigated and
non-irrigated areas was applied on each crop class (previously produced on the basis of
IRS-P6) inside each agroecological zone. The following works of Meier et al. [35], Pervez
and Brown [36], Zhu et al. [37], and Salmon et al. [38] provided some updates with respect
to previous works by working on census areas rather than on crop classes. A notable
example is the method applied by Peña-Arancibia et al. [31] on the Murray–Darling Basin
in Australia, which used a supervised classification based on the random forest technique
and data not only from vegetation (in this case, MODIS NDVI), but also from hydrometeo-
rological data, such as monthly evapotranspiration (which was simply estimated by scaling
Priestley–Taylor potential evapotranspiration, ETp, via a crop factor that was derived from
other satellite observations) and monthly precipitation.
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Later studies focused even more strongly on the synergistic use of machine learning
methods and high-resolution remote sensing data. For instance, high spatio-temporal
resolution NDVI data (30 × 30 m) from the Chinese HJ-1A/B (HuanJing, HJ) satellite were
used by Jin et al. [39] to separate irrigated from rainfed areas in the semi-arid province of
Shanxi in China, through a novel classification method based on a Support Vector Machine
(SVM). They found that not only spatial but also temporal resolution may influence the
classification results. A study by Chen et al. [40] also focused on a more extended irrigation
detection which includes extracting frequency and timing information through data fusion
of MODIS time series, Landsat OLI data, and ancillary data. The obtained fused Greenness
Index (GI) estimates with an improved spatial resolution of 30 m were found to be effective
in increasing the accuracy of irrigation mapping in the Gansu Province (China). Similarly,
Ferrant et al. [41–43] have used a random forest classifier combining Sentinel-1 (S1) and
Sentinel-2 (S2) data over southern India to investigate the advantages of high-spatial
resolution and a multi-sensor approach. The input resolution allowed to retrieve irrigated
areas for the two Indian climatic seasons at a resolution of 10 and 20 m.

Further studies highlighted both the need of sub-kilometric spatial resolutions to
differentiate very fragmented irrigated areas and the need for combining multi-sensory
information (in this case, radar for soil moisture and optical for vegetation) to better
separate irrigated from non-irrigated land. For instance, Demarez et al. [44] applied an
incremental random forest using a combination of optical (6 Landsat-8 bands each 16 days)
and Synthetic Aperture Radar (SAR) data, revealing that the combined input improves the
accuracy of the classification with respect to that performed with only one source. Similarly,
Pageot et al. [45] used an approach that leveraged precipitation data, reaching a similar
conclusion. They also revealed that the use of precipitation data improved the performance
and that the aggregation of the high temporal resolution to monthly composites resulted in
similar performances while reducing the calculation time.

The increasing availability of data, processing facilities, and novel classifiers also
fostered data merging approaches, including modeled data from land surface and energy
balance models for the detection of irrigated land. In the work of Deines et al. [29,46], the
authors used a large number of variables derived from Landsat (9 in the first version, 11 in
the second version) and more than 10 covariables, such as precipitation and slope, in a
supervised classifier (CART and random forest) for classifying irrigated and non-irrigated
areas. The different datasets were processed in the Google Earth Engine (GEE) computing
platform, producing a classification at 30 m resolution claiming an overall accuracy above
95% of detected irrigation areas. Xu et al. [47] applied a similar approach in the subhumid
temperate state of Michigan.

Besides machine learning, also more simple and “conceptual” approaches were devel-
oped based on the use of a mix of land surface and energy-balance model estimates and
remote sensing variables. For instance, Zohaib et al. [48] looked at the biases between three
modeled variables from the ERA-interim dataset (vegetation skin temperature, surface
albedo, and soil moisture) and their corresponding variables derived from MODIS and
ESA’s Climate Change Initiative (CCI). McAllister et al. [49] exploited the fact that irrigated
crops are supposed to be well-developed and colder than non-irrigated crops, and thus
applied a simple threshold on NDVI and the difference of surface temperature to air tem-
perature to detect irrigated areas. Similarly, Pun et al. [50] supposed that irrigated areas
evaporate more than non-irrigated areas. Based on the Surface Energy Balance System
(SEBS) model, they computed an evaporative fraction, and applied a simple threshold on
vegetation indices and the evaporative fraction to discriminate irrigated areas.

3.1.2. Quantification Methods

Besides mapping irrigated areas, optical remote sensing can also offer some solutions
for estimating the irrigation water use. Some of the approaches rely on calculating a
crop coefficient and/or exploiting actual evapotranspiration (ETa) estimates from remote
sensing (e.g., MODIS, Landsat, S2, S3, VIIRS, and AVHRR). For example, Le Page et al. [15]
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calculated the irrigation in the Tensift basin in Morocco as the difference between actual
evapotranspiration and precipitation. They subtracted it from the known distributed
water from dams to estimate the groundwater demand in an integrated modeling of
demand and supply of water. This method exploited previous works on the determination
of crop coefficients [51–59] to estimate actual evapotranspiration [60] by relying upon
remote sensing-based vegetation indices [61–64]. The crop coefficient was also used as
a supplement in a parameterized water balance approach by Saadi et al. [65] in order to
show growth conditions.

Water and energy balance modeling approaches have also been investigated to assess
irrigation water amounts using a combination of surface energy balance models and
remote sensing data [66–68]. For instance, van Eekelen et al. [69] employed the surface
energy balance algorithm for land (SEBAL, [70,71]) for mapping total ETa, that is split
into ETa induced by precipitation (in rainfed agro-ecosystems) and ETa induced by water
withdrawals. Still based on ET, Hain et al. [72] compared the estimated ETa by the Noah
LSM (not incorporating irrigation) with a remotely sensed ETa product retrieved using
the Atmosphere-Land Exchange Inverse (ALEXI) model over Contiguous United States.
The excess ETa estimated by ALEXI was attributed to the irrigation. While large-scale
irrigation agriculture could be mapped by this approach, the inherent error in Noah LSM
and ALEXI ETa estimates hindered the reliability of the method in certain parts of the
study area. Conceptually similar was the work of Peña-Arancibia et al. [73], who used a
combination of remotely sensed data and hydrological modeling outputs to estimate the
volumes of water consumed in the form of evapotranspiration over irrigated lands in two
sub-basins of the Murray-Darling basin (Australia). Alternatively, Olivera-Guerra et al. [74]
used Landsat 7–8 Land Surface Temperature (LST) to derive a crop water stress coefficient
that was injected directly into a water balance model, and then retrieved irrigation at the
pixel scale before aggregating it to the plot scale. The method was tested on wheat fields
in Morocco, exhibiting good performance for estimates of seasonal amounts, but lower
agreement at the daily scale.

In an attempt at using only satellite-derived ET, Vogels et al. [75] compared the ET
derived from the MODIS evapotranspiration product (MOD16A2) of natural and irrigated
agricultural fields to calculate the excess water or recharge, which was used as an indicator
for the water available for irrigation. Somewhat similar to the study of Vogels et al., and
based on the research of van Eekelen et al. [69], advances have been made in developing
irrigation quantification algorithms, specifically, the so-called “ETLook” algorithm [76].
Here, the similarity of natural and irrigated pixels is defined using multiple static sources,
such as a land use map, a DEM, and soil type information. Maselli et al. [77] quantified
irrigation amounts with the use of NDVI derived from S2 observations over a particularly
complex mosaic of rainfed and irrigated crops in Central Italy, obtaining mean biases below
0.3 mm/day and 2.0 mm/week in two sites where irrigation reference data were available.

Lastly, Aragon et al. [78] investigated the capabilities of optical Leaf Area Index
(LAI) derived from the novel Planet CubeSats constellation to estimate ET for irrigation
quantification purposes using the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL)
retrieval model over a farm in an arid region of Saudi Arabia. In this case, 3 m spatial
resolution ET retrievals were used to provide information on crop water use at the precision
agricultural scale.

While the above-described methods that rely on optical satellite observations have
yielded promising results for mapping irrigated areas, optical data are sensitive to weather
conditions and cloud cover, which limits their utility in many tropical and temperate areas.

3.2. Microwave-Based Methods

Microwaves have the advantage that they are not hindered by weather conditions,
and are independent of illumination. Microwaves are sensitive to the water content in
the soil surface and vegetation and therefore have the potential to monitor changes in soil
moisture as a result of irrigation events.
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3.2.1. Mapping Methods

In recent years, microwave satellite soil moisture products have been introduced as a
tool for detecting irrigated areas. One of the first studies was carried out by Kumar et al. [79],
who compared the soil moisture distribution of a modeled dataset that does not incorpo-
rate irrigation information against various coarse spatial resolution satellite soil moisture
products. Assuming that the satellite products do contain the irrigation signal, it can be
expected that they will also exhibit wetter soil moisture conditions if irrigation is applied.
The authors concluded that, even though promising results for the detection of irriga-
tion were found in some specific areas, the spatial mismatch between model and satellite
data as well as the confounding effects of topography, vegetation, frozen soils, and Radio
Frequency Interference (RFI) led to substantial uncertainties in most regions. A similar
approach has been used in several other studies in Spain [80], Australia and Morocco [81],
and India [82]. Lawston et al. [83] further demonstrated that not only the spatial signature
but also the seasonal timing of irrigation over three vastly irrigated areas in the United
States could be identified using the Soil Moisture Active Passive (SMAP) enhanced 9 km
product. In contrast, Fontanet et al. [84] found that disaggregated satellite soil moisture
data obtained via the Disaggregation based on Physical and Theoretical Scale Change
algorithm (DISPATCH) [85] is not sensitive to irrigation when it is applied locally, i.e., at
spatial scales smaller than 1 km2. Nevertheless, Dari et al. [86] showed the capability of
DISPATCH downscaled Soil Moisture and Ocean Salinity (SMOS) and SMAP soil moisture
data in detecting and mapping irrigation at 1 km spatial resolution over heavily irrigated
portions of the Ebro River basin, in Spain.

In this context, SAR data seem to provide a new opportunity for mapping and mon-
itoring irrigation at the agricultural field scale. Indeed, radar measurements are very
sensitive to the soil water content due to the sharp increase of the soil dielectric constant
associated with soil wetting. El Hajj et al. [87] observed this effect on irrigated grassland,
showing a 1.4 dB increase of the radar signal observed by the TERRASAR-X sensor (X
band), caused by irrigation applied one day before the satellite acquisition. The most
important game changer of the recent years, in particular, has been S1, which brought
about a strong increase in land use mapping methods in different climate contexts. The
S1 satellite constellation (S1-A and S1-B) offers an unprecedented (for non-commercial
satellites) data coverage with a time resolution of 6 days and a pixel size of 10 × 10 m in two
polarizations, VV (vertically transmitted, vertically received) and VH (vertically transmit-
ted, horizontally received), available free of cost. Different approaches have been proposed
to map irrigated areas by considering the multi-temporal information from S1 backscatter
observations to detect typical signal variations of irrigated areas [88–92]. Gao et al. [93]
proposed an approach based on the direct analysis of the multi-temporal radar signal on
each agricultural plot through different metrics (mean, standard deviation, correlation
length, fractal dimension). This approach allowed the distinction of three classes, i.e.,
non-irrigated areas, irrigated crops, and irrigated trees with a precision of around 80%
over a site in Catalonia (Spain). The same type of approach was tested with the temporal
signal of soil moisture estimated from S1 data in a semi-arid zone in central Tunisia [92],
achieving a relatively good accuracy. Bazzi et al. [94] proposed an approach that considers
two different spatial scales for analyzing radar information in order to distinguish between
irrigation and rainfall events. More specifically, the multi-temporal radar measurements
are analyzed both at the agricultural plot scale and at a coarse 10 km scale. Through
different techniques, such as principal component analysis and wavelet transformation,
they achieved relatively high accuracies for identifying irrigated areas over a Catalonian
site (Spain). Combining radar and optical observations using a random forest classifier
improved their irrigation estimates even further. These good results based on S1 data
have later been reproduced using a deep learning model to deal with the spatial transfer
challenge for the mapping of irrigated areas [95].

S1 also enabled the retrieval of high-resolution soil moisture estimates, which are
vital for irrigation management. Approaches are based on machine learning approaches,
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including neural networks [88,89], change detection techniques [90,91], and also on direct
inversion approaches of physical or semi-empirical models [92]. Typically, the estimates
allow an accuracy of the order of 5% in volumetric soil moisture. Dari et al. [96] exploited
plot-scale S1 soil moisture to map irrigation over an area in central Italy where agricultural
fields are highly fragmented using a methodology based on statistical indices characterizing
the spatio-temporal dynamics of soil moisture. The ability of microwave observation to
retrieve irrigation timing information was also explored in some studies. Le Page et al. [16]
proposed to assess irrigation timing at the plot scale by comparing the surface soil moisture
of a model forced by crop coefficients derived from S2 to local surface soil moisture
measurements and a soil moisture product derived from S1 [88]. The study was carried out
over six maize plots in southwestern France and showed that the best retrieval of irrigation
would be achieved with local measurements of surface soil moisture every 3–4 days. The
authors also noticed that the technique is not adequate for the timing of small irrigation
events (<10 mm) because of the 6-daily measurement frequency of S1, and that irrigation
might be confused with rainfall events.

3.2.2. Quantification Methods

The quantification of the amount of water used for irrigation is generally more chal-
lenging than mapping the extent of irrigated areas alone. The first study trying to estimate
the irrigation water amount from satellite soil moisture data has been carried out by Brocca
et al. [97], who quantified irrigation at 9 pilot sites in the USA, Europe, Africa, and Australia,
with 4 satellite soil moisture products. This study demonstrated the feasibility of such
methods for the quantification of irrigation water amounts, especially when using satellite
observations with low retrieval errors (<0.04 m3/m3) and short revisit times (<3 days).
Good results were also found in regions with dry summers where the irrigation signal
is more clearly pronounced (see Figure 2). The same approach was further applied by
Jalilvand et al. [98], who obtained good agreement with ground-based irrigation data in a
semi-arid region in Iran. Zhang et al. [99] qualitatively assessed the potential of various
microwaved-based satellite soil moisture products for the detection of irrigation in China.
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An alternative method, but based on the same premise, i.e., that soil moisture predic-
tions from (some) land surface models do not contain irrigated water, whereas satellite
soil moisture retrievals do, was proposed by Zaussinger et al. [100], who estimated the
irrigation water use over the Contiguous United States from various coarse-resolution
sensors (ASCAT, SMAP, and AMSR2). This approaches the aggregated deviation between
the modeled and satellite-observed soil moisture climatology as an irrigation water use
estimate. A similar approach was employed by Zohaib and Choi [101] to identify trends of
irrigation water amounts worldwide. Irrigation estimates from both studies showed a good
correlation with country-level reported irrigation data, though irrigation was systematically
underestimated. Notwithstanding the potential of currently available microwave-based
soil moisture products, their biggest limitation to the retrieval of accurate irrigation water
amounts is the coarse spatial resolution of (most) sensors, i.e., pixel sizes in the order of
tens of km. To address this issue, Dari et al. [102] recently exploited 1 km DISPATCH down-
scaled versions of SMOS and SMAP soil moisture to estimate almost 7 years of irrigation
water amounts over an intensely irrigated area in the North East of Spain. Irrigation was
retrieved through an improved version of the SM2RAIN algorithm, in which the crop evap-
otranspiration was estimated according to the FAO model. Comparisons with district-scale
benchmark irrigation volumes showed the suitability of the method to estimate actual
irrigation amounts, as well as the skill in reproducing the temporal dynamics of irrigation.
Zappa et al. [103] developed a framework for the detection and quantification of irrigation
based on the TU-Wien S1 soil moisture product at 500 m resolution [91]. Good agreement
was found against field-scale irrigation reference data in Northern Germany, both in terms
of spatial patterns and temporal dynamics. However, the overall irrigation volumes were
generally underestimated as a result of field-specific irrigation systems and management
practices, and the longer revisit time of the S1 images (up to a few days) compared to
coarse-scale products.

3.3. Gravimetry-Based Methods

While multispectral-based and microwave-based methods rely on remotely sensed
estimates of quantities that are driven directly by irrigation (e.g., the soil water content or
vegetation transpiration), gravimetric remote sensing may bear more indirect irrigation
information. Specifically, gravimetric measurements have been used to derive so-called
terrestrial water storage (TWS), which are temporally averaged (typically monthly) water
mass change observations of anomalies of the total mass of water stored on and beneath
the land surface. Temporal trends in TWS from GRACE data [104,105], for instance, have
been linked to heavily irrigated regions of the world caused by human-induced (irrigation)
groundwater depletion (e.g., [106]).

The largest caveat of gravimetric remote sensing, however, is its coarse horizontal
resolution, which is about 300 km at mid-latitudes [107]. TWS retrievals, therefore, contain
many other confounding factors (such as snow, surface water in lakes and rivers, etc.) that
need to be removed when attempting to link TWS anomalies to groundwater depletion
from irrigation.

4. Irrigation Modeling and Data Assimilation

Irrigation modeling (i.e., providing models with tools to simulate irrigation) is a way
to simulate the additional water applied on soils from internal or external sources (such
as canals, groundwater, or pipelines). However, the reliability of the irrigation schemes
used in hydrological, land surface, or crop models depends on the validity of a number
of simplifying assumptions and input parameters. For example, irrigation water is often
applied to the land surface only when soil moisture drops below arbitrarily chosen soil
moisture thresholds in order to restore optimal growing conditions. These thresholds
typically depend on soil and vegetation parameters, which in turn depend on large-scale
soil texture maps. For example, Kueppers et al. [108] and Lobell et al. [109] have set a
critical value for the root-zone soil moisture (RZSM) within irrigated tiles based exclusively
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on the soil field capacity. Given the simplicity of these methods, both the timing and
amount of such irrigation estimates can be very inaccurate as they assume that water
resources are unlimited, and that the farmer’s irrigation decision is based on soil water
availability only. In reality, several other factors are considered, including specific practices
such as soil leaching, water regulations, climate, and resource availability.

In the recent years, the irrigation parameterization in large-scale Land Surface Models
(LSMs) has seen considerable improvements owing to the development of more complex
irrigation schemes [110]. For instance, Ozdogan et al. [111] included three trigger criteria
to dynamically simulate daily irrigation in the Noah LSM [112], which are: (i) whether a
tile is potentially irrigated, (ii) whether it is the growing season (defined by a threshold of
40% of annual range of greenness fraction), and (iii) how much water is available (or more
importantly, lacking) in the root zone. In this scheme, irrigation is applied as additional
precipitation when the RZSM falls below a triggering user-defined threshold until the field
capacity is reached. Additional improvements in irrigation parameterization have been
made by implementing various types of irrigation systems. The Noah LSM, for example,
can be coupled with a drip as well as with a flood method (both built based on the work
by Evans and Zaitchik [113]). These two additional schemes, characterized by differences
in frequency, timing, and amount of irrigation, are described by Lawston et al. [114].
Some studies have also attempted to incorporate irrigation schemes into other global
LSMs, including the Community Land Model (CLM, [115]) and the Organizing Carbon
and Hydrology in Dynamic Ecosystems (ORCHIDEE) model [116], demonstrating that
intensive irrigation at the regional scale strongly affects river discharge and groundwater
and has a regional impact on the partition of energy between sensible and latent fluxes.
Despite these developments, however, irrigation modeling is still in its infancy and still
prone to uncertainties.

A potential remedy to model uncertainties due to missing or inaccurately modeled
irrigation might be data assimilation. For example, Girotto et al. [117] investigated the
extent to which GRACE TWS data assimilation in the Catchment Land Surface Model
(CLSM) could correct for errors due to missing model processes such as groundwater
extraction for irrigation. However, even though the satellite data assimilation largely
improved the estimation of some processes, it also deteriorated the estimates of others
due to inappropriate treatment of the irrigation water source. To reconcile the information
contained in GRACE with LSM simulations, Nie et al. [118] modified the Noah-MP LSM
in a study over the High Plains Aquifer (HPA) to include a dedicated groundwater-based
irrigation scheme. Additionally, to account for seasonal and interannual variability in
irrigated areas, the authors applied a monthly time-varying greenness vegetation fraction
(GVF) dataset within the model. In a successive study, Nie et al. [119] assimilated GRACE
TWS into the Noah-MP LSM with and without an irrigation scheme activated over the HPA,
and found that the best overall performance was, over most of the study region, obtained
when the data assimilation system was indeed coupled with the irrigation scheme.

The inclusion of irrigation in land surface modeling, either by direct irrigation mod-
eling alone or facilitated by data assimilation, is not only important to obtain consistent
and accurate land surface estimates, but also to improve atmospheric and climate simula-
tions. A wide range of studies assessing the irrigation effects on climate have focused on
daily/annual irrigation amounts (e.g., [120–122]) or on evapotranspiration fluxes due to ir-
rigation (e.g., [123]) as climate model input. Lawston et al. [114] used the Land Information
System (LIS) together with the NASA Unified Weather Research and Forecasting Model
(NU-WRF) framework to investigate the effects of drip, flood, and sprinkler irrigation
methods on land–atmosphere interactions, including land–planet boundary layer coupling
and feedbacks at the local scale. Overall, outcomes from LSM studies have shown that
irrigation increases SM, leading to greater evapotranspiration with increases in latent heat
flux and decreases in both sensible heat flux and coupling between SM and latent heat
flux in water-limited environments (e.g., [111,124–126]). This repartitioning of the surface
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energy and water balance causes lower surface air temperature and elevated atmospheric
water vapor that contributes to the greenhouse effect [9,111,114,125].

However, since the primary purpose of these coupled models is to study land–
atmosphere interactions, LSM irrigation schemes generally ignore the source of water
that is applied as irrigation and do not account for the impact that withdrawals have on
groundwater or surface water processes. This may suffice when estimating on-field con-
sumptive water use [111,127,128] or studying land–atmosphere interactions [113,114,129],
but it prevents the application of these models to integrated water resource analysis or
to evaluate trends in water storage [130]. In contrast, hydrological models have been
developed in response to global water scarcity concerns, thus they tend to better represent
human-driven hydrological processes such as irrigation [131]. Examples of such regional
and global models include the WaterGAP model [132], or the WBMplus model [133].
While these models too may benefit from (irrigation) data assimilation, such studies are
still pending.

5. The User Perspective: Observation Requirements and Current Obstacles

From a practical point of view, it is still not evident whether irrigation information
collected from satellite observations, models, and their combinations can help farmers,
water managers, or basin authorities. Recent important contributions highlight that this
information is paramount for an efficient water and agricultural management, especially
over data-scarce regions [134]. Notable examples derive from irrigation monitoring systems
platforms, for instance the WUEMOCA project developed by the University of Wuerzburg,
Germany [135], or the FAO’s portal to monitor Water Productivity through Open-access of
Remotely sensed derived data (WaPOR), which promote the use of satellite data to help
countries monitor agricultural water productivity, identify water productivity gaps, and
find solutions [136].

This section aims to understand the potential utility of EO-based irrigation information
for users. To that end, we reviewed the answers of a survey that has been conducted with
a set of ten users, representative of different Mediterranean countries (Ebro River basin
in Spain, the South of France, Po River Valley and Sardinia, in Italy). We did not expect
the users to have knowledge of remote sensing capabilities, but this was considered
advantageous as we were interested in understanding their real needs and the potential
utility of current and future satellite mission to satisfy these needs.

This survey is not comprehensive and does not aim to picture farmer requirements
worldwide, but aims at fostering the discussion on whether the satellite-based information
on irrigation is mature enough to be used in a challenging area such as the Mediterranean
region. Therefore, it must be interpreted only in a qualitative sense. Nevertheless, even
though the discussion focuses on the Mediterranean, findings might likely be transferrable
to other areas. A few limitations shall be noted upfront, however: The utility of remote
sensing for irrigation monitoring and management might depend on many factors, such
as the type of user and its responsibilities (basin authority, which manages a very large
hydrological unit; irrigation district, which distributes water to the farmers; large farming
enterprise, which may have access to modern technology to manage the farm; small farmer,
with limited access to technology), the spatial organization of the irrigation fields (size of
the fields, size of the properties, diversity or homogeneity of cropping patterns), the type
of irrigation method (modernized or traditional, localized or extensive), the cost of water
(price of water, price of energy, contribution to the maintenance of the infrastructure), etc.
Thus, the requirements are very heterogeneous, and potential irrigation products must be
able to provide information to a wide array of users with very different needs in terms of
spatial resolution and temporal frequency, and latency of observations, type of information
and variables, accuracy, and accessibility.

In the following, we review each of these factors and discuss the answers provided by
contacted users and organizations in relation to the ability of remote sensing observations
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to track and detect irrigation. The used questionnaire, which is part of the Irrigation+
project funded by the European Space Agency (ESA) (See supplementary Material).

5.1. User Characteristics

The majority of the contributing organizations belong to an irrigation district or
irrigation consortia (7/10), that is, they are farmers or institutions that directly serve the
farmers managing or distributing water. The remainder of them were public actors, such
as basin authorities or other irrigation-related public actors, who are less focused on the
actual distribution of water but are interested in managing and accounting for the whole
hydrological cycle of a large area (e.g., a river basin).

The size and spatial structure of the irrigated fields and irrigation districts in Mediter-
ranean areas are often tied to complex historical and technical processes. For example, in
the Po River valley (Italy), this condition has historical reasons related to the Roman cen-
turiation, where the divisions of the land were based on the needs and technical limitations
of the ancient society (see Figure 3). In other countries, this might have changed with time
due to the influence of the Post-Roman occupation of the land and to the current need to
facilitate agricultural practices and to boost production. For instance, in Catalonia (Spain),
in modernized irrigation areas, land is often reorganized to ensure a more homogeneous
division and thus agricultural plots tend to have larger extents than they used to have,
when traditional irrigation methods were used.
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Despite the change of land use in Europe, the irrigation districts and consortia tend to
be organized in many small fields (although this varies from country to country) relative to
the size of a satellite footprint. These fields might contain different types of crops close to
each other and may use different irrigation systems, which complicate attempts to stratify
them based on crop type or the type of irrigation. Furthermore, water use exhibits large
field-to-field variability, which cannot be explained fully by differences in weather, soil
type, crop choice, or technology [18], but instead depends largely on the farming practices
adopted by different farmers.

The majority of the contacted organizations have mixed systems. For example, it is
not uncommon to grow fruit trees, which often use drip irrigation, close to maize fields
that will probably use sprinklers. This highlights that collecting irrigation information
can be very challenging with only one type of observation, and combining multiple tech-
niques to retrieve information about irrigation (i.e., thermal, optical, and microwave) may
be advantageous.

https://en.wikipedia.org/wiki/Centuriation
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Concerning the technique used to measure irrigation, the majority of the interviewees
stated that the amount of water applied is not measured directly in the field but with water
meters placed in the main canal or pipeline, or as a total volume of water extracted from
wells. Only two interviewees answered that they check soil status in person or use a rain
gauge placed in the field to check the accumulated irrigation at the end of the year. The
provided answers demonstrate that the collection of in situ irrigation data can be subject to
substantial uncertainties, as also highlighted by Foster et al. [137].

Moreover, as the majority of the interviewees measure irrigation at the entrance of the
irrigation district, identifying the plot actually irrigated can be very challenging, especially
for the basin authorities who, often, do not have access to the counters. This is a very
common situation over developing regions and in many places over the Mediterranean
basin. Current pressures (the need to increase production and economic viability of farming
activities and the inability to increase the offer, e.g., dams, and the impacts of climate change
on the overall water resources’ availability) are pushing towards pervasive modernization
of irrigation, with drip irrigation being the method with a faster increase in use [138], so
the situation will likely change in the near future.

5.2. Current Practices Versus Current Satellite Capabilities
5.2.1. Management Systems

To understand to what degree satellite observations can help in the monitoring and the
management of irrigation, we first asked the organizations whether they are already using
any system for the management and measurement of irrigation applications. The answers
varied from no system at all to fully automated, remotely controlled systems. Of those
who do use management systems, most use point-scale in situ soil moisture measurements,
while nobody mentioned the use of remote sensing observations. Furthermore, sometimes,
there are in situ measurements that are not accessible to some stakeholders. For instance,
the basin authority may not have access to the existing water accounting system within
the irrigation district (they just track what has been delivered through the main canal).
Additionally, there can be illegal uses of irrigation water that are unmetered. This happens
in some Mediterranean areas [139] and remote sensing can play an important role in
quantifying these water withdrawals. In summary, we believe that there is space for remote
sensing observations and methods that integrate remote sensing information to provide
useful tools for optimal irrigation and water resource management.

5.2.2. Irrigation Strategies

When asked about the number of irrigation applications, the answers ranged from 2 to
30 irrigation applications per month. We also asked about a typical crop they refer to, but
no answer was provided. This probably highlights the difficulty in the control of irrigation
on single fields or areas where specific crops are grown. Another complicating factor is
crop rotation (i.e., crop types might change from year to year), which might also depend on
the very uncertain forecast of water resources for that year [140]. Farmers may also change
the size of the irrigated surface, the crop, the number of harvests per season, and so on.
Accordingly, the irrigation strategy may change for each field and each year. The amount
of irrigation applications is central to understanding the importance of the revisit time of
the sensors used to retrieve information about irrigation. With 30 irrigation applications
per month (i.e., once per day), it is very likely that products characterized by a temporal
resolution of 2–3 days will miss irrigation events. On the other hand, both techniques based
on soil moisture and evapotranspiration provide an indirect detection and quantification
of irrigation exploiting the memory of the soil moisture and evapotranspiration signals.
That is, if water is applied in the morning, the process of transpiration does not interrupt
instantaneously and might continue as long as the water is available and the plant is able
to transpire it. As a secondary effect, this determines a soil moisture depletion which is
also visible after the satellite passes.
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5.2.3. Employed Technology

The employed irrigation method determines the potential ability of the techniques
described in Section 3 to detect and quantify irrigation. For instance, sprinkler and flood-
ing/gravity types of irrigation systems cause significant (surface) soil wetting, which
translates into a strong response of the remotely sensed signal. This facilitates irrigation
detection and quantification with soil moisture-based techniques. In contrast, drip irriga-
tion systems apply much smaller water amounts, whose detection can be very challenging,
especially for coarse-resolution satellite sensors. In this case, evapotranspiration-based
techniques (based on the use of thermal sensors) can provide better performance as the ac-
tual ET rate for crops located in a drip-irrigated field can be very close to their potential ET,
which is generally not the case for non-irrigated crops. Moreover, thermal-based methods
to retrieve evapotranspiration have the advantage of a higher spatial resolution suitable
for the monitoring of small-scale fields, where drip irrigation is also more commonly
used. Nevertheless, this is at the expense of the revisit time, reaching at best 8 days by
combining Landsat-7 and -8 with the sensors currently in orbit. A significant way to reduce
the revisit time could derive from the future satellite missions, such as Thermal InfraRed
Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA, [141]), a
future high-resolution space-time mission in the thermal infrared (TIR) led jointly by the
French (CNES) and the Indian (ISRO) space agencies for a launch planned in 2025, or by
the high-priority candidate mission High Spatio-Temporal Resolution Land Surface Tem-
perature Monitoring Mission (LSTM, [142]), which will provide enhanced measurements
of land surface temperature with a focus on responding to user requirements related to
agricultural monitoring.

Other than the type of irrigation system, its relation to the farmer organizations can
play a role. For instance, in traditional flood irrigation, irrigation is performed in turns, so
there are a few events each month. With modern systems, such as sprinklers, irrigation can
take place every day in order to compensate for water deficits caused by plant transpiration
and soil evaporation. However, this also depends on the objectives of the farmers, as
the different strategies lead to different quantities and qualities of the product and the
farmers may bet on quality or quantity depending on the year. Therefore, the frequency
is often tied to the irrigation method, but the relationship is not univocal. In summary,
with traditional irrigation methods, the required temporal resolution to obtain information
on irrigation can be larger than 1–2 days, whereas with modern systems (i.e., sprinkler),
daily temporal resolution is needed. Furthermore, with modern systems that use daily
irrigation, soil moisture will tend to be more constant than with classical irrigation systems,
and techniques relying solely on soil moisture for the retrieval of irrigation amount might
be suboptimal. With traditional systems, due to the turn-like method of irrigation, soil
moisture will be more variable and will alternately increase and decrease depending upon
whether irrigation will or will not take place, so techniques which exploit soil moisture for
the retrieval of irrigation might provide better performance.

Despite the limitations and difficulties in estimating irrigation from remote sensing
observations, where the technical advancement is still low (e.g., Urgell area in Spain and
developing countries) and the possibility to measure irrigation is very scarce as no counter
nor modern irrigation systems exist to measure water in the soils, satellite data can be very
important. This is also perceived by users, as there seems to be a growing interest in the
use of remote sensing products to better plan and manage irrigation.

5.3. Operational Observation Requirements

In this section, we aim at understanding the current gap between the existing capabili-
ties of satellite observations to observe soil moisture, evapotranspiration, and information
on irrigation and the real needs of the users. The discussion is based on the reviewed
literature from Section 3 and the questionnaire implemented.

A general issue is the fact that satellites can provide only information on the few first
centimeters of the soil, whereas information on the root zone soil moisture (0–100 cm) is
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most important for the crops and hence most desired by users. While this information
cannot be directly obtained from satellites, models can be integrated with observations
to provide information of the water stored in the root zone. Based on the size of the
agricultural fields in the Mediterranean, the spatial resolution at which remote sensing
products should provide information on irrigation is below 1 km (10–100 m for most of
the users). This of course represents a big challenge for the current state of the satellite
missions. Currently, microwave data from S1, S2, and Landsat-8 could indeed meet these
needs and models too can run at these spatial resolutions, assimilating satellite data with
a spatial support larger than/equal to 1 km to correct states and fluxes at smaller spatial
scales, providing information on irrigation. There is thus a realistic potential to cover the
desired spatial scales identified by the users. Concerning the temporal resolution, 1–7 days
is the desired window for farmers, while for basin authorities, monthly to seasonal scales
seem to be sufficient. Even though current satellite missions cannot provide retrievals of
irrigation information with daily temporal resolution at a spatial resolution of 10 m, weekly
estimates at a resolution of 100 m–1 km are indeed realistic.

Concerning the spatial resolution of evapotranspiration data, the requirements are
similar to the one of soil moisture with values below 1 km for farmers and above for basin
authorities interested in water management. Overall, the spatial/temporal resolution of
100–500 m daily can theoretically be provided from satellites, for example from MODIS
observations, while lower spatial resolution could be obtained with Landsat [143] and
the new Sentinel satellites [144]. In addition, models can run at this resolution and can
benefit from the assimilation of satellite soil moisture/backscatter from S1 data or by LST
information from thermal sensors [127].

Regarding the desired accuracy (i.e., the difference between the estimated and true
irrigation volumes) of the irrigation data, it seems that a value below 30% would be
desired (based on the answers of the farmers). However, due to the lack of reliable
ground reference information about irrigation, it currently remains difficult to provide
exact accuracy estimates. Nevertheless, in a recent study, Dari et al. [102] reported irrigation
retrieval accuracies that span from 10% to 40%, which is not far from the defined targets.

6. Synthesis and Future Perspectives

This study provided a comprehensive review of the use of remote technologies to
retrieve information on irrigation, and methods to integrate this information with models.
Moreover, we assessed whether this information meets the requirements of various actors
working in the field of water resource management and agriculture. What emerged from
the literature is synthetized below:

(1) The information of irrigation collected in situ is very limited due to the reluctance of
farmers and managers to share these data [137], and the difficulty to collect data at
global and regional levels. This poses a big challenge for the understanding of energy,
water, and carbon cycles, climate interactions and future projections, sustainable
agriculture and water management, food production, and water security.

(2) Estimates of areas equipped for irrigation, derived from inventories of national and
local authorities, have partially covered this gap, but being mainly based on statistics
and sparsely and historically collected information, they are likely to be inaccurate
and inhomogeneous. Moreover, this information is static and thus does not say
when, where, and how much irrigation has been applied. Despite these limitations,
these data remain a reference for many applications, including global hydrological
modeling, modeling of changes in crop productivity, or climate impact assessments.

(3) In the last twenty years, there has been a substantial improvement in both spectral,
spatial, and temporal resolution of Earth observations, which has boosted method-
ological developments. A first advance was to separate the identification of irrigated
areas from general land cover classification approaches. A second advance came with
improvements in spatial resolution, which allowed for more accurate assessments
of irrigated areas [123,145] that do not hinge on information about the fraction of
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irrigated area within low-resolution pixels. A third advance was the synergetic use of
various satellite, climatic, and ecoregions time series instead of vegetation index time
series alone.

(4) The automation of high-resolution time series processing has benefited greatly from
the emergence of platforms that allow the parallel processing of big amounts of data,
such as Google Earth Engine, Amazon, or the European DIAS. The technological
advances have made it feasible to estimate the irrigated area at ever smaller time steps,
progressing from a decadal overview of the areas equipped for irrigation toward the
actual irrigated area at the beginning of the season, also thanks to the continuous
development of new machine learning and classification methods which so far relied
mainly upon supervised types of algorithms. The lack of the real data to guide these
algorithms, especially over data-scarce regions, surely demands for a more massive
use of unsupervised techniques [146,147].

(5) Microwave-based observations and their combination with optical data and models
have provided new ways to map irrigated areas. Previous work using coarse-scale
and disaggregated soil moisture products have shown potential for retrieving infor-
mation of irrigation from space, but also have several limitations associated with:
(i) the noise of these products compared to the strength of the irrigation signal, and
(ii) the scale mismatch between the satellite footprint and the size of the irrigated
fields. In this context, SAR data have demonstrated to be a viable way to provide
information on irrigation mapping and researchers are currently exploring ways to
retrieve quantitative irrigation estimates from them as well. The latter is, however,
more challenging compared to simple irrigated area mapping.

(6) Visible, near-infrared, and microwave-based methods have all demonstrated a certain
ability to quantify volumes of applied irrigation. However, VNIR observations—
besides their inherent limitations due to cloud cover—can theoretically only provide
the consumptive water use (i.e., the amount of water that is transpired by the crop
and evaporated from the soil), and thus neglect the amount of water infiltrating to
the subsurface, or MW observations have been demonstrated to be sensitive to noise
and vegetation as well as to the satellite revisit time. Indeed, the temporal frequency
is a crucial factor to reproduce the spatio-temporal dynamics of irrigation. In fact,
the irrigation frequency depends on many factors (e.g., climatic conditions, crop
type, water availability) and low-frequency data are often not able to detect irrigation
events occurring at a not-negligible time distance from the acquisition.

(7) Hardly affected by surface conditions, gravimetric measurements derived from
GRACE and its successor GRACE-FO could provide important information on irriga-
tion, but the spatial and temporal resolution achievable with these instruments have
so far limited their application to only very large areas.

(8) Most studies addressing the quantification of irrigation have employed modeling
components, which potentially exhibit large uncertainties due to the need of a suitable
parameterization and high-quality input observations (especially land cover and
soil maps in land surface and hydrological models). For instance, the means of
irrigation (i.e., sprinkler, drip, or flood) strongly affects the daily timing and quantity
of irrigation water applied, while input data providing information on irrigated areas
and starting of the growing season are required but rarely available. Additionally,
modeled irrigation schemes generally ignore the source of applied water (i.e., surface
water or groundwater), thus not allowing an integrated water resource analysis.

(9) Considering that there has been increasing interest in understanding both the role
of the irrigation on land–atmosphere interactions [148] and the impact of irrigation
on water resources [149], coupling remote sensing information with land surface
models for an improved representation of anthropogenic activities seems to be a key
challenge to be addressed in the near future (e.g., [119,150]).

Notwithstanding the importance of the studies in irrigation retrieval research and its
representation in Land Surface Models and Hydrological models to advance the knowledge
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of its impact on the climate and land systems, quantification, timing, and mapping of irri-
gation have a paramount importance also for agricultural and operational water resource
management, where a plethora of actors are involved with very different needs. The scales
of action are therefore very diverse, as are the capabilities of the different available satellite
missions (see Table 2).

Table 2. Potential of satellite-based remote sensing observations to detect irrigation information from
space as a function of the scale of application.

Irrigation Mapping Irrigation Quantity Irrigation Timing

Products at
local/field scale in
support of water
management and

agriculture
(approx. <100 m)

With SAR and
thermal data (up to
30 m with Landsat

and S2-S3, 10–100 m
with SAR S1 data)

Up to 10–100 m with
SAR data and 30 m

with visible and
near-infrared sensors.
Accuracy limited by

the temporal
resolution of the

sensors and noise.

With SAR and
thermal and optical
data depending on

the location. Limited
to temporal

resolution larger than
a day.

Products at
national/basin scale
in support of water

management
(500 m–1 km)

With SAR (e.g., S1)
and thermal data

(e.g., MODIS, S2–S3)
and their

combination. Suitable
for relatively large
agricultural areas

With SAR (e.g., S1)
and thermal data

(e.g., MODIS,
Landsat, S2, S3) and
their combination.
Accuracy depends

upon satellite revisit
time and noise. Cloud
cover can be an issue.

Daily with thermal
data (e.g., MODIS).

Weekly and
sub-weekly with SAR

depending on the
location and other

visible and
near-infrared

observations such as
S2 and S3 depending
on the cloud cover.

Products at
regional/global level

(>10 km)

With active and
passive coarse-scale

microwave
observations limited
to large and intensive
irrigated areas much

larger than the
product spatial

resolution (large and
intensively irrigated
areas of India, USA,
China, Brazil). With

any optical,
near-infrared sensor

With active and
passive coarse-scale

microwave
observations, limited
to large and intensive
irrigated areas much

larger than the
product spatial

resolution. Noise can
be an issue.

With any visible and
near-infrared sensor.

Gravimetric
measurements

(GRACE).

With coarse-scale
microwave

observations,
potentially daily if the
signal is sufficiently

strong with respect to
the noise and with

thermal data.

Improving the efficiency of water use by agriculture and predicting the impacts on
the different reservoirs requires the knowledge of irrigation water inputs and timing at the
decision-making scales: (1) the plot/day for the farmer interested in irrigation scheduling
on a day-to-day basis, (2) the irrigated perimeter/month for the irrigation district to help
in the water distribution to farmers, and (3) the watershed/season for the manager for
land use planning. For these scales, the different requirements have to face the diverse
geographic/historical/cultural/economic conditions of the regions, which change over
time, and the maturity of the technological advancement of satellite observations. There
are many missions planned for the future which will help to fill these gaps.

A potential benefit for irrigation retrieval could be derived from the Global Navigation
Satellite System Reflectometry (GNSS-R) mission, such as the NASA Cyclone Global
Navigation Satellite System (CYGNSS) [151,152], and from the US-Indian NASA-ISRO SAR
(NISAR) and Radar Observing System for Europe—L-band (ROSE-L) SAR missions [153],
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planned to be launched in 2022 and 2028, and that should provide improved soil moisture
estimates over vegetated areas and from a deeper soil layer compared to C-Band (S1)
products at higher spatial resolutions. In addition, higher temporal resolution can be
achieved with a constellation of low-cost CubeSats with a GNSS reflectometer onboard.
Other missions such as TRISHNA and ESA LSTM missions already mentioned above
will provide enhanced high spatial-temporal resolution measurements of land surface
temperature, which would be helpful to map small irrigated fields. These missions, among
others already planned, should cover the majority of the users’ requirements at scales
identified in Table 2, and that should bring important progress to the land and water
management with significant benefits for food and water security.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/rs13204112/s1.

Author Contributions: Conceptualization, C.M., S.M., J.D., P.Q.-S. and A.G.; methodology, C.M.,
S.M., J.D., P.Q.-S., A.G.; writing—original draft preparation, C.M., S.M., J.D., A.G, G.J.M.D.L., P.Q.-S.,
M.G., L.J., M.L.P., M.V., M.Z., L.Z.; writing—review and editing, all authors. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the European Space Agency within the project Irrigation+,
ESA contract No. 4000129870/20/I-NB. M.V., L.Z., and W.D. also acknowledge funding of the DWC
Radar project financed by the Austrian Space Applications Programme. A.G. acknowledges the
Research Foundation Flanders (FWO-1224320N, FWO-1530019N).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Figure 1 was created by using the following public datasets: [GMIA ver.
5.0] FAO, 2015, Map of Irrigated Area, http://www.fao.org/aquastat/en/geospatial-information/
global-maps-irrigated-areas/latest-version/ (accessed on 13 October 2021), version 5.0. [GLCC];
USGS; 1999; Global Land Cover Characterization; https://www.usgs.gov/centers/eros/science/
usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_
objects=0#qt-science_center_objects (accessed on 13 October 2021); Version 2.0, USGS classifica-
tion; https://doi.org/10.5066/F7GB230D [GLC2000] (accessed on 13 October 2021); Indian Insti-
tute of Remote Sensing; 2003; Global Land Cover 2000; South Central Asia; https://forobs.jrc.
ec.europa.eu/products/glc2000/products.php scasia_v4_grid.zip; version 3.0. [GIAM] (accessed
on 13 October 2021); IWMI; 2000; Global Irrigated area map at 10 km for year 2000; http://
waterdata.iwmi.org/Applications/GIAM2000/archives/giam_28_classes_global.rar. [ESA CCI]
(accessed on 13 October 2021); ESA; 2017; ESA CCI Land Cover time-series v2.0.7 (1992–2015);
https://www.esa-landcover-cci.org/?q=node/164, Dataset: ESACCI-LC-L4-LCCS-Map-300m-P1Y-
1992_2015-v2.0.7.tif, band 9; version 2.07 (accessed on 13 October 2021).

Acknowledgments: We would like to thank the anonymous users and organizations who answered
the questions in the questionnaire implemented within this study. The European Space Agency for
supporting the activity via the ESA contract No. 4000129870/20/I-NB.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO 2016. AQUASTAT Database. Available online: https://www.fao.org/aquastat/en/ (accessed on 29 July 2021).
2. Gleick, P.H.; Allen, L.; Christian-Smith, J.; Cohen, M.J.; Cooley, H.; Heberger, M.; Eli Moore, E.; Morrison, J.; Orr, S.; Schulte, P.;

et al. The World’s Water: The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2012.
3. Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Cinnell, C.; Ray, D.K.; West,

P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [CrossRef] [PubMed]
4. Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote

Sens. 2010, 2, 2274–2304. [CrossRef]
5. Matthews, O.P.; Germain, D.S. Boundaries and transboundary water conflicts. J. Water Resour. Plan. Manag. 2007, 133, 386–396.

[CrossRef]
6. Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation

needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [CrossRef]

https://www.mdpi.com/article/10.3390/rs13204112/s1
https://www.mdpi.com/article/10.3390/rs13204112/s1
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-version/
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-version/
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects
https://doi.org/10.5066/F7GB230D
https://forobs.jrc.ec.europa.eu/products/glc2000/products.php
https://forobs.jrc.ec.europa.eu/products/glc2000/products.php
http://waterdata.iwmi.org/Applications/GIAM2000/archives/giam_28_classes_global.rar
http://waterdata.iwmi.org/Applications/GIAM2000/archives/giam_28_classes_global.rar
https://www.esa-landcover-cci.org/?q=node/164
https://www.esa-landcover-cci.org/?q=node/164
https://www.fao.org/aquastat/en/
http://doi.org/10.1038/nature10452
http://www.ncbi.nlm.nih.gov/pubmed/21993620
http://doi.org/10.3390/rs2092274
http://doi.org/10.1061/(ASCE)0733-9496(2007)133:5(386)
http://doi.org/10.5194/hess-20-953-2016


Remote Sens. 2021, 13, 4112 21 of 26

7. Tramblay, Y.; Llasat, M.C.; Randin, C.; Coppola, E. Climate change impacts on water resources in the Mediterranean. Reg. Environ.
Chang. 2020, 20, 83. [CrossRef]

8. Rosa, L.; Chiarelli, D.D.; Sangiorgio, M.; Beltran-Peña, A.A.; Rulli, M.C.; D’Odorico, P.; Fung, I. Potential for sustainable irrigation
expansion in a 3 ◦C warmer climate. Proc. Natl. Acad. Sci. USA 2020, 117, 29526–29534. [CrossRef]

9. Döll, P.; Siebert, S. Global modelling of irrigation water requirements. Water Resour. Res. 2002, 38, 8.1–8.10. [CrossRef]
10. Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population

growth. Science 2000, 289, 284–288. [CrossRef]
11. Alter, R.E.; Im, E.S.; Eltahir, E.A. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat.

Geosci. 2015, 8, 763–767. [CrossRef]
12. Haddeland, I.; Skaugen, T.; Lettenmaier, D.P. Hydrologic effects of land and water management in North America and Asia:

1700–1992. Hydrol. Earth Syst. Sci. 2007, 11, 1035–1045. [CrossRef]
13. Breña-Naranjo, J.A.; Kendall, A.D.; Hyndman, D.W. Improved methods for satellite-based groundwater storage estimates: A

decade of monitoring the high plains aquifer from space and ground observations. Geophys. Res. Lett. 2014, 41, 6167–6173.
[CrossRef]

14. Hu, X.; Shi, L.; Zeng, J.; Yang, J.; Zha, Y.; Yao, Y.; Cao, G. Estimation of actual irrigation amount and its impact on groundwater
depletion: A case study in the Hebei Plain, China. J. Hydrol. 2016, 543, 433–449. [CrossRef]

15. Le Page, M.; Berjamy, B.; Fakir, Y.; Bourgin, F.; Jarlan, L.; Abourida, A.; Benrhamen, M.; Jacob, G.; Huber, M.; Sghrer, F.; et al. An
integrated DSS for groundwater management based on remote sensing. the case of a semi-arid aquifer in morocco. Water Resour.
Manag. 2012, 26, 3209–3230. [CrossRef]

16. Le Page, M.; Jarlan, L.; El Hajj, M.M.; Zribi, M.; Baghdadi, N.; Boone, A. Potential for the detection of irrigation events on maize
plots using sentinel-1 soil moisture products. Remote Sens. 2020, 12, 1621. [CrossRef]

17. Bretreger, D.; Yeo, I.-Y.; Hancock, G.; Willgoose, G. Monitoring irrigation using landsat observations and climate data over
regional scales in the Murray-Darling Basin. J. Hydrol. 2020, 590, 125356. [CrossRef]

18. Foster, T.; Gonçalves, I.Z.; Campos, I.; Neale, C.M.U.; Brozović, N. Assessing landscape scale heterogeneity in irrigation water use
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