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Abstract

We introduce the notion of pre-expansivity for cellular automata (CA): it is
the property of being positively expansive on asymptotic pairs of configurations
(i.e. configurations that differ in only finitely many positions). Pre-expansivity
therefore lies between positive expansivity and pre-injectivity, two important
notions of CA theory.

We show that there exist one-dimensional pre-expansive CAs which are not
positively expansive and they can be chosen reversible (while positive expan-
sivity is impossible for reversible CAs). We provide both linear and non-linear
examples. In the one-dimensional setting, we also show that pre-expansivity
implies sensitivity to initial conditions in any direction. We show however that
no two-dimensional Abelian CA can be pre-expansive. We also consider the
finer notion of k-expansivity (positive expansivity over pairs of configurations
with exactly k differences) and show examples of linear CA in dimension 2 and
on the free group that are k-expansive depending on the value of k, whereas no
(positively) expansive CA exists in this setting.

Keywords: cellular automata, linear cellular automata, 2-dimensional cellular
automata, expansivity, chaos, directional dynamics
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1. Introduction

The model of cellular automata is at the crossroads of several domains and
is often the source of surprisingly complex objects in several senses (computa-
tionally, dynamically, etc).
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From the point of view of dynamical systems and symbolic dynamics, the
theory of cellular automata is very rich [1, 2, 3, 4] and tells us, on the one
hand, that CA are natural examples of chaotic systems that can perfectly fit
the standard notions developed in a general context, and, on the other hand,
that they have special properties allowing and justifying the development of
a refined and dedicated theory. For instance, the structure of the space of
configurations allows to define the notion of an asymptotic pair of configurations:
two configurations that differ only on finitely many positions of the lattice.
The Garden of Eden theorem, which has a long history [1, 5, 6, 7, 8, 9, 10, 4]
and is emblematic of this CA specific theoretical development, then says that
surjectivity is equivalent to pre-injectivity (injectivity on asymptotic pairs) if
and only if the lattice is given by an amenable group.

Two important lines of questioning have been particularly developed and
provide some of the major open problems of the field [11]:

• surjective CA and their dynamics;

• how does CA theory changes when changing the lattice.

In particular, the classical notion of (positive) expansivity has been applied
to CA giving both a rich theory in the one-dimensional case [12, 2, 13] and
a general inexistence result in essentially any other setting [14, 15]. Even in
the one-dimensional case where positive expansivity is equivalent to being con-
jugated to a one-sided subshift of finite type [16], it is interesting to note that
outside the linear and bi-permutative examples, few construction techniques are
known to produce positively expansive CA [17]. On the other hand, it is still
unknown whether positive expansivity is a decidable property, although it is
indeed decidable for some algebraic cellular automata [18, 19].

In this paper, we introduce a new dynamical property called pre-expansivity
that both generalizes positive expansivity and refines pre-injectivity: it is the
property of being positively expansive on asymptotic pairs. Our motivation is to
better understand surjective CA and expansive-like dynamics, in particular in
the higher-dimensional case or in lattices where the classical notion of positive
expansivity cannot be satisfied by any CA [14, 15]. Pre-expansivity is weaker
than positive expansivity. We show examples of pre-expansive CAs which are
not positively expansive. In such CA, some perturbations on infinitely many
cells does not propagate at all, while every finite perturbation will be eventually
seen in the neighborhood of every cell: it is the finiteness of the perturbation
that allows the propagation on every direction.

Pre-expansivity is interesting in that:

1. a reversible CA can be pre-expansive (see section 5), while none can be
positively expansive [20];

2. pre-expansivity implies sensitivity in all directions (see Proposition 5.9),
while some expansive CA (like the shift map) have equicontinuous direc-
tions.
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This shows that the notion is useful in the classical setting of one-dimensional
cellular automata.

For other settings, the situation is left open: on one hand, we show an
impossibility result for Abelian CA in dimension d ≥ 2 (see Theorem 7.1). This
means that for every Abelian CA and every finite window, there will be a
finite configuration that will preserve the window in state 0 forever. On the
other hand, we give several examples of k-expansive CA in this setting and on
the free group, where k-expansivity means positive expansivity over pairs of
configurations with exactly k differences.

The paper is organized as follows. In Section 2 we give the main definitions
and results we need to work on cellular automata on groups. In section 3, we
focus on Abelian cellular automata and develop a toolbox for this class that is
used later in different sections. As an aside, we prove that such CA are always
predictable in logarithmic space complexity. In Section 4, we introduce pre-
expansivity and k-expansivity, and we give some preliminary results which do
not depend on the group defining the space. In Section 5, we restrict to the
group Z and give various examples of cellular automata which are pre-expansive
but not positively expansive, including a characterization for a particular family
of non-linear CA, namely multiplication CA. In Section 6, we consider the free
group and show that k-expansivity is possible for infinitely many values of k
although positive expansivity is impossible. Finally, in Section 7, we restrict to
the group Z2 and we study some k-expansive examples for particular values of
k but also show that there is no pre-expansive Abelian cellular automaton.

2. Formal Setting and Classical Definitions

We will work on cellular automata defined over a finitely generated group
G. We will consider Abelian and non-Abelian groups, but since most of our
examples are given for Abelian groups, we will prefer the additive notation for
G.

Fixing a generator set G, that is closed under inversion, a norm can be
defined in G: given z ∈ G, ||z|| is the length of the shortest sequence g1g2...gn
of elements in G such that z = g1 + g2 + ... + gn. This norm induces a metric
in G naturally, and given a non-negative integer r we can define also the ball
of radius r and center z as the set Br(z) = {x ∈ G | || − z + x|| ≤ r}. Given a
point z ∈ G and two sets X, Y ⊆ G, we accept the following notation.

z + S = {z + x | x ∈ S}, and X + Y = {x+ y | x ∈ X, y ∈ Y }

Cellular automata are functions defined on the symbolic space QG = {c :
G → Q | c is a function}. An element c, called configuration, assigns a symbol
of Q to each element of the group G, sometimes called cells. We will use both
c(z) and cz to denote the value of c at the cell z. A natural G-action on QG is the
shift : given z ∈ G, the function: σz : QG → QG is defined by σz(c)(x) = c(z+x)
for every x ∈ G. The Cantor distance in QG is defined for any two configurations
c, d as follows.
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∆(c, d) =

{
2−min{||z||:c(z)6=d(z)} if c 6= d

0 if c = d

Definition 2.1. Two configurations c, d are asymptotic, denoted c
∞
= d, if they

differ only in finitely many positions: {z ∈ G : c(z) 6= d(z)} is finite.

A cellular automaton (CA) is an endomorphism of QG, compatible with the
shift G-action and continuous for the Cantor distance. From Curtis-Hedlund
theorem [1, 4], every cellular automaton F is characterized by a local function
f : QV → Q, where V ⊂ G is finite and called neighborhood of F , as follows.

∀c ∈ QG,∀z ∈ G, F (c)(z) = f(σz(c)|V )

Every function defined in this way is a cellular automaton.
Basic properties of F such as surjectivity and injectivity have been con-

sidered and played an important role in CA theory because they were proved
to be efficiently decidable in dimension 1 but undecidable in higher dimensions
[21, 22]. The weaker notion of pre-injectivity says that, for every pair of different
asymptotic configurations c and d, their image by F are different:

c
∞
= d and c 6= d⇒ F (c) 6= F (d).

The so-called Garden-of-Eden theorem establishes that surjectivity is equivalent
to pre-injectivity, which in particular implies that injective CAs are also bijec-
tive (equivalently reversible by Curtis-Hedlund Theorem, i.e. having an inverse
which is also a CA). It was first proved in particular cases [1, 5, 6] and later
it was shown that it holds exactly when the group G is amenable, i.e. when it
admits a finitely additive measure which is invariant under its action [4].

The pair (QG, F ) is a dynamical system and can be studied from the point
of view of topological dynamics. The present work proposes a new particular
kind of topological unpredictability. Weaker and stronger notions in this area
are the following.

A CA F is sensitive if there exists a number δ > 0, called sensitivity constant,
such that for every c and every ε there exists an instant t ∈ N and a configuration
d ∈ Bε(c) such that ∆(F t(c), F t(d)) ≥ δ.

A stronger notion is expansivity, which can be of two kinds, and depends
on whether the CA is reversible or not. Given T be equal to either N or Z, a
CA F is called T-expansive if there exists a number δ > 0, called expansivity
constant, such that for every c 6= d there exists an instant t ∈ T such that
∆(F t(c), F t(d)) ≥ δ. In this work we will almost always consider positive times
only (i.e. T = N) and refer to N-expansivity as positive expansivity. Accordingly
we will stick to positive times in the definition of pre-expansivity below. This
choice is particularly relevant for one-dimensional reversible CA, since they all
possess a direction of Z-expansivity3, none has a direction of N-expansivity,

3It can be checked that any direction greater than both the radius of the CA and its inverse
is a direction of Z-expansivity, see [23, Proposition 5.3] for more details.
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but having directions of pre-expansivity is a non-trivial property illustrated for
instance by Proposition 5.9.

Denote by Tm : QG → (QBm(0))N the trace function which to any configura-
tion associates its orbit restricted to Bm(0):

Tm(c) =
(
t 7→

(
F t(c)

)
|Bm

)
.

A CA F is positively expansive if and only if Tm is injective for some m, in
which case we get a conjugacy between F acting on QG and the one-sided shift
acting on Tm

(
QG) [2].

If G = Z, given a one-dimensional CA with local rule f : Q[−l,r] → Q with
l, r > 0, we say that it is LR-permutive when for any q−l, . . . , qr ∈ Q the two
following maps are bijective.

a 7→ f(a, q−l+1, . . . , qr)

a 7→ f(q−l, . . . , qr−1, a)

LR-permutive are always positively expansive.

3. Abelian CA: Definitions and Toolbox

The class of Abelian CA will be an important source of examples in the
sequel. This section establishes a number of properties used later on for both
positive and negative results. These properties are essentially folklore knowledge
or extensions of already published results, mainly in [24]. We however give
detailed proofs below because our setting is more general than the usual one.
In particular, as far as we know, Corollary 3.6 was never written in this level
of generality, and Lemma 3.8 is new. The reader can skip this section in a
first read: the following definition is used everywhere, but the main results
established below are only used in section 7.

Definition 3.1. Let (Q, ⊕ ) be a finite group and denote by ⊕ the component-
wise extension of ⊕ to QG and by 0 the configuration identically equal to 0. A
CA F over QG is linear if

∀c, d ∈ QG : F (c⊕ d) = F (c)⊕F (d).

When (Q, ⊕ ) is an Abelian group we say that F is Abelian, which is equivalent
to the fact that F verifies an equation of the form:

F (c)z =
∑
i∈V

hi(cz+i)

for any configuration c, where the sum corresponds to the ⊕ law and where V
is the neighborhood of F and hi are endomorphisms of (Q, ⊕ ).
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Given a ∈ Q, we denote by ca the configuration that is equal to e (identity
of the group Q) everywhere except at cell 0 where its value is a. Any space time
diagram of a linear CA is a sum of translated copies of space-time diagrams
with initial configuration of the form ca.

The case where (Q, ⊕ ) is a cyclic group has received much more attention
in the literature than the general Abelian case. We would like to stress the
importance of considering the general case. First, it was already established
that some dynamical behaviors related to randomization are possible in the
general case but not in the cyclic case [25, Thms 3 and 4]. Second, we will show
in section 5 below (Proposition 5.10 and Theorem 5.15) that pre-expansivity is
equivalent to positive expansivity in the cyclic case while there are reversible
(therefore not positively expansive) pre-expansive CA in the general Abelian
case.

The following lemma shows that Abelian CA can be decomposed according
to the structure of the group. It is a folklore knowledge that appears often in
the particular case of cyclic groups [26, 27], and also in the more general Abelian
case [24].

Recall that the product F ×G of two CA F and G is the CA defined on the
product alphabet and applying F and G on each component independently.

Lemma 3.2. Let Q = Qp ×Q′ be an Abelian group (law + and neutral element
(0, 0)) where Qp is a p-group (the order of every element is a power of p) for
some prime p and the order of Q′ is relatively prime with p.

Then, any Abelian CA F over Q is isomorphic to Fp × F ′ where Fp is an
Abelian CA over Qp and F ′ is an Abelian CA over Q′.

Proof. By linearity of F , if c satisfies that n · c =

n︷ ︸︸ ︷
c+ · · ·+ c = (0, 0), then F (c)

must satisfy the same: n · F (c) = (0, 0). We deduce that the subset of states
Q1 = Qp × {0Q′} induces a subautomaton F1 of F because any configuration c ∈
QG

1 is such that pk · c = (0, 0) for some k and no configuration in
(
Q \Q1

)G
has

this property. Moreover if n · c = (0, 0) for n relatively prime with p, it implies

that c ∈ QG
2 =

(
{0Qp} ×Q′

)G
(because the order of an element must divide the

order of the group it belongs to). Therefore Q2 induces a subautomaton F2 of
F .

Now, any c ∈ QG can be written c = c1 + c2 where c1 ∈ QG
1 and c2 ∈ QG

2

through cellwise and componentwise decomposition, and F (c) = F1(c1) + F2(c2).
F1 is isomorphic to a linear CA Fp over Qp and F2 to a linear CA F ′ over Q′,
and then F is isomorphic to Fp × F ′.

Given an Abelian CA F , spot configurations (i.e. configurations c every-
where 0 except in one cell) form a basis of the whole set of configurations and
we get the orbit of any configuration by summing the orbits of corresponding
spot configurations. The main point of this section is the existence of a sub-
stitutive structure describing the space time diagram of spot configurations in
an Abelian CA over p-groups when the underlying spatial structure is Zd. This
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in turns comes from the fact that such CA verify multiscale additive identities.
Intuitively, a multiscale additive identity is the generalization to the Abelian
setting of a linear dependency present in any space-time diagram between a fi-
nite set of cells whose relative positions correspond to a basic shape or a blowup
of it of factor αp for some given α.

These facts were established in [24] in the one-dimensional setting. We give
below a proof in any dimension d using essentially the same approach.

Definition 3.3. Let F be a d-dimensional Abelian CA over (Q,⊕). We say that
F has a multi-scale additive identity if there is some scale factor α ≥ 2, M > 0,
a finite set X = {(~z1, t1), . . . , ( ~zk, tk)} with 0 ≤ ti < M for all 1 ≤ i ≤ k and en-
domorphisms (hi : Q→ Q)1≤i≤k such that for any n ∈ N and any configuration
c it holds:

FMαn(c) =
∑

1≤i≤k

hi ◦ F tiα
n

◦ σαn ~zi(c)

where the sum correspond to law ⊕ over configurations and hi is the componen-
twise extension of hi to QG.

Example 3.4. Consider the CA F : ZZ
2 → ZZ

2 , defined by F (c) = c+σ(c). It is
straightforward to check that

F 2n(c) = c+σ2n(c)

for all n. In this case k = 2, M = 1, X = {(0, 0), (1, 0)}, α = 2 and h1 = h2 =
id.

Similar multi-scale additive identities where no F appears on the right hand
side can be derived using the binomial formula as soon as the Abelian CA

F (c)z =
∑
i∈V

hi(cz+i)

is such that the hi are commuting endomorphisms. The situation is a bit more
complex in the general case when the hi do not commute. However, we have
the following lemma.

Lemma 3.5. Any d-dimensional Abelian CA is a Cartesian product of Abelian
CA admitting multi-scale additive identities.

Proof. First, it is sufficient to prove that Abelian CA over p-groups (p prime)
admit multi-scale additive identities since any Abelian CA is a Cartesian prod-
uct of such CA (Lemma 3.2). Second, it is sufficient to consider Q a p-group
of the form Q = ZDpl because any Abelian CA on a p-group is a subautoma-

ton of some Abelian CA on a group of this form (Proposition 1 of [24]), and
a multi-scale additive identity in some CA holds in any of its subautomata.
Then, an Abelian CA of dimension d over the group Q = ZDpl can be viewed
as a D ×D matrix whose coefficients are Laurent polynomials with d variables
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u1, . . . , ud and coefficients in Zpl (see for instance [28] for more details on this
representation).

Formally, we denote by Zpl [ui, u−1i ]1≤i≤d the ring of Laurent polynomials
with variables u1, . . . , ud, i.e. the ring of linear combinations of monomials
made with positive or negative powers of the variables and coefficients in Zpl .
A monomial corresponds to a vector of Zd, hence we use the notation u

~i for
any ~i = (i1, . . . , id) ∈ Zd to denote the monomial ui11 · · ·u

id
d . A linear cellular

automaton is identified with some T ∈MD

(
Zpl [ui, u−1i ]1≤i≤d

)
where the coef-

ficient a~z ∈ Zpl of the monomial u~z of the coefficient Ti,j of the matrix T means
that, when applying the CA, the layer j of cell ~z0 receives a~z times the content
of the layer i of cell ~z+ ~z0, and all these individual contributions are summed-up.
This matrix representation is correct in the sense that Fn is represented by Tn.

By the Cayley-Hamilton theorem (Laurent polynomials form a commutative
ring), the characteristic polynomial of T gives a relation of the form:

Tm =

m−1∑
j=0

∑
~i∈I

λ~i,ju
~iT j

for some m ≤ |D|, some finite I ⊆ Zd, and where λ~i,j ∈ Zpl .
By standard techniques (binomial theorem and Kummer’s theorem), we have

the following identity on any commutative ring of characteristic pl (this is done
explicitly in Lemma 10 of [25]):(∑

i

Xi

)pn+l−1

=

(∑
i

Xpn

i

)pl−1

for any positive n. Then, applying this to the expression of Tm obtained above
we get:

Tm·p
n+l−1

=

m−1∑
j=0

∑
~i∈I

λp
n

~i,j
up

n·~iT p
n·j

pl−1

.

Noting that the sequence (λp
n

~i,j
)n is ultimately periodic, we can choose a large

enough common period N so that for all ~i, j and all n ≥ 1:

λp
nN

~i,j
= λp

N

~i,j
.

Denoting α = pN and expanding the right-hand side of the above equality, we
have for some M large enough, some finite I ′ ⊆ Zd, and µ~i,j ∈ Zpl (0 ≤ j < M

and ~i ∈ I ′):

TMαn =

M−1∑
j=0

∑
~i∈I′

µ~i,ju
αn~iT jα

n

for any n ≥ 1. This is exactly a multi-scale additive identity of scale α expressed
in the matrix representation of F and the lemma follows.
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The following corollary shows that Abelian CA are computationally “easy”
to predict. Particular cases of this statement is folklore knowledge (see [29]) and
it is mentioned in the generality of Abelian CA in [24] (based on Lemma 3.7
bellow). We give here a simple proof of this fact using existence of multi-scale
additive identities.

Corollary 3.6. For any d-dimensional Abelian CA F with alphabet Q and
radius r, the following prediction problem is computable in LOGSPACE:

• input : a finite pattern u ∈ QBrn(0) and q ∈ Q,

• question : do we have Fn(u) = q, i.e. Fn(c) = q for any c with c|Brn(0) = u?

Proof. Using Lemma 3.5 it is sufficient to give a LOGSPACE algorithm for
Abelian CA with multi-scale additive identities (the Cartesian product is han-
dled by sequentially computing each component which doesn’t change the
LOGSPACE complexity). Therefore let’s suppose that F has the following
multi-scale additive identity (using notation of definition 3.3):

FMαn(c) =
∑

1≤i≤k

hi ◦ F tiα
n

◦ σαn ~zi(c).

An algorithm to evaluate F t(c)~z is a recursive application of the above identity
with the maximal possible value for n at each application and until reaching
terms corresponding to time steps strictly less than Mα (which can be evaluated
in constant time). Concretely if n is the largest integer with Mαn ≤ t we get

F t(c)~z =
∑

1≤i≤k

hi ◦ Fα
nti+t−Mαn(c)αn ~zi+~z

and αnti + t−Mαn ≤ t (M−1)α
n+t−Mαn

t ≤ tMα−1
Mα since t < Mαn+1 by hypoth-

esis on n and the ratio (M−1)αn+t−Mαn

t is increasing with t. This shows that the
depth of recursive calls in the algorithm is logarithmic in t (at most dlog Mα

Mα−1
(t)e)

and since the recursive branching width is constant (exactly k) it is actually
doable in LOGSPACE. More precisely, it can be done in the following way:

• m← dlog Mα
Mα−1

(t)e;

• sum← 0 (identity of group (Q,⊕));
• for each b ∈ {1, . . . , k}m do:

– h← Id ∈ QQ;

– t′ ← t;

– ~z′ ← ~z;

– for each i from 1 to m and while t′ ≥Mα do:

∗ h← h ◦ hbi;

∗ n← max{i :Mαi ≤ t′};
∗ r ← t′ −Mαn ;

9



∗ t′ ← αntbi + r;

∗ ~z′ ← ~z′ + αn~zi

– sum← sum⊕ h ◦ F t′(c)~z′ (bounded computation since t′ < Mα)

• return sum

The algorithm explores successively each branch of the tree of recursive calls
(variable b) and for each of them (which is of depth at most m) it does a
descent from the root to the leaf (variable i) and accumulate the sequence of
endomorphisms to be applied at each level (variable h) while computing the
new current position of space-time (variables t′ and z′). For the prediction
problem of checking whether Fn(u) = q for some u ∈ QBrn(0), we apply the
above algorithm with t = n and z = ~0 so m is logarithmic in the input size and
all variables used have a logarithmic size.

Lemma 3.7. Let F be any d-dimensional Abelian CA with a multi-scale addi-
tive identity. Then there exists a substitution of factor α describing space-time
dependency, that is to say, there exists:

• α ≥ 2,

• a finite set E,

• e : Zd × N→ E,

• Ψ : E → (Q→ Q),

• T ∈ N and, for any 0 ≤ t0 < α and ~z0 ∈ Zd with ‖~z0‖∞ < α, a function
Φt0~z0 : E → E such that, for any t ≥ T

e(α~z + ~z0, αt+ t0) = Φt0~z0
(
e(~z, t)

)
• Γt~z = Ψ(e(~z, t))

where Γt~z is the space-time dependency function given by:

Γt~z : q 7→ σ~z ◦ F t(cq).

Proof. Taking the notations of Definition 3.3 we suppose that for any n ∈ N and
any configuration c it holds:

FMαn(c) =
∑

1≤i≤k

hi ◦ F tiα
n

◦ σαn ~zi(c)

where the sum correspond to law ⊕ over configurations. This identity extends
to the space-time dependency function by choosing c = cq and composing both
sides by a common translation and a common power of F , so that for any n ∈ N
and any r ∈ N and any ~z ∈ Zd we have:

Γα
nM+r

~z (c) =
∑

1≤i≤k

hi ◦ Γα
nti+r
αn ~zi+~z

. (1)
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Applying this identity recursively, we can reduce any Γt~z to a sum of terms of

the form h ◦ Γt
′

~z′
where t′ < Mα. More precisely, we define the labeled k-regular

DAG DF whose vertex set is Zd × N and such that each vertex (~z, t)

• is a leaf if t < Mα;

• has the following k children:

χi(~z, t) = (αn~zi + ~z, αnti + r)

for 1 ≤ i ≤ k where n = max{m : Mαm ≤ t} and r = t−Mαn, and the
edge e =

(
(~z, t), χi(~z, t)

)
is labeled by λ(e) = hi.

The multi-scale property of Equation 1 translates into DF as follows. Consider
any ~z0 ∈ Zd and any t0 < α. If we denote by τ ~z0,t0 : Zd × N→ Zd × N the
transformation such that τ ~z0,t0(~z, t) = (α~z + ~z0, αt+ t0), then we have:

• χi(τ ~z0,t0(~z, t)) = τ ~z0,t0(χi(~z, t)) when (~z, t) is not a leaf;

• if e =
(
(~z, t), χi(~z, t)

)
and e′ =

(
τ ~z0,t0(~z, t), τ ~z0,t0χi(~z, t)

)
then λ(e) = λ(e′).

Indeed, as soon as t ≥ αM , if n = max{m : Mαm ≤ t}, we have that
n+ 1 = max{m : Mαm ≤ αt+ t0} and αr + t0 = αt+ t0 −Mαn+1, where
r = t−Mαn. From this we deduce that to any path from (~z, t) to a leaf
l ∈ Zd × N corresponds a path from τ ~z0,t0(~z, t) to τ ~z0,t0(l) with same labels.
Conversely any path from τ ~z0,t0(~z, t) to some leaf admits as prefix a path from

τ ~z0,t0(~z, t) to τ ~z0,t0(l) where l is a leaf. Formally, if P ~z,t~z′,t′ denotes the set of path

from (~z, t) to (~z′, t′) in DF and L the set of leaves we have⋃
l∈L

P
τ ~z0,t0 (~z,t)

l =
⋃
l∈L

P
τ ~z0,t0 (~z,t)

τ ~z0,t0 (l)
·
⋃
l′∈L

P
τ ~z0,t0 (l)

l′

where ’·’ denotes the concatenation of paths.
For any M ∈ N, let YM = {(~z, t) : t < Mα and ‖~z‖∞ ≤M}. For any ~z0 with

‖~z0‖∞ < α and t0 < α the (Euclidean) distance between (~z, t) and τ ~z0,t0(~z, t)
goes to infinity as ‖~z‖∞ grows. On the other hand, when t < Mα, the set of

positions (~z′, t′) reachable from (~z, t) in DF is finite and they are all at bounded
(Euclidean) distance from (~z, t). This implies that for any large enough M ,
we have the following property: if there is a path in DF from some τ ~z0,t0(l)
to YM with l ∈ L and ‖~z0‖∞ < α and t0 < α, then l ∈ YM . Let now choose
X = YM with M large enough to have the above property and also such that
any (~z, t) ∈ L with Γt~z 6= 0 (i.e. is not the constant map equal to 0) belongs to
YM . From Equation 1 and by definition of DF and X, we have for any ~z ∈ Zd
and any t ∈ N:

Γt~z =
∑

(~z′,t′)∈X

∑
ρ∈P~z,t

~z′,t′
ρ=e1,··· ,em

λ(e1) ◦ · · · ◦ λ(em) ◦ Γt
′

~z′
. (2)

11



We define E =
(
QQ
)X

and e : Zd × N→ E by

e(~z, t) =


(~z′, t′) 7→

{
id if (~z′, t′) = (~z, t),

0 else.
if (~z, t) is a leaf,

(~z′, t′) 7→
∑

ρ∈P~z,t
~z′,t′

ρ=e1,··· ,em

λ(e1) ◦ · · · ◦ λ(em) else.

Then the map Ψ : E → (Q→ Q) defined for any f ∈
(
QQ
)X

by

Ψ(f) =
∑

(~z,t)∈X

f(~z, t) ◦ Γt~z

is such that Ψ
(
e(~z, t)

)
= Γt~z by definition of e and Equation 2.

Finally, for any (~z, t) 6∈ L and any ~z0 with ‖~z0‖∞ < α and t0 < α, we have:

e(τ ~z0,t0(~z, t)) = (~z′, t′) 7→
∑

ρ∈P
τ ~z0,t0

(~z,t)

~z′,t′
ρ=e1,··· ,em

λ(e1) ◦ · · · ◦ λ(em). (3)

But, as said above, any path ρ ∈ P τ ~z0,t0 (~z,t)~z′,t′
decomposes as a concatenation of

a path ρ1 ∈ P
τ ~z0,t0 (~z,t)

τ ~z0,t0 (l)
followed by a path ρ2 ∈ P

τ ~z0,t0 (l)

~z′,t′
. Since (~z′, t′) ∈ X and

by choice of X then l ∈ X. So ρ1 is just the transformation under τ ~z0,t0 of a
path from (~z, t) to l ∈ X and this transformation doesn’t change the labels λ.
We can then rewrite Equation 3 as:

e(τ ~z0,t0(~z, t)) = (~z′, t′) 7→
∑
y∈Y

∑
ρ∈P~z,ty

∑
ρ′∈P

τ ~z0,t0
(y)

~z′,t′

λ(ρ) · λ(ρ′)

or equivalently

e(τ ~z0,t0(~z, t)) = (~z′, t′) 7→
∑
y∈Y

e(~z, t)(y)
∑

ρ′∈P
τ ~z0,t0

(y)

~z′,t′

λ(ρ′).

This shows that there is a map Φt0~z0 not depending on ~z or t which satisfies

e(τ ~z0,t0(~z, t)) = Φt0~z0(e(~z, t)). The lemma follows by letting T = αM .

The existence of this substitution has strong consequences on the structure of
traces: the trace of a finite configuration is determined by a prefix of linear size
in the distance of the farthest non-zero cell. Let us first define some notation.
The size of a configuration c

∞
= 0 is the smallest n ∈ N such that c(z) 6= 0 imply

‖z‖∞ ≤ n.

Lemma 3.8. Let F be any d-dimensional Abelian CA having admitting multi-
scale additive identity. Let m > 0 and denote by Tm the trace function associated
to F and m. There exist a function λ : N→ N with λ ∈ O(n) and such that for
any n and for any pair of configurations c1, c2 with:

12



• the size of ci is less than or equal to n,

• Tm(c1)(t) = Tm(c2)(t) for any t ≤ λ(n),

then Tm(c1) = Tm(c2).

Proof. First F fulfills the hypothesis of Lemma 3.7 so we have the existence of
the substitution and adopt the notations of the lemma.

Let’s focus on the substitution given by the function e and consider k ≥ 0,
t ≥ αkT , and ~z ∈ Zd with ‖z‖∞ ≤ αk. By k − 1 applications of the substitution
we get the following expression for e(~z, t):

e(~z, t) = Φt mod α
~z mod α ◦ · · · ◦ Φ

t/αk−1 mod α

~z/αk−1 mod α

(
e(ρ(~z), t/αk)

)
where ‖ρ(~z)‖∞ ≤ α, and where the division/modulus correspond to the standard
Euclidean division on Zd.

The sequence of superscripts in this expression only depends on t mod αk.
The sequence of subscripts depends only on ~z. Therefore we can write this
functional dependency of e(~z, t) on e(ρ(~z), t/αk) in the following way:

e(~z, t) = χt mod αk

~z

(
e(ρ(~z), t/αk)

)
. (4)

Now consider a time t0 sufficiently large to see before time t0 any possible
vector of the form (e(~z0, t))‖ ~z0‖∞≤α that occur after time T , precisely:

∀t ≥ T, ∃t′, T ≤ t′ ≤ t0,∀~z0, ‖~z0‖∞ ≤ α : e(~z0, t) = e(~z0, t
′).

Given an index set I, consider any tuple (~zi)i∈I , with ‖~zi‖∞ ≤ αk, and any
P ⊆ EI . For any time t, we can define the property PI(t) by:

PI(t)⇔
(
e(~zi, t)

)
i∈I ∈ P.

Claim: if PI(t) holds for every t ≤ (t0 + 1) · αk then PI(t) holds for every t ∈ N.
Indeed, take some time t > (t0 + 1) · αk. Then by choice of t0 there exists

t′ ≤ t0 such that:

∀~z0, ‖~z0‖∞ ≤ α : e(~z0, t/α
k) = e(~z0, t

′).

Now we can choose t′′ ≤ (t0 + 1) · αk with

t′′/αk = t′ and

t′′ mod αk = t mod αk

and equation 4 yields the equalities:

e(~zi, t) = χt mod αk

~z

(
e(ρ(~zi), t/α

k)
)

= χt
′′ mod αk

~z

(
e(ρ(~zi), t

′)
)

= e(~zi, t
′′).

It shows that PI(t)⇔ PI(t′′) and the claim follows.

13



Since the space-time dependency function is completely determined by the
substitution e (Lemma 3.7), the fact that the trace of a finite configuration at
time t is null can be expressed by a property of the form PI(t). More precisely,
for any configuration c of size αk, we can define

D = {z ∈ Zd : c(z) 6= 0},
I =

⋃
z∈D

Bm(z),

P = {f ∈ EI : ∀x ∈ Bm(0),
∑
z∈D

Ψ(fz+x)(c(z)) = 0}.

We then have that

PI(t) ⇔ ∀x ∈ Bm(0),
∑
z∈D

Ψ(e(z + x, t))(c(z)) = 0

⇔ ∀x ∈ Bm(0),
∑
z∈D

Γtz+x(c(z)) = 0

⇔
∑
z∈D

Tm(σ−z(c
c(z)))t = 0

⇔ Tm(c)t = 0.

We deduce that if F t(c) is null on Bm(0) until time (t0 + 1) · αk then it is
null forever. By linearity of F , equality of two traces is equivalent to nullity
of their difference. We have thus shown the lemma for m ≥ 0 by choosing
λ(n) = (t0 + 1) · αk for k = dlogα(n)e.

4. Pre-expansivity

Pre-expansivity is the property of positive expansivity restricted to asymp-
totic pairs of configurations.

Definition 4.1. Let F be a cellular automaton over QG. F is pre-expansive if:

∃δ > 0 : ∀c, d ∈ QG, c 6= d and c
∞
= d⇒ ∃t ∈ N,∆(F t(c), F t(d)) > δ.

The value δ is the pre-expansivity constant.

Remark 4.2.

• Cellular automata can be seen as examples of two continuous commut-
ing actions on a metric space: the spatial action S (the G-shift) and the
temporal action F (the cellular automaton itself). The definition of pre-
expansivity can be adapted to this general settings by requiring that F be
expansive on pairs of S-asymptotic configurations. This goes far beyond
the scope of the present paper which focuses on cellular automata.
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• Pre-expansivity is a conjugacy invariant: if a cellular automata F and
F ′ on QG are conjugated via φ (i.e. φ is an automorphism of the full-
shift QG with F ◦ φ = φ ◦ F ′), then F is pre-expansive if and only if F ′ is.

Indeed, c
∞
= d is equivalent to φ(c)

∞
= φ(d) and for all ε there is δ such

that ∆(φ(c), φ(d)) > ε implies ∆(c, d) > δ.

The notion of pre-expansivity can be further refined by considering only pairs
of configurations with a fixed finite number of differences. Given c, d ∈ QG, we
denote c 6=k d if #

{
z ∈ G : c(z) 6= d(z)

}
= k, i.e. if c and d differ in exactly k

positions.

Definition 4.3. Let F be a cellular automaton over QG and let k > 0. F is
k-expansive if:

∃δ > 0 : ∀c, d ∈ QG, c 6=k d⇒ ∃t ∈ N,∆(F t(c), F t(d)) > δ.

Proposition 4.4. Let F be any CA over QG, it holds:

1. F is pre-expansive ⇒ ∀k > 0 F is k-expansive,
2. F is k-expansive ⇒ F is sensitive to initial configurations,
3. F is pre-expansive ⇔ Tm is pre-injective for some m.
4. If L is a CA over Q̃G, then F × L is k′-expansive for every k′ ≤ k if and

only if L and F are k′-expansive for every k′ ≤ k.
5. Fpositively expansive⇒ F pre-expansive⇒ F pre-injective, moreover if G

is amenable then F pre-expansive⇒ F surjective.

Proof.

1. It follows directly from definitions.
2. It is enough to note that for any configuration c, any δ > 0 and any k ≥ 1

there always exist a configuration c′ with c 6=k c
′ and ∆(c, c′) ≤ δ.

3. For the third item, it is sufficient to note that the existence of some time t
such that ∆

(
F t(c), F t(c′)

)
> δ is equivalent to Tm(c) 6= Tm(c′) for a suit-

able choice of m.
4. If F ×L is k′-expansive, it is enough to take two configurations with their

differences in only one of their components, since both automata act inde-
pendently, k′-expansivity of F ×L imply that the perturbations will arrive
to the center at the same component, proving the k′-expansivity of the
corresponding automaton.
If now L and F are k′-expansive for every k′ ≤ k, we take two configura-
tions with k′ differences. They may lay in one or both of their components,
in any case there will be 0 < k′′ ≤ k′ differences in one of the components
of F ×L. By the k′′-expansivity of the corresponding automaton, we show
the k′-expansivity of F × L.

5. It is clear that positive expansivity implies pre-expansivity (restriction of
the universal quantification). Then pre-expansivity implies pre-injectivity

because if there is a pair of configurations c, c′ with c
∞
= c′ and F (c) = F (c′)

then, eventually applying a translation, we can also suppose them such
that ∆(c, c′) is arbitrarily small. Finally, if G is amenable we also have
that pre-injectivity implies surjectivity by Garden of Eden Theorem [4].
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Note however that k-expansivity does not generally imply pre-injectivity or
surjectivity as shown by the following example.

Proposition 4.5. For any k ≥ 1 there exists a one-dimensional CA which is
not surjective but k′-expansive for any k′ ≤ k.

Proof. Consider any pre-expansive one-dimensional CA F of radius 1 over state
set Q = {0, 1} (for instance a bi-permutative CA), and define a CA Ψ over state
set Qk+1 as follows. It has k+1 “layers” and to any configuration c we associate
its projection πi(c) on the ith layer. Intuitively it behaves on the k first layers
as k independent copies of F , except that the (k+ 1)th layer induce a state flip
in the image in the following way: if it has a 1 at position z then, in the image,
layer i is flipped at position z + 3i. Moreover, (k+ 1)th layer is uniformly reset
to 0 after one step. Formally, Ψ is defined by:

Ψ(c)z =
(
F (π1(c))z +πk+1(c)z−3 mod 2, . . . , F (πk(c))z +πk+1(c)z−3k mod 2, 0

)
First it is clear from the definition that it is not surjective since the image

of any configuration is always 0 on layer k+ 1. Note also that, when reduced to
state set {0, 1}k × {0}, Ψ is isomorphic to F k which is pre-expansive. Therefore,
to show that Ψ is k′-expansive for any 1 ≤ k′ ≤ k, it is sufficient to show that
for any pair of configurations c and d with c 6=k′ d we have Ψ(c) 6= Ψ(d).

So consider such a pair (c, d). Ψ was defined such that, if c and d differ
on the (k + 1)th layer at position z, then, on the ith layer, F (c) and F (d) will
differ at position z + 3i as soon as c and d are the same on the ith layer at
positions z + 3i− 1, z + 3i and z + 3i+ 1. Therefore, supposing that c and d
indeed differ on the (k + 1)th layer at position z, it implies that F (c) and F (d)
differ because c and d having only k′ ≤ k differences, they can not differ at z
and at one of the positions z + 3i− 1, z + 3i or z + 3i+ 1 for each 1 ≤ i ≤ k.

Finally, suppose that c and d are equal on the (k + 1)th layer. Then
they must differ on some layer i with 1 ≤ i ≤ k. Therefore, we must have
F (πi(c)) 6= F (πi(d)). We deduce that Ψ(c) 6= Ψ(d) because their respective ith
layers are F (πi(c)) and F (πi(d)) up to some modification by the (k+ 1)th layer
which are identical in c and d.

The next lemma talks about linear CA. When F is supposed to be linear
(for law ⊕ ), then Tm is also linear, i.e. Tm(c⊕ d) = Tm(c)⊕Tm(d) where ⊕
denotes the component-wise application of ⊕ either on QG or on

(
QBm

)N
.

Proposition 4.6. Let F be a linear CA for law ⊕ and neutral element 0. Let
I be the set

I = {k ∈ N : F is not k-expansive}

• if k1, k2 ∈ I then k1 + k2 ∈ I,
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• F is pre-expansive if and only if for some m > 0 there is no finite sequence
(g1, . . . , gn) of different cells in G and states (q1, . . . , qn) in Q such that

Tm(σg1(cq1))⊕ · · · ⊕Tm(σgn(cqn)) = 0.

Proof. First, by linearity of the trace functions Tm, we have that Tm(c) = Tm(c′)
if and only if Tm

(
c′⊕ (−c)

)
= Tm(0) where −c is the configuration such that

c⊕ (−c) = 0. Moreover we also have c 6=k c
′ if and only if c′⊕ (−c) 6=k 0. Hence

F is pre-expansive (resp. k-expansive) if and only if there is m such that no

c 6= 0 with c
∞
= 0 (resp. c 6=k 0) can verify Tm(c) = Tm(0).

From this we deduce the second item of the proposition.
For the first item, consider k1 and k2 in I. From what we said above, for any

m1 there is c1 such that c1 6=k1 0 and Tm1
(c1) = Tm1

(0). Now choose m2 large
enough so that any non-zero state of c1 appears at distance at most m2 from the
center. Let us remark that the differences between c1 and 0 are outside Bm1 ,
otherwise Tm1(c1) 6= Tm1(0), thus m2 > m1. Since k2 ∈ I we deduce from what
we said earlier that there is c2 such that c2 6=k2 0 and Tm2

(c2) = Tm2
(0). By our

choice ofm2, this implies that Tm1
(c1⊕ c2) = Tm1

(0). Moreover c1⊕ c2 6=k1+k2 0.
Since m1 was arbitrary, we deduce that F is not (k1 + k2)-expansive.

5. 1-dimensional Cellular Automata

The 1-dimensional setting is particular in our study since it allows examples
of all properties considered in this paper, and gives additional structure to
analyze them.

The first goal of this section is to show that the notion of k-expansivity,
pre-expansivity and positive expansivity all differ and interact differently with
properties of bijectivity and surjectivity. More precisely we will show the fol-
lowing existential result.

Theorem 5.1. Let B and S denote the set of bijective and surjective CA re-
spectively. Let X1, Xpre and Xpos denote the set of 1-expansive, pre-expansive
and positively expansive CA respectively. It holds:

• Xpre ∩ (B \ Xpos) 6= ∅,

• Xpre \ (B ∪ Xpos) 6= ∅,

• X1 ∩ (B \ Xpre) 6= ∅,

• X1 \ (Xpre ∪ B) 6= ∅,

• X1 \ S 6= ∅.

We therefore have the following situation:

∩ B S \ B Sc

X1 \ Xpre ∃ ∃ ∃
Xpre \ Xpos ∃ ∃ ∅

Xpos ∅ ∃ ∅
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For this purpose it will be sufficient to focus on linear cellular automata. At
the end of the section, we consider a well-known class of non-linear bijective CA
where pre-expansivity is a relevant property. But before the study of examples,
we give some additional results which hold in dimension 1.

5.1. Left/right propagation and directional dynamics

The pre-expansivity constant can be fixed canonically as we will prove in
Lemma 5.4. The next lemma is direct and it expresses the locality of CAs.

Lemma 5.2. Let F be a CA in Z with neighborhood [−l, r] the next assertions
hold.

• If c]−∞,n] = d]−∞,n] and there exists an iteration t such that F t(c)]−∞,n] 6=
F t(d)]−∞,n], then there is an iteration t′ ≤ t such that F t

′
(c)[n−r,n] 6=

F t
′
(d)[n−r,n].

• If c[n,∞[ = d[n,∞[ and there exists an iteration t such that F t(c)[n,∞[ 6=
F t(d)[n,∞[, then there is an iteration t′ ≤ t such that F t

′
(c)[n,n+l] 6=

F t
′
(d)[n,n+l].

Proof. We will only prove the first assertion, the second one is completely anal-
ogous. Let t′ be the first time such that F t

′
(c)]−∞,n] 6= F t

′
(d)]−∞,n], and let

i ∈] −∞, n] be a position such that F t
′
(c)i 6= F t

′
(d)i. Since F t

′−1(c)]−∞,n] =

F t
′−1(d)]−∞,n], and only the cells in ]n − r, n] depend on cells in ]n,∞[, i ≥

n− r.

This lemma shows a particularity of dimension 1: expansivity properties can
be understood through left/right propagation of information. Let us precise this
notion.

Definition 5.3. Given two configurations c 6= d, and a CA F , we define the
left and right propagation sequences as follows.

ldt (c) = inf{z ∈ Z :
(
F t(c)

)
(z) 6=

(
F t(d)

)
(z)}

rdt (c) = sup{z ∈ Z :
(
F t(c)

)
(z) 6=

(
F t(d)

)
(z)}

Note that if c
∞
= d then ldt (c) and rdt (c) are always finite integers.

Lemma 5.4. Given a CA F of neighborhood [−l, r] and k ∈ N, the next asser-
tions hold.

1. If F is k-expansive, then ∀c 6=k d, (l
d
t (c))t∈N is not lower bounded and

(rdt (c))t∈N is not upper bounded.

2. If ∀k′ ≤ k, ∀c 6=k′ d, (l
d
t (c))t∈N is not lower bounded and (rdt (c))t∈N is

not upper bounded, then F is k-expansive with pre-expansivity constant
2−max{l,r}.
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Proof. 1. Let us suppose that F is k-expansive with pre-expansivity constant
m. Let c 6=k d be two configurations, and let us assume that ldt (c) > n
for some n ∈ Z; this means that F t(c)]−∞,n] = F t(d)]−∞,n] for every
t ∈ N. Thus Tm(σn−m(c)) = Tm(σn−m(d)), which is a contradiction. The
analogous happens if (rdt (c))t∈N is upper bounded.

2. We need to prove that F is k-expansive with pre-expansivity constant
2−m = 2−max{l,r}. Let c 6=k d be two configurations, and let us define the
next two additional configurations.

cl(i) =

{
c(i) if i < 0
d(i) if i ≥ 0

cr(i) =

{
d(i) if i < 0
c(i) if i ≥ 0

If c[−m,m] 6= d[−m,m], Tm(c) 6= Tm(d) and we are done, so let us suppose

that c[−m,m] = d[−m,m]. Let k′ and k′′ be such that cr 6=k′ d, cl 6=k′′ d and
k′ + k′′ = k.
If k′ 6= 0, (ldt (cr))t∈N is not lower bounded, thus by Lemma 5.2 and the
fact that cr is equal to d below position m, there is a minimal iteration tr
such that F tr (cr)[m−r,m] 6= F tr (d)[m−r,m]. Analogously, if k′′ 6= 0 there is

a minimal iteration tl such that F tl(cl)[−m,−m+l] 6= F tl(d)[−m,−m+l].

Let us take t = min{tr, tl}, by the choice of m we have that F t(c)[0,m] =

F t(cr)[0,m] and F t(c)[−m,0] = F t(cl)[−m,0], and at least one of them is

different from F t(d) between [−m,m], thus Tm(c) 6= Tm(d).

The last lemma establishes that the pre-expansivity constant is uniform in
dimension one (it does not depends on k), thus we can conclude the next corol-
lary.

Corollary 5.5. If F is k-expansive for every k ∈ N then it is pre-expansive.

Lemma 5.6. F is pre-expansive if and only if for all c
∞
= d, (ldt (c))t∈N is not

lower bounded and (rdt (c))t∈N is not upper bounded.

Proof. (⇒) Let c 6=k d be two asymptotic configurations. Since F is pre-expansive,
it is also k-expansive, thus by Lemma 5.4, (ldt (c))t∈N is not lower bounded
and (rdt (c))t∈N is not upper bounded.

(⇐) If for every k ∈ N and every pair c 6=k d we have that (ldt (c))t∈N is not lower
bounded and (rdt (c))t∈N is not upper bounded, then by Lemma 5.4, F is
k-expansive, and by Corollary 5.5, we conclude that F is pre-expansive.

Left and right propagation determines also expansivity. The next lemma
can be proven by using the techniques from the last lemmas.
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Lemma 5.7. F is positively expansive if and only if for any pair of different
configurations c, d, if c]−∞,0] = d]−∞,0] then (ldt (c))t∈N is not lower bounded,

and if c[0,∞[ = d[0,∞[ then (rdt (c))t∈N is not upper bounded.

The last two lemmas show a similarity in information propagation between
pre-expansivity and positive expansivity: the differences between two configu-
rations are spread both to the left and to the right and thus there is a sensitivity
to initial conditions in all directions. We can formalize this following the direc-
tional dynamics setting of [23] (we could also use the more general viewpoint
of [30] but we prefer to keep a lighter setting for clarity of exposition). Let
α ∈ R. A CA F is said to be pre-expansive in direction α if there is some δ > 0
such that

∀c, d ∈ QZ, c 6= d and c
∞
= d⇒ ∃t ∈ N,∆(σdαte ◦ F t(c), σdαte ◦ F t(d)) > δ.

In particular, pre-expansivity in direction 0 is the same as pre-expansivity. Sim-
ilarly F is said to be sensitive to initial conditions in direction α if there is some
δ > 0 such that

∀c ∈ QZ,∀ε > 0,∃d ∈ QZ∃t ∈ N : ∆(c, d) < ε∧∆(σdαte◦F t(c), σdαte◦F t(d)) > δ.

Remark 5.8. Lemma 5.6 generalizes to the directional dynamics setting:
F is pre-expansive in direction β if and only if for all c

∞
= d, (ldt (c)− dβte)t∈N

is not lower bounded and (rdt (c)− dβte)t∈N is not upper bounded.
In particular, if the CA neighborhood is N ⊆ {l, . . . , r}, then its set of pre-
expansivity directions is included in ]− r,−l[.

Proposition 5.9. Let F be any CA which is pre-expansive in some direction
α. Then the following holds:

1. F is sensitive to initial conditions in any direction;
2. if F is also pre-expansive in direction α′ > α then it is pre-expansive in

any direction β with α ≤ β ≤ α′.

Proof. We first deduce that if α ≤ β ≤ α′ and α′ is a direction of pre-expansivity,
then for any c 6= d with c

∞
= d:

ldt (c)− dβte ≤ ldt (c)− dαte

is not lower bounded and

rdt (c)− dβte ≥ rdt (c)− dα′te

is not upper bounded so β is also a direction of pre-expansivity.
Finally, consider a direction β ≥ α (the case β ≤ α is symmetric), some

configuration c and some ε > 0. Take any d 6= c with c
∞
= d and ld0(c) large

enough so that ∆(c, d) ≤ ε. Since (ldt (c)− dαte)t∈N is not lower bounded and
β ≥ α then there is some t with ldt (c)− dβte ≤ 0. Let t0 be the smallest such
t. Since |ldt+1(c)− ldt (c)| is bounded by the radius of F we deduce that there
exists a constant M , depending only on β and the radius of F , such that
M ≤ ldt0(c)− dβte ≤ 0. Said differently ∆(σdβt0e ◦ F t0(c), σdβt0e ◦ F t0(d)) ≥ 2M .
We have thus shown that F is sensitive in direction β.
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5.2. Hierarchy of expansive-like properties

The following proposition shows that the simplest form of linearity is not suf-
ficient to achieve the separation between positive expansivity and pre-expansivity.
Let us first introduce some notation.

Proposition 5.10. Let Zn be the group of integers modulo n with addition, and
let F be a one-dimensional linear CA over Zn. Then F is 1-expansive if and
only if it is positively expansive.

Proof. First by Proposition 4.4 if F is positively expansive it is in particular
1-expansive.

For the other direction, it is sufficient to consider the case n = pk with p a
prime number by Lemma 3.2 because if some F1 × F2 is 1-expansive then both
F1 and F2 must be 1-expansive.

By commutation with shifts we have l0t (σn(ca)) = −n+ l0t (c
a) and the anal-

ogous for rt. Moreover ca = a · c1 because we are on a cyclic group.
Let us define lUt (ca) = min{i ∈ Z | gcd(F t(ca)i, p) = 1}. The next properties

hold.

1. If gcd(a, p) 6= 1, then lUt (ca) =∞ (respectively rUt (ca) = −∞). In fact, in
this case the entire evolution of F over ca is composed by multiples of a,
which are multiples of p too.

2. If gcd(a, p) = 1, then lUt (ca) = lUt (c1) (respectively rUt (ca) = rUt (c1)). In
fact, in this case F t(ca)i = aF t(c1)i is coprime with p if and only if F t(c1)i
is.

3. l0t (c
a) ≤ lUt (c1) (respectively r0t (c

a) ≥ rUt (c1)). In fact, if F t(c1)i is coprime
with p, then F t(ca)i = aF t(c1)i is not null.

4. l0t (c
pk−1

) = lUt (c1) (respectively r0t (c
pk−1

) = rUt (c1)). In fact, F t(cp
k−1

)i =
pk−1F t(c1)i = 0⇔ gcd(F t(c1)i, p) 6= 1.

From the last assertion and Lemma 5.4 (first item) we have that lUt (c1) is not
lower bounded and rUt (c1) is not upper bounded.

Now let us take a configuration v ∈ (Zpk)Z, such that vi = 0 for every
i < 0 and v0 6= 0. Let us define j = max{i ∈ {0, ..., k} | ∀x ∈ Z, pi|v(x)},
and let us consider u = v/pj . In this way, there is y ≥ 0 with u(y) 6= 0 and
gcd(p, u(y)) = 1. Let y be the smallest integer with this property.

F t(u)lUt (c1)+y =

lUt (c1)+y+rt∑
x=0

F t(cux)lUt (c1)+y−x

But u(x) is a multiple of p when x < y, thus F t(cux)i = 0 mod p for any i
and any x < y. For x > y, F t(cux)lUt (c1)+y−x is also a multiple of p because the

smallest index for which F t(cux) is coprime with p is lUt (cux) which is greater
than or equal to lUt (c1). In this way we conclude that

F t(u)lUt (c1)+y = F t(cuy )lUt (c1) mod p
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is coprime with p and is non null. Therefore F t(v)lUt (c1)+y is non null as well.

This implies that l0t (v) is not lower bounded. Symmetrically, r0t (w) is not upper
bounded when w is any configuration equal to zero on positive coordinates.
Lemma 5.7 concludes that F is positively expansive.

To establish a separation between positive expansivity and pre-expansivity,
we will focus on linear CA obtained by what is often called “second order
method” in the literature [31]. The idea is to turn any CA into a reversible
one by memorizing one step of history and combining, in a reversible way,
the memorized past step into the produced future step. The interest of this
construction for our purpose is that positive expansivity is excluded from the
beginning because no non-trivial CA can be positively expansive and reversible
at the same time [20].

Let Q = {0, . . . , n − 1} be equipped with some group law ⊕ and consider
some CA F over state set Q. The second-order CA associated to F and ⊕ ,
denoted SO

(
F, ⊕

)
is the CA over state set Q×Q, which is conjugated through

the natural bijection QZ ×QZ → (Q×Q)Z to the map:

(c, d) 7→
(
d, F (d)⊕ c

)
The following proposition shows that second order construction is useful to

separate positive expansivity from 1-expansivity. Some of the results in the
next proposition can be deduced from more general results in [19, 32, 33], but
we develop a new specific proof here.

Proposition 5.11. Let ⊕ be a group law over Q with neutral element 0 and
F be a CA over Q which is linear for ⊕ . It holds:

1. SO
(
F, ⊕

)
is bijective and linear for the law ⊕ × ⊕ ;

2. if F is LR-permutive then SO
(
F, ⊕

)
is Z-expansive and 1-expansive;

3. if F is LR-permutive then for any m > 0 the subshift of traces Tm
(
(Q×Q)Z

)
is a vertex SFT.

Proof. 1. It is sufficient to check that the CA over the state set Q×Q is
conjugated to the following map:

(c, d) 7→
(
ι(F (c))⊕ d, c

)
the inverse of SO

(
F, ⊕

)
, where ι denotes the inverse function for the

group law ⊕ . Moreover SO
(
F, ⊕

)
is linear for ⊕ × ⊕ because it is

component-wise linear for ⊕ .

2. Let us suppose that F is LR-permutive with neighborhood {−l, ..., r} and
denote Ψ = SO

(
F, ⊕

)
. To prove Z-expansivity of Ψ it is sufficient to no-

tice that Ψ propagates to left and right when the second Q-component is
non-null and Ψ−1 propagates to left and right when the first Q-component
is non-null. In fact, let us consider a configuration c ∈ (Q×Q)Z equal to
(0, 0) on negative coordinates but such that c(0) 6= (0, 0). If the second Q-
component of c(0) is non-null then, and since F (0, ..., 0) = 0, the leftmost
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non-null cell of Ψ(c) is at position −r and it is its second Q-component
which is non-null, i. e., if the leftmost difference from (0,0) is in the second
Q-component, this will be always like this and the difference will prop-
agate to the left. The same holds symmetrically for propagation to the
right. In the same way, and given the form of Ψ−1, differences in the first
Q-component will propagate to the left and right through Ψ−1, thus by
lemma 5.7, Ψ is Z-expansive.
Now let us take c(a,b) (recall it is the configuration equal to (a, b) at
0 and (0, 0) everywhere else). By the previous arguments, if b 6= 0,

(l
(0,0)
t (c(a,b)))t∈N is not lower bounded and (r

(0,0)
t (c(a,b)))t∈N is not up-

per bounded. But if b = 0 and a 6= 0, then (Ψ(c))(0) = (0, a) and null

everywhere else, then again (l
(0,0)
t (c(a,b)))t∈N is not lower bounded and

(r
(0,0)
t (c(a,b)))t∈N is not upper bounded. Therefore, Ψ (and Ψ−1) is 1-

expansive.

3. The proof of the third item will be performed in two steps. To simplify
notations, for any pair of words u, v ∈ Q∗ of the same length, we will
denote by

(
u
v

)
the word over alphabet Q×Q whose projection on the first

(resp. second) component is u (resp. v).

Assertion 1L: For every word u ∈ Qr there exists a configuration c such
that Ψt(c)|[0,r−1] =

(
u
0r

)
and Ψk(c)i = (0, 0) for every 0 ≤ k ≤ t and

i < (t− k)r.

Proof of Assertion 1L. By induction on t. If t = 0 it is obvious, we
just take c equal to

(
u
0r

)
at [0, r− 1] and (0, 0) everywhere else. Now,

since F is LR-permutive, given a word w ∈ Ql+r, let us define the
permutation τw(a) = f(wa) for every a ∈ Q. Given a word u ∈ Qr,
we inductively define another word v ∈ Qr as follows: v0 = τ−1

0l+r
(u0),

vi+1 = τ−1
0l+r−iv[0,i]

(ui+1). In this way, f(0l+rv) = u. By induction

hypothesis, there exists a configuration c such that Ψt(c)|[0,r−1] =(
v
0r

)
and Ψk(c)i = (0, 0) for every 0 ≤ k ≤ t and i < (t − k)r. We

take d = σ−r(c), then Ψt(d)|[r,2r−1] =
(
v
0r

)
, and (0, 0) to the left of

r; and Ψt+1(d)|[0,r−1] =
(
u
0r

)
, and (0, 0) to the left of 0. Moreover,

Ψk(d)i = (0, 0) for every 0 ≤ k ≤ t+ 1 and i < (t+ 1− k)r.

Assertion 1R: For every word u ∈ Ql there exists a configuration c such
that Ψt(c)|[−l+1,0] =

(
u
0l

)
and Ψk(c)i = (0, 0) for every 0 ≤ k ≤ t and

i > (k − t)l.
The proof of Assertion 1R is analogous to the proof of Assertion 1L.

Assertion 2: A sequence
(
wt
)n
t=0

, with wt ∈ (Q × Q)2m+1, is a finite

subsequence of a trace in Tm
(
(Q×Q)Z

)
if and only if for any t, there

are extensions wR ∈ (Q×Q)r and wL ∈ (Q×Q)l verifying

ψ(wL · wt · wR) = wt+1

where ψ denotes the action of Ψ over finite words.
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Proof of Assertion 2. In one direction, it is clear, so let
(
wt
)n
t=0

be
a sequence such that for any t, there are extensions wR ∈ (Q × Q)r

and wL ∈ (Q×Q)l verifying ψ(wL ·wt ·wR) = wt+1, and let us prove
that it is a subsequence of a trace of Ψ. We perform the proof by
induction on n. If n = 0 there is nothing to prove, of course any
sequence of length 1 can be part of a trace. Now let c be a config-
uration such that Ψk(c)|[−m,m] = wk, for every k ∈ {0, ..., n − 1}.
By locality, only the values of c between −m − nl and m + nr are
relevant to this hypothesis, and we take c(i) = (0, 0) outside these
limits. Let wR and wL be such that ψ(wL · wn−1 · wR) = wn. Let
us remark that the first Q-component of wL and wR can be chosen
arbitrarily, given the form of Ψ. We will suppose that π1(wL) =
π1(Ψn−1(c)[−m−l,−m−1]) and π1(wR) = π1(Ψn−1(c)[m+1,m+r]), thus

we can take
(
uL
0l

)
= wL − Ψn−1(c)|[−m−l,−m−1] and

(
uR
0r

)
= wR −

Ψn−1(c)|[m+1,m+r]. We take from Assertion 1L a configuration cR

that produces the word
(
uR
0r

)
at time n− 1 at position [m+ 1,m+ r]

and (0, 0) to the left of the light cone that starts at m+nr with slope
−1/r. From Assertion 1R we take a configuration cL that produces
the word

(
uL
0r

)
at time n− 1 at position [−m− l,−m− 1] and (0, 0)

to the right of the light cone that starts at −m − nl with slope 1/l.
By linearity, Ψn−1(cL⊕ cR⊕ c)|[−m−l,m+r] = wLwn−1wR, and then

Ψn(cL⊕ cR⊕ c)|[−m,m] = wn, moreover Ψk(cL⊕ cR⊕ c)|[−m,m] =
wk, for every 0 ≤ k < n, which completes the proof.

We will now give an example of pre-expansive CA which is not positively
expansive.

Example 5.12 (Ψ). Let Q = {0, 1, 2}, + be the addition modulo 3, and F3

be the CA defined over QZ by F3 = σ+σ−1. We define Ψ as the second order
construction applied to F3.

Ψ = SO
(
F3,+

)
Figure 1 shows a space-time diagram of Ψ.

To establish the pre-expansivity of Ψ we will study its dependency structure,
i.e. how the value of the cell at position z and time t depends on value of cells
at other positions and earlier times. To express these space-time relations we
denote by Ψt

z the map σz ◦ Ψt and by ⊕ the component-wise addition modulo
3 over {0, 1, 2} × {0, 1, 2} naturally extended to configurations of (Q×Q)Z and
then naturally extended to functions on such configurations.

Following section 3, and lemma 3.5, the matrix that represents Ψ is:(
0 1
1 x−1 + x

)
.

Its characteristic polynomial is p(λ) = λ2 − λ(x−1 + x)− 1, which gives the
relation Ψ2 = Ψ ◦ σ−1 ⊕ id ⊕ Ψ ◦ σ. Lemma 3.5 proves that this imply the
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Figure 1: Space-time diagram of Ψ starting from a configuration with a single non-zero cell.

t
im

e

0, 2

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 1

1, 0

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 1

1, 0

0, 2

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0 0, 2

2, 0 0, 2

t
im

e

0, 2

0, 2

2, 0

0, 2

2, 0

0, 1

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 1

0, 2

2, 0

0, 1

1, 0

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 1

1, 0

0, 2

2, 0

0, 2

2, 0

0, 2

2, 0

0, 1

0, 2

2, 0 0, 2

2, 0

0, 1

0, 2

2, 0 0, 2

Figure 2: In the first row some space-time diagrams of Ψ are shown (state (0, 0) is represented
by empty space). The third diagram shows the morphisms representing the dependence of
Ψt(c(a,b))i on (a, b), for each space-time coordinate (i, t): in particular, white means no de-
pendence and red means bijective dependence.
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existence of a multi-scale additive identity, next lemma gives the precise shape
of this identity in the special case of Ψ.

Lemma 5.13. Let c be a configuration in (Q ×Q)Z.Then, for any k ≥ 0, any
t ≥ 0 and any z ∈ Z we have:

Ψ2·3k+t
z (c) = Ψt

z ⊕Ψ3k+t
z−3k ⊕Ψ3k+t

z+3k
(c).

Proof. First it is straightforward to check that

Ψ2
0(c) = Ψ1

−1 ⊕ Id⊕Ψ1
1(c).

Then, by property of the Frobenius endomorphism, we have (a+ b)3
k

= a3
k

+ b3
k

when doing the arithmetics modulo 3. This identity naturally extends to ⊕ and
therefore we have:

Ψ2·3k
0 (c) = Ψ3k

−3k ⊕ Id⊕Ψ3k

3k(c).

Finally, by linearity of both σ and Ψ with respect to ⊕ we can compose both
sides of the above equality by Ψt

z and the lemma follows.

Using the above lemma, and arithmetics modulo 3, we can show that Ψ has
a simple dependency structure at some space-time locations.

Lemma 5.14. Let us consider a configuration c = c(a,b) for some pair (a, b) ∈
Q × Q. For any integers k ≥ 0 and M ≥ 1, let dM,k = ΨM ·3k+1

(c). Then we
have:

• dM,k(−M · 3k+1 + 2 · 3k) = dM,k(M · 3k+1 − 2 · 3k) = φ(a, b)

• dM,k(i) = (0, 0) for (M − 1) · 3k+1 ≤ |i| < (M − 1) · 3k+1 + 3k

where φ is an automorphism of Q×Q which does not depend on k nor on M .

Proof. Let’s first show the two items for M = 1 and let dk = d1,k. Denote
by ctz the state

(
Ψt(c)

)
(z). First, by a simple recurrence we can show that

cn−n = cnn = π(a, b) where π is the projection π(a, b) = (0, b). Then, applying

Lemma 5.13 on Ψ2·3k+3k

−3k , we obtain:

dk(−3k) = c2·3
k

−2·3k + c3
k

−3k + c2·3
k

0 .

Applying Lemma 5.13 to Ψ2·3k+0
0 we then have:

dk(−3k) = c2·3
k

−2·3k + 2 · c3
k

−3k + c3
k

3k + c00

= (0, b) + 2(0, b) + (0, b) + (a, b)

= (a, 2b)

where φ(a, b) = (a, 2b) is an automorphism. The same equality holds for dk(3k)
by symmetry and the first item of the lemma is shown.
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For the second item, first note that ctz = (0, 0) whenever z < −t or z > t be-
cause Ψ has radius 1. Consider any i with −3k < i < 3k. Applying Lemma 5.13

on Ψ2·3k+3k

i , we obtain:

dk(i) = c2·3
k

i−3k + c3
k

i + c2·3
k

i+3k .

Applying Lemma 5.13 to Ψ2·3k+0
i−3k and Ψ2·3k+0

i+3k
we further get:

dk(i) = c3
k

i−2·3k + c0i−3k + 3 · c3
k

i + c0i+3k + c3
k

i+2·3k .

From what we said before and doing the arithmetics modulo 3 we deduce
dk(i) = (0, 0) and the lemma follows.

Now, proceeding by induction on M , suppose we have:

• dM,k(−M · 3k+1 + 2 · 3k) = dM,k(M · 3k+1 − 2 · 3k) = φ(a, b)

• dM,k(i) = (0, 0) for (M − 1) · 3k+1 ≤ |i| < M · 3k+1 − 2 · 3k

Writing (M + 1) · 3k+1 = 2 · 3k+1 + t with t = (M − 1) · 3k+1 and applying

Lemma 5.13 to Ψ2·3k+1+t
z with z = (M + 1) · 3k+1 − 2 · 3k we get:

dM+1,k((M + 1)3k+1 − 2 · 3k) = dM,k(M · 3k+1 − 2 · 3k) + ct(M+1)3k+1−2·3k

+dM,k((M + 2)3k+1 − 2 · 3k)

= dM,k(M · 3k+1 − 2 · 3k)

= φ(a, b) = (a, 2b)

Applying again Lemma 5.13 but with z = (M + 1) · 3k+1 − 2 · 3k − j where
−3k ≤ j < 0 we deduce dM+1,k(i) = (0, 0) forM · 3k+1 ≤ i < (M + 1) · 3k+1 − 2 · 3k.
By symmetry z 7→ −z we obtain the corresponding equalities and we finally
have:

• dM+1,k(−(M +1) ·3k+1 +2 ·3k) = dM+1,k((M +1) ·3k+1−2 ·3k) = φ(a, b)

• dM+1,k(i) = (0, 0) for M · 3k+1 ≤ |i| < (M + 1) · 3k+1 − 2 · 3k

which completes the induction step. The lemma follows.

The last lemma assures that finite configurations will always produce at least
one non 0 cell at arbitrary large positions in the line.

Proposition 5.15. Ψ is pre-expansive in direction α if and only if α ∈]− 1, 1[.

Proof. Let c be any configuration with c
∞
= (0, 0). Denote l = l

(0,0)
0 (c) and

r = r
(0,0)
0 (c) and consider any k such that 3k > max(|l|, |r|) and M such that
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0, 1
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1, 0

0, 1
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0, 1

0, 1

1, 0

0, 1

1, 0

0, 1

1, 0

0, 1

0, 1

1, 0 0, 1
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im

e
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0, 1

1, 0

0, 1

1, 0

0, 1

0, 1

1, 0

0, 1

1, 0

0, 1

1, 0

0, 1

1, 0

0, 1

0, 1

1, 0

0, 1

1, 0

0, 1

1, 0

0, 1

1, 0
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0, 1

0, 1

1, 0

0, 1

1, 0

0, 1

1, 0

0, 1

0, 1

1, 0 0, 1
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e

π

π

e

π

e

id

π

e

id

e

π

e

id

e

id

id

e

id

e

id

e

π

e

id

e

id

π

e

id

e

π

e

id

π

e π

Figure 3: Some space-time diagrams of Υ (state (0, 0) is not represented). The right bottom
figure represents the morphism transforming the state at the central cell into the state at each
space-time coordinate.

|α| < 1− 2
3M . By a finite number of applications of Lemma 5.14, and by linear-

ity and translation invariance of Ψ, we have:(
ΨM ·3k+1

(c)
)
(r −M · 3k+1 + 2 · 3k) = φ

(
c(r)

)(
ΨM ·3k+1

(c)
)
(l +M · 3k+1 − 2 · 3k) = φ

(
c(l)
)
.

Since φ is a permutation of Q sending (0, 0) to itself and since c(r) and c(l)

are both different from (0, 0) we deduce that l
(0,0)

M ·3k+1(c) < r −M · 3k+1 + 2 · 3k

and r
(0,0)

3k+1(c) > l +M · 3k+1 − 2 · 3k for any k large enough. This shows that(
lt(c)− dαte

)
t∈N is not lower-bounded and

(
rt(c)− dαte

)
t∈N is not upper-bounded

and concludes the proof by a directional version of Lemma 5.6.

We now give an example of CA that is 1-expansive but not pre-expansive.

Example 5.16 (Υ). Let Q = {0, 1}, + be the addition modulo 2, and F2 be
the CA defined over QZ by F2 = σ+σ−1. We define Υ as the second order
construction applied to F2:

Υ = SO
(
F2,+

)
.

Υ has the same matrix as Ψ, the same characteristic polynomial, and a
similar multi-scale identity, but arithmetics modulo 2 gives a different shape to
the time space diagram as we can see in figure 3.
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Proposition 5.17. Υ is not k-expansive when k ≥ 2 and in particular Υ is not
pre-expansive.

Proof. Let k ≥ 2 be fixed and for each z ∈ Z define the configuration cz by:

cz(z′) =



(0, 0) if z′ < z,

(0, 1) if z′ = z,

(1, 1) if z < z′ ≤ z + k − 2,

(1, 0) if z′ = z + k − 1,

(0, 0) if z′ ≥ z + k.

We have cz 6=k (0, 0) and it is straightforward to check that Υ(cz) = cz−1. We
conclude that Υ is not k-expansive by Lemma 5.6.

With these two examples we have proven two of the items of Theorem 1, this
together with the preliminary results of section 3 and 4 allow us to conclude.

Proof of Theorem 5.1. Let F be any irreversible and positively expansive CA.
It holds:

• Ψ is pre-expansive (by Proposition 5.15) and it is reversible and not pos-
itively expansive (by Proposition 5.11 and [20]);

• therefore Ψ × F is pre-expansive and irreversible and not positively ex-
pansive;

• Υ is 1-expansive and reversible (by Proposition 5.11) but it is not pre-
expansive (by Proposition 5.17);

• therefore Υ× F is 1-expansive and irreversible and not pre-expansive;

• finally Proposition 4.5 gives an example of 1-expansive CA which is not
surjective.

5.3. Non linear examples: multiplication CA

Now we exhibit a non linear family of reversible CA that will provide us with
new examples of pre-expansive CA. This family has already been considered with
different points of view in the literature [12, 34] and underlined for its links with
some Furstenberg problems in ergodic theory [35].

Given two natural numbers k and k′, let us consider the cellular automaton
Fk,k′ on the state set Zm, with m = kk′, defined as follows

Fk,k′(c)i = kci%m+ bkci+1/mc

where i%j denotes i mod j with operation precedence as follows: a+ b%c
means a+ (b mod c) and ab%c means (ab) mod c. Note that Fk,k′(c)i is always
in Zm because kci%m ≤ k(k′ − 1) and bkci+1/mc < k. Fk,k′ can be seen as a
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(a) (b)

Figure 4: . (a) Space-time diagram of F3,2 starting from a configuration with a finite number
of non-zero cells (time goes from bottom to top, states are represented by tones of grey
from white for 0 to black for 5). (b) Space-time diagrams of F3,2 starting from two random
asymptotic configurations (the coincident cells are colored with light grey tones, the effect of
the perturbation is colored with dark grey tones)

multiplication by k in base kk′, and the fact that there is no carry propagation
ensures that it is a CA. Figure 4 shows the evolution of a finite configuration in
a background of 0 under F3,2.

Proposition 5.18. Fk,k′ is bijective and F−1k,k′ = Fk′,k ◦ σ−1.

Proof. We will show that Fk,k′ ◦ Fk′,k = σ.

Fk,k′ ◦ Fk′,k(c)i = (kFk′,k(c)i)%m+

⌊
kFk′,k(c)i+1

m

⌋
= 0 + ci+1 − ci+1%k +

⌊
(mci+1)%(mk) + kbci+2/kc

m

⌋
= ci+1 − ci+1%k +

⌊
m(ci+1 − kbci+1/kc) + kbci+2/kc

m

⌋
= ci+1 − ci+1%k + ci+1 − k

⌊ci+1

k

⌋
+

⌊
ci+2 − ci+2%k

m

⌋
= ci+1 + 0 + 0

from here we obtain that Fk,k′ is surjective and Fk′,k is injective, but exchanging
the roles of k and k′ we obtain that both are bijective and we are done.

Next lemma establishes some elementary bounds on the way perturbations
propagates through Z.

Lemma 5.19. Given a sequence a
∞
= 0 in {−m + 1, . . . , 0, . . . ,m − 1}Z, we

define the rational number:

g(a) =
∑
i∈Z

aim
−i,
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then, given two configurations c
∞
= d ∈ ZZ

m with c 6= d, the next properties hold.

1. If ’−’ represents the substraction in Z, then |g(Fk,k′(c) − Fk,k′(d))| =
k|g(c− d)|.

2. If i = ld0(c), and j = rd0(c), then m−j ≤ |g(c− d)| < m−i+1, moreover, −j
is the biggest integer such that |g(c− d)|/m−j ∈ Z.

3. ldt (c) < rd0(c) + 1− t log(k)
log(m) .

4. ld0(c)− 1− t log(k)
log(m) < rdt (c).

Proof. 1. The result is directly obtained from the definition of Fk,k′ and g.
We can see that g(Fk,k′(c)− Fk,k′(d)) is equal to:

=
∑
i∈Z

(kci%m+ bci+1/k
′c − kdi%m− bdi+1/k

′c)m−i

=
∑
i∈Z

(k(ci+1%m− di+1%m)m−(i+1) +
∑
i∈Z

(bci+1/k
′c − bdi+1/k

′c)m−i

=
∑
i∈Z

(kci+1%m+mbkci+1/mc − (kdi+1%m+mbkdi+1/mc))m−(i+1)

=
∑
i∈Z

k(ci+1 − di+1)m−(i+1)

= kg(c− d).

2. |g(c− d)| = |
∑j
n=i(cn − dn)m−n| from where the result is clear.

3. From item 1 and 2, we have that m−l
d
t (c)+1 > |g(F t(c)−F t(d))| = kt|g(c−

d)| ≥ ktm−rd0 (c), thus m−l
d
t (c)+1 > ktm−r

d
0 (c).

4. Analogously, we have that m−r
d
t (c) ≤ |g(F t(c) − F t(d))| = kt|g(c − d)| <

ktm−l
d
0(c)+1, thus m−r

d
t (c) < ktm−l

d
0(c)+1, from where we can conclude.

Theorem 5.20. Suppose that p1, . . . , pI are distinct prime numbers and o and
q are co-prime integers (possibly 1) which are also co-prime with p1 · · · pI . If

k = ope11 · · · p
eI
I and k′ = p

e′1
1 · · · p

e′I
I q, then Fk,k′ is α-pre-expansive if and only

if

• α ∈]− logm(k),−min{ ei
ei+e′i

: i ∈ {1, . . . , I}}[ and q = 1, or

• α ∈]− logm(k), 0[ and q 6= 1.

Proof. We need to prove that ldt (c)−dβte is not lower bounded and rdt (c)−dβte
is not upper bounded for every c

∞
= d if and only if β in the given interval. The

fact about ldt (c) can be obtained directly from Lemma 5.19: first ldt (c)− dβte <
rd0(c)+1−tlogm(k)−dβte is not lower bounded when β > −logm(k). Conversely,
if β ≤ −logm(k) then ldt (c)−dβte is lower bounded when considering d = 0 and
c the configuration with c0 = 1 and cz = 0 for z 6= 0, because in this case
g
(
F tk,k′(c)− F tk,k′(d)

)
= kt and tlogm(k)− 1 ≤ −ldt (c) ≤ tlogm(k) + 1.
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In order to prove the second fact, we will first study the way rdt (c) varies

in time. Let us fist suppose that q = qf11 · · · q
fJ
J . Let us suppose, without loss

of generality, that rd0(c) = 0, and let n = |g(c − d)|, which must be a natural

number. Finally, let us assume that n = o′′p
e′′1
1 · · · p

e′′I
I q

f ′′1
1 · · · q

f ′′J
J , where o′′ is

co-prime with p1 · · · pIq1 · · · qJ .
From Lemma 5.19(1,2), we know that st = −rdt (c) is the largest natural

number such that mst |ktn. But mst = ostp
st(e1+e

′
1)

1 · · · pst(eI+e
′
1)

I qstf11 · · · qstfJJ

and ktn = o′′otp
e′′1 +te1
1 · · · pe

′′
I+teI
I q

f ′′1
1 · · · q

f ′′J
J , thus mst |ktn if and only if

1. ost |o′′ot
2. ∀i ∈ {1, . . . , I}, st(ei + e′i) ≤ tei + e′′i
3. ∀j ∈ {1, . . . , J}, stfj ≤ f ′′j
The first condition is asymptotically true, because we know from Lemma 5.19(4)

that st < −ld0(c) + 1 + tlogm(k) which is smaller than t for bigger enough t. We
distinguish two cases.

(q = 1) In this case, condition 3 is empty, I ≥ 1, and

st = min

{⌊
tei + e′′i
ei + e′i

⌋
: i ∈ {1, . . . , I}

}
, for big enough t,

thus rdt (c) − dβte = −st − dβte is not upper bounded if and only if β <
−min{ ei

ei+e′i
: i ∈ {1, . . . , I}}.

(q > 1) In this case J ≥ 1, and the condition 3 is non empty, thus for some

j ∈ {1, . . . , J}, −st − dβte ≥ −
f ′′j
fj
− dβte which is not upper bounded if

and only if β < 0.

It is said that two integers n and m are multiplicatively dependent if there are
positive integers a and b such that na = mb, and multiplicatively independent
otherwise.

Corollary 5.21. Fk,k′ has directions of pre-expansivity if and only if k and k′

are multiplicatively independent.

Proof. First, multiplicative independence of k and k′ is equivalent to multi-
plicative independence of k and m = kk′. Let us first suppose there are positive
integers a and b such that ka = mb. It is clear that a > b in this case. Then

mb = obp
be1+be

′
1

1 · · · pbeI+be
′
I

I qb = oapae11 · · · paeII , and we deduce that q = o = 1
and b

a = ei
ei+e′i

= logm(k) for every i. Then from theorem 5.20 there is no α

such that Fk,k′ is α-expansive.
Suppose now that k and k′ are multiplicatively independent and let p1, . . . , pI

be the common primes in the decomposition of k and k′ so that we have k =

ope11 · · · p
eI
I and k′ = p

e′1
1 · · · p

e′I
I q where o and q are co-prime (but possibly 1)
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and co-prime with p1 · · · pI as in the hypothesis of Theorem 5.20. First, if q 6= 1
then Theorem 5.20 shows that Fk,k′ has a non-empty set of directions of pre-
expansivity.

Suppose now that q = 1, then it holds

log(k)

log(m)
=

log(o) +
∑
i ei log(pi)

log(o) +
∑
i(ei + e′i) log(pi)

≥
M log(o) +

∑
iM(ei + e′i) log(pi)

log(o) +
∑
i(ei + e′i) log(pi)

= M

where M = mini
ei

ei+e′i
because M ≤ 1 and for all i we have M

ei+e
′
i

ei
≤ 1. The

equality holds only if o = 1 and M = ei
ei+e′i

for all i, which is not the case since

k and m are multiplicatively independent. We deduce by Theorem 5.20 that
the set of directions of pre-expansivity of Fk,k′ is not empty.

Let us interpret this result in a more geometrical way. Theorem 5.20 es-
tablishes that perturbations will diffuse (at least sparsely) inside a cone whose
left slope is − logm(k) and right slope is 0 or −M where M = −min{ ei

ei+e′i
:

i ∈ {1, . . . , I}. Lemma 5.19 expresses moreover that perturbations are actually
always present close to the left boundary of the cone (with a tolerance equal
to the size of the initial perturbation). In the case q 6= 1, perturbations also
accumulate on the right boundary of the cone since the CA is one-way.

In [12], it was proved that Fk,k′ is left-expansive if and only if q = 1, where
left-expansive means {ldt (c)}t∈N not lower bounded for every d 6= c. The proof
is performed through an argument using interesting results about the entropy
of left-expansive CA. Let us stress that left-expansivity and directional pre-
expansivity are independent properties (none of them implies the other), and
that any reversible CA has directions of left expansivity (any direction greater
than the radius of the CA). Left expansivity asks for left-propagation of any
perturbation, including perturbations over infinitely many cells. That is why
Lemma 5.19 cannot be applied in this case, and in fact these perturbation
may not propagate to the left when q 6= 1. The conflictive cases are those
corresponding to configurations which are identical up to some cell at which
one configuration has a n 6= 0 followed by 0s and the other has n−1 followed by
m − 1s. Until this boundary, both configurations will evolve in the same way,
thus when q 6= 1, the cell where their differences start, which is equal to the
right boundary of the first with respect to 0, will stop shifting to the left.

On the other hand, if k and k′ are multiplicatively dependent, there are
natural numbers a, b such that F ak,k′ = σb, that is, Fk,k′ is a rational power of
the shift (thus left-expansive), this means that all the perturbations propagate
in a unique direction, in this case the direction is α = − b

a , to the left. This
direction is actually a direction of equicontinuity (see [23]), a strong form of non-
sensitivity and prevents such CA from having any direction of pre-expansivity
(see Proposition 5.9).

As a final remark, let us recall that [34] establishes that F3,2 is a universal
pattern generator: precisely, from every initial configuration c on ZZ

6 , and every
finite pattern p there exists an iteration t such that p appear in F t3,2(c) at some
position. The theorem is stated for k = 3 and k′ = 2 but the proof only uses
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that logk(k′) is irrational, which is exactly the condition for Fk,k′ to admit
pre-expansive directions.

6. Cellular automata over the free group

Some of the properties proved in the last section come from the fact that
the graph (Z, {(i, i + j) | j ∈ V }) can be always disconnected by extracting
a finite part from Z. The graph of any free group where the edges are given
by any finite neighborhood has this feature, and we would be able to extend
some of the previous properties to the case of a cellular automaton over the free
group. In particular, the pre-expansivity constant is strictly related with the
neighborhood size, as in Z, and it does not depend on k for a k-expansive CA.
We denote by Fn the free group with n generators (F1 is Z).

Proposition 6.1. If F is a cellular automaton with a neighborhood V ⊆ Br(0)
of radius r over the free group Fn and it is k′-expansive for all k′ ≤ k, then F
is k-expansive with pre-expansivity constant equal to 2−r.

Proof. The proof takes the ideas of Lemma 5.4. Let c 6=k d be two configurations
in Fn. Let us call S the set of standard generators of Fn, including their inverses
(i. e. |S| = 2n), and for each s ∈ S, let us call Rs the branch of Fn that hangs
from s; we mean the set of elements whose shortest description in terms of S
starts with s. In this way Fn = {0} t (ts∈SRs).

Now let us define D = {i ∈ Fn | c(i) 6= d(i)} and Ds = D ∩ Rs. We want
to prove that Tr(c) 6= Tr(d) so let us suppose the opposite. This implies that
D = ts∈SDs, and we can consider ks = |Ds| ≤ |D| = k. As in the case of
Lemma 5.4, we define configurations cs which are equal to d everywhere except
on branch s, as follows.

cs(i) =

{
c(i) if i ∈ Rs
d(i) otherwise

At the beginning, cs differs from d only on branch Rs. We will see that this
will be always the case. Let us suppose that, for some t ∈ N, F t(cs)i = F t(c)i
for all i ∈ Rs and F t(cs)j = F t(d)j , for all j 6∈ Rs. We remark that, we assumed
that if j ∈ Br(0), F t(cs)j = F t(d)j = F t(c)j . Since Fn is a tree and F is a
CA of radius r, if i ∈ Rs, Br(i) ⊂ Rs ∪ Br(0), thus F t+1(cs)i = F t+1(c)i. If
j ∈ {0} t

(
ts′∈S\{s}Rs′

)
, Br(j) ⊂

(
ts′∈S\{s}Rs′

)
∪ Br(0), then F t+1(cs)j =

F t+1(d)j .
We conclude that Tr(c

s) = Tr(c) = Tr(d), for every s ∈ S.
But we know, by hypothesis, that F is k′-expansive, let us take its pre-

expansivity constant as ε = 2−m. Let us consider now the configuration σ−ms(c
s),

the shift of cs by ms ∈ Fn. By construction, σ−ms(c
s) and σ−ms(d) are equal

over Bm(0). By the k′-expansivity of F , there exists a time t and j ∈ Bm(0)
such that F t(σ−ms(c

s))j 6= F t(σ−ms(d))j . But, as shown before, F t(cs) and
F t(d) differ only on branch Rs. Therefore F t(σ−ms(c

s)) and F t(σ−ms(d)) differ
only on branch Rms which is disjoint from Bm(0): this is a contradiction.
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The last proposition shows that being k-expansive for every k ∈ N is enough
to being pre-expansive, as in F1 = Z. But not all the properties survive from F1

to Fn, when n > 1; k-expansivity is possible for infinitely many k’s in Fn even
without pre-expansivity, as the next example shows.

Example 6.2 (Λn). Let Q = {0, 1}, + be the addition modulo 2, and Λn be the
CA defined over QFn by

Λn(c)i = c(i) +
∑
j∈S

c(i+ j).

In this CA, a spot will produce a wave of 1s advancing with velocity 1 over
the boundary of a ball, as the next lemma establishes.

Lemma 6.3. If i, j ∈ Fn are such that ||i|| = ||j||, then for every t ∈ N
Λtn(c1)i = Λtn(c1)j, moreover Λ

||i||
n (c1)i = 1.

Proof. We prove by induction on l that for every t ≤ l and every x, y ∈ Bl(0),[
||i|| = ||j|| ⇒ Λtn(c1)i = Λtn(c1)j

]
and that Λln(c1)i = 1 if ||i|| = l.

For l = 0 is clear since in this case i = 0 = j and Λ0
n(c1)0 = 1. Now let us

suppose it true for some l, and let us prove it for l + 1.

Case 1, t ≤ l. By the induction hypothesis, we only need to verify the property
for i, j ∈ Bl+1(0)−Bl(0), but Λtn(c1)i = 0 = Λtn(c1)j because at time t ≤ l
no perturbation at 0 has the time to arrive to these cells.

Case 2, t = l+1. We first remark that any cell i in Fn has exactly 2n−1 neigh-
bors farther and exactly one neighbor closer than i to 0; we also remark
that the local rule of Λn is totalistic, only the quantity of neighbors at a
given state counts. If i, j ∈ Bl(0), all of their neighbors are in Bl+1(0),
thus by Case 1, their state at time l depends only on their distance to
0, thus Λl+1

n (c1)i = Λl+1
n (c1)j . If i, j ∈ Bl+1(0) \ Bl(0), then their neigh-

bors outside Bl(0) and themselves have all state 0 at time l; their unique
neighbors in Bl(0) have both state 1, by induction hypothesis. Thus, by
the definition of Λn, Λl+1

n (c1)i = Λl+1
n (c1)j = 1.

Proposition 6.4. Λn is k-expansive for every k odd with pre-expansivity con-
stant equal to 1, and it is not 2-expansive if n ≥ 2.

Proof. Let c 6=k 0. Let D = {i | c(i) 6= 0} and let Dl = D ∩ (Bl(0) \ Bl−1(0)).
It is clear that c =

∑
i∈D σ−i(c

1). Since |D| = k is odd, there exists some l

such that |Dl| is odd, let us take l as the smallest one. For every x, y ∈ Dl,
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T0(σ−x(c1)) = T0(σ−y(c1)), thanks to lemma 6.3. Therefore, given a cell y ∈ Dl,

Λln(c)0 = Λln(
∑
l∈N

∑
x∈Dl

σ−x(c1))0

= Λln(

l∑
l=0

∑
x∈Dl

σ−x(c1))0

=
l∑
l=0

Λln(
∑
x∈Dl

σ−x(c1))0

= Λln(
∑
x∈Dl

σ−x(c1))0

= Λln(σ−y(c1))0.

By Lemma 6.3, this last term is equal to 1 which proves the k-expansivity when
k is odd.

The second part of the proposition is almost direct from lemma 6.3. In fact,
letm ∈ N be any natural number and let us take z = ms for some fixed generator
s. Now let s′ be another generator, different from s and −s and define x = z+s′

and y = z − s′. This imply that ||x|| = ||y|| = ||z|| + 1 = m + 1. Lemma 6.3
says that T0(σx(c1)) = T0(σy(c1)), but also that Tm(σx(c1)) = Tm(σy(c1)),
because x and y are equidistant from z, as well as from all the other members
of Bm(0).

7. Cellular Automata on Zn, with n ≥ 2

Expansivity is not possible in dimension n ≥ 2 or more, due to combi-
natorial reasons: the number of possible n-dimensional patterns grows too
quickly to be uniformly conveyed into a 1-dimensional array without loss (see
[15] for a general result of inexistence of expansive CA). This argument does
not apply to pre-expansivity because only finite differences have to be prop-
agated. Nevertheless, in Abelian CA the information propagates in a very
regular way, and pre-expansivity is impossible as we will show. For z ∈ Zn,
‖z‖∞ = max{|zi| : i ∈ {1, .., n}.

7.1. No pre-expansivity for Abelian CA in dimension 2 or higher

Theorem 7.1. No Abelian CA of dimension d ≥ 2 is pre-expansive.

Proof. First, if G is the Abelian group of the theorem it can be decomposed in
a direct product G = Gp×G′ where Gp is a finite p-group for some prime p and
G′ is a group whose order m is such that p doesn’t divide m (structure theorem
for finite Abelian groups, see [36]). Then F is isomorphic to Fp × F ′ according
to Lemma 3.2, where Fp is linear over Gp. Moreover if F is pre-expansive, then
Fp must also be pre-expansive (by Proposition 4.4). It is therefore sufficient to
show the Theorem for p-groups.
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Now consider F of dimension d ≥ 2 linear over a p-group and some m ≥ 0.
By Lemma 3.8, we know that the trace Tm of a finite configuration of size n
is determined by its prefix of size λ(n) where λ ∈ O(n). The number of such

finite configurations grows like αn
d

for some α > 0 and the number of prefixes
of Tm of length λ(n) grows like βλ(n) for some β > 0 which depends only on
m, Gp and d. Since d ≥ 2 and λ is linear we deduce for n large enough that
two finite configurations of size n have the same trace Tm. Therefore Tm is not
pre-injective and by Proposition 4.4, F is not pre-expansive.

Note that this does not avoid a priori the existence of a linear CA which is
k-expansive for any k ∈ N or for infinitely many k.

7.2. Simple Abelian CA

In general, in a CA with neighborhood V ⊂ G, we can remark that the
influence of the cell 0 is restricted to the set generated by linear combinations
of −V . More precisely, at time t, its influence is restricted to the following set:

−Vt(0) =

{
t∑
i=1

vi | (∀i ∈ {1, .., t}) vi ∈ −V

}
A perturbation in a cell u ∈ G can produce a change in the state of cells in

−Vt(u) = u− Vt(0) up to time t.
If G is commutative, for example G = Zn and V = {v1, .., vm}, this set can

be computed as follows.

−Vt(0) =

{
m∑
k=1

nk(−vk) |
m∑
k=1

nk = t and for each k, nk ∈ N

}

=

{
m∑
k=1

nk
t

(−tvk) |
m∑
k=1

nk = t and for each k, nk ∈ N

}

⊆

{
m∑
k=1

λk(−tvk) |
m∑
k=1

λk = 1 and for each k, λk ∈ [0, 1],

}
⊆ co(−tV )

Where tV = {tv | v ∈ V }, and co(·) stands for the convex hull (in Rn).
In the simpler case where Gp = Zp, any linear CA F can be expressed as

F =
∑
z∈V

azσz,

where (az)z∈V is a sequence of elements of Zp. When p is prime, the Frobe-
nius endomorphism gives strong self-similar properties to linear CAs, more pre-
cisely:

F p
k

=
∑
z∈V

azσpkz.
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More generally, consider any Abelian CA F with states Gp such that p · g = 0
for all g ∈ Gp and such that

F =
∑
z∈V

hz ◦ σz,

where hz are commuting automorphisms of Gp. The Binomial formula and the

fact that p divides all
(
pk

i

)
for 0 < i < pk gives:

F p
k

=
∑
z∈V

hp
k

z σpkz.

Since the hz are automorphisms of Gp there are infinitely many k such that

hz = hp
k

z for all z ∈ V and therefore

F p
k

=
∑
z∈V

hzσpkz.

These particular cases suggest the following definition.

Definition 7.2. An Abelian CA F =
∑
z∈V hz ◦ σz is simple if it verifies

FM =
∑
z∈V

hzσMz (5)

for arbitrarily large M .

The next lemma establishes that the constant of k-expansivity in a simple
Abelian CA on Zp depends only on the radius of the neighborhood. The radius
of a neighborhood V is the smallest integer r such that V ⊆ Br(0).

Lemma 7.3 (Amplification). Let F be a simple Abelian CA with neighborhood
V ⊂ Zn of radius r. If there exists a configuration c 6= 0 such that Tr(c) = 0,
then for any m ≥ r there exists a configuration c′ 6= 0 such that Tm(c′) = 0.

Proof. Let c be such that Tr(c) = 0 and let M be such that m ≤ M − 1. We
define c′ by c′Mx = cx for every x ∈ Zn and 0 elsewhere.

From Equation 5, it is easy to see that F tM (c′)Mx = F t(c)x, and 0 elsewhere.
Therefore, for every t ∈ N and every v ∈ Br(0), F tM (c′)Mv = 0.

Now, between iterations tM and (t+1)M , we know, from the former remarks,

that only cells in Ω =
⋃

x 6∈Br(0)

(Mx− VM (0)) can have a state different from 0.

Since −V ⊆ Br(0), we have that −VM (0) ⊆ BrM (0), and the complement of Ω
contains BM−1(0), which is what we were looking for, in fact,

y ∈ Ω =

 ⋃
x 6∈Br

Mx− VM (0)


⇒ (∃x 6∈ Br(0))(∃v ∈ −VM (0)) y = Mx+ v

⇒ ||y|| ≥ ||Mx|| − ||v|| ≥M(r + 1)−Mr = M

⇒ y 6∈ BM−1(0).
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−2k−1
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2 · 2k−1

Figure 5: Potentially active cells at iteration t2k cannot influence B2k−1−1(0) before iteration

(t + 1)2k. Big dots represent the initially active cells.

The next corollary shows that in this case again the expansivity constant
depends only on the neighborhood radius. Let us remark that here it is a
little bit stronger than in the 1-dimensional case because it does not need k′

expansivity for every k′ ≤ k.

Corollary 7.4. Let F be a linear CA in Zp. It holds:

• F is k-expansive, if and only if F is k-expansive with pre-expansivity con-
stant 2−r;

• F is k-expansive for all k ∈ N if and only if F is pre-expansive.

With this lemma we can establish k-expansivity just by looking at Tr. We
will show a CA in that setting which is 1-expansive, 3-expansive and non 2-
expansive, and another which is non 1-expansive (and so non k-expansive for
every k).

7.2.1. The rule ⊕2 with von Neumann neighborhood in Z2

The rule that simply sums the state of its 5 neighbors in the von Neumann
neighborhood: (0, 0), (0, 1), (1, 0), (0,−1), (−1, 0) is not 2-expansive. This can
be seen through a simple picture: let us suppose that we start with the config-
uration c that has a ‘1’ in cell (−2k, 2k−1) and in cell (2k, 2k−1). By symmetry,
the vertical line {0} × Z will be always null. Thus, at iterations t2k only cells
at 2k(Z \ {0})×Z will be activated. Between iterations t2k and (t+ 1)2k these
cells cannot influence the ball B2k−1−1(0, 0) (see figure 5) and this ball will have
a null trace: T2k−1(c) = 0.

In order to establish the 3-expansivity of this CA, we will start by proving
some lemmas that describe the form of the traces T1(σz(c

1)) of the evolution of
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the configuration c1 at the different points of Z2. In order to achieve this, we
start by computing the partial traces T0(σz(c

1))|[0,2k−1] and T0(σz(c
1))|[2k,2k+1−1].

We first give a way for compute them, and afterwards we prove they are effec-
tively the partial traces.

Definition 7.5. Given k ≥ 0 and z ∈ B2k−1(0, 0), we recursively define uk(z)
and vk(z) as follows. Let us define Sk = {(0, 0), (0, 2k), (2k, 0), (0,−2k), (−2k, 0)},
the active cells of iteration 2k.

u0(z) = v0(z) = 1;

uk(z) =


uk−1(z)vk−1(z) if z ∈ B2k−1−1(0, 0)

02
k−1

uk−1(z − x) if z ∈ B2k−1−1(x) \B2k−1−1(0, 0) and x ∈ Sk−1
02
k

otherwise

vk(z) =


uk−1(z)uk−1(z) if z ∈ B2k−1−1(0, 0)
uk−1(z − x)uk−1(z − x) if z ∈ B2k−1−1(x) \B2k−1−1(0, 0) and x ∈ Sk
02
k

otherwise

Lemma 7.6. If z ∈ B2k−1(0, 0), then uk(z) and vk(z) represent the trace of z
from 0 to 2k − 1 and from 2k to 2k+1 − 1 respectively.

Proof. When k = 0, B0(0, 0) = {(0, 0)}, and the trace of (0, 0) is constant and
equal to 1.

Let us suppose the lemma true for k − 1 ≥ 0. Let z ∈ B2k−1(0, 0).
Figure 6(a) depicts the first two cases in the definition of uk(z), the last one

corresponds to cells in the diagonals segments, which remains null by symmetry
.

• Case 1) z ∈ B2k−1−1(0, 0). In this case, the induction hypothesis says that
the trace until 2k − 1 is given by uk−1(z)vk−1(z)

• Case 2) z ∈ B2k−1(0, 0) \ B2k−1−1(0, 0). From 0 to 2k−1 − 1, z has not

been touched yet, thus its trace until 2k−1− 1 is 02
k−1

. At iteration 2k−1,
only the cells in Sk−1 are in state 1, thus z is influenced by only one of
the cells in Sk−1, say x, its trace from 2k−1 to 2k − 1 is equal to the trace
of the cell z− x from 0 to 2k−1− 1, thus by induction again, it is equal to
uk−1(z − x).

• Case 3) If z belong to none of these balls, it belongs to one of the two
diagonals lines that pass through (0, 0), and its trace is null.

Figure 6(b) depicts the three cases in the definition of vk(z).

• Case 1) z ∈ B2k−11(0, 0). At iteration 2k, only the cells in Sk are in state
1. Therefore, from 2k to 2k+2k−1−1, z will be influenced only by the cell
(0, 0), and its trace will be equal to uk−1(z). At iteration 2k + 2k−1, the
active cells corresponds to red and brown cells in Figure 6(b), and again
only cell (0, 0) reaches z, the process is repeated.
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(a) (b)

Figure 6: (a) Represents the evolution from iteration 0 to 2k. Non-null cells at iterations 0
and 2k−1 are marked with dark brown and red dots, respectively (cell (0,0) is active at both
instants). The balls of radius 2k−1 around these cells are colored with similar lighter colors.
(b) Represents the evolution from iteration 2k to 2k+1. Dark brown dots represent non-null
cells at iterations 2k and 2k + 2k−1, while red dots represent the cells which are non-null
at iteration 2k + 2k−1. The balls of radius 2k−1 around these cells are colored with similar
lighter colors. Faded colors represent the cells outside the ball of radius 2k.

• Case 2) z ∈ B2k−1(0, 0) \ B2k−1−1(0, 0). At iteration 2k, only the cells in
Sk are in state 1, thus, before iteration 2k + 2k−1, z is touched only if it
is at distance less than 2k−1 from one of the cells in Sk, say x, (orange
zone in Figure 6(b)), then its trace is equal to uk−1(z − x). At iteration
2k + 2k−1, the active cells are far again, and z is influenced only by x
again.

• Case 3) If z belong to none of these balls, its trace is null.

This lemma proves that the traces can be obtained through the substitution
u→ uv and v → uu. The basic u and v for a given cell z are obtained at iteration
2k+1 if B2k−1(0, 0) is the smallest ball containing z. From the next lemma we
can conclude the 1-expansivity of this automaton with pre-expansivity constant
equal to 2−1.

Lemma 7.7. If i + j is odd and smaller than 2k, then the trace of the cell
z = (i, j), T0(σz(c

1)) is not null and its first non null index is odd and smaller
than 2k, in particular uk(i, j) is not null.

Proof. For k = 1, the trace of the odd cells inside B1(0, 0) from 0 to 1 is u = 01,
the result holds. Let us assume the result true for k ≥ 1, and let z = (i, j) be
an odd cell in B2k+1−1(0, 0) \ B2k−1(0, 0). Since the cell is odd, it is not over
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the diagonals, and it belongs to the ball of radius 2k of one of the four cells of
Sk \{(0, 0)}, say x. Then, by lemma 7.6, its trace from 2k to 2k+1−1 is given by
uk(z− x). Since the cells of Sk are even, (z− x) is also odd, and the conclusion
follows by induction.

Now we will prove several properties that will be useful to prove 3-expansivity.

Lemma 7.8. Given k > 0, if z ∈ B2k−1(0, 0) then vk(z) is a square.

Proof. It is clear from Definition 7.5 and the fact that k > 0.

Lemma 7.9. Given k > 0, if z ∈ B2k−1(0, 0) \ {(0, 0)} and uk(z) 6= 02
k

, then
uk(z) is not a square.

Proof. By induction on k. For k = 1, if z is inside the von Neumann neigh-
borhood of (0, 0), thus u1(z) = 01 which is not a square. Let us suppose the
assertion true for k − 1 ≥ 1. Since k ≥ 1, from Definition 7.5, we recognize two
cases for uk(z).

Case 1: uk(z) = 02
k

uk−1(z − x), for some x ∈ Sk−1. The only way for uk(z)

to be a square is to be equal to 02
k

.

Case 2: uk(z) = uk−1(z)vk−1(z). By the induction hypothesis u is either null
or not a square. From Lemma 7.8 vk−1(z) is a square, then uk(z) is a

square if and only if uk(z) = 02
k

.

Lemma 7.10. If |i| = |j| and (i, j) 6= 0, then the trace of the cell (i, j),
T0(σ(i,j)(c

1)) is equal to 0ω.

Proof. Cells in the diagonals systematically falls in the boundaries of the zones
given by the substitution, then their traces are systematically assigned equal to
0.

Lemma 7.11. If i+j is even, smaller than 2k and the trace of the cell z = (i, j),
T0(σz(c

1)) is not null, then the first non null index of the trace is even and it
is smaller than 2k.

Proof. For k = 0, the trace of the even cell inside B0(0, 0) from 0 to 0 is u = 1,
the result holds. Let us assume the result true for k ≥ 0, and let z = (i, j)
be an even cell in B2k+1−1(0, 0) \ B2k−1(0, 0). Since the cell is attained, from
Lemma 7.10, it is not over the diagonals, then it belongs to the ball of radius
2k of one of the four cells in Sk, say x. Then, its trace from 2k to 2k+1 − 1 is
given by uk(z − x). Since the cells in Sk are even, z − x is also even, and the
conclusion follows by induction.

Now we are ready to prove that this automaton is 3-expansive.
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Lemma 7.12. If z1, z2 and z3 are three different cells and T0(σz1(c1)) +
T0(σz2(c1)) + T0(σz3(c1)) = 0ω, then there exists z ∈ {z1, z2, z3} such that
T0(σz(c

1)) = 0ω.

Proof. We will prove a stronger assertion:

If z1, z2 and z3 are three different cells in B2k−1(0, 0) and uk(z1) +

uk(z2) + uk(z3) = 02
k

, then there exists z ∈ {z1, z2, z3} such that

uk(z) = 02
k

.

It is stronger because from Lemmas 7.7 and 7.11, if z ∈ B2k−1(0, 0) and uk(z) =

02
k

, then T0(σz(c
1)) = 0ω.

By contradiction, let z1, z2 and z3 be three different cells in a ball B2k−1(0, 0)

such that uk(z1) + uk(z2) + uk(z3) = 02
k

and for all i ∈ {1, 2, 3}, uk(zi) 6= 02
k

.
Let us choose these cells such that k is as small as possible.

Let be tz1 , tz2 and tz3 the indices where the respective traces equals 1 by
the first time. It is clear that two of these numbers are equal and smaller than
the third. Let us suppose that tz1 = tz2 < tz3 .

Case 1: z1, z2 ∈ B2k−1−1(0, 0). In this case, from Lemma 7.6, the trace of z3
from 2k−1 to 2k− 1 is equal to uk(z3−x), for some x ∈ Sk, thus uk(z3) =

02
k−1

uk−1(z3 − x). On the other hand, uk(zi) = uk−1(zi)vk−1(zi) for i ∈
{1, 2}. From Lemma 7.8, vk−1(z1) and vk−1(z2) are squares if k > 0, which
is the case, since B0(0, 0) contains only one cell. Thus vk−1(z1)+vk−1(z2)
is also a square, then it cannot be equal to uk−1(z3 − x) which is not a
square thanks to Lemma 7.9.

Case 2: z1, z2, z3 6∈ B2k−1−1(0, 0). In this case, from Lemma 7.6, for each i ∈
{1, 2, 3} there exists some xi ∈ Sk−1 such that uk(zi) = 02

k−1

uk−1(zi−xi).
Of course zi−xi ∈ B2k−1−1(0, 0) for each i ∈ {1, 2, 3} and uk−1(z1−x1)+

uk−1(z2 − x2) + uk−1(z3 − x3) = 02
k−1

, which contradicts the minimality
of k.

Theorem 7.13. The rule ⊕2 with von Neumann neighborhood in Z2 is 1-
expansive, 3-expansive but not 2k-expansive for every k ∈ N.

Proof. We have stated that the rule is not 2-expansive, through a counter exam-
ple, and this fact can be extended to every even number 2k, thanks to Propo-
sition 4.6.
SinceB1(0, 0) always contains odd cells, from Lemma 7.7 we know that T1(σz(c

1)
is never null, which proves that the CA is 1-expansive.
Finally, Lemma 7.12 shows that if three cells produce a null trace of radius 1,
then one of them has a null trace of radius 0, this means that this cell is even,
and its four neighbors are odd. When looking at the neighbors of these cells,
their sum is also null, for each if its neighbors. Thus at least one cell must have
even neighbors with a null trace, but in this case, two of these cells are odd,
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Figure 7: Simulation of ⊕2 with a triangular neighborhood at iteration 25 starting from an
initial configuration with a single 1 inside 0s: cells in state 1 are in red, cells that have been
in state 1 between iteration 0 and 24 but not at 25 are in blue, and the others cells are not
drawn.

and its four even neighbors cannot equal the odd neighbors of the first cell, and
then the trace of radius 1 of the sum of the three cells cannot be null.

7.2.2. The rule ⊕2 with triangular neighborhood

The last rule is 1- and 3-expansive, now we present a linear rule which is even
not 1-expansive. Thanks to Proposition 4.6, it implies in particular that is not
k-expansive, for any k ∈ N. It correspond to addition modulo 2 as the last one
but with a triangle shaped neighborhood: N = {(−1, 1), (1, 1), (0, 0), (0,−1)}.
We only need to prove that it is not 1-expansive with expansivity constant equal
to 2−2 thanks to Corollary 7.4.

Proposition 7.14. T2(σ(0,36)(c
1)) is null.

Proof. We will prove, by induction, that T2(σ(0,36)(c
1)) is null from 0 to 2k. For

k = 0 to 5 is clear since cell (0, 36) is too far to touch B2(0, 0). At iteration
2k the only active cells are (−2k,−2k + 36), (2k,−2k + 36), (0, 2k + 36) and
(0, 36). The first three are too far to touch B2(0, 0) from iterations 2k to 2k+1.
By induction hypothesis (0, 36) does not attain B2(0, 0) in 2k iterations, thus
B2(0, 0) remains null until iteration 2k+1.

8. Open Problems

We showed in this paper that dynamics like pre-expansivity or k-expansivity
can exist without necessarily implying positive expansivity. We also showed that
some combinations of the space structure and the local rule structure forbid pre-
expansivity (Theorem 7.1). However, we left many open questions concerning
pre-expansivity and k-expansivity:
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• is there a pre-expansive cellular automata on Zd when d ≥ 2?

• is there a 2-expansive cellular automata on Z2? on the free group? more
generally what is the set of integers k such that a given group admits
k-expansive cellular automata?

• a lot of results are known on traces of (positively) expansive cellular au-
tomata. What can we say for pre-expansive CA? for instance are they
always transitive? what are their mixing properties?

• is the property of pre-expansivity decidable?
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