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Introduction

The design of efficient scheduling algorithms is a fundamental problem in wireless networks. In each time slot, a scheduling algorithm aims to determine a subset of non-interfering links such that the system of queues in the network is stabilized. Depending on the interference model and the network topology, it is known that there exists a 'rate region' -a maximal set of arrival rates -for which the network can be stabilized. A scheduling algorithm that can support any arrival rate in the rate region is said to be throughput optimal. A well-known algorithm called the Max-Weight scheduling algorithm [START_REF] Tassiulas | Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks[END_REF] is said to be throughput optimal. However, the Max-Weight scheduler is not practical for distributed implementation due to the following reasons: (i) global network state information is required, and (ii) requires the computation of maximum-weighted independent set problem in each time slot, which is an NP-hard problem.

There have been several efforts in the literature to design low-complex, distributed approximations to the Max-Weight algorithm [START_REF] Xu | Maximum weighted independent set of links under physical interference model[END_REF][START_REF] Tassiulas | Dynamic server allocation to parallel queues with randomly varying connectivity[END_REF]. Greedy approximation algorithms such as the maximal scheduling policies, which can support a fraction of the maximum throughput, are one such class of approximations [START_REF] Wan | Greedy approximation algorithms[END_REF]. On the other hand, we have algorithms like carrier sense multiple access (CSMA) algorithms [START_REF] Jiang | A distributed csma algorithm for throughput and utility maximization in wireless networks[END_REF][START_REF] Swamy | Adaptive csma under the sinr model: Efficient approximation algorithms for throughput and utility maximization[END_REF], which are known to be near-optimal in terms of the throughput performance but known to suffer from poor delay performance.

Inspired by the success of deep-learning-based algorithms in various fields like image processing and natural language processing, recently, there has been a growing interest in their application in wireless scheduling as well [START_REF] Cui | Spatial deep learning for wireless scheduling[END_REF][START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF]. Initial research in this direction focused on the adaption of widely used neural architectures like multi-layer perceptrons or convolutional neural networks (CNNs) [START_REF] Xu | Energy-efficient subchannel and power allocation for hetnets based on convolutional neural network[END_REF] to solve wireless scheduling problems. However, these architectures are not well-suited for the scheduling problem because they do not explicitly consider the network graph topology. Hence, some of the recent works in wireless networks study the application of the Graph Neural Network (GNN) architectures for solving the scheduling problem [START_REF] Eisen | Optimal wireless resource allocation with random edge graph neural networks[END_REF]. For instance, a recent work [START_REF] Zhao | Distributed scheduling using graph neural networks[END_REF] has proposed a GNN based algorithm, where it has been observed that the help of Graph Neural networks can improve the performance of simple greedy scheduling algorithms like Longest-Queue-First (LQF) scheduling.

However, this result is observed on a simple interference model called the conflict graph model, which captures only binary relationships between links. Nevertheless, in real wireless networks, the interference among the links is additive, and the cumulative effect of all the interfering links decides the feasibility of any transmission. Hence, it is essential to study whether the GNN based approach will improve the performance of greedy LQF scheduling under a realistic interference model like the (Signal-to-interference-plus-noise ratio) SINR model, which captures the cumulative nature of interference.

One of the challenges in conducting such a study is that the concept of graph neural networks is not readily applicable for the SINR interference model since a graph cannot represent it. Hence, we introduce a new interference model which retains the cumulative interference nature yet is amenable to a graph-based representation and conduct our study on the proposed interference model. This approach will provide insights into whether the GNN-based improvement for LQF will work for practical interference models.

To that end, in this paper, we study whether GNN based algorithms can be used for designing efficient scheduling under this general interference model. Specifically, we consider a k-tolerant conflict graph model, where a node can successfully transmit during a time slot if not more than k of its neighbors are transmitting in that time slot. Moreover, when k is set to zero, the k-tolerance model can be reduced to the standard conflict graph model, in which a node cannot transmit if any of its neighbors is transmitting. We finally tabulate our results and compare them with other GNN-based distributed scheduling algo-rithms under a standard conflict-graph-based interference model. In sum, our contributions are as follows:

(i) We propose a GCN-based distributed scheduling algorithm for a generalized interference model called the k-tolerant conflict graph model. (ii) The training of the proposed GCN does not require a labeled data set (involves solving an NP-hard problem). Instead, we design a loss function that utilizes an existing greedy approach and trains a GCN that improves the performance of the greedy approach by 4 to 20 percent.

The remainder of the paper is organized as follows. In Sec. 2, we briefly present our network model. In Sec. 3, an optimal scheduling policy for k-tolerance conflict graph interference model, a GCN-based k-tolerant independent set solver, is presented. In Sec. 4, we conduct experiments on different data sets and show the numerical results of the GCN-based scheduling approach. Finally, the paper is concluded in Sec. 5.

Motivation:

In the SINR interference model, a link can successfully transmit if the cumulative interference from all nodes within a radius is less than some fixed threshold value. The conflict graph model insists that all the neighbours should not transmit when a link is transmitting. However, in a real-world situation, a link can successfully transmit as long as the cumulative interference from all its neighbours (the links which can potentially interfere with a given link) is less than a threshold value. As a special case, in this paper, we consider a conservative SINR model called k-tolerance model in which, if i max is the estimated strongest interference that a link can cause to another and let i th be the cumulative threshold interference that a link can tolerate, then a conservative estimate of how many neighbouring links can be allowed to transmit without violating the threshold interference is given by k = i th /i max . In other words, k-neighbours can transmit while a given link is transmitting. It can be seen that this conservative model retains the cumulative nature of the SINR interference model. Hence a study on this model should give us insights into the applicability of GNN based solutions for realistic interference models.

Network Model

We model the wireless network as an undirected graph G = (V, E) with N nodes.

Here, the set of nodes V = {v i } N i=1 of the graph represents links in the wireless network i.e., a transmitter-receiver pair. We assume an edge between two nodes, if the corresponding links could potentially interfere with each other. Let E and A denote the set of edges and the adjacency matrix of graph G respectively. We denote the set of neighbors of node v by N(v) i.e., a node v ∈ N(v), if the nodes v and v share an edge between them. We say a node is k-tolerant, if it can tolerate at most k of its transmitting neighbors. In other words, a k-tolerant node can successfully transmit, if the number of neighbors transmitting at the same time is at most k. We define a k-tolerant conflict graph as a graph in which each node is k-tolerant, and model the wireless network as a k-tolerant conflict graph. Note that this is a generalization of the popular conflict graph model, where a node can tolerate none of its transmitting neighbors. The conflict graph model corresponds to 0-tolerant conflict graph (k = 0).

We assume that the time is slotted. In each time slot, the scheduler has to decide on the set of links to transmit in that time slot. A feasible schedule is a set of links that can successfully transmit at the same time. At any given time t, a set of links can successfully transmit, if the corresponding nodes form a kindependent set (defined below) in graph G. Thus, a feasible schedule corresponds to a k-independent set in G.

Definition 1. (k-independent set) A subset of vertices of a graph G is k-inde- pendent, if it induces in G, a sub-graph of maximum degree at most k.
A scheduler has to choose a feasible schedule at any given time. Let S G denotes the collection of all possible k-independent sets i.e., the feasible schedules. We denote the schedule at time t by an N length vector σ(t) = (σ v (t), v ∈ V ). We say σ v (t) = 1 if at time t, node v is scheduled to transmit and σ v (t) = 0, otherwise. Depending on the scheduling decision σ(t) ∈ S G taken at time t, node v ∈ V (a link in the original wireless network) gets a rate of µ v (t, σ). We assume that packets arriving at node v can be stored in an infinite buffer. At time t, let λ v (t) be the number of packets that arrive at node v ∈ V . We then have the following queuing dynamics at node v:

q v (t + 1) = [q v (t) + λ v (t) -µ v (t, σ)] + . (1) 
The set of arrival rates for which there exist a scheduler that can keep the queues stable is known as the rate region of the wireless network.

Max-Weight Scheduler

A well known scheduler that stabilises the network is the Max-Weight algorithm [START_REF] Tassiulas | Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks[END_REF]. The Max-Weight algorithm chooses a schedule σ * (t) ∈ S G that maximizes the sum of queue length times the service rate, i.e.,

σ * (t) = arg max σ∈S G v q v (t)µ v (t, σ). (2) 
We state below one of the celebrated results in radio resource allocation.

Theorem 1.

[1] Let the arrival process λ v (t) be an ergodic process with mean λ v . If the mean arrival rates (λ v ) are within the rate region, then the Max-Weight scheduling algorithm is throughput optimal.

In spite of such an attractive result, the Max-Weight algorithm is seldom implemented in practice. This is because, the scheduling decision in (2) has complexity that is exponential in the number of nodes. Even with the simplistic assumption of a conflict graph model, (2) reduces to the NP-hard problem of finding the maximum weighted independent set. At the timescale of these scheduling decisions, finding the exact solution to (2) is practically infeasible. Hence, we resort to solving (2) using a Graph Neural Network (GNN) model. Before we explain our GNN based algorithm, we shall rephrase the problem in (2) for the k-tolerant conflict graph model below.

Maximum weighted k-independent set

In the k-tolerant conflict graph model G, the Max-Weight problem is equivalent to the following integer program:

Maximize:

v σ v w v Such that: σ v   v ∈N(v) σ v   ≤ k σ v ∈ {0, 1}, for all v ∈ V (3) 
Here w = (w v : v ∈ V ) is the weight vector. The constraint in (3) ensures that whenever a node is transmitting, at most k of its neighbors can transmit. It can be observed that the maximum weight problem in (2) corresponds to using the weights w v = q v (t)µ v (t, σ) in the above formulation. Henceforth, the rest of this paper is devoted to solving the maximum weighted k-independent set problem using a graph neural network. In this section, we present a graph neural network based solution to solve the maximum weighted k-independent set problem. We use the Graph Convolution Neural network (GCN) architecture from [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF][START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF].

Graph Neural Network based Scheduler

The GCN architecture is as follows: We use a GCN with L layers. The input of each layer is a feature matrix Z l ∈ R N ×C l and its output is fed as the input to the next layer. Precisely, at the (l + 1)th layer, the feature matrix Z l+1 is computed using the following graph convolution operation:

Z l+1 = Φ(Z l Θ l 0 + LZ l Θ l 1 ), (4) 
where Θ l 0 , Θ l 1 ∈ R C l ×C l+1 are the trainable weights of the neural network, C l denotes the number of feature channels in l-th layer, Φ(.) is a nonlinear activation function and L is the normalized Laplacian of the input graph G computed as follows:

L = I N -D -1 2 AD -1 2 .
Here, I N denotes the N × N identity matrix and D is the diagonal matrix with entries D ii = j A ij .

We take the input feature matrix Z 0 ∈ R N ×1 as the weights w of the nodes (hence C 0 = 1) and Φ(.) as a ReLU activation function for all layers except for the last layer. For the last layer, we apply sigmoid activation function to get the likelihood of the nodes to be included in the k-independent set. We represent this likelihood map from the GCN network using an N length vector

π = (π v , v ∈ V ) ∈ [0, 1] N .
In summary, the GCN takes a graph G and the node weights w as input and returns a N length likelihood vector π (see Figure 1). However, we need a kindependent set. In usual classification problems, such a requirement is satisfied by projecting the likelihood maps to a binary vector. Projecting the likelihood map onto the collection of k-independent sets is not straightforward, since the collection of k-independent sets are N length binary vectors that satisfy the constraints in [START_REF] Tassiulas | Dynamic server allocation to parallel queues with randomly varying connectivity[END_REF]. Such a projection operation by itself might be costly in terms of computation. Instead, by taking inspiration from [START_REF] Li | Combinatorial optimization with graph convolutional networks and guided tree search[END_REF], we pass the likelihood map through a greedy algorithm5 to get a k-independent set.

The greedy algorithm requires each node to keep track of the number of its neighbours already added in k-independent set. We sort the nodes in the descending order of the product of the likelihood and the weight i.e., π v w v . We add the node with highest likelihood-weight product to the k-independent set, if at most k of its neighbors are already added in the k-independent set. We remove the nodes that are neighbours to a node which has already added to the set and also reached a tolerance of k. We then repeat the procedure until no further nodes are left to be added.

We use a set of node-weighted graphs to train the GCN. Since the problem at hand is NP-hard, we refrain from finding the true labels (maximum weighted k-independent set) to train the GCN. Instead, we construct penalty and reward functions using the desirable properties of the output π. We then learn the parameters by optimizing over a weighted sum of the constructed penalties and rewards. We desire the output π to predict the maximum weighted k-independent set. With this in mind we construct the following rewards and penalties:

a) The prediction π needs to maximize the sum of the weights. So, our prediction needs to maximize R 1 = v π v w v . b) The prediction π needs to satisfy the k-independent set constraints. Therefore, we add a penalty, if π violates the independent set constraints in (3), i.e.,

P 1 = v∈V σ v v ∈N(v) σ v -k 2 .
c) Recall that we use the greedy algorithm to predict the k-independent set from π. The greedy algorithm takes (π v w v , v ∈ V ) as the input and returns a k-independent set. We desire the total weight of the output π, i.e., v π v w v to be close to the total weight of the k-independent returned by the greedy algorithm. Let W gcn be the total weight of the independent set predicted by the greedy algorithm. Then, we penalise the output π if it deviates from W gcn , i.e.,

P 2 = | v π v w v -W gcn | 2 .
We finally construct our cost function as a weighted sum of the above i.e., we want the GCN to minimize the cost function:

C = β 1 P 1 + β 2 P 2 -β 3 R 1 (5) 
where β 1 , β 2 and β 3 denotes the optimization weights of the cost function defined in equation ( 5).

Experiments

We perform our experiments on a single GPU GeForce GTX 1080 Ti6 . The data used for training, validation and testing are described in the subsection below.

Dataset

We train our GCN using randomly generated graphs. We consider two graph distributions, namely Erdos-Reyni (ER) and Barbasi-Albert (BA) models. These distributions were also used in [START_REF] Zhao | Distributed scheduling using graph neural networks[END_REF]. Our choice of these graph models is to ensure fair comparison with prior work on conflict graph model [START_REF] Zhao | Distributed scheduling using graph neural networks[END_REF] (k = 0). In ER model with N nodes, an edge is introduced between two nodes with a fixed probability p, independent of the generation of other edges. The BA model generates a graph with N nodes (one node at a time), preferentially attaching the node to M existing nodes with probability proportional to the degree of the existing nodes.

For training purpose, we generate 5000 graphs of each of these models. For the ER model, we choose p ∈ {0.02, 0.05, 0.075, 0.10, 0.15} and for the BA model we choose M = N p. The weights of the nodes are chosen uniformly at random from the interval [0, 1]. We use an additional 50 graphs for validation and 500 graphs for testing.

Choice of hyper-parameters

We train a GCN with 3 layers consisting i) an input layer with the weights of the nodes as input features ii) a single hidden layer with 32 features and iii) an output layer with N features (one for each node) indicating the likelihood of choosing the corresponding node in the k-independent set. This choice of using a smaller number of layers ensures that the GCN operates with a minimal number of communications with its neighbors. We fix k = 0, and experiment training the GCN with different choices of the optimization weights β 1 , β 2 and β 3 . The results obtained are tabulated in Figure 2. Let W gr denote the total weight of the plain greedy algorithm i.e., without any GCN and W gcn denote the total weight of the independent set predicted by the GCN-greedy combination. We have tabulated the average ratio between the total weight of the nodes in the independent set obtained from the GCN-greedy and the total weight of the nodes in the independent set obtained from the plain greedy algorithm, i.e., W gcn /W gr . The average is taken over the test data set. The training was done with BA and showing the average and variance of the ratio of the total weight of the nodes in the independent set (K = 0) obtained using GCN to that of the independent set obtained using greedy algorithm. We observe a 3 percent increase in the total weight for the ER model and 11 percent increase in the total weight for the BA model. Our performance matches with the performance of the GCN used in [START_REF] Zhao | Distributed scheduling using graph neural networks[END_REF].

ER models separately. We test the trained models also with test data from both models to understand if the trained models are transferable. We see that GCN trained with parameters β 1 = 5, β 2 = 5 and β 3 = 10 performs well for both ER and BA graph models. The GCN improves the total weight of the greedy algorithm by 4 percent for the ER model and by 11 percent for the BA model. Also, we see that the GCN trained with ER model performs well with BA data and vice versa.

Performance for different k

We also evaluate the performance for different tolerance values k ∈ {1, 2, 3, 4}. We use the parameters β 1 = 5, β 2 = 5 and β 3 = 10 in the cost function. Recall that we have come up with this choice using extensive simulations for k = 0.

In Figure 3, we tabulate the average ratio between the total weight of the kindependent set obtained using the GCN-greedy combo and that of the plain greedy algorithm i.e., W gcn /W gr . We have also included the variance from this performance. We observe that the performance for a general k is even better as compared to k = 0. For example, we see that for k = 2, 3, 4, we see 6 percent improvement for the model and close to 20 percent improvement for the BA model. Fig. 3: The table shows the average and variance of the ratio between the total weight of the k-independent set obtained using GCN-greedy combo to that of the plain greedy algorithm for k ∈ {1, 2, 3, 4}. We observe that the improvement is consistently above 5 percent for the ER model and above 14 percent for the BA model.

Interestingly, the GCN trained with ER graphs performs well on the BA data set as well. This indicates that the trained GCN is transferable to other models.

Conclusion

In this paper, we investigated the well-studied problem of link scheduling in wireless adhoc networks using the recent developments in graph neural networks. We modelled the wireless network as a k-tolerant conflict graph and demonstrated that using a GCN, we can improve the performance of existing greedy algorithms. We have shown experimentally that this GCN model improves the performance of the greedy algorithm by at least 4-6 percent for the ER model and 11-22 percent for the BA model (depending on the value of k).

In future, we would like to extend the model to a node dependent tolerance value k v and pass the tolerance value as the node features of the GNN in addition to the weights.

Fig. 1 :

 1 Fig. 1: The architecture of the Graph Convolutional Neural Network based maximum weighted k-independent set problem solver.

  Test Data = ER Test Data = BA Training Data k Average Variance Average Variance Wgcn/Wgr × 10 -3 Wgcn/Wgr × 10 -3

		1	1.056	4.07	1.143	10.22
	BA	2 3	1.062 1.067	5.26 5.55	1.193 1.209	10.92 20.14
		4	1.063	4.53	1.241	20.57
		1	1.056	3.99	1.143	10.18
	ER	2 3	1.064 1.066	5.12 4.82	1.187 1.205	10.81 20.13
		4	1.062	4.18	1.225	20.29

In practice, the greedy algorithm can be replaced with a distributed greedy algorithm[START_REF] Joo | Distributed greedy approximation to maximum weighted independent set for scheduling with fading channels[END_REF] and train the GCN model w.r.t the distributed greedy algorithm.

Training the models took around two hours.

The authors are grateful to the OPAL infrastructure from Université Côte d'Azur for providing resources and support. This paper is accepted in EAI VALUTOOLS 2021. This work was funded by ANR MASTERO 5G.