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The objective quantification of similarity between two mathematical structures, one of the basis for theoretical and applied developments, constitutes a central issue in science and technology. In the present work, we developed a principled and systematic approach that takes the Kronecker delta function of two scalar real values as the prototypical reference for fully strict similarity quantification. We also considered other indices, namely cosine, correlation, Sørensen-Dice, and Jaccard indices, and shown that they provide successively more strict similarity comparisons. Multiset-based generalizations of these indices to take into account real values were then applied to progressively extend the indices to multisets, vectors, and functions in real spaces. Several important results have been obtained, including the multiset formulation of similarity as well as the formal derivation of the Jaccard index as a more yielding implementation of the Kronecker delta function. When generalized to real functions, the four described similarity indices become respective functionals, which can then be employed to obtain analogous operations of convolution and correlation. Complete application example involving the recognition of patterns through template matching between two 1D functions as well as the identification of multiples instances of objects in a 2D scalar field (image) in presence of noise are also reported which well-illustrate the potential of the proposed concepts and methods. The possibility of defining matrix products, as well as some respectively implied spectral properties, have also been addressed.

'Springtime, always plentiful of most diverse similarities.' LdaFC

Introduction

It is often acknowledged that one of the most important aspects of physical sciences is the objective quantification of the physical world structures and phenomena through respective measurements, so as to allow the development of effective theories. While this can hardly be disputed, there is a complementary aspect implied by taking measurements, and it concerns comparing and ordering the obtained quantifications and respective models so as to be able to take decisions on the most plausible alternatives. Interesting, the ubiquity and importance of the comparison operation in science are so strong as to go often unnoticed.

Yet, given a model, the verification of its ability to account for the respectively modeled system consists of com-paring not only scalar values, but also vectors, matrices, functions, graphs, as well as potentially any other mathematical structure. Indeed, the own validation of models and theories relies critically on several logical and quantitative indications of similarity.

The role of similarity quantification in physics is of particular importance, as it underlies several respective theoretical and applied aspects. For instance, important basic operations in optics (e.g. [START_REF] Steward | Fourier Optics: An Introduction[END_REF]), quantum computing (e.g. [START_REF] Scherer | Mathematics of Quantum Computing: An Introduction[END_REF]), magnetic resonance (e.g. [START_REF] Levitt | Spin Dynamics: Basics of Nuclear Magnetic Resonance[END_REF]), astrophysics (e.g. [START_REF] Carroll | An Introduction to Modern Astrophysics[END_REF]), and neuronal networks (e.g. [START_REF] Haykin | Neural Networks And Learning Machines[END_REF]) to name but a few possibilities, strongly rely on similarity quantification via functionals and convolutional/correlational concepts and methods. Similarity comparisons are also critically important in signal and image processing (e.g. [START_REF] Gonzalez | Digital Image Processing[END_REF][START_REF] Schalkoff | Digital Image Processing and Computer Vision[END_REF][START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF]), pattern recognition (e.g. [START_REF] Duda | Pattern Classification[END_REF][START_REF] Koutrombas | Pattern Recognition[END_REF][START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF]) and machine learning (e.g. [START_REF] Haykin | Neural Networks[END_REF][START_REF] Schmidhuber | Deep learning in neural networks:an overview[END_REF][START_REF] De Arruda | Learning deep learning. Researchgate[END_REF]).

In addition to the important role of comparisons in science, living beings also continuously rely on comparing entities, be them a received stimuli or more complex mental representations (for instance, people often compare weather along time and space). These abilities are intrinsically founded on respective biological mechanisms underling our cognition, capable of implementing respective comparisons even in presence of incomplete and noisy information.

Given that similarity and distance are intrinsically interrelated, including the fact that one can often be derived from the other, the present work will focus on similarity measurements, with the obtained results being possibly extensible to distances (e.g. [START_REF] Rozinek | The duality of similarity and metric spaces[END_REF]). Recall that distances need to present three mathematical properties, namely: (i) being non-negative; (ii) being commutative; and (iii) obeying the triangle inequality (e.g. [START_REF] Gonzalez | Digital Image Processing[END_REF]).

Comparing two vectors in an objective quantitative manner involves the adoption of one or more measurements of similarity or distance between pairs of values, and the Euclidean distance seems to have particular importance as far as distances are concerned. At a higher level, we need approaches capable of quantifying the similarity between functions and signals, in which case the inner product, and the respectively derived operations of convolution and correlation, are often adopted (e.g. [START_REF] Brigham | Fast Fourier Transform and its Applications[END_REF][START_REF] Duda | Pattern Classification[END_REF][START_REF] Koutrombas | Pattern Recognition[END_REF][START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF]). Similarity approaches are also required regarding more elaborate mathematical structures including matrices, scalar and vector fields, graphs, among many other possibilities.

Interestingly, the Euclidian distance, cosine similarity, Pearson correlation coefficient and the inner product all share a same aspect, which consists of being based on pairwise real products. As such, these approaches can be said to have a second order nature (x.x = x 2 ). However, there is a virtually infinite number of other possible distance and similarity measurements, including those based on minimum, maximum and absolute values, such as the set-based indices including the Jaccard and Sørensen-Dice similarity approaches.

The main objective of the present work consists in developing a principled approach to similarity, with emphasis on the prototypical Kronecker delta function, and then to relate or even derive representative similarity indices allowing effective quantification of similarity between two scalar values, which is the most basic possible situation. The obtained indices are then successively generalized to multisets, vectors, and real function, which is achieved mainly by considering multiset theory (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF]) as well as its more recent extension go real-valued multiplicities [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF]. These indices are characterized respectively to how strict the similarity comparison is respectively performed, and illustrated with respect to problems in signal processing and pattern recognition.

In addition to the cosine similarity, Pearson correlation coefficient, Jaccard and Sørensen-Dice indices, the coincidence similarity consisting of a combination of the Jaccard and interiority (or homogeneity or overlap e.g. [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]) indices [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Comparing cross correlationbased similarities[END_REF], is also considered. In particular, the real-valued coincidence index has been found to allow a particularly complete and strict quantification of similarity, presenting enhanced performance in important tasks such as pattern recognition [START_REF] Da | Comparing cross correlationbased similarities[END_REF], translating datasets into networks [START_REF] Da | Coincidence complex networks[END_REF], as well as when extended to act as a quantifier of joint variation between random variables [START_REF] Da | Further generalizations of the Jaccard index[END_REF]. When generalized to real function spaces, the four indices yield respective functionals and, as such, can be combined in several manners and also used to implement respective convolution and correlation binary operations between functions.

In addition, we also describe some results regarding matrix products based on the considered similarity indices, with special attention given to the respective spectral properties. It has been indicated that while the real-valued Jaccard similarity index leads to constant eigenvectors, the coincidence index product yields welllocalized and stable gaussian eigenvectors, thus corroborating the enhanced characteristics of the coincidence similarity index with respect to other methods such as cross-correlation, cosine similarity, or even the real-valued Jaccard similarity index.

We start by addressing the quantification of similarity between two scalar values, while taking the Kronecker delta function as a reference. Two similarity indices are respectively derived, being related to the Jaccard and the Sørensen-Dice similarity approaches. Then, based on multiset concepts, we extend the aforementioned indices to multisets, and the coincidence index is described as a combination of the Jaccard and interiority index that is capable of incorporating information about the relative interiority between the compared multisets. These indices are then generalized to real-valued multisets, of which vectors are a particular case, and the cosine similarity and Pearson correlation coefficient are incorporated among the adopted indices. It is shown that, when applied to the comparison between vectors, these indices allow progressively strict similarity quantifications. Subsequently, the adopted indices are further extended to realvalued functions, and their possible application to similarity quantification in elementwise and overall manners are presented and illustrated. The systematic comparison between vectors or functions by using correlates of the convolution and correlation binary operations involving the adopted similarity indices is then presented and illustrated respectively to 1D and 2D pattern recognition, with encouraging results. The successive application of the similarity indices, approached in terms of powers of matrix products, is also described and discussed.

2 Pairwise Similarities in R + and R Before proceeding into more depth with any current study of distances, it is important to state as objectively as possible what is being meant by similarity. Unlike the concept of distance, which obeys three respective properties (non-negative, commutative and triangle inequality) and is frequently represented by the Euclidean distance, there seems to be less consensus regarding what similarity means.

In this work, we will understand similarity in a fully objective and well-posed manner as being related to the identity between two values x and y. Figure 1 illustrates the most strict approach possible to quantifying the similarity between any two real values x and y, namely the Kronecker delta function, which assigns 1 whenever x = y, and 0 otherwise. For simplicity's sake, the case (x = 0, y = 0) is not considered in this work. Additional checking and handling is required in situations potentially involving these values.

The problem with the Kronecker delta function as a resource for gauging similarity is that it is way too strict, so that it becomes necessary to develop means for implementing some tolerance in the quantification.

The distance between any point, associated to a respective vector [x, y], and the line y = x can be readily expressed as:

d p = [x, y] , û = 1 √ 2 , 1 √ 2 = |x -y| √ 2 ( 1 
)
where û is the versor tangent to the identity line.

Observe that this function is not upper bound, i.e. all we can say is that 0 ≤ d ( p, û) < ∞.

A possible manner to have this distance bounded is by making:

d ( p, û) = |x -y| max {|x|, |y|} (2) 
Let's assume that x, y ≥ 0, corresponding to the situation where the quantities to be compared are always non-negative. In this case, we have that 0 ≤ d ( p, û) ≤ 1.

Having a distance measurement normalized in the interval [0, 1] is of particular importance because it now allows us to derive a respective similarity index simply as:

s(x, y) = 1 - |x -y| max {|x|, |y|} (3) 
with 0 ≤ s(x, y) ≤ 1.

Let the following index be defined:

r(x, y) = min {|x|, |y|} max {|x|, |y|} (4) 
with 0 ≤ r(x, y) ≤ 1. For x, y ≥ 0, it can be verified that:

s(x, y) = r(x, y)

Thus, r(x, y) provides a more convenient manner to express s(x, y). The first similarity index to be adopted in the present work therefore corresponds to:

s 1 (x, y) = min {|x|, |y|} max {|x|, |y|} (6) 
with 0 ≤ s 1 (x, y) ≤ 1. Observe that s 1 (x, y) depends exclusively on the minimum and maximum operations, both of which are non-linear.

Interestingly, the similarity index in Equation 19 can also be expressed as:

s 1 (x, y) = |x||y| (max {|x|, |y|}) 2 (7) 
The similarity index s 1 (x, y) is illustrated in Figure 2.

Interestingly, there are other means of normalizing the similarity index s 1 (x, y), for instance by exchanging the denominator max {|x|, |y|} by the average between |x| and |y|, yielding the second similarity index to be addressed in the present work:

s 2 (x, y) = 2 min {|x|, |y|} |x| + |y| (8) 
It can be verified that, for x, y ≥ 0, we have that:

s 2 (x, y) > s 1 (x, y) (9) 
Figure 6 depicts the relationship between values obtained by s 1 (x, y) and s 2 (x, y) considering a large number of uniformly distributed real values x and y. ) are to be compared in terms of similarity. In the former case, we have that max {xa, ya} = xa and min {xa, ya} = ya, with xa = ya, yielding a respective similarity smaller than one. In the other case, we will also have a similarity smaller than one for similar reasons. Actually, because of the intrinsic symmetry in this case, the two obtained values of s 1 will be identical.

Figure 3: The relationship between the s 1 (x, y) and s 2 (x, y) indices taking into account generic scalar real values x and y. Observe that s 2 (x, y) is always larger than s 1 (x, y).

Therefore, we have that the similarity index s 2 (x, y) implements a less strict quantification of the similarity between the real scalars x and y, in the sense that it will provide moderately larger values of similarity than s 1 (x, y) in all situations.

Observe that the indices s 1 (x, y) and s 2 (x, y) do not take the relative signs of the compared quantities x and y into account. While this feature is suitable, and even desirable in some circumstances, it is important to derive generalizations of the similarity indices above capable of taking into account the signs of the compared quantities, therefore providing more information.

Consider the situations depicted in Figure 4. Here, we have the four situations which can occur regarding the signs of the two compared values x and y. The similarity sign should express whether the two positions point toward the same direction, which case a positive similarity could be expected, or if they oppose one another, yielding a respective negative similarity sign.

In its most strict form, this can be achieved by generalizing the Kronecker delta function as:

δ ± x,y = sign(x y) δ |x|,|y| (10) 
Figure 5 illustrates the generalized Kronecker delta function. Let's define the following signal functions:

s x = sign(x) = x |x| (11) 
s y = sign(y) = y |y| (12) 
s xy = sign(xy) = sign(x) sign(y) = s x s y (13) 
We shall refer to the function s xy as the conjoint sign function. These functions will be particularly useful when we approach the similarity between two real functions. Observe that s x x = |x|.

In Banach spaces (e.g. [START_REF] Istratescu | Inner Product Structures: Theory and Applications[END_REF]), inner products are intrinsically related to respective norms, for instance, in a Banach space X the Clarkson angle between two vectors x and y, namely |s x -s y |, has the interesting property:

||x -y|| ≥ |s x -s y | max {|x|, |y|} (14) 
As a consequence [27, Chapter 5], it is characteristic of a Banach space of dimension greater than 1 to have its norm generated by an inner product.

The definition of an L1 index analogous to the scalar product that considers the signs of x and y has been proposed [START_REF] Mirkin | Mathematical Classification and Clustering[END_REF]Chapter 2] which, when considering a single pair of values x and y and not considering the proportionality term 1/2, yields:

s + (x, y) = |s x + s y | min {|x|, |y|} (15) 
with 0 ≤ s + (x, y) ≤ 2.

When applied to vectors, the cases in which s x s y = -1 do not contribute to the index, reflecting only the situations (a) and (b) in Figure 4. Therefore, subtracting effects implied by the cases s x s y = -1 can be avoided if necessary.

We can also define:

s -(x, y) = |s x -s y | min {|x|, |y|} (16) 
which only takes into account the cases in which s x s y = -1. The two above indices can now be combined as:

s ± (x, y, α) = [α] s + (x, y) -[1 -α] s -(x, y) = = [α] |s x + s y | min {|x|, |y|} - -[1 -α] |s y -s x | min {|x|, |y|} (17) 
where α allows the positive and negative similarities to be respectively weighted. When α = 0.5, it follows that:

s ± (x, y, α = 0.5) = s xy min {|x|, |y|} (18) 
which has been described in [START_REF] Akbas | Multiplication-free neural networks[END_REF] in the context of the L1 norm.

The operation in Equation 18(with α = 0.5) has also been shown to correspond to the signed intersection operation between multisets generalized to real, possibly negative values [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF], allowing the signed intersection of a function with the empty (null) multifunction to yield the empty function. Observe that s + (x, y), s -(x, y) and s ± (x, y) do correspond formally to inner products, because they do not satisfy the required bilinearity condition.

The two adopted similarity indices s 1 (x, y) and s 2 (x, y) modified to reflect the sign of the values x and y can be summarized as: 

s 1 (x, y) =
with -1 ≤ s 1 (x, y), s 2 (x, y) ≤ 1.

Observe that both these indices can be immediately adapted to incorporate the parameter α as described above.

For simplicity's sake, both the above indices will be henceforth referred to simply as s 1 and s 2 irrespectively of being applied to scalars, vectors, functions, etc., as the context shall be enough to indicate how they are being applied.

The developments reported in this section make it plain that the similarity indices s 1 and s s can be understood as providing more tolerant similarity quantification than the generalized Kronecker delta function. At the same time, the index s 1 has shown to derive directly from that function by taking into account the complement of the distance between the values being compared and the identity (or anti-identity) lines.

Figure 6 illustrates the two adopted signed similarity indices in the region bound by x ∈ [-1, 1] and y ∈ [-1, 1]. Both s 1 and s 2 yield marked peaks with value 1 along the main diagonal and peaks with value -1 along the secondary diagonal, indicating the close relationship between these two similarity indices and the Kronecker delta function in Figure 5. 

Multiset Similarities

Now that we have developed a principled approach to quantifying the similarity between two real scalar values x and y, it becomes possible to extend these indices to other mathematical structures, including multisets, vectors, functions, etc. In this section we address the important subject of quantifying the similarity between two multisets (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF][START_REF] Da | Multisets[END_REF]).

A multiset A can be represented as:

A = {| [a 1 , m A (a 1 )] ; [a 2 , m A (a 2 )] ; . . . ; [a N , m A (a N )] | }
where we have N distinct elements a i (of any type), each with respective non-negative integer multiplicity m A (a i ). The support of this multiset is

S A = {a 1 , a 2 , . . . , a N }.
The union of two multisets A and B sharing the same support is defined as:

A ∪ B = {| [a 1 , max {m A (a 1 ), m B (a 1 )}] ; [a 2 , max {m A (a 2 ), m B (a 2 )}] ; . . . ; [a N , max {m A (a N ), m B (a N )}] | } (21) 
In case A and B do not share the same support, a respective support can be obtained for the multiset union consisting of the set union of the respective multiset supports.

The intersection between two multisets A and B sharing the same support is given as:

A ∩ B = {| [a 1 , min {m A (a 1 ), m B (a 1 )}] ; [a 2 , min {m A (a 2 ), m B (a 2 )}] ; . . . ; [a N , min {m A (a N ), m B (a N )}] | } (22) 
For simplicity's sake, we shall henceforth abbreviate m A (a i ) as x i , and m B (a i ) as y i .

Rewritting Equations 19 and 20 for two generic multiset elements a i and b i , we have:

s 1 (x i , y i ) = min {s xi x i , s yi y i } max {s xi x i , s yi y i } (23) 
s 2 (x i , y i ) = 2 min {s xi x i , s yi y i } s xi x i + s yi y i (24) 
Therefore, when applied to quantify the similarity between two multisets A and B, the previous indices become:

s 1 (A, B) = i min {s xi x i , s yi y i } i max {s xi x i , s yi y i } (25) 
s 2 (A, B) = 2 i min {s xi x i , s yi y i } i [s xi x i + s yi y i ] (26) 
Interestingly, the two above expressions correspond respectively to the multiset versions of the Jaccard (e.g. [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF][START_REF] Jaccard | Étude comparative de la distribution florale dans une portion des alpes et des jura[END_REF][START_REF] Samanthula | Secure multiset intersection cardinality and its application to jaccard coefficient[END_REF][START_REF]Jaccard index[END_REF][START_REF] Schubert | A note on the jaccardized czekanowski similarity index[END_REF]) and Sørensen-Dice (e.g. [START_REF] Sørensen | A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on danish commons[END_REF]) similarity coefficients. In their original set theory formulation, the Jaccard and Sørensen-Dice similarity indices between two sets A and B are expressed respectively as follows:

J (A, B) = |A ∩ B| |A ∪ B| (27) S(A, B) = 2|A ∩ B| |A| + |B| (28) 
These indices constitute simple and yet conceptually effective manners of quantifying the similarity between two sets, but have been mostly limited to categorical and binary data. By using concepts from real-valued multisets, these indices have been generalized [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF], allowing the comparison of the similarity between real-valued quantities including vectors and functions.

Given that the Jaccard index does not incorporate information about the relative interiority between two sets [START_REF] Da | Further generalizations of the Jaccard index[END_REF], the coincidence index between two sets A and B has been defined corresponding to the product between the respective Jaccard and interiority index.

The interiority index (also overlap, e.g. [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]) can be expressed as:

I(A, B) = |A ∩ B| min {|A|, |B|} (29) 
with 0 ≤ I(A, B) ≤ 1.

The multiset version of the interiority index can be expressed as:

I(A, B) = i∈S min {s xi x i , s yi y i } min i∈S s xi x i , i∈S s yi y i (30) 
So that:

C(A, B) = I(A, B) J R (A, B) = I(A, B) s 1 (A, B) (31) 
with 0 ≤ C(A, B) ≤ 1.

As the coincidence index therefore implements a more strict quantification of similarity than the Jaccard, it is also henceforth considered in the present work. In its multiset version assuming non-negative integer multiplicities, the coincidence index can be expressed as:

s 3 (A, B) = i∈S min {s xi x i , s yi y i } min i∈S s xi x i , i∈S s yi y i s 1 (A, B) (32) with 0 ≤ s 3 (A, B) ≤ 1.

Real-Valued Multisets and Vectors

Multisets can be generalized to real multiplicities, including possibly negative values, as well as to continuous fields such as function spaces [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF].

It is of particular interest to generalize the three indices to quantify the overall similarity between two real-valued multisets A and B, which can be done as:

s 1 (A, B) = i s xiyi min {s xi x i , s yi y i } i max {s xi x i , s yi y i } (33) 
s 2 (A, B) = 2 i s xiyi min {s xi x i , s yi y i } i [s xi x i + s yi y i ] ( 34 
)
s 3 (A, B) = i∈S min {s xi x i , s yi y i } min i∈S s xi x i , i∈S s yi y i s 1 (A, B) (35) 
Therefore, the developments above allowed a principled derivation of those recently introduced generalizations of the Jaccard similarity index (e.g. [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF][START_REF] Jaccard | Étude comparative de la distribution florale dans une portion des alpes et des jura[END_REF][START_REF] Samanthula | Secure multiset intersection cardinality and its application to jaccard coefficient[END_REF][START_REF]Jaccard index[END_REF][START_REF] Schubert | A note on the jaccardized czekanowski similarity index[END_REF]).

It also follows from those developments that the generalized Jaccard index can be understood as an implementation of smoothed generalizations of the Kronecker delta function based similarity to scalars, multisets, vectors and scalar fields.

Since vectors can be understood as particular cases of multisets with real-valued support [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF], the respective generalization of the three indices in Equation 33 to this type of mathematical structures can be immediately derived by taking the vector indices i = 1, 2, . . . , N as multiset elements, and the values x[i] as respective real-valued multiplicities.

Let two vectors x = [x 1 , x 2 , . . . , x N ] and y = [y 1 , y 2 , . . . , y N ]. We then have:

s 1 ( x, y) = i s xiyi min {s xi x i , s yi y i } i max {s xi x i , s yi y i } (36) 
s 2 ( x, y) = 2 i s xiyi min {s xi x i , s yi y i } i [s xi x i + s yi y i ] (37) 
s 3 ( x, y) = i min {s xi x i , s yi y i } min i s xi x i , i∈S s yi y i s 1 ( x, y) (38) 
Indices s 1 and s 2 have been proposed [START_REF] Akbas | L1 norm based multiplicationfree cosine similiarity measures for big data analysis[END_REF] as L1 correlates of the cosine similarity.

Comparisons between real-valued vectors have been widely approached in terms of the cosine similarity (e.g. []) and Pearson correlation coefficient (e.g. []). These two indices are also henceforth considered in the present work, being expressed respectively as:

s 4 ( x, y) = cos(θ) = i x i y i | x|| y| (39) 
s 5 ( x, y) = P ( x, y) = i xi ŷi N -1 (40) 
where x and ŷ correspond respectively to the standardized version (e.g. [START_REF] Johnson | Applied multivariate analysis[END_REF][START_REF] Gewers | Principal component analysis: A natural approach to data exploration[END_REF][START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF]) of the components of x and y, taken along those respective vectors.

Observe that the cosine similarity does not take into account the magnitudes of the two compared values, but only the smallest angle θ between then.

It should be kept in mind that the Pearson correlation coefficient s 5 can be strongly influenced by outliers (e.g. [START_REF] Kim | The instability of the Pearson correlation coefficient in the presence of coincidental outliers[END_REF]). In addition, the Pearson correlation will also result biased in case the number of components N of the compared vectors is relatively small. Actually, s 5 will result equal to 1 whenever N = 2.

Figure 7 illustrates the values of s 1 , s 2 , s 3 , s 4 resulting while comparing the vector v = [0, 1] with vectors r(t) = [cos(πt), sin(πt)] for t ∈ [0, 1]. Observe that the latter vectors r(t) are actually versors, with magnitude | r(t)| = 1. As expected, the maximum similarity in all cases has been obtained for t = 0.5, implying v = r(t). . Results for the Pearson correlation coefficient have not been included as a consequence of the vectors being defined in R 2 , therefore resulting in totally biased estimations (N = 2). As expected, the maximum similarity 1 is obtained for t = 0.5. It is interesting to observe the significantly different results obtained, with the cosine similarity resulting in the less strict similarity quantification, followed by the Sørensen-Dice, Jaccard, and coincidence indices. As expected, the most strict quantification is obtained for the coincidence index, which also incorporates verification of the relative internality between the compared vectors.

The results in Figure 7 plainly indicate that each of the four considered similarity indices have substantially distinct action while comparing vectors, with the main difference corresponding to the shape of the obtained curves and their respective dispersion, which can be gauged in terms of their standard deviation. In this respect, the cosine similarity yields the less strict comparison, allowing larger values to be obtained while comparing different vectors. The Sørensen-Dice comes next, followed by the real-valued Jaccard index. As expected, the coincidence index allowed the most strict comparison, corresponding to the narrowest curve in Figure 7, which also presents the sharpest peak among the obtained results.

An important additional aspect regarding the comparison of real-valued vectors consists in the possibility to have the components of each of the two vectors to be compared pre-processed by the statistical transformation known as standardization (e.g. [START_REF] Johnson | Applied multivariate analysis[END_REF][START_REF] Gewers | Principal component analysis: A natural approach to data exploration[END_REF][START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF]). This transformation consists in subtracting from each vector component the global average, and then dividing by the respective standard deviation. As a consequence, the new transformed components will necessarily have null mean and unit standard deviation, while most of their values will be comprised in the interval [-2, 2]. The decision whether to standardize or not depends on each specific problem and dataset.

Function Similarities

The generalization of the similarity indices from vectors to real functions follows directly from the multiset continuous representation [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF].

Given two real-valued functions f (x) and g(x) with shared support S, we immediately have the element-wise indices:

s 1 (f, g, x) = s f g min {s f f, s g g} max {s f f, s g g} (41) 
s 2 (f, g, x) = 2s f g min {s f f, s g g} s f f + s g g (42)

s 3 (f, g, x) = min {s f f, s g g} min {s f f, s g g} s 1 (f, g) (43) 
where f (x) has been abbreviated as f and g(x) has been abbreviated as g.

Observe that these indices are functions of x, being applied locally in independent manner regarding each value of x. In other words, the above elementwise similarity operations are performed on pairs of scalar values f (x) and g(x).

In order to better understand the elementwise similarity operations, let's write the numerator and denominator in Equation 41 as:

n 1 (f, g, x) = s f g min {s f f, s g g} (44) d 1 (f, g, x) = max {s f f, s g g} (45) 
Figure 8 shows the elementwise operations n 1 (f, g), d 1 (f, g), and s 1 (f, g) in the case of f (x) = cos(x) and g(x) = sin(x) within one complete period, i.e. x ∈ [0, 2π]. Observe these two latter functions shown as dashed lines in Figure 8(c). We can observe that n 1 (x, y) corresponds to the signed intersection between the sine and cosine, while d 1 (f, g) is the maximum between the respective absolute values of these two functions. In this case of elementwise comparison between two real values, the Jaccard index can be understood as the ratio between the intersection and union of the two functions at each value of x.

The result s 1 (f, g), provides an effective indication of the elementwise signed similarity between the two considered functions, achieving the maximum value 1 when the two functions are most similar, and minimum value -1 when they are the least similar. As such, the considered similarity index provides a valuable manner for locally comparing functions and signals.

The indices s 1 to s 5 can also be employed to quantify global, or overall, similarity between two functions f (x) and g(x). This can be achieved by taking integrals on their denominator and numerator, i.e. defining respective functionals. Recall that, mathematically speaking, a functional is a map from a function to a scalar value.

The overall similarity between two functions f (x) and g(x) can therefore be quantified in terms of the following indices:

s 1 (f, g) = ´S s f g min {s f f, s g g} dx ´S max {s f f, s g g} dx (46) s 2 (f, g) = 2 ´S s f g min {s f f, s g g} dx ´S [s f f + s g g] dx (47) 
s 3 (f, g) = ´S f g dx ´S (max {s f f, s g g}) 2 dx ( 48 
)
s 4 (f, g) = ´S f g dx ||f || ||g|| ( 49 
)
where ||f || = ´S f 2 dx and ||g|| = ´S g 2 dx are the L2 norms of f (x) and g(x).

Similarity Convolutions and Correlations

Each of the similarity indices generalized to the real space of functions corresponds to a valid functional. Therefore, it is possible to obtain respective versions involving convolutions and correlations. For instance, in the case of s 1 , we have the following respectively associated convolution:

(f * g) s1 [y] = ´S s f g min {s f f (x), s g g(y -x)} dx ´S max {s f f (x), s g g(y -x)} dx (50) 
and cross-correlation:

(f * g) s1 [y] = ´S s f g min {s f f (x), s g g(x -y)} dx ´S max {s f f (x), s g g(x -y)} dx (51)
Observe that, in the case of s 4 , we have that:

(f * g) s4 [y] ∝ (f * g)[y] = ˆS f (x)g(y -x) dx (52) (f * g) s4 [y] ∝ (f * g)[y] = ˆS f (x)g(y -x) dx (53)
which correspond, respectively, to the standard convolution and correlation between two functions f (x) and g(x), which are bilinear binary operations between functions.

Similar expressions to the above convolutions and correlations can be derived for discrete functions and vectors.

In order to illustrate these possibilities, let's consider the two functions illustrated in Figure 9, related to the pattern recognition task known as template matching (e.g. [START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF][START_REF] Schalkoff | Digital Image Processing and Computer Vision[END_REF]). This consists of quantifying the similarity, typically through respective (cross) correlations, between the template along the object function, so that high similarity values indicate possible matchings. Here, f is the object function, and g is the template to be matched. The object f and template g functions to be matched by using correlations between the adopted similarity indices. Observe that only the non-zero portion of g has been taken into account by the similarity indices, as the comparison was understood to take place between this portion of the template g and the whole object function f . The following template matching example assumes both f (x) and g(x) to be represented by respectively discrete functions (uniformly sampled along the domain). This allows us to consider also the Pearson correlation coefficient. Figure 10 depicts the results obtained by respective application, through respective correlations, of the Cosine similarity (a), cross-correlation (b), Pearson correlation coefficient (c), real-valued Sørensen-Dice similarity, (d) real-valued Jaccard similarity (e) and real-valued coincidence index (f).

Several interesting results can be observed. First, we have that the successively narrower and sharper peaks are obtained from cases (a) to (f). Observe that the cosine similarity yielded a result that is very close to the original object function. While the Pearson correlation and Sørensen-Dice index allowed intermediate quantifications of the pairwise similarities, the Jaccard and coincidence indices resulted in particularly narrow and sharp matching peaks. Remarkably, the coincidence correlation led to an even sharper and narrower peak, indicating with enhanced resolution and discriminability the localization of the maximum similarity between template and object. At the same time, the secondary peaks were more substantially reduced, which can be understood as an additional advantage of this approach corresponding to the combi- 

Pattern Recognition

The convolution and correlation operations have extensive use in several areas, especially pattern recognition (e.g. [START_REF] Duda | Pattern Classification[END_REF][START_REF] Koutrombas | Pattern Recognition[END_REF][START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF], image analysis (e.g. [START_REF] Gonzalez | Digital Image Processing[END_REF][START_REF] Schalkoff | Digital Image Processing and Computer Vision[END_REF][START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF]), neuronal networks (e.g. [START_REF] Haykin | Neural Networks[END_REF]) and deep learning (e.g. [START_REF] Schmidhuber | Deep learning in neural networks:an overview[END_REF][START_REF] De Arruda | Learning deep learning. Researchgate[END_REF]), to name but a few possibilities.

In this section, we illustrate the potential of the coincidence correlation with respect to detecting multiple occurrences of an object in an image, a task frequently performed in pattern recognition, optics, image analysis and deep learning. Observe that this operation can be understood as template matching between the template to be found within the object image.

Figure 11 presents the original image, which corresponds to an additive mixture of several patterns corresponding to gaussians in presence of relatively high level of noise. The noise corresponds to making 20% of the image pixels equal to zero, therefore completely losing that respective information. The result of applying the coincidence correlation to the image in Figure 11 is shown in Figure 12. This result is particularly interesting for several reasons. First, we have that the central position of each gaussian has been substantially sharpened. This action can be understood as corresponding to high-pass filtering of the original image. However, at the same time the original small spatial scale noise has virtually disappeared, which corresponds to a low-pass filtering. Therefore, we have that the coincidence correlation effectively implemented a simultaneous combination of these two seemingly opposite operations, which is allowed by the non-bilinear nature of the adopted coincidence index.

Figure 13 depicts the result obtained by thresholding the image in Figure 12. Not only have all original objects been identified, but also their respective positions have been duly recovered in most cases, except for the fact that objects that were too close in the original image have been merged. If necessary, these objects can be separated by using further processing.

Matrix Similarity Products

The product C = AB of a matrix A with dimension A i × A j by another matrix B with dimension B i × B j can be understood in terms of the classic inner product (e.g. [40, 

41]

). More specifically each element C[i, j] of C will be identical to:

C[i, j] = A[i, ], B[, j] (54) 
where A[i, ] stands for the i-th row of matrix A and B[, j] stand for the j-th column of matrix B.

Therefore, the inner product provides a relative measurement of similarity between the rows of matrix A and the columns of matrix B.

In case B is a column vector, the above product becomes a linear transformation, providing the basis for important concepts and methods such as the Fourier (e.g. [START_REF] Brigham | Fast Fourier Transform and its Applications[END_REF][START_REF] Costa | Shape Classification and Analysis: Theory and Practice[END_REF]) and Walsh-Hadamard transform (e.g. [START_REF] Walsh | A closed set of orthogonal functions[END_REF][START_REF] Stoffer | Walsh-Fourier analysis and statistical applications[END_REF][START_REF] Tzafestas | Walsh Functions in Signal and Systems Analysis and Design[END_REF][START_REF] Harmuth | Applications of walsh functions in communications[END_REF][START_REF] Researchgate | Fast Walsh-Hadamard transform[END_REF]), as well as statistical transformations such as the principal component analysis (e.g. [START_REF] Johnson | Applied multivariate analysis[END_REF][START_REF] Gewers | Principal component analysis: A natural approach to data exploration[END_REF][START_REF] Hair | Multivariate Data Analysis[END_REF]) and canonical or linear discriminant analysis (e.g. [START_REF] Hair | Multivariate Data Analysis[END_REF]).

All these transformations can be understood as corresponding to the estimation of similarity coefficients that, given the orthogonal nature of all these matrices, can provide an effective manner for representing and recovering the data in vector B.

In the light of this analogy, it becomes interesting to extend our study of similarity in terms of matrix products and respective spectral properties (e.g. [START_REF] Golub | Matrix Computations[END_REF][START_REF] Horn | Matrix Analysis[END_REF]), which provides the subject for the current section. We focus on the case of having B as a column vector B = B, as the extension of results obtained for this situation extend readily to more general matrices.

Given that any of the similarity functionals studied in this work are analogue to the inner product, though not formally corresponding to respective inner products as a consequence of the non-linearity of the minimum and maximum functions, it is still possible to consider the following analogy:

C[i] = J R (D[i, ], B) (55) 
which is valid in the respective vector or matrix spaces, and can be understood as a Jaccard matrix product. Here, A and B correspond to the two vectors with N components being compared, while D is a N ×N matrix and the i-th row of D, namely D[i, ] corresponds to the vector A right-shifted by i positions in circulant manner. Therefore, D is a row-circulant matrix.

Similarly, we can define the coincidence matrix product as follows:

C[i] = J R (D[i, ], B) I(D[i, ], B) (56) 
We henceforth abbreviate the real-value Jaccard and coincidence similarity matrix products as follows: real-valued Jaccard matrix product:

C = D • B (57) coincidence product: C = D • B (58)
Now, we have the interesting situation that, given that we are not dealing with the standard matrix product decomposable as inner products, but rather with similarity matrix products based on non-bilinear products, the traditional spectral properties of matrices, including the important cases of stochastic and circulant matrices (e.g. [START_REF] Davis | Circulant Matrices[END_REF]), no longer hold.

Thus, it becomes necessary to apply an alternative framework. The situation is particularly challenging because not only the basic 'inner products' are non-bilinear, but also because of the fact that a similarity matrix product is defined with respect to potentially distinct similarity index.

Given that a theoretical analysis is particularly challenging given the involved non-linearities implied by the minimum and maximum functions, we resource to the well-known power methodology for eigenvector determination. Also, it needs to be born in mind that, though we will be for simplicity's sake referring to the similarity matrix products and respective correlations and coefficients by using the standard terminology, the actually correspond to different concepts respective to the studied non-linear 'inner products'.

We start by considering that the matrix D is both rowcirculant (e.g. [START_REF] Golub | Matrix Computations[END_REF][START_REF] Davis | Circulant Matrices[END_REF])corresponding to one of the vectors to be compared.

The application of the power method in this case leads to:

C n = [D • B] n (59)
Observe that the power is not taken in the conventional manner, only meaning that the similarity correlation is iteractively applied as a function composition n times.

Figure 14 depicts the first interactions in the Jaccard (a) and coincidence correlations between the functions in Figure 9.

In both cases, the signals obtained along successive interactions of the Jaccard and coincidence correlation tend to a stable shape, presenting a peak coinciding with the largest match between the two vectors. These converging signals, though with successively decreasing amplitudes, can be understood as a kind of 'eigenvectors' related to each considered correlation interactions. In the case of the Jaccard correlations, however, the obtained 'eigenvector' presents two peaks, one negative corresponding to the maximum matching, and another negative, corresponding to the remainder of the object vector. The maximum between these peaks can be observed to progressively displace from the maximum alignment position. The coincidence 'eigenvector' presents only a gaussian-like peak coinciding precisely with the maximum match between object and template vectors.

At least for the specific considered example, involving a perfectly symmetric template vector, the successive re- 9. The signals obtained at each interaction are shown in tones varying from magenta to cyan. Except for successively decreasing magnitudes, signals with stable shapes are obtained in both situations, which can be considered a kind of 'eigenvector' of the non-linear dynamics implemented by the Jaccard and coincidence interactions. The 'eigenvector' observed for the coincidence correlation is a gaussian-like peak coinciding with the maximum match between object and template in this example. The 'eigenvector' obtained for the Jaccard correlation presents a maximum peak that displaces successively from the maximum match position and also involves a secondary pronounced negative peak.

sults obtained by iterated coincidence correlation resulted more accurate as far as the identification of the best match is concerned. This interesting preliminary result suggests that the incorporation of the interiority index in the coincidence similarity index implies a profound change in the 'spectral' properties of successive iterations, allowing narrower and more accurate results at least in the case of the considered vectors.

Concluding Remarks

The concept of similarity appears recurrently in science and technology, underlying a large number of concepts, operations, and properties in a wide range of fields. The quantification of similarities between mathematical entities also constitute an ubiquitous task in virtually every applied area, including but by no means limited to pattern recognition, signal processing, and machine intelligence, to name but a few cases.

In the present work, we developed a principled approach in which the Kronecker delta function was taken as the prototypical reference for quantifying the similarity between two scalar values, and then developed into more yielding versions involving the operations of minimum, maximum, sum and product, in addition to the sign function, all of which closely related to multiset operations.

Then, relying on recent results regarding the extension of multisets to functions and other mathematical structures [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF], we were able to extend the four signed similarity indices to multisets, vectors, and then functions. The extension to other mathematical structures including scalar and vector fields can also be obtained in analogous manner.

Several important results have been obtained. First, we have that the extensively applied Jaccard index relates directly to the similarity index s 1 , while the index s 4 led to the standard inner product functional and convolution.

Of particular interest is that the similarity functionals recently introduced in [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Comparing cross correlationbased similarities[END_REF] resulted naturally from the here reported developments. For instance, it has been possible to verify that the multiset Jaccard index, when adapted to negative values, corresponds to the functional respective to the described index s 1 . In addition, the addition-based multiset Jaccard index was shown to follow from the index s 1 . The index s 4 was associated to the standard inner product and respective convolution and correlation operations.

The described binary similarity operations can be immediately applied to progressively more complete vector spaces, as illustrated in Figure 15. In each of these cases, the similarity indices can act in elementwise, functional, or convolutional manner. Each of these combinations have respective potential for a wide range theoretical and applied areas.

Two complete application examples of the real-valued Jaccard and coincidence correlation, compared to the traditional cross-correlation, have been described respectively to the template matching of two 1D functions as well as for identifying several patterns in an image in presence of a relatively severe level of noise. These examples well-illustrated the enhanced potential of the coincidence correlation not only for identifying the objects and their respective positions, but also for attenuating secondary matches and minimizing the small scale noise. The concepts, methods, and results reported in this work pave the way to a large number of related developments. Some examples include applications to the several related areas including optics, quantum computing, neuronal networks, control theory, dynamic systems, and deep learning; the consideration of other combinations of the proposed indices, including their three-wise sum and product combinations. Of particular interest is also to apply the coincidence product in order to identify the local, elementwise similarity along two or more functions.

Figure 1 :

 1 Figure 1: The most strict quantification of the similarity between two real values x and y, implemented via a similarity binary operator δx,y that corresponds to the Kronecker delta function. A non-zero result is obtained only in case x = y.

Figure 2 :

 2 Figure 2: Two pairs of values (xa, ya) and (x b , y b) are to be compared in terms of similarity. In the former case, we have that max {xa, ya} = xa and min {xa, ya} = ya, with xa = ya, yielding a respective similarity smaller than one. In the other case, we will also have a similarity smaller than one for similar reasons. Actually, because of the intrinsic symmetry in this case, the two obtained values of s 1 will be identical.

Figure 4 :

 4 Figure 4: The four main situations arising when comparing two values x and y along the real line R. It is often interesting to take into account whether the positions align along the same (a,b) or opposite (c,d) directions.

Figure 5 :

 5 Figure 5: The generalized Kronecker delta function, which results 1 whenever x = y, -1 in case x = -y, and 0 otherwise.

Figure 6 :

 6 Figure 6: The similarity values obtained for the indices s 1 (x, y) and s 2 (x, y) shown as a surface in terms of -1 ≤ x, y ≤ 1. Observe that the obtained surface is smoother for s 2 (compare, for instance, the contrast along the main diagonal).

Figure 7 :

 7 Figure 7: Similarity values s 1 , s 2 , s 3 , s 4 obtained while comparing the vector v = [0, 1] with vectors r(t) = [cos(πt), sin(πt)] for t ∈ [0, 1]. Results for the Pearson correlation coefficient have not been included as a consequence of the vectors being defined in R 2 , therefore resulting in totally biased estimations (N = 2). As expected, the maximum similarity 1 is obtained for t = 0.5. It is interesting to observe the significantly different results obtained, with the cosine similarity resulting in the less strict similarity quantification, followed by the Sørensen-Dice, Jaccard, and coincidence indices. As expected, the most strict quantification is obtained for the coincidence index, which also incorporates verification of the relative internality between the compared vectors.

Figure 8 :

 8 Figure8: The elementwise operations n 1 (f, g, x) (a), d 1 (f, g, x) (b), and s 1 (f, g, x) (c) obtained for a complete period of the sine and cosine functions. Observe how s 1 (f, g, x) express the signed similarity between these two functions.

Figure 9 :

 9 Figure9: The object f and template g functions to be matched by using correlations between the adopted similarity indices. Observe that only the non-zero portion of g has been taken into account by the similarity indices, as the comparison was understood to take place between this portion of the template g and the whole object function f .

Figure 10 :

 10 Figure 10: The results obtained respectively to the object and template functions in Fig. 9 by using cosine similarity (a), crosscorrelation (b), Pearson correlation coefficient (c), real-valued Sørensen-Dice similarity, (d) real-valued Jaccard similarity (e) and real-valued coincidence index (f). Observe the successive sharpening of the obtained maximum similarity peak, as well as the attenuation of the secondary matchings. The coincidence index resulted in the most complete and strict quantification of similarity, reflected in the narrowest and sharpest maximum matching peak.

Figure 11 :

 11 Figure11: Image containing a mixture of gaussians with the same covariance matrix in presence of noise corresponding to making 20% of the original pixels equal to zero. These gaussians, as well as their positions, are to be detected.

Figure 12 :

 12 Figure 12: Result of the coincidence similarity correlation between the image in Fig. 11 and a template corresponding to a single gaussian. Observe the resilience of the coincidence operation to the relatively severe level of the original image, which indicates that the coincidence correlation performs a combination of low-pass (removal of small scale noise) simultaneously with high-pass filtering (sharpening of the peaks).

Figure 13 :

 13 Figure 13: Identification of each gaussian obtained by thresholding the image in Fig. 11. All the original gaussians, as well as their respective positions identified by the white dots, have been recovered with noticeable accuracy.

Figure 14 :

 14 Figure 14: The interacted Jaccard (a) and coincidence (b) correlation considering the same functions as in Figure9. The signals obtained at each interaction are shown in tones varying from magenta to cyan. Except for successively decreasing magnitudes, signals with stable shapes are obtained in both situations, which can be considered a kind of 'eigenvector' of the non-linear dynamics implemented by the Jaccard and coincidence interactions. The 'eigenvector' observed for the coincidence correlation is a gaussian-like peak coinciding with the maximum match between object and template in this example. The 'eigenvector' obtained for the Jaccard correlation presents a maximum peak that displaces successively from the maximum match position and also involves a secondary pronounced negative peak.
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Figure 15 :

 15 Figure15:The proposed similarity binary operations can be applied respectively to several vector spaces in elementwise, functional, or convolutional manner. Each of these combinations have their respective potential for diverse applications in several scientific and technological areas.

  s xy min {s x x, s y y} max {s x x, s y y} (19) s 2 (x, y) = s xy 2 min {s x x, s y y} s x x + s y y
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