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HILBERT SQUARES OF K3 SURFACES AND DEBARRE–VOISIN
VARIETIES

OLIVIER DEBARRE, FRÉDÉRIC HAN, KIERAN O’GRADY, AND CLAIRE VOISIN

Abstract. Debarre–Voisin hyperkähler fourfolds are built from alternating 3-forms on a 10-
dimensional complex vector space, which we call trivectors. They are analogous to the Beauville–
Donagi fourfolds associated with cubic fourfolds. In this article, we study several trivectors whose
associated Debarre–Voisin variety is degenerate, in the sense that it is either reducible or has
excessive dimension. We show that the Debarre–Voisin varieties specialize, along general 1-
parameter degenerations to these trivectors, to varieties isomorphic or birationally isomorphic
to the Hilbert square of a K3 surface.

1. Introduction

Throughout this article, the notation Um, Vm, or Wm means an m-dimensional complex
vector space. Let σ ∈

∧
3V ∨10 be a nonzero alternating 3-form (which we call a trivector). The

Debarre–Voisin variety associated with σ is the scheme

(1) Kσ := {[W6] ∈ Gr(6, V10) | σ|W6 = 0}

whose points are the 6-dimensional vector subspaces of V10 on which σ vanishes identically.

It was proved in [DV] that for σ general, the schemes Kσ, equipped with the polariza-
tion OKσ(1) (of square 22 and divisibility 2; see Section 2.1) induced by the Plücker polarization
on Gr(6, V10), form a locally complete family of smooth polarized hyperkähler fourfolds which are
deformation equivalent to Hilbert squares of K3 surfaces (one says that Kσ is of K3[2]-type). This
was done by proving that when σ specializes to a general element of the discriminant hypersurface
in
∧

3V ∨10 where the Plücker hyperplane section

(2) Xσ := {[U3] ∈ Gr(3, V10) | σ|U3 = 0}

becomes singular, the scheme Kσ becomes singular along a surface but birationally isomorphic
to the Hilbert square of a K3 surface (the fact that Kσ is of K3[2]-type was reproved in [KLSV]
by a different argument still based on the same specialization of σ).

The projective 20-dimensional irreducible GIT quotient

MDV = P(
∧

3V ∨10)// SL(V10)

is a coarse moduli space for trivectors σ. Let F be the quasi-projective 20-dimensional irreducible
period domain for smooth polarized hyperkähler varieties that are deformations of (Kσ,OKσ(1)).
The corresponding period map

q : MDV 99K F

is regular on the open subset of MDV corresponding to points [σ] such that Kσ is a smooth
fourfold. It is known to be dominant (hence generically finite) and was recently shown to be
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birational ([O3]). Consider the Baily–Borel projective compactification F ⊂ F (whose boundary
has dimension 1) and a resolution

(3)

M̃DV

ε
��

q̄
// // F

MDV
q
// F
?�

OO

of the indeterminacies of q, where ε is birational. We define an HLS divisor (for Hassett–
Looijenga–Shah) to be an irreducible hypersurface in F which is the image by q̄ of an exceptional
divisor of ε (that is, whose image in MDV has codimension > 1). These divisors reflect some dif-
ference between the GIT and the Baily–Borel compactifications and there are obviously only
finitely many of them.

The main result of this article is the following (for the definition of the Heegner divisors
D2e ⊂ F , see Section 2.1).

Theorem 1.1. The Heegner divisors D2, D6, D10, and D18 in F are HLS divisors.

This statement puts together the more detailed conclusions of Theorems 1.2, 1.3, 1.4,
and 1.5. These results are in fact more precise: we identify these divisors D2, D6, D10, and D18

with the periods of Hilbert squares of K3 surfaces with a suitable polarization (see Section 1.1
for more details). The singular degenerations of σ discussed above correspond to a hypersurface

in M̃DV mapped by q̄ onto the Heegner divisor D22, which is therefore not an HLS divisor.

The study of this kind of problems has a long history that started with the work of Horikawa
and Shah on polarized K3 surfaces of degree 2 ([Ho, S]) and continued with the work of Hassett,
Looijenga, and Laza on cubic fourfolds ([H, Lo1, Lo2, L1, L2]) and O’Grady on double EPW
sextics ([O1, O2]), which are hyperkähler fourfolds of K3[2]-type with a polarization of square 2
and divisibility 1, associated with Lagrangian subspaces in

∧
3V6.

Let us describe briefly the situation in the cubic fourfold case, which inspired the present
study. One considers hypersurfaces Xf ⊂ P(V6) defined by nonzero cubic polynomials f ∈
Sym3V ∨6 . When f is general, the variety

Ff = {[W2] ∈ Gr(2, V6) | f |W2 = 0}
of lines contained in Xf was shown by Beauville–Donagi in [BD] to be a hyperkähler fourfold of
K3[2]-type, with a (Plücker) polarization of square 6 and divisibility 2. There is again a birational

surjective period map M̃Cub → G which was completely described by Laza. The divisor in M̃Cub

that corresponds to singular cubics Xf maps onto the Heegner divisor D6. The only HLS divisor
is D2 ([H, Lo2, L1]): it is obtained by blowing up, in the GIT moduli space MCub, the semistable
point corresponding to chordal cubics Xf0 ([L1, Section 4.1.1]).

O’Grady also proved that D ′2, D ′′2 , and D4 (in the notation of [DIM, Corollary 6.3]; S′2, S′′2,
and S4 in the notation of [O1]) are HLS divisors in the period domain of double EPW sextics
and conjectures that there are no others (see Section 3.5). They are also obtained by blowing up
points in the GIT moduli space (corresponding to the semistable Lagrangians denoted by Ak, Ah,
and A+ in [O2]).

The HLS divisors in Theorem 1.1 are obtained as follows: while general trivectors in
P(
∧

3V ∨10) have finite stabilizers in SL(V10), we consider instead some special trivectors σ0 with
positive-dimensional stabilizers and we blow up their SL(V10)-orbits in P(

∧
3V ∨10). The stabilizers

along the exceptional divisors of the resulting blown up space for the induced SL(V10)-action are
generically finite, thus producing divisors in the quotient (this is a Kirwan blow up).
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We describe the corresponding Debarre–Voisin varieties Kσ0 . In the simplest cases (divi-
sors D6 and D18), they are still smooth but of dimension greater than 4. There is an excess
vector bundle F of rank dim(Kσ0)− 4 on Kσ0 and the limit of the varieties Kσt under a general
1-parameter degeneration (σt)t∈∆ to σ0 is the zero-locus of a general section of F . In one other
case (divisor D2), the variety Kσ0 is reducible of dimension 4 and the limit of the varieties Kσt is
birationally isomorphic to the Hilbert square of a degree-2 K3 surface; it is also a degree-4 cover
of a nonreduced component of Kσ0 (very much like what happens for chordal cubics Xf0).

As mentioned above, there is a relationship between these constructions and K3 surfaces;
we actually discovered some of these special trivectors and their stabilizers starting from K3
surfaces. As explained in Theorem 3.1, Hilbert squares of general polarized K3 surfaces of fixed
degree 2e appear as limits of Debarre–Voisin varieties for infinitely many values of e, and they

form a hypersurface in M̃DV that maps onto the Heegner divisor D2e. Among these values, the
only ones for which there exist explicit geometric descriptions (Mukai models for polarized K3
surfaces) are 1, 3, 5, 9, 11, and 15 ([Mu2, Mu3, Mu4]). This is how we obtain the divisors
in Theorem 1.1 (the case e = 11 corresponds to the singular degenerations of the trivector σ
mentioned above and does not produce an HLS divisor; our analysis of the case e = 15 is still
incomplete (see Section 1.1.5) and we do not know whether D30 is an HLS divisor).

At this point, one may make a couple of general remarks:

• all known HLS divisors are obtained from blowing up single points in the moduli space;
• all known HLS divisors are Heegner divisors.

We have no general explanation for these remarkable facts.

Additionally, note that HLS divisors are by definition uniruled (since they are obtained as
images of exceptional divisors of blow ups). They may correspond to periods of Hilbert squares
of K3 surfaces of degree 2e only if the corresponding moduli space of polarized K3 surfaces is
uniruled, which, by [GHS1], may only happen for e ≤ 61 (many thanks to an anonymous referee
for making this very interesting remark). Adding in the restrictions on e explained in Section 3,
one finds that only 7 other Heegner divisors can be HLS divisors coming from K3 surfaces
(Remark 3.5). Actually, we expect D2, D6, D10, D18, and D30 to be the only HLS divisors (see
Section 3.5).

We now describe the geometric situations encountered for e ∈ {1, 3, 5, 9, 15}.

1.1. Stabilizers and K3 surfaces. We list here the various special trivectors [σ0] ∈ P(
∧

3V ∨10)
that we consider, their (positive-dimensional) stabilizers for the SL(V10)-action, and the cor-
responding limits of Debarre–Voisin varieties (which are all birationally isomorphic to Hilbert
squares of K3 surfaces with suitable polarizations) along general 1-parameter degenerations to σ0.
In most cases, the associated Plücker hypersurface Xσ0 is singular and the singular locus of Xσ0

gives rise to a component of Kσ0 , as explained in Proposition 4.4(b).

1.1.1. The group SL(3) and K3 surfaces of degree 2 (Section 7). A general degree-2 K3 surface
(S, L) is a double cover of P2 branched along a smooth sextic curve. The Hilbert square S[2] is
birationally isomorphic to the moduli space MS(0, L, 1) of sheaves on S defined in Remark 3.6.

We take V10 := Sym3W3, so that
∧

3V ∨10 is an SL(W3)-representation, and we let σ0 ∈
∧

3V ∨10

be a generator of the 1-dimensional space of SL(W3)-invariants.

The Debarre–Voisin variety Kσ0 is described in Proposition 7.10: it has two 4-dimensional
irreducible components KL and KM and is nonreduced along KL. The Plücker hypersurface Xσ0

is singular along a surface (Proposition 7.4) and the component KL of Kσ0 is obtained from this
surface by the procedure described in Proposition 4.4(b) (see Proposition 7.9(a)).
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Our main result is the following (Theorem 7.22).

Theorem 1.2. Under a general 1-parameter deformation (σt)t∈∆, the Debarre–Voisin four-
folds Kσt specialize, after a finite base change, to a scheme which is isomorphic to MS(0, L, 1),
where S is a general K3 surface of degree 2.

This case is the most difficult: the limit fourfold MS(0, L, 1) does not sit naturally in the
Grassmannian Gr(6, V10) but maps 4-to-1 to it.

The limit on MS(0, L, 1) of the Plücker line bundles on Kσt is the ample line bundle of
square 22 and divisibility 2 described in Table 1. We show that it is globally generated for a
general degree-2 K3 surface S, but not very ample (Remark 3.6).

1.1.2. The group Sp(4) and K3 surfaces of degree 6 (Section 5.1). Let V4 be a 4-dimensional
vector space equipped with a nondegenerate skew-symmetric form ω. The hyperplane V5 ⊂

∧
2V4

defined by ω is endowed with the nondegenerate quadratic form q defined by wedge product, and
SO(V5, q) ' Sp(V4, ω). The form q defines a smooth quadric Q3 ⊂ P(V5) and general degree-6
K3 surfaces are complete intersections of Q3 and a cubic in P(V5).

There is a natural trivector σ0 on the vector space V10 :=
∧

2V5: view elements of V10 as
endomorphisms of V5 which are skew-symmetric with respect to q and define

(4) σ0(a, b, c) = Tr(a ◦ b ◦ c).
The associated Debarre–Voisin variety Kσ0 ⊂ Gr(6, V10) was described by Hivert in [Hi]: it is iso-

morphic to Q
[2]
3 . In fact, the Plücker hypersurface Xσ0 is singular along a copy of Q3 (Lemma 5.1)

and the whole of Kσ0 is obtained from Q3 by the procedure described in Proposition 4.4(b) (see
Theorem 5.2).

The excess bundle analysis shows the following (Theorem 5.5).

Theorem 1.3. Under a general 1-parameter deformation (σt)t∈∆, the Debarre–Voisin four-

folds Kσt specialize to a smooth subscheme of Kσ0 ' Q
[2]
3 which is isomorphic to S[2], where

S ⊂ Q3 is a general degree-6 K3 surface.

The restriction of the Plücker line bundle to S[2] ⊂ Q
[2]
3 ' Kσ0 ⊂ Gr(6, V10) is the ample line

bundle of square 22 and divisibility 2 (see Section 2.1 for the definition of divisibility) described
in Table 1. It is therefore very ample for a general degree-6 K3 surface S.

1.1.3. The group SL(2) and K3 surfaces of degree 10 (Section 6). The subvarietyX ⊂ Gr(2, V ∨5 ) ⊂
P(
∧

2V ∨5 ) defined by a general 3-dimensional space W3 ⊂
∧

2V5 of linear Plücker equations is a
degree-5 Fano threefold. General degree-10 K3 surfaces are quadratic sections of X ([Mu2]).

The spaces V5 and W3 and the variety X carry SL(2)-actions and there is an SL(2)-invariant
decomposition V10 :=

∧
2V5 = V7 ⊕W3. Among the SL(2)-invariant trivectors, there is a natural

one, σ0, defined in Proposition 6.3, and the neutral component of its stabilizer is SL(2).

The Debarre–Voisin Kσ0 has one component K1 which is generically smooth and bira-
tionally isomorphic to X [2]. In fact, the Plücker hypersurface Xσ0 is singular along a copy of the
threefold X and K1 is obtained from X by the procedure described in Proposition 4.4(b) (see
Proposition 6.5).

We obtain the following (Proposition 6.8 and Theorem 6.14).

Theorem 1.4. Under a general 1-parameter deformation (σt)t∈∆, the Debarre–Voisin four-
folds Kσt specialize, after finite base change, to a smooth subscheme of Kσ0 which is isomorphic
to S[2], where S ⊂ X is a general K3 surface of degree 10.
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The limit on S[2] of the Plücker line bundles on Kσt is the ample line bundle of square 22
and divisibility 2 described in Table 1. We show that it is not globally generated.

1.1.4. The group G2 × SL(3) and K3 surfaces of degree 18 (Section 5.2). The group G2 is the
subgroup of GL(V7) leaving a general 3-form α invariant. There is a G2-invariant Fano 5-fold X ⊂
Gr(2, V7) which has index 3, and general K3 surfaces of degree 18 are obtained by intersecting X
with a general 3-dimensional space W3 ⊂

∧
2V ∨7 of linear Plücker equations ([Mu2]).

The vector space V10 := V7 ⊕W3 is acted on diagonally by the group G2 × SL(W3) and we
consider G2× SL(W3)-invariant trivectors σ0 = α+ β, where β spans

∧
3W∨

3 . The corresponding
points [σ0] of P(

∧
3V ∨10) are all in the same SL(V10)-orbit and the corresponding Debarre–Voisin

variety Kσ0 splits as a product of a smooth variety of dimension 8 and of P(W∨
3 ) (Corollary 5.12).

The excess bundle analysis shows the following (Theorem 5.15).

Theorem 1.5. Under a general 1-parameter deformation (σt)t∈∆, the Debarre–Voisin four-
folds Kσt specialize to a smooth subscheme of Kσ0 isomorphic to S[2], where S ⊂ X is a general
K3 surface of degree 18.

The limit on S[2] of the Plücker line bundles on Kσt is the ample line bundle of square 22
and divisibility 2 described in Table 1. It is therefore very ample for a general K3 surface S of
degree 18 (Lemma 5.10).

1.1.5. K3 surfaces of degree 30 (Section 8). This is the last case allowed by the numerical condi-
tions of Section 3.3 where a projective model of a general K3 surface S is known. It corresponds
to the last column of Table 1. However, the current geometric knowledge for those K3 surfaces
(see [Mu3]) is not as thorough as in the previous cases and we were not able to map (nontriv-
ially) S[2] to a Debarre–Voisin variety nor to decide whether D30 is an HLS divisor.

In some cases (divisors D6 and D18), we first constructed a rank-4 vector bundle on S[2]

that defined a rational map S[2] 99K Gr(6, 10) and then found a (nonzero) trivector vanishing on
the image. In Section 8.1, we complete the first step by constructing, for S general K3 surface
of degree 30, a canonical rank-4 vector bundle on S[2] with the same numerical invariants as
the restriction of the tautological quotient bundle of Gr(6, 10) to a Debarre–Voisin variety. We
also obtain a geometric interpretation of the image of the rational map S[2] 99K Gr(6, 10) that it
defines. Such a vector bundle is expected to be unique; it is modular in the sense of [O3].

2. Moduli spaces and period map

2.1. Polarized hyperkähler fourfolds of degree 22 and divisibility 2 and their period
map. Let X be a hyperkähler fourfold of K3[2]-type. The abelian group H2(X,Z) is free abelian
of rank 23 and it carries a nondegenerate integral-valued quadratic form qX (the Beauville–
Bogomolov–Fujiki form) that satisfies

∀α ∈ H2(X,Z)

∫
X

α4 = 3qX(α)2.

The lattice (H2(X,Z), qX) is isomorphic to the lattice

(Λ, qΛ) := U⊕3 ⊕ E8(−1)⊕2 ⊕ I1(−2),

where U is the hyperbolic plane, E8 the unique positive definite even rank-8 unimodular lattice,
and I1(−2) the rank-1 lattice whose generators have square −2.

The divisibility div(α) of a nonzero element α of a lattice (L, qL) is the positive generator of
the subgroup qL(α,L) of Z. There is a unique O(Λ)-orbit of primitive elements h ∈ Λ such that



6 O. DEBARRE, F. HAN, K. O’GRADY, AND C. VOISIN

qΛ(h) = 22 and div(h) = 2 ([GHS2, Corollary 3.7 and Example 3.10]) and we fix one of these
elements h.

We consider pairs (X,H), where X be a hyperkähler fourfold of K3[2]-type and H is an
ample line bundle on X such that qX(H) = 22 and div(H) = 2. It follows from Viehweg’s
work [Vi] that there is a quasi-projective 20-dimensional coarse moduli space M for these pairs
and Apostolov proved in [A] that M is irreducible.

The domain

D(h⊥) := {[α] ∈ P(Λ⊗C) | qΛ(α, α) = qΛ(α, h) = 0, qΛ(α, α) > 0}
has two connected components, both isomorphic to the 20-dimensional bounded symmetric do-
main of type IV associated with the lattice h⊥ ⊂ Λ. It is acted on properly and discontinuously
by the isometry group O(h⊥) and the quotient

F := O(h⊥)\D(h⊥)

is, by Baily–Borel’s theory, an irreducible 20-dimensional quasi-projective variety.

The Torelli theorem takes the following form for our hyperkähler fourfolds ([V], [GHS3,
Theorem 3.14], [M, Theorem 8.4]).

Theorem 2.1 (Verbitsky, Markman). The period map

p : M −→ F

is an (algebraic) open embedding.

Let us describe its image. Given an element v ∈ h⊥ of negative square, we define the
associated Heegner divisor as the image by the quotient map D(h⊥)→ F of the hypersurface

{[α] ∈ D(h⊥) | qΛ(α, v) = 0}.
It is an irreducible algebraic divisor in F that only depends on the even negative integer −2e :=
disc(v⊥) ([DM, Proposition 4.1(2)(c)]). We denote it by D2e; it is nonempty if and only if e is
positive and a square modulo 11 (see the end of the proof of [DM, Proposition 4.1]). The following
result is [DM, Theorem 6.1].

Proposition 2.2 (Debarre–Macr̀ı). The image of the period map p : M ↪→ F is the complement
of the irreducible divisor D22.

2.2. Debarre–Voisin varieties. We now relate this material with the constructions in [DV].
Let V10 be a 10-dimensional vector space. As in (1), one can associate with a nonzero σ ∈

∧
3V ∨10

a subscheme Kσ ⊂ Gr(6, V10) which, for σ general, is a hyperkähler fourfold of K3[2]-type; the
polarization H induced by this embedding then satisfies qKσ(H) = 22 and div(H) = 2.

We defined in the introduction the GIT coarse moduli space MDV = P(
∧

3V ∨10)// SL(V10) for
Debarre–Voisin varieties.

Proposition 2.3. Let [σ] ∈ P(
∧

3V ∨10). If Kσ is smooth of dimension 4, the point [σ] is SL(V10)-
semistable.

Proof. Let P(
∧

3V ∨10)sm ⊂ P(
∧

3V ∨10) be the open subset of points [σ] such that Kσ is smooth of
dimension 4. The map

p̃ : P(
∧

3V ∨10)sm −→ F

that sends [σ] to the period of Kσ is regular. Let [σ] ∈ P(
∧

3V ∨10)sm. Let D be a nonzero effective
divisor on the quasi-projective variety F such that p̃([σ]) /∈ D. The closure of p̃−1(D) in P(

∧
3V ∨10)

is the divisor of a SL(V10)-invariant section of some power of OP(
∧
3V ∨10)(1), which does not vanish

at [σ], hence [σ] is SL(V10)-semistable. �
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There is a modular map

m : MDV 99KM , [σ] 7−→ [Kσ]

which is regular on the open subset M sm
DV ⊂MDV corresponding to points [σ] such that Kσ is a

smooth fourfold. In the diagram (3) from the introduction, the map q is p ◦m.

3. Hilbert squares of K3 surfaces as specializations of Debarre–Voisin
varieties

In this section, we exhibit, in the period domain F for Debarre–Voisin varieties, infinitely
many Heegner divisors whose general points are periods of polarized hyperkähler fourfolds that
are birationally isomorphic to Hilbert squares of polarized K3 surfaces. We will prove in the next
sections that some of these divisors are HLS divisors. The whole section is devoted to the proof
of the following theorem. It is based on the results and techniques of [BM, DM, HT].

Theorem 3.1. In the moduli space M for hyperkähler fourfolds of K3[2]-type with a polarization
of square 22 and divisibility 2, there are countably many irreducible hypersurfaces whose general
points correspond to polarized hyperkähler fourfolds that are birationally isomorphic to Hilbert
squares of polarized K3 surfaces. Among them, we have

• fourfolds that are isomorphic to (MS(0, L, 1), $∗(6L − 5δ)), where (S, L) is a general
polarized K3 surface of degree 2;1

• fourfolds that are isomorphic to (S[2], 2L− (2m+ 1)δ), where (S, L) is a general polarized
K3 surface of degree 2(m2 +m+ 3) (for any m ≥ 0).

In the first case, the periods dominate the Heegner divisor D2. In the second case, the periods
dominate the Heegner divisor D2(m2+m+3).

3.1. The movable cones of Hilbert squares of very general polarized K3 surfaces. Let
(S, L) be a polarized K3 surface with Pic(S) = ZL and L2 = 2e. We have

NS(S[2]) ' ZL⊕ Zδ,

where L is the line bundle on the Hilbert square S[2] induced by L and 2δ is the class of the
exceptional divisor of the Hilbert–Chow morphism S[2] → S(2) (see Section 4.1). One has

qS[2](L) = 2e , qS[2](δ) = −2 , qS[2](L, δ) = 0.

Let (X,H) correspond to an element of M . If there is a birational isomorphism $ : S[2] 99K X,
one can write $∗H = 2bL− aδ, where a and b are positive integers (the coefficient of L is even
because H has divisibility 2). Since qX(H) = 22, they satisfy the quadratic equation

(5) a2 − 4eb2 = −11.

Moreover, the class 2bL− aδ is movable.

The closed movable cone Mov(S[2]) was determined in [BM] (see also [DM, Example 5.3]):
one extremal ray is spanned by L and the other by L − µeδ, where the rational number µe is
determined as follows:

• if e is a perfect square, µe =
√
e;

• if e is not a perfect square, µe = eb1/a1, where (a1, b1) is the minimal positive (integral)
solution of the Pell equation x2 − ey2 = 1.

The next proposition explains for which integers e there is a movable class of square 22 and
divisibility 2 on S[2].

1See Remark 3.6 for the notation.
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Proposition 3.2. Let e be a positive integer such that the equation (5) has a solution and let
(a2, b2) be the minimal positive solution. The numbers e, a, b such that the class 2bL − aδ is
movable on S[2] and of square 22 are precisely the following:

• e = 1 and (a, b) = (5, 3);
• e = 9 and (a, b) = (5, 1);
• e is not a perfect square, b1 is even, and (a, b) is either (a2, b2) or (2eb1b2 − a1a2, a1b2 −

1
2
a2b1) (these pairs are equal if and only if 11 | e);

• e is not a perfect square, b1 is odd, and (a, b) = (a2, b2).

Proof. Assume first that m :=
√
e is an integer. The equation (5) is then

(a− 2bm)(a+ 2bm) = −11,

with a + 2bm > |a − 2bm|, hence a + 2bm = 11 and a − 2bm = −1, so that a = 5 and bm = 3.
The only two possibilities are e = 1 and (a, b) = (5, 3), and e = 9 and (a, b) = (5, 1). In both
cases, one has indeed a/2b <

√
e, hence the class 2bL− aδ is movable.

Assume that e is not a perfect square. Set x2 := a2 + b2

√
e ∈ Z[

√
e] and x̄2 := a2− b2

√
e, so

that x2x̄2 = −11 and 0 < −x̄2 <
√

11 < x2.

We also set x1 := a1 + b1

√
e and x̄1 := a1 − b1

√
e, so that x1x̄1 = 1 and 0 < x̄1 < 1 < x1.

Let (a′1, b
′
1) be the minimal positive solution of the Pell equation x2 − 4ey2 = 1 and set

x′1 := a′1 + b′1
√

4e. If b1 is even, we have x′1 = x1 and b′1 = b1/2. If b1 is odd, we have x′1 = x2
1 and

b′1 = a1b1.

By [N, Theorem 110], all the solutions of the equation (5) are given by ±x2x
′n
1 and ±x̄2x

′n
1 ,

for n ∈ Z. Since x′1 > 1, we have 0 < x2x
′−1
1 < x2. Since x2 corresponds to a minimal solution,

this implies x2x
′−1
1 <

√
11, hence −x̄2x

′
1 >
√

11. By minimality of x2 again, we get −x̄2x
′
1 ≥ x2.

It follows that the positive solutions of the equation (5) correspond to the following increasing
sequence of elements of Z[

√
e]:

(6)
√

11 < x2 ≤ −x̄2x
′
1 < x2x

′
1 ≤ −x̄2x

′2
1 < x2x

′2
1 < · · ·

By [N, Theorem 110] again, we have x2 = −x̄2x
′
1 if and only if 11 | e.

Since the function x 7→ x − 11
x

is increasing on the interval (
√

11,+∞), the corresponding

positive solutions (a, b) have increasing a and b, hence increasing “slopes” a/2b =
√

e
1+ 11

a2
.

We want to know for which of these positive solutions a + b
√

4e the corresponding class
2bL− aδ is movable, that is, satisfies a

2b
≤ µe = eb1

a1
.

Assume first that b1 is even, so that x′1 = x1. The inequality x2 ≤ −x̄2x
′
1 translates into

a2 ≤ −a2a1 + 2eb2b1, hence

(7)
a2

2b2

≤ eb1

a1 + 1
.

The class corresponding to the solution −x̄2x
′
1 = 2eb1b2 − a1a2 + (2a1b2 − a2b1)

√
e is movable if

and only if we have
2eb1b2 − a1a2

2a1b2 − a2b1

≤ eb1

a1
⇐⇒ a1(2eb1b2 − a1a2) ≤ eb1(2a1b2 − a2b1)
⇐⇒ a2(eb2

1 − a2
1) ≤ 0,

which holds since eb2
1−a2

1 = −1. This class is therefore movable, and so is the class corresponding
to the minimal solution since it has smaller slope.
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The class corresponding to the next solution x2x1 = a1a2 + 2eb2b1 + (a2b1 + 2a1b2)
√
e is

movable if and only if we have

a1a2 + 2eb2b1

a2b1 + 2a1b2

≤ eb1

a1
⇐⇒ a1(a1a2 + 2eb2b1) ≤ eb1(a2b1 + 2a1b2)
⇐⇒ a2(a2

1 − eb2
1) ≤ 0,

which does not hold since a2
1 − eb2

1 = 1. This class is therefore not movable.

Assume now that b1 is odd, so that x′1 = x2
1 = 2a2

1−1+2a1b1

√
e. The inequality x2 ≤ −x̄2x

′
1

translates into a2 ≤ 4ea1b1b2 − a2(2a2
1 − 1), hence

(8)
a2

2b2

≤ eb1

a1

,

which means exactly that the class corresponding to the minimal solution x2 = a2 + 2b2

√
e is

movable (and it is on the boundary of the movable cone if and only if 11 | e).
The class corresponding to the next solution −x̄2x

′
1 = (−a2 + 2b2

√
e)(2a2

1− 1 + 2a1b1

√
e) =

−a2(2a2
1 − 1) + 4ea1b1b2 + (2b2(2a2

1 − 1)− 2a1a2b1)
√
e is movable if and only if

−a2(2a2
1 − 1) + 4ea1b1b2

2b2(2a2
1 − 1)− 2a1a2b1

≤ eb1

a1

⇐⇒ −a1a2(2a2
1 − 1) + 4ea2

1b1b2 ≤ 2eb1b2(2a2
1 − 1)− 2ea1a2b

2
1

⇐⇒ 2eb1b2 ≤ a1a2.

It follows that the class is not movable unless there is equality in (8), which happens exactly
when −x̄2x

′
1 = x2. Finally, one checks that the next solution x2x

′
1 never corresponds to a movable

class. �

3.2. The nef cones of Hilbert squares of very general polarized K3 surfaces. Let again
(S, L) be a polarized K3 surface with Pic(S) = ZL and L2 = 2e. The nef cone Nef(S[2]) was
determined in [BM] (see also [DM, Example 5.3]): one extremal ray is spanned by L, and
Nef(S[2]) = Mov(S[2]), unless the equation x2 − 4ey2 = 5 has integral solutions; if the minimal
positive solution of that equation is (a5, b5), the other extremal ray of Nef(S[2]) is then spanned
by L− νeδ, where νe = 2eb5/a5 < µe.

Furthermore, in the latter case, in the decomposition ([HT, Theorem 7])

(9) Mov(S[2]) =
⋃

$ : S[2]
∼
99KX

X hyperkähler

$∗(Nef(X))

into cones which are either equal or have disjoint interiors, there are only two cones (this means

that there is a unique nontrivial birational map $ : S[2] ∼99KX), unless b1 is even and 5 - e, in
which case there are three cones ([De, Example 3.18]).

3.3. Movable and nef classes of square 22 and divisibility 2. We put together the results
of Sections 3.1 and 3.2 and determine all positive integers e ≤ 22 for which there exist movable
or ample classes of square 22 and divisibility 2 on the Hilbert square of a very general polarized
K3 surface of degree 2e.

For that, the quadratic equation (5) needs to have solutions (and we denote by (a2, b2) its
minimal positive solution). Table 1 also indicates the minimal positive solution (a1, b1) of the Pell
equation x2 − ey2 = 1 (which is used to compute the slope µe of the nef cone) and the slope νe
of the ample cone (computed as explained in Section 3.2).
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e 1 3 5 9 11 15

(a1, b1) − (2, 1) (9, 4) − (10, 3) (4, 1)

µe

(slope of movable cone)
1 3/2 20/9 3 33/10 15/4

(a2, b2) (5, 3) (1, 1) (3, 1) (5, 1) (33, 5) (7, 1)

movable classes of

square 22 and div. 2
6L− 5δ 2L− δ

2L− 3δ

6L− 13δ
2L− 5δ 10L− 33δ 2L− 7δ

νe

(slope of ample cone)
2/3 3/2 2 3 22/7 15/4

ample classes of

square 22 and div. 2
− 2L− δ 2L− 3δ 2L− 5δ − 2L− 7δ

Table 1. Movable and nef classes of square 22 and divisibility 2 in S[2] for e ≤ 22

Remark 3.3. When e = 5, the decomposition (9) has two cones and S[2] has a unique non-
trivial birational automorphism. It is an involution $ which was described geometrically in [De,
Proposition 4.15, Example 4.16]. One has $∗(2L − 3δ) = 6L − 13δ and S[2] has no nontrivial
hyperkähler birational models.

Remark 3.4. A consequence of Proposition 3.2 is that there are always one or two movable
classes of square 22 and divisibility 2 as soon as the equation (5) has a solution. As Table 1
shows, it can happen that some of these classes are not ample. It can also happen that both of
these classes are ample (this is the case when e = 45).

Remark 3.5. We mentioned in the introduction that HLS divisors coming from polarized K3
surfaces of degree 2e may only occur if the corresponding moduli space of polarized K3 surfaces is
uniruled. This may only happen for e ∈ {1, 2, . . . , 45, 47, 48, 49, 51, 53, 55, 56, 59, 61} by [GHS1].
One can continue Table 1 for those values of e and find that only D46, D54, D66, D90, D94, D106,
and D118 may be HLS divisors coming from polarized K3 surfaces.

3.4. Proof of Theorem 3.1. Let again (S, L) be a polarized K3 surface with Pic(S) = ZL
and L2 = 2e.

When e = 1, the decomposition (9) has two cones and S[2] has a unique nontrivial hy-
perkähler birational model; it is the moduli space XS := MS(0, L, 1) of L-semistable pure sheaves
on S with Mukai vector (0, L, 1). As we see from Table 1, the square-22 class H := 6L − 5δ is
ample on XS. The pair (XS, H) therefore defines an element of the moduli space M and this
proves the first item of the theorem.

Assume now e = m2 +m+3, where m is a nonnegative integer, so that (a2, b2) = (2m+1, 1).
By Proposition 3.2, the class 2L−(2m+1)δ is always movable. One checks that its slope (2m+1)/2
is always smaller than the slope νe of the nef cone, hence this class is in fact always ample. This
proves the second item of the theorem.

Finally, in the general case, the orthogonal of NS(S[2]) in the lattice Λ is isomorphic to
the orthogonal of L in the (unimodular) K3 lattice H2(S,Z). Its discriminant is therefore −2e
and, whenever H is an ample class of of square 22 and divisibility 2, the period of (S[2], H) is
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a general point of the Heegner divisor D2e. Note also that although we only worked with very
general polarized K3 surfaces, ampleness being an open condition still holds when S is a general
polarized K3 surface. This finishes the proof of the theorem.

Remark 3.6. Going back to the case e = 1 with the notation introduced in the proof above,
a general element of XS corresponds to a sheaf ι∗ξ, where C ∈ |L|, the map ι : C ↪→ S is the
inclusion, and ξ is a degree-2 invertible sheaf on C ([Mu1, Example 0.6]). The birational map

$ : S[2] ∼99KXS takes a general Z ∈ S[2] to the sheaf ι∗OC(Z), where C is the unique element
of |L| that contains Z. It is the Mukai flop of S[2] along the image of the map P2 ↪→ S[2] induced
by the canonical double cover π : S → P2.

The line bundle L − δ is base-point free on XS and defines the Lagrangian fibration
f : XS → P2∨ that takes the class in XS of a sheaf on S to its support. The line bundle 3L− 2δ
is base-point free and not ample on both S[2] and XS ([De, Exercise 3.13], [vD, Lemma 2.1.12]).
The ample line bundle H = 6L − 5δ is therefore also base-point free on XS. It restricts to a
general fiber F = Pic2(C) of f (where C ∈ |L|) as L|F , and this is twice the canonical principal
polarization on F . In particular, the morphism that H defines factors through the involution
of XS induced by the involution of S attached to π and H is not very ample.

Remark 3.7. When σ ∈
∧

3V ∨10 is a general trivector such that the hypersurface Xσ is singu-
lar, the variety Kσ becomes singular, but, with its Plücker line bundle, birationally isomorphic
to (S[2], 10L − 33δ), where (S, L) is a general polarized K3 surface of degree 22 ([DV, Proposi-
tion 3.4]). As indicated in Table 1 above, the line bundle 10L − 33δ is on the boundary of the
movable cone of S[2]; it defines the birational map S[2] 99K Kσ ⊂ Gr(6, V10) ⊂ P(

∧
6V10). The

corresponding “periods” cover the Heegner divisor D22.

3.5. Vectors of minimal norm and HLS divisors. The Heegner divisor D2e was defined in
Section 2.1 starting from a primitive v ∈ h⊥ of negative square. The relation between e and v
was worked out at the end of the proof of [DM, Proposition 4.1]:

• either 11 | e, v2 = −2e/11, and v has divisibility 1 in h⊥;
• or 11 - e, v2 = −22e, and v has divisibility 11 in h⊥.

The discriminant group D(h⊥) is isomorphic to Z/11Z. In the first case, one has v∗ := v/ div(v) =
0 in D(h⊥); in the second case, v∗ is a ∈ Z/11Z, where a2 ≡ e (mod 11) (recall that v and −v
define the same Heegner divisor).

Let us say that a vector v ∈ h⊥ with divisibility > 1 (that is, such that v∗ 6= 0) and negative
square has minimal norm if −w2 ≥ −v2 for all vectors w ∈ h⊥ with v∗ = w∗ and w2 < 0. For each
nonzero class a ∈ Z/11Z, one can work out the vectors v with minimal norm such that v∗ = a
(by Eichler’s lemma, they form a single O(h⊥)-orbit, characterized by a and v2). We obtain the
following table (if v has minimal norm and v∗ = a, then −v has minimal norm and (−v)∗ = −a).

a ±1 ±2 ±3 ±4 ±5

e = −v2/22 1 15 9 5 3

Table 2.

The values of e that appear in this table are exactly those for which we prove that the
Heegner divisor D2e is an HLS divisor. They are also the five smallest values of e for which a
general element of D2e comes from the Hilbert square of a K3 surface (see Table 1). Of course,
there might be other HLS divisors which we have not found, but, as mentioned in the introduction,
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in the case of cubic fourfolds, there is a unique HLS divisor and it corresponds to the unique pair
of orbits of vectors with minimal norm (the discriminant group is Z/3Z in this case); in the case
of double EPW sextics, there are three known HLS divisors, and they correspond to the three
orbits of vectors with minimal norm (the discriminant group is (Z/2Z)2 in this case).

4. Preliminary results

We collect in this section a few results that will be used repeatedly in the rest of the article.

4.1. Tautological bundles on Hilbert squares. Let X be a smooth projective variety. Con-

sider the blow up τ : X̃ ×X −→ X ×X of the diagonal and its restriction τE : E → X to its
exceptional divisor E. The (smooth projective) Hilbert square of X is the quotient

p : X̃ ×X −→ X [2]

by the lift ι of the involution that exchanges the two factors. It is simply ramified along E and

there is a class δ ∈ Pic(X [2]) such that p∗δ = E. We will use the composed maps qi : X̃ ×X
τ−−→

X ×X pri−−→ X.

Let F be a vector bundle of rank r on X. We write F �F := q∗1F ⊕ q∗2F and F �F :=

q∗1F⊗q∗2F ; they are vector bundles on X̃ ×X of respective ranks 2r and r2. If L is an invertible
sheaf on X, the invertible sheaf L �L is ι-invariant and descends to an invertible sheaf on X [2]

that we still denote by L . This gives an injective group morphism

(10) Pic(X)⊕ Z −→ Pic(X [2]), (L ,m) 7−→ L +mδ.

The tautological bundle
TF := p∗(q

∗
1F )

is locally free of rank 2r on X [2] and there is an exact sequence ([D1, prop. 2.3], [W, (3)])

0→ p∗TF → F �F → τ ∗EF → 0,

of sheaves on X̃ ×X. In the notation of (10), we have

(11) det(TF ) = det(F )− rδ
and there is an isomorphism

H0(X [2],TF ) ∼−→H0(X,F ).

Remark 4.1. When X ⊂ P(V ), there is a morphism f : X [2] → Gr(2, V ) that sends a length-2
subscheme of X to the projective line that it spans in P(V ). The rank-2 vector bundle TOX(1) is
then the pullback by f of the tautological subbundle S2 on Gr(2, V ). It is in particular generated
by global sections.

We now present an analogous construction that will be used in Section 6. There is a surjective
morphism

ev+ : F �F −→ τ ∗E Sym2F

obtained by evaluating along the exceptional divisor E and then projecting onto the symmetric
part of (F �F )|E = τ ∗E(F ⊗F ).

Lemma 4.2. There is a locally free sheaf KF or rank r2 on X [2] and an exact sequence

(12) 0→ p∗KF → F �F
ev+

−−−→ τ ∗E Sym2F → 0.

Moreover, det(KF ) = r det(F )− 1
2
r(r + 1)δ and H0(X [2],KF ) '

∧
2H0(X,F ).



HILBERT SQUARES OF K3 SURFACES AND DEBARRE–VOISIN VARIETIES 13

Proof. Let K̃F be the kernel of ev+. It is locally free on X̃ ×X and we need to show that it
descends to a vector bundle on X [2]. For that, it is enough to prove that the involution ι on

X̃ ×X lifts to an involution ι̃ on K̃F that acts by − Id on K̃F |E.

The statement is local over the diagonal of X. We can thus assume that F is trivial on X
with basis (s1, . . . , sr) and that we have local coordinates x1, . . . , xn on X near O ∈ X. On X×X,
we have coordinates x1, . . . , xn, y1, . . . , yn and the bundle F �F has basis (si⊗ sj)1≤i,j≤r, where
(si ⊗ sj)(x1, . . . , xn, y1, . . . , yn) = si(x1, . . . , xn)sj(y1, . . . , yn). The involution ι̃ on F �F maps
si ⊗ sj to sj ⊗ si.

Consider a point in X [2] over (O,O). Without loss of generality, we can assume that it

corresponds to the tangent vector ∂
∂x1

. At the corresponding point of the blow up X̃ ×X, there
are then local coordinates x̃1, . . . , x̃n, ỹ1, u2, . . . , un in which the morphism τ is given by

τ ∗xi = x̃i, τ ∗y1 = ỹ1, τ ∗(yi − xi) = ui(ỹ1 − x̃1) for i ≥ 2.

The equation of the exceptional divisor E is then e := ỹ1 − x̃1 and the involution on X̃ ×X is
given by

ι∗x̃1 = ỹ1, ι∗x̃i = x̃i + ui(ỹ1 − x̃1), ι∗ui = ui for i ≥ 2,

and satisfies ι∗e = −e. The bundle K̃F is thus locally generated by the sections

si ⊗ sj − sj ⊗ si, e(si ⊗ sj + sj ⊗ si),

for all i ≤ j. This shows that ι̃ acts by − Id on K̃F |E.

The vector bundle K̃F therefore descends to a vector bundle KF on X [2] whose determinant
can be computed from the exact sequence (12).

Going back to the global situation, we see that the space of ι̃-antiinvariant sections of

F �F on X̃ ×X that are sections of K̃F is
∧

2H0(X,F ). These sections correspond exactly
to the sections of KF on X [2]. This proves the lemma. �

4.2. Zero-loci of excessive dimensions and excess formula. We describe in a general con-
text an excess computation that we will use in the proofs of Theorems 5.5, 5.15, and 6.14. Let M
be a smooth variety of dimension n, let E be a vector bundle of rank r on M , and let σ0 be a
section of E , with zero-locus Z ⊂M . The differential of σ0 defines a morphism dσ0 : TM |Z → E |Z .
If Z is smooth, of codimension s ≤ r in M , the kernel of dσ0 is TZ and we define the excess
bundle F to be its cokernel. It has rank r− s on Z and is isomorphic to the quotient E |Z/NZ/M .

Assume now that E is generated by global sections and let (σt)t∈∆ be a general 1-parameter
deformation of σ0. For t ∈ ∆ general, the zero-locus Zt of the section σt is smooth of pure
codimension r or empty. The bundle F , as a quotient of E |Z , is also generated by its sections
and the zero-locus of the section σ′ defined as the image of ∂σt

∂t

∣∣
t=0
∈ H0(M,E ) in H0(Z,F ) is

smooth of pure codimension r − s in Z or empty.

Consider the closed subset

(13) W = {(x, t) ∈M ×∆ | σt(x) = 0}.
The general fibers of the second projection π : W → ∆ are smooth of pure dimension n − r or
empty, and the central fiber is Z. Let W 0 be the union of the components of W that dominate ∆
and assume that it is nonempty, hence of pure dimension n + 1 − r. The central fiber of the
restricted map π0 : W 0 → ∆ is contained in Z.

Proposition 4.3. For a general 1-parameter deformation (σt)t∈∆, the map π0 : W 0 → ∆ is
smooth and its central fiber is the zero-locus of σ′ in Z.
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Proof. We view the family (σt)t∈∆ of sections of E as a section σ̃ of the vector bundle Ẽ := pr∗M E

on M ×∆, defining W . We can write σ̃ = σ̃0 + tσ̃′ + O(t2) as sections of Ẽ , where σ̃0 = pr∗M σ0

and

(14) σ̃′|M×0 =
∂σt
∂t

∣∣∣
t=0
.

Along Z × {0} ⊂ W , we have

(15) dσ̃ = dσ0 + σ̃′dt : TM×∆|Z×{0} −→ Ẽ |Z×{0}.

Let z ∈ Z be a point where σ′ does not vanish. We deduce from (14) and (15) that Z × {0}
and W coincide schematically around (z, 0). Indeed, as Z × {0} is smooth and contained in W ,
this is equivalent to saying that their Zariski tangent spaces coincide. If they do not, since Z×{0}
is the fiber of W at 0, some tangent vector at W at 0 is of the type (v, ∂

∂t
). By (15), we have

dσ0,z(v) + σ̃′(z) = 0, so that σ̃′(z) belongs to Im(dσ0,z). By (14), this means that the image σ′(z)
of ∂σt

∂t

∣∣
t=0

(z) vanishes in F , contradiction.

We thus proved that the central fiber of W 0 → ∆ is contained set-theoretically in the
zero-locus Z0 of σ′. To prove that the inclusion is scheme-theoretic, we proceed as follows. Since
Z ⊂M is smooth of codimension s, we can trivialize E locally along Z in such a way that in the
corresponding decomposition σ = (σ1, . . . , σr), the s first functions have independent differentials,
hence define Z ⊂M . We can write σ̃ = (σ̃1, . . . , σ̃r) and replace M×∆ by the vanishing locus M ′

of (σ̃1, . . . , σ̃s) which is smooth of codimension s in M ×∆ and smooth over ∆. The central fiber
of the restricted map π′ : M ′ → ∆ is Z (or rather the relevant open set of Z), which means that
the section σ̃|M ′ vanishes along its central fiber. We then have

(16) σ̃|M ′ = tσ̃′|M ′ ,

where σ̃′|M ′ is the projection of σ̃′|M ′ onto the r−s remaining components of E . The decomposition
of W into irreducible components is (near the given point of Z)

W = M ′
0 ∪ {σ̃′|M ′ = 0},

so that W 0 is locally the zero-locus of the section σ̃′|M ′ . Finally, we observe that the restriction

to Z ⊂M ′ of the locally defined section σ̃′|M ′ is nothing but σ′. As we assumed that σ′ is general,
hence transverse, it follows that W 0 is smooth of codimension r− s in M ′, with central fiber the
zero-locus of σ′. �

4.3. Geometry of singular trivectors. Given a nonzero trivector σ ∈
∧

3V ∨10, we relate singu-
lar points on the hypersurface Xσ to points on the Debarre–Voisin variety Kσ (see (2) and (1)
for definitions). This geometric observation will allow us to describe, for the degenerate trivec-
tors σ0 considered in the next sections, the Debarre-Voisin varieties (or one of their irreducible
components), as Hilbert squares of subvarieties of Sing(Xσ0).

Proposition 4.4. Let σ ∈
∧

3V ∨10 be a nonzero trivector and let [U3] be a singular point of the
hypersurface Xσ ⊂ Gr(3, V10).

(a) The variety ΣU3 := {[W6] ∈ Kσ | W6 ⊃ U3} is nonempty of dimension everywhere at least 2
and for all [W6] ∈ ΣU3, one has dim(TKσ ,[W6]) > 4. In particular, if Kσ has (expected) dimension 4
at [W6], it is singular at that point.

(b) If [U ′3] is another singular point of Xσ such that W6 := U3+U ′3 has dimension 6, the point [W6]
is in Kσ.

Proof. Let us prove (a). Let [U3] ∈ Sing(Xσ) and let [W6] ∈ ΣU3 . We will show that the differen-
tial dσ̃ of the section σ̃ of

∧
3E6 defining Kσ does not have maximal rank at [W6].
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As explained in the proof of [DV, Proposition 3.1], this differential

dσ̃ : TGr(6,V10),[W6] = Hom(W6, V10/W6) −→
∧

3W∨
6

maps u ∈ Hom(W6, V10/W6) to the 3-form

dσ̃(u)(w1, w2, w3) = σ(u(w1), w2, w3) + σ(w1, u(w2), w3) + σ(w1, w2, u(w3)).

Since [U3] is singular on Xσ, the trivector σ vanishes on
∧

2U3 ∧ V10 ([DV, Proposition 3.1]),
hence dσ̃(u) vanishes on

∧
3U3. The composite

(17) Hom(W6, V10/W6)
dσ̃−−→

∧
3W∨

6 →
∧

3U∨3

is therefore zero, hence dσ̃ does not have maximal rank.

It remains to prove that the variety ΣU3 is nonempty of dimension everywhere ≥ 2. This
follows from the fact that it is defined in the smooth 12-dimensional variety

{[W6] ∈ Gr(6, V10) | W6 ⊃ U3} ' Gr(3, V10/U3)

as the zero-locus of a section of the rank-10 vector bundle (U∨3 ⊗
∧

2E3)⊕
∧

3E3, whose top Chern
class is nonzero.

Let us prove (b). Since [U3] and [U ′3] are singular points of Xσ, the trivector σ vanishes on∧
2U3 ∧V10 and

∧
2U ′3 ∧V10, hence also on

∧
3(U3 +U ′3). In particular, if U3 +U ′3 has dimension 6,

it defines a point of Kσ. �

The proof above also gives the following information which will be useful when we compute
the excess bundles of Section 4.2 in our specific situations.

Lemma 4.5. In Proposition 4.4(a), the restriction map
∧

3W∨
6 �

∧
3U∨3 vanishes on Im(dσ̃).

In Proposition 4.4(b), the restriction map
∧

3W∨
6 �

∧
3U∨3 ⊕

∧
3U ′∨3 vanishes on Im(dσ̃).

Remark 4.6. In Sections 5.1 and 6.2, we will work with a generically smooth component K0 of a
Debarre–Voisin variety Kσ0 of excessive dimension 6, so that the image of dσ̃0 has codimension 2
along its smooth locus. In each case, we will see that a general point of K0 is of the form [U3⊕U ′3],
with [U3], [U ′3] in some smooth subvariety W of Sing(Xσ0), so that there is a rational dominant
map

f : W [2] 99K K0

([U3], [U ′3]) 7−→ [U3 + U ′3]

(see Proposition 4.4(b)). Lemma 4.5 then tells us that the image of dσ̃0 vanishes in the two-
dimensional space

∧
3U∨3 ⊕

∧
3U ′∨3 . This identifies, on a Zariski open subset of W [2], the pullback

by f of the excess bundle on K0 with the tautological bundle TOW (1), where OW (1) is the Plücker
line bundle on W ⊂ Gr(3, V10). By Remark 4.1, it is generated by its global sections.

5. The HLS divisors D6 and D18

We describe in this section two polystable (semistable with closed orbit in the semistable
locus) trivectors in the moduli space MDV = P(

∧
3V ∨10)// SL(V10) whose total images2 by the

moduli map
m : MDV 99KM

are the hypersurfaces in M whose general points are pairs (S[2], 2L−δ), where (S, L) is a general
polarized K3 surface of degree 6 (resp. pairs (S[2], 2L − 5δ), where (S, L) is a general polarized

2The total image of a point p ∈ X by a rational map f : X 99K Y is the projection in Y of the inverse image
of p in Γ, where Γ ⊂ X × Y is the (closure) of the graph of f .
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K3 surface of degree 18) (see Table 1). As explained in Section 3, their total images by the
composition

p ◦m : MDV 99K F

are therefore the Heegner divisors D6 (resp. D18). A common feature of these two specific trivec-
tors σ0, which makes the specialization analysis quite easy, is that the corresponding Debarre–
Voisin varieties Kσ0 are smooth but of larger-than-expected dimension. The limit of the Debarre–
Voisin varieties along a 1-parameter degeneration to σ0 is then a smooth fourfold obtained as
the zero-locus of a general section of the excess bundle on Kσ0 associated with this situation (see
Section 4.2).

5.1. The HLS divisor D6. We construct a trivector σ0 whose Debarre–Voisin variety Kσ0 is
smooth but has excessive dimension 6. The neutral component of the stabilizer of σ0 is Sp(4) and
the point [σ0] of P(

∧
3V ∨10) is polystable for the SL(V10)-action (Proposition 5.3). The total image

in F of the point [σ0] is the Heegner divisor D6. The main result of this section is Theorem 5.5.

5.1.1. The Sp(4)-invariant trivector. Let V4 be a 4-dimensional vector space equipped with a
symplectic form ω and let V5 ⊂

∧
2V4 be the hyperplane defined by ω, endowed with the non-

degenerate quadratic form q defined by q(x, y) = (ω ∧ ω)(x ∧ y). The form q defines a smooth
quadric Q3 ⊂ P(V5).

The 10-dimensional vector space V10 :=
∧

2V5 ' Sym2V4 can be identified with the space of
endomorphisms of V5 which are skew-symmetric with respect to q and we define a trivector σ0

on V10 as in (4) by σ0(a, b, c) = Tr(a ◦ b ◦ c). It is invariant for the canonical action of the group
Sp(V4, ω) = SO(V5, q) on

∧
3V ∨10.

This is a particular case of a general situation studied by Hivert, who proved in partic-
ular that the Debarre–Voisin variety Kσ0 is smooth of dimension 6 ([Hi, Definition 1.2 and
Theorem 4.1]). He moreover gave a very concrete description of this variety. We will use the
hypersurface Xσ0 ⊂ Gr(3, V10) defined in (2).

Proposition 5.1. (a) The image of the morphism

j : Q3 −→ Gr(3, V10)

x 7−→ [x ∧ x⊥q ]
is contained in the singular locus of the hypersurface Xσ0 ⊂ Gr(3, V10).

(b) The morphism j is an embedding and j∗OGr(3,V10)(1) ' OQ3(3).

Proof. Let x ∈ Q3. If z ∈ x⊥q , the skew-symmetric endomorphism az of V5 associated with x ∧ z
is

∀u ∈ V5 az(u) = q(x, u)z − q(z, u)x,

and thus, if z, z′ ∈ x⊥q , we have

az′ ◦ az(u) = q(x, u)q(x, z)z′ − q(z, u)q(x, x)z′ − q(x, u)q(z′, z)x+ q(z, u)q(z′, x)x

= −q(x, u)q(z′, z)x,

which is symmetric in z and z′, proving that az and az′ commute. The endomorphism az′ ◦ az is
then symmetric, hence Tr(az′ ◦ az ◦ c) = 0 for any skew-symmetric endomorphism c ∈ V10. By
[DV, Proposition 3.1], this implies item (a).

We now prove (b). The morphism j is injective because x⊥q is the tangent space to Q3 at [x]
and this hyperplane is tangent only at [x]. Since j is O(V5, q)-equivariant, it is an embedding.
Consider now the exact sequence

0→ K → V5 ⊗ OQ3

q−→ OQ3(1)→ 0



HILBERT SQUARES OF K3 SURFACES AND DEBARRE–VOISIN VARIETIES 17

defining the rank-4 vector bundle K ' ΩP(V5)(1)|Q3 with fiber x⊥q at [x] and the exact sequence

0→ OQ3(−2)→ K ⊗ OQ3(−1)
∧−−→ j∗S3 → 0,

which implies j∗S3 ' ΩQ3 . We obtain the desired isomorphism j∗OGr(3,V10)(1) ' OQ3(3) by taking
determinants. �

By Propositions 4.4 and 5.1, we have a rational map f : Q
[2]
3 99K Kσ0 which is Sp(4)-

equivariant. The following result is [Hi, Theorem 6.3].

Theorem 5.2 (Hivert). The map f : Q
[2]
3 → Kσ0 is an isomorphism.

Proof. Any point in Q
[2]
3 spans a line in P(V5), hence defines an element of Gr(2, V5). The corre-

sponding morphism ε : Q
[2]
3 → Gr(2, V5) has a rational inverse: the intersection of a line in P(V5)

with Q3 is a subscheme of length 2 of Q3, except when the line is contained in Q3. The mor-
phism ε is therefore the blow up of the scheme of lines contained in Q3 (which is the image of
the Veronese embedding v2 : P(V4) ↪→ P(Sym2V4) = P(

∧
2V5); see [Hi, Section 6.2]).

Hivert moreover proved that the linear system |Iv2(P(V4))(3)| embeds Q
[2]
3 into the linear

span of Kσ0 in the Plücker embedding of Gr(6, V10) and that its image coincides with Kσ0 . �

5.1.2. Orbit and stabilizer. The decomposition of
∧

3V ∨10 into irreducible Sp(4)-representations is

(18)
∧

3V ∨10 = V4ω1 ⊕ V3ω2 ⊕ V2ω1+ω2 ⊕ V2ω2 ⊕ Vω2 ⊕C,

where Va1ω1+a2ω2 denotes the irreducible representation of Sp(4) with highest weight a1ω1 +a2ω2,
where ω1 and ω2 are the fundamental weights ([Hi, Section 6.2], [B]). The last term is the space
of Sp(4)-invariants; it is generated by our trivector σ0 defined in (4). The first term is Sym4V4

and the second term is H0(Q3,OQ3(3)). Since sp(4) = Sym2V4 = V2ω1 and

End(V10) = V4ω1 ⊕ V2ω1 ⊕ V2ω1+ω2 ⊕ V2ω2 ⊕ Vω2 ⊕C,

there is an exact sequence

0→ sp(4)→ End(V10)→
∧

3V ∨10 → H0(Q3,OQ3(3))→ 0.

We prove that the tangent space to the stabilizer of σ0 is sp(4), hence the normal space to the
GL(V10)-orbit of σ0 is H0(Q3,OQ3(3)).

Proposition 5.3. The neutral component of the stabilizer of σ0 for the SL(V10)-action is Sp(V4) =
SO(V5) and the point [σ0] of P(

∧
3V ∨10) is polystable for the SL(V10)-action.

Proof. The neutral component of the stabilizer acts on the Debarre–Voisin variety Kσ0 , which

is isomorphic to Q
[2]
3 . Since it is connected, it acts trivially on the Néron–Severi group, hence

preserves the exceptional divisor of the Hilbert–Chow morphism Q
[2]
3 → Q

(2)
3 . It therefore acts

on Q
(2)
3 , hence on Q3. It is therefore in SO(V5).

To show that [σ0] is polystable, we will use a result of Luna. By Proposition 5.4 below, the
stabilizer SO(V5) has finite index in its normalizer in SL(V10). By [Lu, Corollaire 3] (applied to
the group SL(V10) acting on

∧
3V ∨10), the orbit of σ0 is closed in

∧
3V ∨10, hence [σ0] is polystable. �

We prove the classical result used in the proof above.

Proposition 5.4. Let G be a semisimple algebraic group with a faithful irreducible representation
G ↪→ SL(V ). The group G has finite index in its normalizer in SL(V ).
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Proof. According to the discussion after [Sp, Lemma 16.3.8], the group of outer automorphisms
of G is finite. The kernel of the action N := NSL(V )(G) → Aut(G) of the normalizer by conju-
gation is contained in the centralizer C := CSL(V )(G) and the kernel of the induced morphism
N/G→ Out(G) is contained in the image of C in N/G. It is therefore sufficient to show that C is
a finite group. But this follows from Schur’s lemma: any eigenspace of an element of C is stable
by G, hence equal to V . Therefore, C consists of homotheties, hence is finite. �

5.1.3. Degenerations and excess bundles. Consider a general 1-parameter deformation (σt)t∈∆.
The derivative ∂σt

∂t

∣∣
t=0

provides, by the discussion in Section 5.1.2, a general section of OQ3(3)
which defines a general K3 surface S ⊂ Q3 ⊂ P(V5) of degree 6.

Theorem 5.5. Let (σt)t∈∆ be a general 1-parameter deformation. Let K → ∆ be the asso-
ciated family of Debarre–Voisin varieties and let K 0 be the irreducible component of K that
dominates ∆. Then K 0 → ∆ is smooth and it central fiber is isomorphic to S[2], embedded

in Gr(6, 10) as S[2] ⊂ Q
[2]
3 ' Kσ0 ⊂ Gr(6, V10), where S is a general K3 surface of degree 6.

The proof of the theorem will be based on the excess computation presented in Section 4.2:
we want to apply Proposition 4.3 with M = Gr(6,

∧
2V5) and E =

∧
3E6, where E6 is the dual of

the tautological rank-6 subbundle on Gr(6,
∧

2V5). For this, we need to identify the rank-2 excess

bundle F on Kσ0 ' Q
[2]
3 . We use the notation of Section 4.1.

Proposition 5.6. The excess bundle F on Q
[2]
3 is isomorphic to the tautological bundle TOQ3

(3).

Proof. By definition, F is a rank 2-quotient bundle of
∧

3E6|Q[2]
3

, hence of
∧

3V ∨10 ⊗ O
Q

[2]
3

.

Since j is an embedding (Proposition 5.1), the rank-2 vector bundle TOQ3
(3) is generated by

the space
∧

3V ∨10 of global sections by Remark 4.6. More precisely, on the dense open set U ⊂ Q
[2]
3

of pairs {x, y} such that (x ∧ x⊥q) ∩ (y ∧ y⊥q) = {0}, the evaluation map

(19)
∧

3V ∨10 ⊗ O
Q

[2]
3
−→ TL⊗3

factors through the composite map

(20)
∧

3V ∨10 ⊗ O
Q

[2]
3
→
∧

3E6|Q[2]
3
→ F .

The bundles F and TL⊗3 therefore coincide as quotients of
∧

3V ∨10⊗O
Q

[2]
3

: the morphisms Q
[2]
3 →

Gr(2,
∧

3V ∨10) that they define coincide on the dense set U , hence they are the same. �

Proof of Theorem 5.5. We apply Proposition 4.3: by Theorem 5.2, the locus Z = Kσ0 is smooth

of codimension 18 in M , isomorphic to Q
[2]
3 , and, by Proposition 5.6, the rank-2 excess bundle F

on Q
[2]
3 is isomorphic to TOQ3

(3). The 5-dimensional variety K 0 is therefore smooth with fiber

over 0 the smooth zero-locus of the section σ′ of F .

More precisely, the proof of Proposition 5.6 shows that the composite map (20) can be
identified with the map (19) induced by the (composed) evaluation map∧

3V ∨10 ⊗ OQ3

a−−→ H0(Q3,OQ3(3))⊗ OQ3 → OQ3(3).

The derivative ∂σt
∂t

∣∣
t=0

provides via the surjective map a a section of OQ3(3) that defines a general

K3 surface S ⊂ Q3 of degree 10 and the zero-locus of σ′ can be identified with S[2] ⊂ Q
[2]
3 . �
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5.2. The HLS divisor D18. We now construct a trivector σ0 whose Debarre–Voisin variety Kσ0

is smooth but has excessive dimension 10 (Corollary 5.12). The space V10 decomposes as V7⊕W3

and σ0 as α + β, with α ∈
∧

3V ∨7 and β ∈
∧

3W∨
3 . For the SL(V10)-action, the point [σ0] of

P(
∧

3V ∨10) has stabilizer G2× SL(3) and is polystable (Corollary 5.13). The main result of this
section is Theorem 5.15.

5.2.1. K3 surfaces of degree 18. A general polarized K3 surface (S, L) of degree 18 carries a
unique rank-2 Lazarsfeld–Mukai bundle E2 (that is, stable and rigid) that satisfies det(E2) = L
and c2(E2) = 6. The vector space V7 := H0(S,E2)∨ has dimension 7, the sections of E2 embed S
into Gr(2, V7), and via this embedding, S can be described as follows ([Mu2]).

Let α ∈
∧

3V ∨7 be general. The 7-dimensional space IX ⊂
∧

2V ∨7 of Plücker linear sections
given by u yα, for u ∈ V7, cuts out a smooth fivefold X ⊂ Gr(2, V7). We have KX = OX(−3) and
one gets a general K3 surface S of degree 18 by intersecting X with a projective space P(W⊥

3 )
cut out by three extra general Plücker linear sections. The subspace IS = IX ⊕W3 ⊂

∧
2V ∨7 of

Plücker linear sections vanishing on S has dimension 10.

Recall from Section 3 that we are looking for a rank-6 vector bundle S6 with determinant
−2L+5δ on S[2], in order to embed S[2] in a Debarre–Voisin variety in Gr(6, 10). We will construct
it as a direct sum

S6 = S4 ⊕S2.

We first construct the vector bundle S4 as follows. The surjective evaluation map V ∨7 ⊗OS � E2

induces, with the notation of Section 4.1, a surjective evaluation map

ev : V ∨7 ⊗ OS[2] � TE2 .

Indeed, the nonsurjectivity of ev at a point ([V2], [V ′2 ]) of S[2] means that the subspace V3 :=
〈V2, V

′
2〉 of V7 has dimension 3. Then, S ∩ Gr(2, V3) contains a subscheme of length 2. Since S is

defined by linear Plücker equations in Gr(2, 7), it contains a line, which contradicts the fact that
it is general.

Set

(21) S4 := T ∨
E2
⊂ V7 ⊗ OS[2] .

The following lemma will be used later on.

Lemma 5.7. The morphism S[2] → Gr(4, V7) associated with the bundle S4 takes value in the
set of 4-dimensional vector subspaces that are totally isotropic for the 3-form α on V7.

Proof. It is enough to check the conclusion at a general point ([V2], [V ′2 ]) of S[2]. Then V2 and V ′2
are transverse vector subspaces of V7 which belong to X, hence satisfy (

∧
2V2)yα = (

∧
2V ′2)yα = 0

in V ∨7 . The space V4 := 〈V2, V
′

2〉 ⊂ V7 is the fiber of S4 at ([V2], [V ′2 ]). The restriction α′ := α|V4
is a 3-form which is either decomposable with one-dimensional kernel or 0. If it is nonzero, all
the elements [U2] ∈ Gr(2, V4) that satisfy U2 yα′ = 0 must contain the kernel of α′ and this
contradicts the equality V2 ∩ V ′2 = {0}. �

Turning to the construction of S2, we now show the following.

Lemma 5.8. Let z be a point of S[2] and set V4 := S4,z ⊂ V7. Consider the composition

rz : IS ↪→
∧

2V ∨7 →
∧

2V ∨4 .

Then,

(a) the kernel of rz intersects IX along a 4-dimensional vector space;
(b) the map rz has rank 4;
(c) the cokernel of rz can be identified with the fiber TL,z.
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Proof. We know from the proof of Lemma 5.7 that α|V4 = 0, which implies that the 2-forms
u yα, for u ∈ V4, vanish on V4. They all belong to IX , so we have dim(Ker(rz) ∩ IX) ≥ 4. If
the inequality is strict, there is a 5-dimensional subspace V5 of V7, containing V4 such that u yα
vanishes on V4 for u ∈ V5. But α then vanishes identically on V5, which contradicts the fact that
α ∈

∧
3V ∨7 is general so has no 5-dimensional totally isotropic subspace. This proves (a).

Turning to the proof of (b) and (c), the image of rz is contained in the space of sections
of the Plücker line bundle on Gr(2, V4) vanishing on the length-2 subscheme z, and this space is
4-dimensional. It remains to see that the rank of rz is at least 4. By (a), the restriction of rz to
IX ⊂ IS has rank 3. The image rz(IX) defines a conic in Gr(2, V4) ⊂ Gr(2, V7) which is contained
in X by definition. If rz has rank only 3, this conic is contained in S, which contradicts the fact
that S is general. �

By Lemma 5.8, we have an exact sequence

(22) 0→ S ′
6 → IS ⊗ OS[2]

r−→
∧

2S ∨
4 → TL → 0

of vector bundles on S[2]. The rank-6 vector bundle S ′
6 that it defines contains the rank-4 bundle

S4 ⊂ IX ⊗ OS[2] (see (21)) and we thus get a rank-2 bundle

S2 := S ′
6/S4 ⊂ W3 ⊗ OS[2] .

Lemma 5.9. The vector bundle S2 has determinant −L + 3δ, the vector bundle S4 has deter-
minant −L+ 2δ, and the vector bundle S ′

6 has determinant −2L+ 5δ.

Proof. By (11), the determinant of S ∨
4 = TE2 equals L− 2δ, hence det(

∧
2S ∨

4 ) = 3L− 6δ, while
det(TL) = L− δ. Together with the exact sequence (22), this implies

(23) det(S ′
6) = L− δ − (3L− 6δ) = −2L+ 5δ.

We then get

det(S2) = det(S ′
6)− det(S4) = −2L+ 5δ − (−L+ 2δ) = −L+ 3δ,

which proves the lemma. �

Set S6 := S4⊕S2. It is a subbundle of the trivial rank-10 bundle on S[2] with fiber IX⊕W3,
and this defines a morphism

(24) ϕ = (ϕ1, ϕ2) : S[2] −→ Gr(4, V7)× Gr(2,W3) ⊂ Gr(6, V7 ⊕W3).

Lemma 5.10. If the surface S is general, the morphism ϕ is injective and the Plücker line bundle
restricts to 2L− 5δ on S[2].

Proof. It suffices to show that the first component ϕ1 of ϕ is injective. Let z ∈ S[2] and let
[V4] := ϕ1(z) = S4,z ⊂ V7. As we saw in the proof of Lemma 5.8, the data V4 ⊂ V7 determine a
(possibly singular) conic C in Gr(2, V4) ⊂ X and the image of the map IS → H0(C,OC(2)) has
rank at least 1, as otherwise the rank of the map IS →

∧
2V ∨4 would be only 3. A nonzero linear

form on a conic vanishes on a line contained in the conic or along a subscheme of length 2. Since
a general S contains no lines, there is at most one length-2 subscheme of S on this conic.

The pullback of the Plücker line bundle to S[2] was computed in Lemma 5.9. �

We will see in Proposition 5.16 that ϕ is actually an embedding.

The tautological quotient bundle on the Grassmannian Gr(6, V7⊕W3) pulls back via ϕ to a
rank-4 vector bundle on S[2] generated by 10 sections and with determinant 2L−5δ (Lemma 5.9).
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5.2.2. The G2×SL(3)-invariant trivector. We let V10 := V7⊕W3 and we take as before α ∈
∧

3V ∨7
general. If β is a generator of

∧
3W∨

3 , we let σ0 := α + β.

If S is a K3 surface as above, the image ϕ(S[2]) (see (24)) is, by Lemma 5.7 and the fact
that any 2-dimensional subspace of W3 is totally isotropic for β), contained in the Debarre–Voisin
variety Kσ0 . We first determine this variety.

Proposition 5.11. Let V10 and σ0 = α + β be as above. Any 6-dimensional subspace W6 ⊂ V10

which is totally isotropic for σ0 is of the form W4⊕W2, where W4 ⊂ V7 is totally isotropic for α
and W2 ⊂ W3 is of dimension 2 (hence totally isotropic for β).

Conversely, any such space is totally isotropic for σ0.

Proof. Denote by p1 : W6 → V7 and p2 : W6 → W3 the two projections. We first claim that
rank(p1) ≤ 5. Indeed, on W6, we have p∗1α = p∗2β and, as β is decomposable, p∗2β vanishes on
a hyperplane of W6. But α does not vanish on any 5-dimensional subspace of V7, which shows
that p1 must have a nontrivial kernel.

We next claim that p1 cannot have rank 5. Indeed, if it does, p∗1α is nonzero, so p∗2β is
nonzero. But the kernel of p∗2β is then Ker(p2) and it must be equal to the kernel of p∗1α, that is,
p−1

1 (Ker(α|Im(p1))). As p1 has rank ≤ 5, it follows that there is a nonzero u in Ker(p1) ∩Ker(p2),
which is absurd. From these two facts, we conclude that p1 has rank at most 4. A similar argument
shows that p2 has rank at most 2, that is, p∗2β = 0, and thus p∗1α = 0, that is, α|Im(p1) = 0. Finally,
as W6 ⊂ p1(W6) + p2(W6), we conclude that we must have equality. �

Corollary 5.12. The Debarre–Voisin variety Kσ0 is smooth of dimension 10 and splits as a
product K ′α ×P(W∨

3 ).

Proof. Let K ′α ⊂ Gr(4, V7) be the variety of subspaces V4 ⊂ V7 that are totally isotropic for α. It
is the zero-locus of a general section of the globally generated, rank-4, bundle

∧
3E4, hence it is

smooth of dimension 8. Finally, Proposition 5.11 implies Kσ0 ' K ′α ×P(W∨
3 ). �

5.2.3. Stabilizer. The computation of the stabilizer of our trivector σ0 is a consequence of Propo-
sition 5.11.

Corollary 5.13. The stabilizer of the trivector σ0 = α + β in SL(V10) is G2 × SL(3), where G2

is the stabilizer of α and SL(3) is the stabilizer of β, and the point [σ0] of P(
∧

3V ∨10) is polystable
for the SL(V10)-action.

Proof. The stabilizer Gσ0 of [σ0] obviously contains G2 × SL(3). For the reverse inclusion, it
suffices to show that Gσ0 preserves the decomposition

(25) V10 = V7 ⊕W3.

Now Gσ0 acts on Gr(6, V10) preserving the Debarre–Voisin variety Kσ0 , which is a product
K ′α ×P(W∨

3 ) by Proposition 5.11. But the connected component of the automorphisms group
of a product of projective varieties is the product of the connected components of its factors.
Thus Gσ0 acts on each factor K ′α and P(W∨

3 ). This implies that it preserves the direct sum
decomposition (25).

To prove the polystability of [σ0], we invoke as before Luna’s results. By [Lu, Corollaire 1],
the SL(V10)-orbit of σ0 in

∧
3V ∨10 is closed if and only if its orbit under the normalizer in SL(V10)

of its stabilizer Gσ0 = G2 × SL(3) is closed. Any element of this normalizer must preserve the
direct sum decomposition V10 = V7⊕W3, hence can be written as λg ·λ′g′, with g ∈ NSL(V7)(G2),
g′ ∈ SL(3), and λ7λ′3 = 1. The group G2 having finite index in its normalizer NSL(V7)(G2)
(Proposition 5.4), the closedness of the SL(V10)-orbit is equivalent to the closedness of the orbit
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for the C?-action t · (α + β) = t3α + t−7β. This holds because neither α nor β is 0. This proves
that [σ0] is polystable. �

5.2.4. Degenerations and excess bundles. The Debarre–Voisin variety Kσ0 is, by Corollary 5.12,
smooth of codimension 14 in Gr(6, V10) and isomorphic to K ′α ×P(W∨

3 ). It is the zero-locus of a
section of the rank-20 vector bundle

∧
3E6 on Gr(6, V10), hence it carries an excess bundle F of

rank 6, described in the following proposition.

Proposition 5.14. One has an isomorphism F ' Q2⊗ ((
∧

2E4)/Q3) between vector bundles on
Kσ0 ' K ′α ×P(W∨

3 ), where

• the bundle Q2 is the pullback of the rank-2 quotient bundle on P(W∨
3 ),

• the bundle E4 is the pullback of the dual of the tautological rank-4 subbundle on K ′α ⊂
Gr(4, V7),
• the bundle Q3 is the pullback of the rank-3 quotient bundle on K ′α ⊂ Gr(4, V7),
• the injective map Q3 ↪→

∧
2E4 is induced by the composite map

V7 ⊗ OKσ0

α y−−−→
∧

2V ∨7 ⊗ OKσ0
→
∧

2E4.

Proof. The excess bundle F is by definition the cokernel of

dσ0 : TGr(6,V10) −→
∧

3E6.

Along Kσ0 , Proposition 5.11 tells us that E6 = E4 ⊕Q2, so that

(26)
∧

3E6 =
∧

3E4 ⊕ (
∧

2E4 ⊗Q2)⊕ (E4 ⊗
∧

2Q2).

On the other hand, the tangent bundle TGr(6,V10) is isomorphic to E6⊗E4 and dσ0 is the composition

(27) E6 ⊗ E4 → E6 ⊗
∧

2E6 →
∧

3E6,

where the second map is the wedge product map and the first one is induced by the factorization

E4 −→
∧

2E6

of (σ0) y : V10 ⊗ OKσ0
→
∧

2E6. We now decompose TGr(6,V10) = E6 ⊗ E4 along Kσ0 as

(28) TGr(6,V10) = (E4 ⊕Q2)⊗ (Q3 ⊕ E1) = (E4 ⊗Q3)⊕ (Q2 ⊗Q3)⊕ (E4 ⊗ E1)⊕ (Q2 ⊗ E1).

The composite map (27) maps (28) to (26) preserving the decompositions and it is easy to see
that the only piece with a nontrivial quotient is

Q2 ⊗Q3 −→
∧

2E4 ⊗Q2,

where the map is induced by α y . This completes the proof. �

The following theorem is the main result of this section.

Theorem 5.15. Let (σt)t∈∆ be a general 1-parameter deformation. Let K → ∆ be the asso-
ciated family of Debarre–Voisin varieties and let K 0 be the irreducible component of K that
dominates ∆. Then K 0 → ∆ is smooth and its central fiber is isomorphic to S[2], embedded
in Gr(6, 10) as in Lemma 5.10, where S is a general K3 surface of degree 18.

Proof. The proof follows the same line as the proof of Theorem 5.5. We apply Proposition 4.3
and conclude that the central fiber is the zero-locus of a general section of the excess bundle F
on Kσ0 . It is in particular smooth since the excess bundle is generated by its sections. The proof
is completed using Proposition 5.14 and the following proposition. �

Proposition 5.16. Let S ⊂ X ⊂ Gr(2, V7) be a general K3 surface of degree 18. The morphism ϕ
from Lemma 5.10 induces an isomorphism between S[2] and the zero-locus in Kσ0 of a general
section of the excess bundle F = Q2 ⊗ ((

∧
2E4)/Q3).
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Proof. The space of global sections of F is equal to W∨
3 ⊗ (

∧
2V ∨7 /V7). We identify V7 with IX .

Choosing a general section s of F , we thus get a K3 surface S ⊂ X defined by the three-
dimensional space of sections Im(W3 → H0(X,OX(1))).

Lemma 5.10 and the lemma below imply that ϕ is an injective morphism between S[2] and
the smooth zero-locus of s. By Zariski’s Main Theorem, it is an isomorphism, which proves the
proposition. �

Lemma 5.17. The zero-locus of s coincides with the image ϕ(S[2]) ⊂ Kσ0.

Proof. Let [V4] ∈ K ′α and let W2 ⊂ W3 be of dimension 2. Assume that the section s of F vanishes
at ([V4], [W2]). Lifting s to an element of Hom(W3,

∧
2V ∨7 ), this means by the description of F

given in Proposition 5.14 that the image of the two-dimensional space s(W2) ⊂
∧

2V ∨7 in
∧

2V ∨4
is contained in the image V3 ⊂

∧
2V ∨4 of the natural map α y • : V7/V4 →

∧
2V ∨4 .

The intersection of X with the Grassmannian Gr(2, V4) is defined by the three Plücker equa-
tions given by V3. The existence of W2 as above is equivalent to saying that V3 and W3 span only
a subspace of dimension 4 of

∧
2V ∨4 , or, equivalently, that the length of the subscheme of Gr(2, V4)

defined by V3 and W3 is at least 2. This subscheme is equal to S ∩ Gr(2, V4). Furthermore, the
space W2 is contained in the subspace of W3 vanishing on the conic defined by X ∩ Gr(2, V4).
Looking at the construction of the injective morphism ϕ : S[2] → Kσ0 given in Lemma 5.10, we
conclude that ϕ(S[2]) is contained in the vanishing locus of s. As both are fourfolds of the same
degree, they must agree. This proves the lemma. �

6. The HLS divisor D10

Let (S, L) be a general K3 surface of degree 10. As we saw in Section 3, the Hilbert square S[2]

with the polarization 2L−3δ is a limit of Debarre–Voisin varieties. We will first construct a rank-4
vector bundle on S[2] mapping it to Gr(6, 10) and then construct a trivector σ0 vanishing on the
image. It turns out that σ0 is SL(2)-invariant and that the Debarre–Voisin variety Kσ0 only
depends on a certain SL(2)-invariant Fano threefold X ⊂ Gr(2, 5) in which S naturally sits. The
rank-4 vector bundle is not globally generated and Kσ0 is not irreducible in this case, but we
nevertheless conclude in Theorem 6.14 that a 1-parameter degeneration to σ0 expresses a general
pair (S[2], 2L− 3δ) as a limit of Debarre–Voisin varieties.

6.1. The Fano threefold X and K3 surfaces of degree 10. Let V5 be a 5-dimensional vector
space and let W3 ⊂

∧
2V5 be a general 3-dimensional vector subspace. Let X ⊂ Gr(2, V ∨5 ) be the

Fano threefold of index 2 and degree 5 defined by the Plücker equations in W3. It has no moduli,
the variety of lines contained in X is a smooth surface isomorphic to P2 ([I, Corollary (6.6)(ii)]),
and the automorphism group of X is PGL(2). In fact, if U2 is the standard self-dual irreducible
representation of SL(2) and V5 := Sym4U2, there is a direct sum decomposition

(29) V10 :=
∧

2V5 = V7 ⊕W3

into irreducible representations, with V7 = Sym6U2 and W3 = Sym2U2, so that X is the unique
SL(2)-invariant section of Gr(2, V ∨5 ) by a linear subspace of codimension 3 ([CC, Section 7.1]).

A general polarized K3 surface (S, L) of degree 10 is obtained as a quadratic section of X
([Mu2]). Let E2 be the restriction to X of the dual of the tautological subbundle on Gr(2, V ∨5 ) (it
is stable and rigid)). Lemma 4.2 gives us a rank-4 vector bundle KE2 on X [2] whose restriction Q4

to S[2] satisfies H0(S[2],Q4) '
∧

2V5 and det(Q4) = 2L− 3δ.
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Remark 6.1. Using the package Schubert2 of Macaulay2 ([GS]; the code can be found in [X]),
one checks that the vector bundle Q4 has the same Segre numbers

s4
1 = 1452, s2

1s2 = 825, s1s3 = 330, s2
2 = 477, s4 = 105

as the rank-4 tautological quotient bundle on Debarre–Voisin varieties Kσ ⊂ Gr(6, 10), computed
in [DV, (11)]. The pair (S[2],Q4) is therefore a candidate to be a limit of Debarre–Voisin varieties
(as a subvariety of Gr(6, 10)). One difficulty in the present case is that the vector bundle Q4 is
not generated by its sections (Proposition 6.2(b)). This explains why in Theorem 1.4, the central
fiber is only birationally isomorphic to S[2].

Since W3 has no rank-2 elements, for any [x] ∈ P(V5), the subspace

x ∧W3 ⊂
∧

3V5 '
∧

2V ∨5

has dimension 3. Set

V4,[x] := x ∧ V5 ⊂
∧

2V5.

We have 〈V4,[x], x ∧W3〉 = 0. Setting

V7,[x] := (x ∧W3)⊥ ⊂
∧

2V5,

we thus have V4,[x] ⊂ V7,[x] ⊂
∧

2V5. Finally, we set

(30) K1 := {[W6] ∈ Gr(6,
∧

2V5) | ∃ [x] ∈ P(V5) V4,[x] ⊂ W6 ⊂ V7,[x]}.

We observe that K1 is smooth of dimension 6.

Proposition 6.2. (a) The space
∧

2V5 of global sections of the rank-4 vector bundle KE2 on X [2]

induces a birational map

ϕ : X [2] 99K K1 ⊂ Gr(6,
∧

2V5)

which is regular outside the 4-dimensional locus in X [2] consisting of length-2 subschemes con-
tained in a line contained in X.

(b) If S is general, the restriction of ϕ to S[2] is the map induced by the global sections of Q4

and it is regular outside a smooth surface isomorphic to the surface of lines in X.

Proof. At a point of X [2] corresponding to different vector subspaces V2, V
′

2 ⊂ V ∨5 , the evaluation
map of KE2 is the restriction ∧

2V5 −→ V ∨2 ⊗ V ′∨2 .

It is surjective if and only if V2∩V ′2 = {0}, which means exactly that the line joining [V2] and [V ′2 ]
is not contained in Gr(2, V ∨5 ) or, equivalently, in X.

At a nonreduced point z = ([V2], u), where u ∈ Hom(V2, V
∨

5 /V2), the fiber KE2,z appears in
an extension

0→ Sym2V ∨2 → KE2,z
a−−→
∧

2V ∨2 → 0

The composition r :
∧

2V5 →
∧

2V ∨2 of the evaluation map
∧

2V5 → KE2,z at z with a is given by
restriction, hence is surjective, and its kernel maps to Sym2V ∨2 via the composite map

Ker(r)→ (V ∨5 /V2)∨ ⊗ V ∨2
u∨⊗Id−−−−−→ V ∨2 ⊗ V ∨2 → Sym2V ∨2 .

This composite map (hence also the evaluation map at z) is surjective if and only if u has
(maximal) rank 2, which means exactly that the line spanned by z is contained in Gr(2, V ∨5 ) or,
equivalently, in X. This proves the first part of (a), and also (b), since a general S contains no
lines.
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It remains to prove that ϕ is birational onto K1. Let [W6] = ϕ([V2], [V ′2 ]). If V2 and V ′2 are
complementary, they span a subspace V ∨4 ⊂ V ∨5 of dimension 4. Denoting by x ∈ V5 a linear form
defining V ∨4 , one has V4,[x] ⊂ W6. Next, W3|V ∨4 vanishes on

∧
2V2 and

∧
2V ′2 , hence

W3|V ∨4 ⊂ V ∨2 ⊗ V ′∨2 .

The vanishing of W6 in V ∨2 ⊗V ′∨2 thus implies that W6|V ∨4 is orthogonal to W3|V ∨4 for the natural

pairing on
∧

2V4. Equivalently, W6 is orthogonal to x∧W3 for the pairing between
∧

2V5 and
∧

3V5.
This shows that Im(ϕ) is contained in K1.

Conversely, let [W6] be a general element of K1. Then

V4,[x] ⊂ W6 ⊂ V7,[x]

for some [x] ∈ P(V5), so that W6|V ∨4 has dimension 2, where V ∨4 is defined by x.

Since W6 is orthogonal to x ∧W3, it follows that W6|V ∨4 is orthogonal to W3|V ∨4 . The 3-

dimensional space W3|V ∨4 ⊂
∧

2V4 defines a conic X ∩ Gr(2, V ∨4 ) in the Grassmannian Gr(2, V ∨4 )

and it is easy to check that a 2-dimensional subspace W ′
2 ⊂

∧
2V4 cuts out two points on this

conic if and only W ′
2 ⊥ W3|V ∨4 . This shows that K1 is contained in Im(ϕ).

The proof that ϕ is birational follows from the last argument. Indeed, pairs of points in the
conic above correspond bijectively to two-dimensional subspaces of W3|V ∨4 , at least if the conic
is nonsingular. �

6.2. The SL(2)-invariant trivector. We now construct a trivector σ0 on V10 =
∧

2V5 such
that K1 is a generically smooth component of the Debarre–Voisin variety Kσ0 .

Proposition 6.3. There exists a unique trivector σ0 ∈
∧

3V ∨10 such that, for any [x] ∈ P(V5), the
restriction σ0|V7,[x] comes from a nonzero element of

∧
3(V7,[x]/V4,[x])

∨. This trivector is invariant

under the SL(2)-action described in Section 6.1.

Proof. Let V4 be the rank-4 vector bundle on P(V5) image of the bundle map V5⊗OP(V5)(−1)→∧
2V5 ⊗ OP(V5) given by wedge product. We define another vector bundle V7 on P(V5) by the

exact sequence

(31) 0→ V7 →
∧

2V5 ⊗ OP(V5)
a−−→ W∨

3 ⊗ OP(V5)(1)→ 0,

where the map a at the point [x] is the wedge product map with x with value in
∧

3V5, followed
by the natural map

∧
3V5 '

∧
2V ∨5 → W∨

3 . The fibers of V4 and V7 at [x] ∈ P(V5) are the vector
subspaces

V4,[x] ⊂ V7,[x] ⊂
∧

2V5

defined previously. There is an exact sequence

0→ OP(V5)(−2)→ V5 ⊗ OP(V5)(−1)→ V4 → 0

from which, together with (31), we deduce det(V4) ' det(V7) ' OP(V5)(−3), hence

det(V7/V4) = OP(V5).

The line bundle
∧

3(V7/V4)∨ thus has a nowhere vanishing section ω.

We set E7 := V ∨7 . Via the inclusion
∧

3(V7/V4)∨ ⊂
∧

3E7, the section ω provides a sec-
tion of

∧
3E7. By Lemma 6.4 below, this section defines a unique trivector σ0 with the desired

properties, which proves the proposition. �

Lemma 6.4. The restriction map∧
3(
∧

2V ∨5 )⊗ OP(V5) −→
∧

3E7

induces an isomorphism on global sections.
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Proof. The dual

(32) 0→ W3 ⊗ OP(V5)(−1)→
∧

2V ∨5 ⊗ OP(V5) → E7 → 0

of the exact sequence (31) implies that the bundle G defined by the exact sequence

0→ G →
∧

3(
∧

2V ∨5 )⊗ OP(V5) →
∧

3E7 → 0

has a filtration with graded pieces

W3 ⊗
∧

2E7(−1),
∧

2W3 ⊗ E7(−1),
∧

3W3 ⊗ OP(V5)(−3).

It thus suffices to show that these three bundles have vanishing H0 and H1.

This is obvious for the last bundle. For the second bundle, this follows from (32). For the
first bundle, we take the second exterior power of (32) tensored by OP(V5)(−1) and get

0→ G ′ →
∧

2(
∧

2V ∨5 )⊗ OP(V5)(−1)→ (
∧

2E7)(−1)→ 0,

where the bundle G ′ is an extension

(33) 0→
∧

2W3 ⊗ OP(V5)(−3)→ G ′ → W3 ⊗ E7(−2)→ 0.

We then get the desired vanishing

H0(P(V5),
∧

2E7(−1)) = 0 = H1(P(V5),
∧

2E7(−1))

from the vanishings H1(P(V5),G ′) = H2(P(V5),G ′) = 0 which follow from (33) and the similar
vanishings for E7(−2). �

The threefold X discussed in Section 6.1 embeds in Gr(3,
∧

2V5) as follows: a point [V2] ∈ X
parametrizes a vector subspace V2 ⊂ V ∨5 of dimension 2. Let V3 ⊂ V5 be the kernel of the
restriction map V5 → V ∨2 . Then U3 :=

∧
2V3 ⊂

∧
2V5 has dimension 3 and it determines V2.

Proposition 6.5. (a) The threefold X ⊂ Gr(3,
∧

2V5) is contained in the singular locus of the
Plücker hypersurface Xσ0.

(b) The rational map ϕ : X [2] 99K Gr(6,
∧

2V5) defined in Proposition 6.2 sends a general pair
([V2], [V ′2 ]) to the subspace 〈U3, U

′
3〉 ⊂

∧
2V5.

(c) The variety K1 is contained in the Debarre–Voisin variety Kσ0.

Proof. We first observe the following.

Lemma 6.6. Let [V2] ∈ X and let V3 and U3 =
∧

2V3 be as above. For any [x] ∈ P(V3), we have
U3 ⊂ V7,[x] and dim(U3 ∩ V4,[x]) = 2.

Proof. We want to show that x∧W3 is orthogonal to U3, which means that for any w ∈ W3 and
any u ∈ U3, one has x ∧ w ∧ u = 0 in

∧
5V5. This is clear, since x ∧ u ∈

∧
3V3 and w vanishes

on V2, hence belongs to V3∧V5. The second statement is obvious because U3∩V4,[x] = x∧V3. �

We now show item (a) of the proposition. Let again [V2] ∈ X, let V3 and U3 be as above, and
let [x] ∈ P(V3). As shown in the proof of [DV, Proposition 3.1], the intersection Xσ0 ∩Gr(3, V7,[x])
is singular at a point U ′3 ⊂ V7,[x] if σ0 vanishes on

∧
2U ′3∧V7,[x]. This happens if dim(U ′3∩V4,[x]) ≥ 2

because, by construction, the 3-form σ0|V7,[x] is the wedge product of 3 linear forms that vanish
on V4,[x]. Lemma 6.6 says that U3 ⊂ V7,[x] satisfies this condition.

We thus proved that Xσ0 ∩ Gr(3, V7,[x]) is singular at the point [U3], for any [x] ∈ P(V3).
This means that the Zariski tangent space TXσ0 ,[U3] contains TGr(3,V7,[x]),[U3] for any [x] ∈ P(V3).
We then use the following fact to conclude that X is contained in the singular locus of Xσ0 .
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Lemma 6.7. The vector subspaces TGr(3,V7,[x]),[U3] ⊂ TGr(3,∧2V5),[U3], for [x] ∈ P(V3), span the
tangent space TGr(3,∧2V5),[U3].

Proof. We have TGr(3,V7,[x]),[U3] = Hom(U3, V7,[x]/U3) and TGr(3,
∧
2V5),[U3] = Hom(U3,

∧
2V5/U3), so

the lemma is equivalent to the fact that the V7,[x], for [x] ∈ P(V3), span
∧

2V5. As V7,[x] = x∧W⊥
3 ,

the statement is equivalent to
⋂
x∈V3(x ∧W3) = 0, which is obvious. �

By Proposition 4.4(b), there is a rational map f : X [2] 99K Kσ0 . Let us compare ϕ and f .
The map ϕ sends ([V2], [V ′2 ]) to the kernel of the map

∧
2V5 → V ∨2 ⊗V ′∨2 . Since V3 vanishes in V ∨2 ,

the image of U3 =
∧

2V3 vanishes in V ∨2 ⊗ V ′∨2 and similarly for U ′3. It follows that

U3 + U ′3 = Ker(
∧

2V5 → V ∨2 ⊗ V ′∨2 )

when both spaces have the same expected dimension 6. This proves items (b) and (c). �

6.3. Stabilizer, degenerations, and excess bundles. Recall that X ⊂ Gr(2, V ∨5 ) is a Fano
threefold of index 2 and degree 5. We have defined a trivector σ0 on V10 =

∧
2V5 such that the

smooth sixfold K1 defined in (30) is contained in Kσ0 (Proposition 6.5(c)).

The birational map ϕ : X [2] 99K K1 defined in Proposition 6.2 induces an isomorphism
between a dense open subset U ⊂ X [2] and its open image. We identify U with ϕ(U).

Proposition 6.8. (a) The Debarre–Voisin variety Kσ0 is smooth of dimension 6 along U ,
hence K1 is a generically smooth irreducible component of Kσ0.

(b) On U , the excess bundle F and the tautological bundle TOX(2) coincide as quotients of∧
3V ∨10 ⊗ OU .

Before giving the proof, let us note the following consequence.

Corollary 6.9. The neutral component of the stabilizer of σ0 for the SL(V10)-action is the
group SL(2).

We do not prove that the point [σ0] is polystable.

Proof. An element g of this stabilizer acts on the Debarre–Voisin variety Kσ0 and the neutral
component acts preserving the irreducible components. By Proposition 6.8, it acts on K1. But K1

is a P2-bundle over P(V5), so g (via its action on Gr(6,
∧

2V5)) has to act on the base P(V5) and
this action lifts to the projective bundle K1. One easily concludes that g defines an automorphism
of P(V5) whose induced action on Gr(2, V ∨5 ) preserves X. �

The proof of Proposition 6.8 will use a few more preparatory steps. We start with the
following easy lemma.

Lemma 6.10. For any [W6] ∈ Kσ0 and any [x] ∈ P(V5), the vector space W6 ⊂
∧

2V5 intersects
V4,[x] nontrivially; it follows that dim(P(W6) ∩ Gr(2,

∧
2V5)) ≥ 3.

Proof. The assumption is that σ0 vanishes on W6. The space V := W6 ∩ V7,[x] is of dimension
at least 3. By construction (see Proposition 6.3), the restriction of σ0 to V7,[x] is a generator of∧

3(V7,[x]/V4,[x])
∨, hence the vanishing of σ0|V means V ∩ V4,[x] 6= {0}. Hence W6 ∩ V4,[x] 6= {0}.

For the second statement, observe that the set of [x] ∈ P(V5) such that W6 ∩ V4,[x] 6= {0} is
the image in P(V5) of the universal P1-bundle over P(W6) ∩ Gr(2,

∧
2V5). Since all [x] ∈ P(V5)

have this property, the dimension of this bundle must be at least 4. �

Let us show the following consequence.
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Corollary 6.11. Let K ′1 be an irreducible component of Kσ0 containing K1. For any [W6] ∈ K ′1,
there is a unique [x] ∈ P(V5) such that V4,[x] is contained in W6.

Proof. The uniqueness is clear, as x ∧ V5 + y ∧ V5 has dimension 7 for nonproportional x, y.
For the existence, we observe that for a general [V6] ∈ K1, the intersection P(V6) ∩ Gr(2,

∧
2V5)

is equal to P(V4,[x]) with its reduced structure. We now deform [V6] to a general element [W6]
of the component K ′1, say along a family (V6,t)t∈∆ ⊂

∧
2V5 of 6-dimensional vector subspaces.

By Lemma 6.10, we know that for any t ∈ ∆, the intersection P(V6,t) ∩ Gr(2,
∧

2V5) remains of
dimension ≥ 3. As for t = 0, it is reduced, of dimension 3 and degree 1, the same holds for t ∈ ∆
general. As the only 3-dimensional projective subspaces of Gr(2,

∧
2V5) are of the form P(V4,[x]),

we obtain that W6 = V6,t, for t general, contains a space V4,[x]. �

Proof of Proposition 6.8(a). Let as above K ′1 be an irreducible component of Kσ0 containing K1

and let [W6] ∈ K ′1. We know by Corollary 6.11 that there exists [x] ∈ P(V5) such that V4,[x] is
contained in W6. We also note from the proof of Corollary 6.11 that the point [x] ∈ P(V5) is
general. There is a short exact sequence

(34) 0→ V4,[x] →
∧

2V5 →
∧

2V4,[x] → 0.

Here, V4,[x] = x ∧ V5 is seen on the left as a subspace of
∧

2V5 and on the right as the quotient
V5/Cx.

The trivector σ0 ∈
∧

3(
∧

2V5)∨ vanishes in the first quotient
∧

3V ∨4,[x], hence it has an image

σ0,x in the next step of the filtration on
∧

3(
∧

2V5)∨ associated with (34), namely
∧

2V ∨4,[x]⊗
∧

2V ∨4,[x].

From the construction of σ0, we know that σ0|V7,[x] comes from
∧

3(V7,[x]/V4,[x])
∨, which implies

that σ0,[x] vanishes in (V7,[x]/V4,[x])
∨⊗
∧

2V ∨4,[x], or equivalently belongs to (x∧W3)⊗
∧

2V ∨4,[x], where

we identify x ∧W3 ⊂
∧

2V ∨5 as defining V7,[x] (so that its image in
∧

2V ∨4,[x] defines V7,[x]/V4,[x])).

Let us examine σ0,x ∈ (x ∧W3)⊗
∧

2V ∨4,[x]. We claim the following.

Lemma 6.12. For [x] ∈ P(V5) general, the rank of σ0,x is 3.

Proof. Recall that V5 and W3 are irreducible representations of SL(2) (Section 6.1). The trivec-
tor σ0 is invariant under the induced SL(2)-action on

∧
3V ∨10 =

∧
3(
∧

2V5)∨.

From (31), we see that V4,[x], seen as a quotient of V5, is the fiber at [x] of the vector bundle
V ′4 := V4(1). Since H0(P(V5),

∧
2V ′4 ) '

∧
2V5 and W3 ⊂

∧
2V5 is general, there is an injection

W3 ⊗ OP(V5) ↪→
∧

2V ′4

whose dual is a surjection
∧

2V ′∨4 → W∨
3 ⊗ OP(V5). The tensors σ0,x globalize to a section σ0 of

the bundle W3 ⊗
∧

2V ′∨4 ⊗ OP(V5)(1). Since det(V ′4 ) = OP(V5)(1), we have∧
2V ′∨4 ⊗ OP(V5)(1) '

∧
2(V4(1)),

hence σ0 is a section of the bundle W3 ⊗
∧

2V ′4 . We also have

H0(P(V5),W3 ⊗
∧

2V ′4 = W3 ⊗H0(P(V5),
∧

2V ′4 ) = W3 ⊗
∧

2V5.

It follows that σ0 provides an element of W3 ⊗
∧

2V5 which must be SL(2)-invariant. The de-
composition (29) tells us that there is exactly one such element, IdW3 (we use the isomorphism
W3 ' W∨

3 given by the SL(2)-action). The conclusion of this analysis is that either σ0 is 0 or the
rank of σ0,x is 3.

To finish the proof of the lemma, we just have to exclude the case σ0 = 0. If this vanishing
holds, σ0 vanishes on any 3-dimensional subspace of

∧
2V5 that intersects one x ∧ V5 along a 2-

dimensional space. It is easy to exclude this possibility: the condition says that σ0 ∈
∧

3(
∧

2V ∨5 )
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vanishes on all elements of the form

(35) (x ∧ y) ∧ (x ∧ z) ∧ (v ∧ w) ∈
∧

3(
∧

2V5)

for x, y, z, v, w ∈ V5. But this would force σ0 = 0, because these elements span
∧

3(
∧

2V5). Indeed,
this space is generated by general decomposable elements of the form m = (x∧y)∧(t∧z)∧(v∧w).
By generality, we have v = αx+ βy + γt+ δz + εw and expanding m, we get a sum of terms of
type (35). �

Let us go back to the point [W6] of K ′1, where W6 contains V4,[x] for some general [x] ∈ P(V5).
Since σ0|W6 = 0, the tensor σ0,x vanishes in (W6/V4,[x])

∨⊗
∧

2V ∨4,[x]. By Lemma 6.12, we conclude

that x ∧W3 has to vanish on W6, that is W6 ⊂ V7,[x]. Thus [W6] ∈ K1 and we proved that K1 is
an irreducible component of Kσ0 .

In order to prove that K1 and Kσ0 are equal as schemes generically along K1, we observe that
the argument just given is of an infinitesimal nature, hence proves thatK1 andKσ0∩Gr(6, x,

∧
2V5)

are equal as schemes generically along K1, where Gr(6, x,
∧

2V5) ⊂ Gr(6,
∧

2V5) is the set of
W6 ⊂

∧
2V5 such that x∧ V5 = V4,x ⊂ W6 for some x ∈ P(V5). In order to conclude, we thus just

need to show that Kσ0 is schematically contained in Gr(6, x,
∧

2V5) generically along K1. This is
a consequence of the following infinitesimal version of Corollary 6.11. �

Lemma 6.13. Let [W6] ∈ K1 be general and let x ∈ P(V5) be such that V4,x ⊂ W6. For any first
order deformation [W6,ε] of [W6] in Kσ0, there exists a first order deformation xε of x such that,
at first order, V4,xε = xε ∧ V5 ⊂ W6,ε.

Proof. Let x ∧ y ∈ P(V4,x) be such that

W6 ∩ (y ∧ V5) = 〈x ∧ y〉.(36)

The proof of Lemma 6.10 shows that there exists a unique first order deformation yε ∈ P(V4,y) ⊂
Gr(2, V5) such that W6,ε∩(y∧V5) = 〈y∧yε〉. Since [W6] is a general point of K1, the set of points y
satisfying (36) is the complement of a closed algebraic subset of codimension ≥ 2 in P(V4,x). The
collection of yε thus extends to a first order deformation of P(V4,x) in Gr(2, V5). But the latter
are in bijection with the first order deformations of x ∈ P(V5). �

Proof of Proposition 6.8(b). We are exactly in the setting of Lemma 4.5 and Remark 4.6: by
Proposition 6.5(a), there is an embedding j : X ↪→ Sing(Xσ0) ⊂ Gr(3, V10); it induces a map
ϕ : X [2] 99K K1, where K1 is a generically reduced 6-dimensional component of Kσ0 (Proposi-
tion 6.8(a)). The map ϕ is birational by Proposition 6.2 and j∗OGr(3,V10)(1) = OX(2).

On U , the vector bundles Tj∗OGr(3,V10)
(1) = TOX(2) and F both have rank 2 and are quotients

of
∧

3V ∨10 ⊗ OU ; furthermore, Lemma 4.5 says that the evaluation map

ev :
∧

3V ∨10 ⊗ OU → TOX(2)

factors through F . This proves that they are the same. �

We finally prove our main result.

Theorem 6.14. Let (σt)t∈∆ be a very general 1-parameter deformation. Over a finite cover
∆′ → ∆, there is a family of smooth polarized hyperkähler fourfolds K ′ → ∆′ such that a general
fiber K ′

t′ is isomorphic to Kσt and the central fiber is isomorphic to S[2], where (S, L) is a general
K3 surface of degree 10, with the polarization 2L− 3δ.

Proof. Let K → ∆ be the associated family of Debarre–Voisin varieties, let K 0 be the irre-
ducible component of K that dominates ∆, and let U ⊂ Kσ0 = K0 be the Zariski open set of
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Proposition 6.8. Then K0 is smooth of dimension 6 along U , so that the analysis of Section 4.2
applies.

By Proposition 6.8(b), on U , the excess bundle F can be identified with TOX(2) as quotients

of
∧

3V ∨10. The element σ′0 thus gives a section f of OX(2) and we conclude that if σ′0 is general
enough, the zero-locus of σ′0 is equal to S[2] ∩ U , where S ⊂ X is the K3 surface defined by f .

Moreover, the open subset S[2] ∩U is then dense in S[2] and we thus proved that the central
fiber of K 0 has one reduced component which is birationally isomorphic to S[2]. By [KLSV], it
follows that after base change ∆′ → ∆ and shrinking, there exists a family π′ : K ′ → ∆′ that
is fiberwise birationally isomorphic to K 0 ×∆ ∆′, all of whose fibers are smooth hyperkähler
fourfolds, with (smooth) central fiber birationally isomorphic to S[2]. Since S[2] has no nontrivial
hyperkähler birational models (Section 3.3), the central fiber is in fact isomorphic to S[2].

The varieties Kt, for t very general, have Picard number 1, hence no nontrivial smooth
hyperkähler birational models. It follows that K ′

t ' Kt and this holds for all t 6= 0. �

Remark 6.15. From the viewpoint of subvarieties of Gr(6, V10), the situation is not completely
explained. The varieties Kt are smooth subvarieties of Gr(6, V10) of degree 1452. The variety S[2]

is mapped to Gr(6, V10) via the rational map ϕ described in Proposition 6.2, but since this map is
not regular, its image ϕ(S[2]) ⊂ Gr(6, V10) has degree < 1452. The limit (in the Hilbert scheme)
of the subvarieties Kt ⊂ Gr(6, V10) must therefore have another irreducible component.

7. The HLS divisor D2

We describe a polystable point in the moduli space MDV = P(
∧

3V ∨10)// SL(V10) whose total
image by the moduli map

m : MDV 99KM

is the divisor whose general points are the fourfolds MS(0, L, 1) described in Remark 3.6, where
(S, L) is a general polarized K3 surface of degree 2. As explained in Section 3, this divisor is
therefore the Heegner divisor D2.

7.1. The SL(3)-invariant trivector. We take V10 := Sym3W3. The SL(W3)-representation∧
3V ∨10 decomposes as

(37)
∧

3V ∨10 =
∧

3(Sym3W∨
3 ) = Γ0,6 ⊕ Γ3,3 ⊕ Γ2,2 ⊕ Γ0,0,

where Γa,b is the irreducible representation given by the kernel of the contraction map SymaW3⊗
SymbW∨

3 → Syma−1W3 ⊗ Symb−1W∨
3 .3 The first term is Sym6W∨

3 = H0(P(W3),OP(W3)(6)). The
last term is the (1-dimensional) space of SL(W3)-invariants and we pick a generator σ0.

7.2. Analogous results for the variety of lines on a cubic fourfold. All of the results
stated in Section 7 have analogues valid for the variety of lines on a cubic fourfold. In particular,
the analogue of Theorem 7.22 has been proved by van den Dries [vD], in a more precise form
(in particular m = 1 will do). In the present section we will recall those results. In particular
we will go over a modified version of van den Dries’ proof that will be our model for the proof
of Theorem 7.22. Our version is not as precise as van den Dries’ but we manage to avoid some
lenghty computations. The point is that in proving Theorem 7.22, we wish to avoid similar, and
presumably longer, explicit computations.

If X ⊂ P5 is a cubic fourfold, let F (X) ⊂ Gr(1,P5)) be the Hilbert scheme of lines in X.
We recall that the scheme structure of F (X) can be defined by viewing it as the subscheme of

3In the standard notation of [B] explained in Section 5.1.2, the representation Γa,b is Vaω1+bω2
.
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Gr(1,P5) defined by the section of Sym3U∨ (U is the tautological rank-2 bundle on Gr(1,P5))
associated (up to scalars) with X. If X is a smooth cubic fourfold, F (X) is a hyperkähler fourfold
of K3-type, by Beauville and Donagi. As X varies among smooth cubic fourfolds, the F (X) form
a locally complete family of polarized hyperkähler fourfolds (the polarization is given by the
Plücker ample generator) whose primitive H2 lattice is of nonsplit type and discriminant 3. Note
that the primitive H2 lattice of Debarre–Voisin fourfolds is of nonsplit type and discriminant 11
(two notches more complex, in the series of nonsplit lattices, than discriminant 3).

Let V6 := Sym2W3, where W3 is a 3-dimensional complex vector space. Let

V := {[a2] | a ∈ W3 r {0}}, D := {[ab] | 0 6= a, b ∈ W3}
be the PGL(W3)-invariant Veronese surface and the discriminant hypersurface in P(V6). We let
f0 ∈ Sym3V ∨6 be an equation of D (that is, f0 is “the” discriminant). The SL(W3)-representation
Sym3V ∨6 decomposes as follows:

(38) Sym3(Sym2W∨
3 ) = Γ0,6 ⊕ Γ3,3 ⊕ Γ0,0.

The trivial addend is generated by the discriminant f0. Thus σ0 is the analogue, in the world of
Debarre–Voisin fourfolds, of the discriminant f0.

Since V is the singular locus of D, the stabilizer of [f0] is PGL(W3); this is the analogue of
Proposition 7.21.

One also proves that [f0] is PGL(V6)-polystable (see [L2, Lemma 4.3]).

Next, let 0 6= f ∈ Sym3V ∨6 be such that the intersection C := V (f) ∩ V is transverse.
Identifying V with P(W3), the curve C gets identified with a smooth sextic. Let

(39) S → P(W3)

be the double cover with branch curve C. In [vD], van den Dries proved that the family {F (V (f0+
t2f)}t6=0 can be filled at 0 with MS(0, h, 1).

The first step in the proof is the description of F (D).

Definition 7.1. Let p ∈ P(W∨
3 ), and let H be a codimension-1 subspace of Sym2(ΩP(W∨3 ))(p),

where ΩP(W∨3 )(p) is the cotangent space of P(W∨
3 ) at p. Let I(p,H) ⊂ Sym2W3 be the subspace

of elements ϕ which vanish to order at least 2 at p (that is, either they vanish with order 2, or
are zero) and belong to H.

Definition 7.2. Given (p,R) ∈ P(W∨
3 ) × P(W3), let J(p,R) ⊂ Sym2W3 be the set of ϕ = ab

where a, b ∈ W3, a(p) = 0 and V (b) = R.

We let

I := {P(I(p,H)) | p ∈ P(W∨
3 ), H ∈ P(Sym2(ΩP(W∨3 ))(p)

∨)},
J := {P(J(p,R)) | (p,R) ∈ P(W∨

3 )×P(W3)}.
As is easily checked,

(40) F (D) = I ∪ J.

A general line in J is contained in the smooth locus of D, hence F (D) is smooth at such a point.
On the other hand, F (D) is nonreduced along I.

Hence the central fiber of the degeneration {F (V (f0 +t2f)}t∈∆ is not reduced, and therefore
not good. We modify it as follows.

Let Z := BlV×{0}(P(V6) × ∆), and let ϕ : Z → P(V6) × ∆ be the structure map. Let
E := Exc(ϕ); thus E → V is a bundle of 3-dimensional projective spaces. We view Z → ∆ as
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a degeneration of P(V6), with central fiber BlV(P(V6)) ∪ E. Let Y ⊂ Z be the strict transform
of V (f0 + t2f) ⊂ P(V6) × ∆ (t is “the” affine coordinate on ∆). We have a projective map
π : Y → ∆, with

Yt := π−1(t) '

{
V (f0 + t2f) if t 6= 0,

BlV(D) ∪Q if t = 0.

where Q ⊂ E is a bundle of quadric surfaces over V, with smooth fibers over V r C, and fibers
of corank 1 over C.

Let HilbP (Y /∆) be the relative Hilbert scheme parametrizing subschemes of fibers Yt with
Hilbert polynomial P (with respect to a relatively ample line bundle on Y → ∆) equal to that of a

line in Yt for t 6= 0. Let ρ : HilbP (Y /∆)→ ∆ be the structure map, and let F̃ (Y ) ⊂ HilbP (Y /∆)

be the schematic closure of ρ−1(∆ r {0}). We let F̃ (Y0) be the fiber of F̃ (Y )→ ∆ over 0.

We claim that there is an irreducible component of F̃ (Y0) birationally isomorphic to S[2],
where S is the double cover in (39). In fact, let R be a line parametrized by a point of I r J.

Then R intersects V in two distinct points x1, x2. Let R̃ ⊂ BlV(D) be the strict transform of R,

and let R̃ ∩Q = {x̃1, x̃2}. Then every subscheme of Y0 given by

R̃ ∪R1 ∪R2, x̃i ∈ Ri ⊂ Qxi , Ri ∈ Gr(1, Exi)

belongs to F̃ (Y0). Moreover, by (40), such subschemes are parametrized by an open subset Ĩ0

of the fiber of HilbP (Y /∆) → ∆ over 0. Hence the closure of Ĩ0 in HilbP (Y /∆) (equivalently,

in F̃ (Y )) is an irreducible component of F̃ (Y0); we denote it by Ĩ. Clearly, Ĩ is birationally
isomorphic to S[2]. (The set of lines in (J r I) gives an open dense subset of another irreducible

component of F̃ (Y0), birationally isomorphic to P(W∨
3 )×P(W3).)

One proves that F̃ (Y0) is smooth at a general point of Ĩ as follows. Let R ⊂ D be a line

parametrized by a point of I r J, and keep notation as above. A scheme C := R̃ ∪ R1 ∪ R2 as
above is locally a complete intersection in Y0, hence there is a well-defined normal bundle NC/Y0 .

Since Ĩ is an open subset of the fiber of HilbP (Y /∆) → ∆ over 0 in a neighborhood of C, it
suffices to prove

(41) H1(C,NC/Y0) = 0.

Let D̃ := BlV(D). We have

NC/Y0|R̃ ' NR̃/D̃, NC/Y0|Ri ' NRi/Qxi
.

Since H1(Ri, NRi/Qxi
(−1)) = 0, in order to prove (41) it suffices to prove that H1(R̃, NR̃/D̃) = 0.

The latter vanishing follows from the exact sequences

0 −→ NR̃/D̃ −→ N
R̃/P̃(V6)

−→ O
P̃(V6)

(D̃)|R̃ −→ 0,

(we let P̃(V6) := BlV(P(V6))) and

0 −→ N
R̃/P̃(V6)

−→ ψ∗NR/P(V6) −→ C2
x1
⊕C2

x2
−→ 0.

(We let ψ : R̃ → R be the restriction of the map D̃ → D.) In fact, since deg O
P̃(V6)

(D̃)|R̃ = −1,

the above two exact sequences show that it suffices to prove that the map H0(R̃, ψ∗NR/P(V6)) −→
C2
x1
⊕C2

x2
is surjective. That is easily verified.

Since Ĩ is birationally isomorphic to S[2] and has multiplicity 1 in F̃ (Y0), the family {F (V (f0+
t2mf)}t6=0, for a suitable m, can be filled at 0 with a hyperkähler fourfold birationally isomorphic
to S[2] by (the proof of) [KLSV, Theorem (0.1)].
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At this point I have a problem proving that the central fiber can be modified to be XS. A

deeper analysis of F̃ (Y0) should allow to prove the result directly (as in van den Dries), without
invoking [KLSV], and also to prove that m = 1 will do. Do we want to do it?

This trivector σ0 can be constructed via the “symbolic method” as follows (thanks to Claudio
Procesi). Choose a generator η for

∧
3W3 and write a ∧ b ∧ c =: det(a, b, c)η for all a, b, c ∈ W3.

Then σ0 is the unique trivector on V10 such that

∀x, y, z ∈ W3 σ0(x3, y3, z3) = det(x, y, z)3

(it is alternating and SL(W3)-invariant because it is so when the entries are cubes). Let (x, y, z)
be a basis for W3 and write α ∈ Sym3W3 as

α = α300x
3 + α030y

3 + α003z
3

+ 3(α210x
2y + α102xz

2 + α021y
2z + α120xy

2 + α201x
2z + α012yz

2) + 6α111xyz.(42)

A straightforward computation (umbral calculus) shows that

σ0(α, β, γ) =
∑
τ∈P

ε(τ)ατ(3,0,0)βτ(0,3,0)γτ(0,0,3) − 3
∑
τ∈P

ε(τ)ατ(3,0,0)βτ(0,2,1)γτ(0,1,2)

− 3
∑
τ∈P

ε(τ)ατ(0,3,0)βτ(1,0,2)γτ(2,0,1) − 3
∑
τ∈P

ε(τ)ατ(0,0,3)βτ(2,1,0)γτ(1,2,0)

− 3
∑
τ∈P

ε(τ)ατ(2,1,0)βτ(1,0,2)γτ(0,2,1) − 3
∑
τ∈P

ε(τ)ατ(1,2,0)βτ(2,0,1)γτ(0,1,2)(43)

− 6
∑
τ∈P

ε(τ)ατ(2,1,0)βτ(0,1,2)γτ(1,1,1) − 6
∑
τ∈P

ε(τ)ατ(1,0,2)βτ(1,2,0)γτ(1,1,1)

− 6
∑
τ∈P

ε(τ)ατ(0,2,1)βτ(2,0,1)γτ(1,1,1).

In each sum above, P denotes the permutation group of the relevant subset of the family of
indices. In particular, we get the following.

Lemma 7.3. For each r ∈ {1, 2, 3}, let xiryjrzkr be a degree-3 monomial. Then

σ0(xi1yj1zk1 , xi2yj2zk2 , xi3yj3zk3) 6= 0

if and only if i1 + i2 + i3 = j1 + j2 + j3 = k1 + k2 + k3 = 3 and not all monomials are equal to
xyz.

7.3. The hypersurface Xσ0. The equation of the hypersurface Xσ0 ⊂ Gr(3, Sym3W3) defined
in (2) is given by (43). More precisely, order the multiindices as in Table 3 and denote the

3, 0, 0 0, 3, 0 0, 0, 3 2, 1, 0 1, 0, 2 0, 2, 1 1, 2, 0 2, 0, 1 0, 1, 2 1, 1, 1

0 1 2 3 4 5 6 7 8 9

Table 3. Ordering of multiindices

corresponding Plücker coordinates on
∧

3(Sym3W3) by q012, . . . , q789; then Xσ0 is the intersection
of Gr(3, Sym3W3) with the hyperplane

(44) q012 − 3(q058 + q147 + q236 + q345 + q678)− 6(q389 + q469 + q579) = 0.
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7.3.1. The singular locus of Xσ0. We show in this section that the hypersurface Xσ0 is singular
along a surface which we first describe. Let

v3 : P(W3) ↪−→ P(Sym3W3)

[x] 7−→ [x3]

be the Veronese embedding and let V ⊂ P(Sym3W3) be its image. The projective tangent space
to V at [x3] is P(x2 ·W3), hence the Gauss map of V is

g : V ↪−→ Gr(3, Sym3W3)(45)

[x3] 7−→ [x2 ·W3].

We have g∗OGr(1) ' OP(W3)(6) and g induces an isomorphism

(46) H0(Gr(3, Sym3W3),OGr(1)) ∼−→H0(P(W3),OP(W3)(6)),

because the left side is a nonzero SL(W3)-invariant linear subspace of the right side.

Proposition 7.4. The singular locus of Xσ0 is equal to the surface g(V).

Proof. We first prove one inclusion.

Lemma 7.5. Let (x, y, z) be a basis of W3 and let U3 ⊂ Sym3W3 be a 3-dimensional subspace
spanned by monomials in x, y, z. Then [U3] is a singular point of Xσ0 if and only if, after possibly
renaming x, y, z, we have U3 = 〈x3, x2y, x2z〉, that is, [U3] ∈ g(V).

In particular, the surface g(V) is contained in the singular locus of Xσ0.

Proof. Let U3 = 〈m1,m2,m3〉, where m1,m2,m3 are monomials in x, y, z. By [DV, Proposi-
tion 3.1], the point [U3] is singular on Xσ0 if and only if σ0(mr ∧ms ∧m) = 0 for every distinct
r, s ∈ {1, 2, 3} and every monomial m in x, y, z. Since m is arbitrary, it follows from Lemma 7.3
that at least one of the following inequalities holds

ir + is > 3, jr + js > 3, kr + ks > 3.

The above is true for any choice of distinct r, s ∈ {1, 2, 3}. It follows that, after possibly renaming
x, y, z, we have U3 = 〈x3, x2y, x2z〉. �

We identify P(V10) = P(Sym3W3) with |OP(W∨3 )(3)|, the linear system of cubic curves in

P(W∨
3 ). Given [ϕ] ∈ P(Sym3W3), we denote by V (ϕ) ⊂ P(W∨

3 ) its zero-locus and, given a vector
subspace U ⊂ Sym3W3, we let

(47) L(U) := {V (ϕ) | [ϕ] ∈ P(U)} ⊂ |OP(W∨3 )(3)|

be the associated linear system.

Lemma 7.6. Let U3 ⊂ Sym3W3 be a 3-dimensional subspace. Suppose that one of the following
holds:

(a) there exists [ϕ] ∈ P(U3) such that V (ϕ) is singular at a point p ∈ P(W∨
3 ) not contained

in the base-locus of L(U3);
(b) there exists an element of L(U3) with an ordinary node.

Then [U3] is not a singular point of Xσ0.

Proof. Assume that [U3] is a singular point of Xσ0 . We will reach a contradiction in both cases.
Suppose that (a) holds. Let (x, y, z) be a basis of W3 such that p = (0, 0, 1). Then ϕ = f2(x, y)z+
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f3(x, y), where f2, f3 are homogeneous of respective degrees 2 and 3, not both zero. By assump-
tion, there exists [ψ] ∈ P(U3) such that p /∈ V (ψ). Thus ψ = z3 +f1(x, y)z2 +f2(x, y)z+f3(x, y).
Let λ be the 1-parameter subgroup of GL(W3) given (in the chosen basis) by

(48) λ(t) = diag(tn+1, tn, 1), n ≥ 3.

Let U3 := limt→0 λ(t)U3. The hypersurface Xσ0 is mapped to itself by SL(W3), hence it is singular
at λ(t)U3 for all t ∈ C?, hence also at U3. A simple computation shows that if f2 6= 0, then
limt→0 λ(t)[ϕ] = [xiyjz], where xiyj is the monomial with highest power of y appearing in f2, and
that if f2 = 0, then limt→0 λ(t)[ϕ] = [xiyj], where xiyj is the monomial with highest power of y
appearing in f3.

On the other hand, limt→0 λ(t)[ψ] = [z3]. The subspace U3 is generated by monomials in
x, y, z, because the weights of the action of λ on Sym3W3 are pairwise distinct. Thus U3 is
generated by monomials in x, y, z and contains z3 and one of xiyjz, xiyj. By Lemma 7.5, U3 is
not contained in Sing(Xσ0). This is a contradiction.

Suppose now that (b) holds. By assumption, there exist a basis (x, y, z) of W3 and [ϕ] ∈
P(U3) such that ϕ = xyz + f3(x, y). Let λ be the 1-parameter subgroup in (48) and set U3 :=
limt→0 λ(t)U3. Arguing as above, we get that Xσ0 is singular at U3. A simple computation shows
that limt→0 λ(t)[xyz + f3(x, y)] = [xyz]. Since U3 is generated by monomials in x, y, z, this
contradicts Lemma 7.5. �

We now prove the reverse inclusion Sing(Xσ0) ⊂ g(V). Let [U3] ∈ Sing(Xσ0). One of the
following holds:

(a) there exists [ϕ] ∈ P(U3) such that V (ϕ) is singular at a point not contained in the
base-locus of L(U3);

(b) the base-locus of L(U3) is zero-dimensional and all curves in L(U3) are smooth outside the
base-locus;

(c) the base-locus of L(U3) is one-dimensional and all curves in L(U3) are smooth outside the
base-locus.

If (a) holds, [U3] is not a singular point of Xσ0 by Lemma 7.6. This is a contradiction.

Suppose that (b) holds. We claim that there exists p ∈ P(W∨
3 ) such that all elements

of L(U3) are singular at p. The set

Σ := {(p, [ϕ]) ∈ P(W∨
3 )× L(U3) | p is a singular point of V (ϕ)}

is the intersection of 3 divisors in |OP(W∨3 )(2) � OL(U3)(1)|. If Σ has (pure) dimension 1, its
projection to P(W∨

3 ) is a sextic curve, which contradicts (b). Hence dim(Σ) > 1 and there exists
a point p such that all curves in L(U3) are singular at p. By Lemma 7.6(b), no element of L(U3)
has an ordinary node at p. It follows that there are linearly independent [ϕ1], [ϕ2] ∈ P(U3) such
that V (ϕ1) and V (ϕ2) have multiplicity 3 at p. Thus, there exists a nonzero linear combination
c1ϕ1 +c2ϕ2 such that V (c1ϕ1 +c2ϕ2) is singular along a line. This contradicts our assumption (b).

Lastly, suppose that (c) holds. The base-locus of L(U3) is either a line or a conic (possibly
degenerate). Assume that it is a line R. By Lemma 7.6(b), no element of L(U3) has an ordinary
node. This forces L(U3) to be R + L0, where L0 ⊂ |OP(W∨3 )(2)| is one of the following:

(α) the linear system of conics tangent to R at a fixed p ∈ R and containing a fixed q ∈
P(W∨

3 ) rR;
(β) the linear system of conics with multiplicity of intersection at least 3 with a fixed smooth

conic tangent to R at a fixed p ∈ R;
(γ) the linear system of conics singular at a fixed p ∈ R.
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If (α) holds, there exists a basis (x, y, z) of W3 such that U3 = 〈x2y, xy2, y2z〉. This contradicts
Lemma 7.5.

If (β) holds, there exists a basis (x, y, z) of W3 such that U3 = 〈x3+y2z, xy2, y3〉. Let λ be the
1-parameter subgroup of GL(W3) given by λ(t) = diag(t−1, t−3, 1). Then limt→0 U3 = 〈x3, xy2, y3〉,
which contradicts Lemma 7.5.

If (γ) holds, there exists a basis (x, y, z) of W3 such that U3 = 〈x2y, xy2, y3〉 and this
contradicts Lemma 7.5.

This proves that the base-locus of L(U3) is not a line, hence it is a conic. If the conic has rank
at least 2, there are elements of L(U3) with an ordinary node and this contradicts Lemma 7.6.
Hence the base-locus of L(U3) is a double line, that is, [U3] ∈ g(V). �

7.3.2. The germ of Xσ0 at its singular points. The local structure of Xσ0 at its singular points
will be needed in the proof of Theorem 7.22.

Lemma 7.7. Let p be a singular point of Xσ0. The (analytic) germ (Xσ0 , p) is isomorphic to the
germ

(
∆2 ×

(∑19
i=1 ξ

2
i = 0

)
, 0
)
.

Proof. Let p := [U3] and let (x, y, z) be a basis of W3 such that U3 = 〈x3, x2y, x2z〉. We write a
local equation of Xσ0 in a neighborhood of p, adopting the notation in Sections 7.1 and 7.3. In
particular, coordinates on Sym3W3 are defined by (42) and we order them as in Table 3. Now p
has coordinates q037 = 1 and qijk = 0 for {i, j, k} 6= {0, 3, 7}. Affine coordinates on the open
subset

Gr(3, Sym3W3)q037 ⊂ Gr(3, Sym3W3)

defined by q037 6= 0 are given by q′ijk := qijk/q037 for all 0 ≤ i < j < k ≤ 9 such that exactly two

of the indices i, j, k belong to {0, 3, 7}. By (44), Xσ0 ∩ Gr(3, Sym3W3)Q037 has equation

0 = q′013q
′
027 − q′017q

′
023 − 3(q′035q

′
078 − q′038q

′
057 + q′017q

′
347 + q′047q

′
137 − q′023q

′
367)

+ 3(q′036q
′
237 − q′034q

′
357 + q′035q

′
347 + q′067q

′
378 − q′078q

′
367) + cubic term.

The tangent cone of Xσ0 at p is defined by the vanishing (in C21) of this quadratic term. A
computation gives

Tg(V),p =

〈
∂

∂q′039

+ 2
∂

∂q′067

, 2
∂

∂q′034

+
∂

∂q′079

〉
.

Another computation shows
Tg(V),p = Ker(ϕ).

This proves the lemma. �

7.4. The variety Kσ0. We describe in Proposition 7.10 the Debarre–Voisin variety Kσ0 associ-
ated with the trivector σ0 on V10 = Sym3W3 defined in Section 7.1.

7.4.1. Two distinguished subvarieties of Kσ0.

Definition 7.8. (a) Given [a] ∈ P(W∨
3 ) and a codimension 1 suspace H ⊂ Sym2(a⊥), let

I(a,H) := image of H via the inclusion (Sym2(a⊥) ↪→ Sym2W3),

L(a,H) := (a · I(a,H)⊥)⊥ ⊂ Sym3W3.

Note that dim(I(a,H)) = 2 and dim(L(a,H)) = 6.

(b) Given [a] ∈ P(W∨
3 ) and [x] ∈ P(W3), let

J(a, x) := x ·Ker(a) ⊂ Sym2W3,

M(a, x) := (a · J(a, x)⊥)⊥ ⊂ Sym3W3.
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Note that dim(J(a, x)) = 2 and dim(M(a, x)) = 6.

(c) Finally, define two irreducible subvarieties of Gr(6, V10) by setting

KL := {[L(a,H)] | [a] ∈ P(W∨
3 ), H ⊂ Sym2(a⊥) hyperplane},

KM := {[M(a, x)] | [a] ∈ P(W∨
3 ), [x] ∈ P(W3)}.

We list the subspaces a ·I(a,H)⊥ and a ·J(a, x)⊥ up to isomorphism. First notice that there
exist linearly independent x, y ∈ W3 such that H = 〈x2, y2〉 or H = 〈x2, xy〉. As is easily checked,
there exists a basis (a, b, c) of W∨

3 such that

(49)

a · I(a,H)⊥ =

{
a · 〈a2, ab, ac, bc〉 if H = 〈x2, y2〉,
a · 〈a2, ab, ac, c2〉 if H = 〈x2, xy〉,

a · J(a,H)⊥ =

{
a · 〈a2, b2, bc, c2〉 if a(x) 6= 0,

a · 〈a2, ab, ac, c2〉 if a(x) = 0.

We now show that the varieties KL and KM are both contained in Kσ0 .

Proposition 7.9. (a) The subvariety of Kσ0 obtained from the surface g(V) ⊂ Sing(Xσ0) by the
procedure described in Proposition 4.4(b) is KL.

(b) The variety KM is contained in Kσ0.

Proof. By Proposition 4.4(b), for x, y ∈ W3 not collinear, the 6-dimensional subspace x2 ·W3 +
y2 ·W3 ⊂ Sym3W3 corresponds to a point of Kσ0 . This is exactly L(a,H), where a⊥ = 〈x, y〉 and
H = 〈x2, y2〉. Since KL is irreducible of dimension at most 4, this proves (a).

By (49), if a(x) 6= 0, then M(a, x) = 〈x2y, x2z, y3, y2z, yz2, z3〉 in a suitable basis (x, y, z)
of W3. By Lemma 7.3, this is a point of Kσ0 , which proves (b). �

The rest of Section 7.4 will be devoted to the proof of the following result.

Proposition 7.10. One has (Kσ0)red = KL ∪KM .

We also mention as an addition to this statement that Kσ0 is nonreduced along its compo-
nent KL: this follows from Propositions 7.9(a) and 4.4(a).

The following remark (which complements the description of KL in Proposition 7.9(a)) will
be useful in the proof of Theorem 7.22.

Remark 7.11. If [U6] ∈ Kσ0 , one of the following holds:

(a) either [U6] ∈ KLrKM and the scheme-theoretic intersection Gr(3, U6)∩g(V) is the union
of two reduced (distinct) points;

(b) or [U6] ∈ KM rKL and Gr(3, U6) ∩ g(V) = ∅;
(c) or [U6] ∈ KL ∩KM and the scheme-theoretic intersection Gr(3, U6) ∩ g(V) has length 2.

Remark 7.12. Let FI ⊂ Gr(2, Sym2W3) be the set of all I(a,H) and let FJ ⊂ Gr(2, Sym2W3) be
the set of all J(a, x). The variety of lines on the chordal cubic in P(Sym2W3) is equal to FI ∪FJ ,
both FI and FJ are smooth of dimension 4, and their intersection is smooth of dimension 3 ([vD,
Proposition 3.2.4]). Thus, by Proposition 7.10, Kσ0 is isomorphic to the variety of lines on the
chordal cubic.
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7.4.2. Elements of Kσ0 and 2-jets. Considering the definition of KL and KM , we must, in order
to prove Proposition 7.10, examine U⊥6 when [U6] ∈ Kσ0 . We prove in Proposition 7.14 that U⊥6
satisfies a very strong condition.

Lemma 7.13. Let U3 ⊂ Sym3W3 = H0(P(W∨
3 ),OP(W∨3 )(3)) be a 3-dimensional subspace. Sup-

pose that there exists p ∈ P(W∨
3 ) such that U3 ⊂ H0(P(W∨

3 ),m2
p(3)) and the natural map

U3 → (m2
p/m

3
p)⊗ OP(W∨3 )(3) is an isomorphism. Then [U3] /∈ Xσ0.

Proof. We proceed by contradiction. Assume [U3] ∈ Xσ0 and let (x, y, z) be a basis of W3 such
that the coordinates of p are (0, 0, 1). Let r and s be integers such that 3

2
s > r > s > 0 and let λ

be the 1-parameter subgroup of GL(W3) given (in the chosen basis) by

λ(t) = diag(tr, ts, 1).

Let U3 := limt→0 λ(t)U3. Then Xσ0 contains [U3], because it is mapped to itself by GL(W3). The
representation Sym3λ : C? → Sym3W3 has isotypic components of dimension 1. Generators of
the isotypic components, ordered in increasing order, are

z3, yz2, xz2, y2z, xyz, x2z, y3, xy2, x2y, x3.

It follows that U3 = 〈x2z, xyz, y2z〉. By Lemma 7.3, one gets [U3] /∈ Xσ0 , a contradiction. �

Proposition 7.14. Let [U6] ∈ Kσ0. For every [a] ∈ P(W∨
3 ), we have

(50) (a · Sym2W∨
3 ) ∩ U⊥6 6= {0}.

Proof. We view U6 as a subspace of H0(P(W∨
3 ),OP(W∨3 )(3)). Let p ∈ P(W∨

3 ). If the natural map

(51) U6 −→ (OP(W∨3 ),p/m
3
p)⊗ OP(W∨3 )(3)

is surjective, or equivalently bijective since both spaces have dimension 6, the kernel of the map
U6 → (OP(W∨3 ),p/m

2
p)⊗OP(W∨3 )(3) is a 3-dimensional subspace U3 ⊂ U6∩H0(P(W∨

3 ),m2
p(3)) such

that the natural map U3 → (m2
p/m

3
p)⊗OP(W∨3 )(3) is an isomorphism. By Lemma 7.13, [U3] /∈ Xσ0 ,

but this is absurd because [U6] ∈ Kσ0 . The map (51) is therefore not surjective.

Assume first that p = [a] is not in the base-locus of the linear system P(U6). The map
P(W∨

3 ) 99K P(U∨6 ) defined by P(U6) is the composition

P(W∨
3 )

v3−→ P(Sym3W∨
3 ) 99K P(U∨6 )

of the Veronese map v3 and the projection with center P(U⊥6 ). If (50) does not hold, the second-
order osculating plane P(a · Sym2W∨

3 ) to the Veronese surface v3(P(W∨
3 )) does not meet the

center of projection P(U⊥6 ), hence (51) is bijective, which we just prove does not hold. It follows
that (50) holds if [a] is not in the base-locus of P(U6). Since the property (50) is closed, it holds
for all [a] ∈ P(W∨

3 ). �

7.4.3. Three-dimensional linear system of plane cubics containing many reducible cubics. Let
[U6] ∈ Kσ0 . Then P(U⊥6 ) ⊂ P(Sym3W∨

3 ) is a 3-dimensional linear systems of cubics in P(W3).
By Proposition 7.14, given any line R ⊂ P(W3), there exists a cubic in P(U⊥6 ) containing R. We
prove here the following result.

Proposition 7.15. Let Λ ⊂ |OP2(3)| be a 3-dimensional linear system such that, for each line
R ⊂ P2, there exists a cubic in Λ containing R. One of the following holds:

(a) the base-locus of Λ contains a line;
(b) there exists a (possibly degenerate) conic C ⊂ P2 such that Λ contains C + |OP2(1)|,
(c) in a suitable basis (x, y, z) of H0(P2,OP2(1)), one of the following holds:

(c1) Λ = P(〈x3, y3, z3, xyz〉),
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(c2) Λ ⊂ P(〈xz2, yz2, x3, x2y, xy2, y3〉),
(c3) Λ = P(〈xyz, x2y + yz2, x2z + y2z, xy2 + xz2〉),
(c4) Λ ⊂ P(〈xyz, x2y + xz2, xy2 + yz2, x2z, y2z〉),
(c5) Λ ⊂ P(〈x2z, xyz, xy2 + xz2, y2z, y3 + yz2〉),
(c6) Λ ⊂ P(〈x2z − xy2, y3, y2z, yz2, z3〉).

Here is the corollary of interest to us.

Corollary 7.16. Let [U6] ∈ Kσ0. One of the following holds:

(α) U⊥6 = f1 · U4, where f1 ∈ W∨
3 and U4 ⊂ Sym2W∨

3 is a 4-dimensional subspace;
(β) U⊥6 ⊇ f2 ·W∨

3 , where f2 ∈ Sym2W∨
3 .

Proof. As noted above, Λ := P(U⊥6 ) is a 3-dimensional linear system of cubics satisfying the
hypothesis of Proposition 7.15. Hence one of items (a), (b), (c) of that proposition holds. If (a)
holds, then (α) holds; if (b) holds, then (β) holds. One checks that if (c) holds, [U6] is not in Kσ0 .
For example, suppose that (c6) holds and let (a, b, c) be the basis of W3 dual to the basis (x, y, z)
ofW∨

3 . Then U6 ⊃ 〈a2c+ab2, a3, a2b, abc, ac2〉 and this is absurd, because σ0(a2c+ab2, abc, ac2) 6= 0
by Lemma 7.3. �

Before proving Proposition 7.15, we go through two preliminary results. The first is an easy
exercise which we leave to the reader.

Lemma 7.17. Let Λ ⊂ |OP2(3)| be a linear system all of whose elements are reducible. Then,
either Λ has a 1-dimensional base-locus or all cubics in Λ have multiplicity 3 at a fixed point.

Proposition 7.18. Let Λ ⊂ |OP2(3)| be a 2-dimensional linear system. Suppose that, given an
arbitrary line R ⊂ P2, there exists a cubic in Λ containing R. Then, there exists a conic C such
that Λ = C + |OP2(1)|.

Proof. By our hypothesis, the variety of reducible cubics in Λ has dimension 2, hence every cubic
in Λ is reducible. Since all cubics in Λ cannot have multiplicity 3 at a fixed point, Lemma 7.17
implies that the base-locus of Λ contains a line R or a conic C. If the latter holds, we are done
because dim(Λ) = 2. If the former holds, Λ = R + Λ′, where Λ′ is a 2-dimensional linear system
of conics such that, given any line R ⊂ P2, there exists a conic in Λ′ containing R. In particular
all conics in Λ′ are reducible. It follows that there exists a line R′ such that Λ′ = R′ + |OP2(1)|.
Thus Λ = (R +R′) + |OP2(1)|. �

Proof of Proposition 7.15. If the base-locus of Λ has dimension 1, item (a) holds. From now on,
we assume that the base-locus of Λ is finite. Let f : P2 99K Λ∨ ' P3 be the natural map. Let
B ⊂ P2 be the (schematic) base-locus of Λ, so that Λ ⊂ |IB(3)|. Let fB : P2 99K |IB(3)|∨ be the
natural rational map. Then f is the composition π◦fB, where π : |IB(3)|∨ 99K Λ∨ is a projection
whose center does not intersect the (closed) image fB(P2).

The (closed) image f(P2) is either a curve or a surface. If it is a curve, Λ is the linear system
of cubics in P2 which have multiplicity 3 at a fixed point. This contradicts our hypothesis. Hence f
has finite positive degree onto the surface Σ := f(P2). As one easily checks,

(i) either B is the complete intersection of a (possibly degenerate) conic C and a cubic,
(ii) or the restriction of fB to a subscheme Z ⊂ P2 r B of length 2 is not injective if and

only if the schematic intersection 〈Z〉 ∩B has length 3.

If (i) holds, Λ = |IB(3)|, hence Λ ⊃ C+ |OP2(1)|. Thus item (b) of Proposition 7.15 holds. From
now on, we assume that (ii) holds.
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Assume first that f has degree 1 onto its image. If R ⊂ P2 rB is a line, fB(R) is a twisted
cubic by item (ii). A dimension count shows that

(α) either f(R) is also a twisted cubic for a general line R ⊂ P2 rB,
(β) or the projection π : |IB(3)|∨ 99K Λ∨ maps to the same point fB(R1rB) and fB(R2rB),

where R1, R2 ⊂ P2 are distinct lines such that length(Ri ∩B) = 3,
(γ) or the differential of f vanishes at all points of R r B, where R ⊂ P2 is a line such that

length(R ∩B) = 3.

If (α) holds, no cubics in Λ contain a general line R ⊂ P2, because f(R) ⊂ Λ∨ is a twisted cubic,
and this contradicts the hypothesis of Proposition 7.15. If (β) holds, dim(Λ) = 4, length(B) = 5,
and B is a subscheme of R1 ∪ R2. It follows that Λ ⊃ R1 + R2 + |OP2(1)|, hence item (b) of
Proposition 7.15 holds. If (γ) holds, Λ ⊃ 2R + |OP2(1)| and item (b) holds again.

Assume now that f has degree greater than 1 onto its image. Suppose that the surface

Σ ⊂ Λ∨ has degree 2. Let P̂2 → P2 be a smooth blow up such that f̂ : P̂2 → P2
f
99K Σ is a

morphism. Let V ⊂ Σ be the union of the set of singular points of the branch divisor of f̂ (this
includes the points over which the fiber is not finite) and the vertex of Σ if Σ is a cone.

The linear system Λ contains a 2-dimensional family of reducible cubics that contain a
general line and these cubics correspond to planes in Λ∨ ' P3 that either meet V or are tangent
to Σ at a smooth point of Σ. If these planes all pass through a point of V , we can apply
Proposition 7.18 and item (b) holds. Otherwise, given a general line R ⊂ P2, there exists a plane
tangent to Σ at a smooth point such that the corresponding cubic contains R. If Σ is smooth,
the cubics corresponding to tangent planes are of the form C1 + C2, where C1 and C2 belong
to two fixed pencils of curves corresponding to the two pencils of lines on Σ and this is absurd
because they do not contain a general line. If Σ is a cone, the set of tangent planes is the linear
system of planes through the vertex and we are reduced to the first case.

We may therefore assume deg(Σ) ≥ 3. We claim that the (schematic) base-locus B of Λ is
curvilinear. It is not, there is a (single) point p in the support of B such that, in a neighborhood
of p, we have IB = m2

p. This implies deg(f) deg(Σ) ≤ 5, hence deg(Σ) = 2, which is absurd.

Since B is curvilinear, it is locally a complete intersection; therefore, deg(f) deg(Σ) +
length(OB) = 9. Since deg(f) ≥ 2 and deg(Σ) ≥ 3, one of the following holds:

(I) B is empty and deg(f) = deg(Σ) = 3;
(II) B is a single reduced point and deg(f) = 2;

(III) B has length 3 and deg(f) = 2.

Suppose that (I) holds. In particular, f : P2 → Σ is regular. Let us show that item (c1) of
Proposition 7.15 holds. First, we claim that Σ has isolated singularities. In fact, if Σ is a cone,
one gets a contradiction arguing as in the proof that Σ cannot be a quadric. If Σ is a nonnormal

cubic (and not a cone), its normalization Σ̃ is the Hirzebruch surface F1 and we get a contradiction
because the dominant map P2 → Σ lifts to a dominant map P2 → F1, and ρ(F1) > ρ(P2). We
have proved that Σ has isolated singularities.

The map f : P2 → Σ is finite and f ∗ωΣ ≡ ωP2 , hence f is unramified in codimension 1.
Hence, if C ∈ Λ is general, the map C → f(C) is the quotient map for the action of a subgroup
of Pic0(C) of order 3. This action is the restriction of an automorphism ϕC of P2 of order 3. We
prove that ϕC does not depend on C. Let C ′ ∈ Λ be another general cubic and let H,H ′ ⊂ Λ∨

be the planes corresponding to C,C ′. The 9 points in C ∩C ′ are partitioned into the union of the
three fibers (each of cardinality 3) of the three points of intersection of the line H ∩H ′ with Σ.
It follows that ϕC and ϕC′ agree on the 9 points in C ∩ C ′, hence are equal. The upshot is that
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there exists an order 3 automorphism ϕ of P2 such that f : P2 → Σ is the corresponding quotient
map and f ∗OΣ(1) ' OP2(3). It follows that (c1) holds.

Suppose that (II) holds. Let P̂2 → P2 be the blow up of the base point of Λ. Then f

induces a regular finite map f̂ : P̂2 → Σ of degree 2. Since the exceptional divisor of P̂2 → P2 is

the unique (−1)-curve of P̂, the covering involution of f̂ descends to an involution ι : P2 → P2

leaving invariant the cubics in Λ. In suitable coordinates, we have ι(x, y, z) = (x, y,−z). Since
the cubics in Λ are ι-invariant, we have Λ ⊂ P(〈xz2, yz2, x3, x2y, xy2, y3〉) and (c2) holds.

Suppose that (III) holds. The blow up BlB P2 of B is a weak Del Pezzo surface (the an-
ticanonical bundle is big and nef) with DuVal singularities. The anticanonical system |IB(3)|
defines a map BlB P2 → |IB(3)|∨ ' P6 whose image is a Del Pezzo surface S with DuVal singu-
larities. The rational map f : P2 99K Λ∨ is the composition of the natural rational map P2 99K S
and the restriction to S of a projection |IB(3)|∨ 99K Λ∨ with center disjoint from S. The latter is

a map f̂ : S → Σ which is finite, of degree 2. If ι̂ : S → S is its covering involution, Λ is contained
in the projectivization of the ι̂-invariant subspace of H0(S, ω−1

S ).

If the involution ι̂ descends to a regular involution of P2, item (c2) holds by the argument
given above. Thus we assume that ι̂ is a birational nonregular involution of P2; in particular, B
is not contained in a line and there exist coordinates x, y, z such that

(a) either |IB(3)| = P(〈x2y, x2z, xy2, xyz, xz2, y2z, yz2〉) andB = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
(b) or |IB(3)| = P(〈x2z, xy2, xyz, xz2, y3, y2z, yz2〉) andB is supported at (1, 0, 0) and (0, 0, 1),

and has length 2 at (1, 0, 0) with tangent line z = 0,
(c) or |IB(3)| = P(〈x2z − xy2, xyz, xz2, y3, y2z, yz2, z3〉) and B is curvilinear (nonlinear)

supported at (1, 0, 0) with tangent line z = 0.

The standard Cremona quadratic map and the first and second standard degenerate quadratic
maps (see [Do, Example 7.1.9]) provide examples of such an involution in each of these cases

τa(x, y, z) = (yz, xz, yz), τb(x, y, z) = (xz, yz, y2), τc(x, y, z) = (−xz + y2, yz, z2).

Suppose that (a) holds. Every involution τ of S which does not descend to P2 is given by τa ◦ h,
where h ∈ PGL(3) permutes the points of B. If h fixes the points of B, we get τ = τa (after
rescaling x, y, z), while if h defines a transposition of B, we have τ([x, y, z]) = [xz, yz, xy] in
suitable coordinates. The τ -invariant subspace of H0(S, ω−1

S ) is equal to 〈xyz, x2y + yz2, x2z +
y2z, xy2 + xz2〉 if the former holds, and to 〈xyz, x2y+ xz2, xy2 + yz2, x2z, y2z〉 if the latter holds.
Hence if the former holds, (c3) holds; if the latter holds, (c4) holds.

Suppose that (b) holds. The relevant birational involutions of P2 are given by τb ◦ h, where
h ∈ PGL(3) is given by h(x, y, z) = (αx + βy,−αy,−α−2z) or by h(x, y, z) = (αx, αy, α−2z)
with α ∈ C? and β ∈ C. In a suitable coordinate system, τ is τb. The τb-invariant subspace of
H0(S, ω−1

S ) is 〈x2z, xyz, xy2 + xz2, y2z, y3 + yz2〉, hence (c5) holds.

Lastly, suppose that (c) holds. The relevant birational involutions of P2 are τc ◦ h, where
h([x, y, z]) = [x + βy + γz, y, z]. In a suitable coordinate system, such a birational involution is
equal to τc. The τc-invariant subspace of H0(S, ω−1

S ) is 〈x2z − xy2, y3, y2z, yz2, z3〉, hence (c6)
holds. �

7.4.4. Description of Kσ0. Let [U6] ∈ Kσ0 and let T4 := U⊥6 . By Corollary 7.16, either T4 = f1 ·U4,
where U4 ⊂ Sym2W∨

3 is a 4-dimensional subspace, or T4 ⊃ f2 ·W∨
3 , where f2 ∈ Sym2W∨

3 . Hence,
by (49), Propositions 7.19 and 7.20 below finish the proof of Proposition 7.10.

Proposition 7.19. Let T4 ⊂ Sym3W∨
3 be a 4-dimensional subspace such that T4 = f1 ·U4, where

0 6= f1 ∈ W∨
3 and U4 ⊂ Sym2W∨

3 is a 4-dimensional subspace. Then T⊥4 ∈ Kσ0 if and only if
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there exists a basis (a, b, c) of W∨
3 such that

T4 =


a · 〈a2, ab, ac, bc〉, or

a · 〈a2, ab, ac, c2〉, or

a · 〈a2, b2, bc, c2〉.

Proof. Let R2 := U⊥4 ⊂ Sym2W3. Up to the action of GL(W3), there are 8 possibilities for R2,
described as follows in a basis (x, y, z) of W3. In the case where the general conic (in P(W∨

3 ))
defined by P(R2) is smooth, hence the base-locus is a 0-dimensional curvilinear scheme, we have

(1) R2 = 〈xy, (x + y + z)z〉, that is, the base-locus of the pencil of conics defined by P(R2)
consists of 4 distinct points;

(2) R2 = 〈xy, (x+z)z〉, that is, the base-locus of the pencil of conics defined by P(R2) consists
of two reduced points and a point of multiplicity 2;

(3) R2 = 〈xy, z2〉, that is, the base-locus of the pencil of conics defined by P(R2) consists of
two points of multiplicity 2;

(4) R2 = 〈xy, x2 +yz〉, that is, the base-locus of the pencil of conics defined by P(R2) consists
of one point of multiplicity 3 and a reduced point;

(5) R2 = 〈y2, x2 +yz〉, that is, the base-locus of the pencil of conics defined by P(R2) consists
of one point of multiplicity 4.

The remaining R2 are those for which all the conics parametrized by P(R2) are singular:

(a) R2 = 〈y2, z2〉;
(b) R2 = 〈y2, yz〉;
(c) R2 = 〈xy, xz〉.

Correspondingly, we get the following lists of 4-dimensional subspaces U4 ⊂ Sym2W∨
3 :

(52) U4 =



〈a2, b2, ac− c2, bc− c2〉,
〈a2, b2, ac− c2, bc〉,
〈a2, b2, ac, bc〉,
〈ac, b2, c2, a2 − bc〉,
〈ab, ac, c2, a2 − bc〉,

and

(53) U4 =


〈a2, ab, ac, bc〉,
〈a2, ab, ac, c2〉,
〈a2, b2, bc, c2〉.

Every 4-dimensional U4 ⊂ Sym2W∨
3 is equivalent modulo GL(W3) to one and only one of the

spaces U4 given above. Let f1 ∈ W∨
3 be nonzero and let U4 be one of the subspaces in (52).

We claim that (f1 · U4)⊥ does not belong to Kσ0 . To see this, first note that there exists
a 1-parameter subgroup of GL(W3) such that limt→0 λ(t)U4 is equal to the subspace in the last
line of (52) (this is clear since U4 = R⊥2 ). Hence it suffices to prove that for U4 as in the last line
of (52), (f1 ·U4)⊥ does not belong to Kσ0 . Next, by acting with a 1-parameter subgroup of GL(W3)
given by diag(tq, tr, ts) (in the given basis), with 2q = r + s, we may assume f1 ∈ {a, b, c}. An
explicit computation then gives

(a · 〈ab, ac, c2, a2 − bc〉)⊥ = 〈ab2, b3, b2c, bc2, c3, a3 + abc〉,
(b · 〈ab, ac, c2, a2 − bc〉)⊥ = 〈a3, a2c, ac2, b3, c3, a2b+ b2c〉,
(c · 〈ab, ac, c2, a2 − bc〉)⊥ = 〈a3, a2b, ab2, b3, b2c, a2c+ bc2〉.
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By Lemma 7.3, we have σ0(b3, c3, a3 + abc) 6= 0, σ0(a3, b3, c3) 6= 0, and σ0(a3, b2c, ac2 + bc2) 6= 0.
It follows that the first, second, and third spaces are not in Kσ0 .

We are left with U4 as in (53). We know that (a · U4)⊥ ∈ Kσ0 . It remains to prove that if
f1 /∈ 〈x〉, then (f1 · U4)⊥ /∈ Kσ0 . Acting with a suitable 1-parameter subgroup of GL(W3), we
may assume f1 ∈ {b, c}. An explicit computation similar to the one presented above finishes the
proof. �

Proposition 7.20. Let T4 ⊂ Sym3W∨
3 be a 4-dimensional subspace. Suppose that there exists a

nonzero f2 ∈ Sym2W∨
3 such that T4 ⊃ (f2 ·W∨

3 ). Then [T⊥4 ] ∈ Kσ0 if and only if there exists a
basis (a, b, c) of W∨

3 such that

(54) T4 =

{
a · 〈a2, ab, ac, bc〉, or

a · 〈a2, ab, ac, c2〉.

Proof. There exists a basis (a, b, c) of W∨
3 and g ∈ Sym3W∨

3 such that (according to the rank of
f2)

(55) T4 =


〈a2b+ ac2, ab2 + bc2, abc+ c3, g〉, or

〈a2b, ab2, abc, g〉, or

〈a3, a2b, a2c, g〉.

Suppose that T4 is as in the first line. Let λ be the 1-parameter subgroup, diagonal in the basis
(a, b, c), given by diag(1, tr, ts). Then limt→0 λ(t)T4 is as in the second line. We show that for T4

as in the second line, the orthogonal T⊥4 is not in Kσ0 . Let λ be any 1-parameter subgroup
diagonal in the basis (a, b, c), with pairwise distinct weights of the action on Sym3W∨

3 . Then

T 4 := limt→0 λ(t)T4 is monomial and it contains a2b, ab2, and abc. Hence the orthogonal T
⊥
4 is

monomial, of dimension 6, contained in

〈a3, a2c, ac2, b3, b2c, bc2, c3〉.

A direct check shows that the above subspace contains no monomial subspace of dimension 6 on
which σ0 vanishes. It follows that [T⊥4 ] is not in Kσ0 .

Suppose now that T4 is as in the third line. We prove by contradiction that a | g (once
that is known, we might need to rename b, c). Let λ be a 1-parameter subgroup, diagonal in the
basis (a, b, c), given by diag(1, tr, ts), where r > 3s. Then T 4 := limt→0 λ(t)T4 is monomial and

by our assumption a - g , there exist i, j such that T 4 = 〈a3, a2b, a2c, bicj〉. Hence T
⊥
4 contains

〈ab2, abc, ac2〉 and is therefore not in Kσ0 . It follows that [T⊥4 ] is not in Kσ0 . �

7.5. Orbit and stabilizer. Recall that V10 = Sym3W3. Since sl(3) = Γ1,1 and

End(V10) = Γ3,3 ⊕ Γ2,2 ⊕ Γ1,1 ⊕ Γ0,0,

it follows from the decomposition (37) that there is an exact sequence

(56) 0→ sl(3)→ End(V10)→
∧

3V ∨10
a−−→ Γ0,6 → 0.

We prove below that the stabilizer of [σ0] is SL(3). The normal space at [σ0] to the SL(V10)-orbit
of [σ0] is therefore Γ0,6 = H0(P(W3),OP(W3)(6)). The map a was given a geometric interpretation
in (46).

Proposition 7.21. The stabilizer of [σ0] in SL(V10) is equal to the image of SL(W3)→ SL(V10)
and the point [σ0] ∈ P(

∧
3V ∨10) is polystable for the SL(V10)-action.
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Proof. The stabilizer contains SL(W3) by choice of σ0. Conversely, if g ∈ SL(V10) stabilizes [σ0], it
maps Xσ0 to itself, hence the singular locus of Xσ0 to itself. By Proposition 7.4, this singular locus
is equal to g(V) ⊂ P(Sym3W3). Thus g maps to itself the subvariety of P(Sym3W3) swept out by
projective tangent planes to the Veronese surface V. Since the singular locus of this subvariety
is V, the automorphism g maps V to itself, hence belongs to SL(W3).

It follows from Proposition 5.4 that this stabilizer has finite index in its normalizer, hence [σ0]
is polystable by [Lu, Corollaire 3]. �

7.6. Degenerations. The following theorem is the main result of Section 7. We consider a
general 1-parameter deformation (σt)t∈∆ of our trivector σ0. By the exact sequence (56), we
obtain a general element of H0(P(W3),OP(W3)(6)), hence a double cover S → P(W3) branched
along the sextic curve that it defines, where S is a K3 surface of degree 2. The moduli space
MS(0, L, 1), a hyperkähler fourfold birationally isomorphic to S[2], was defined in Remark 3.6.

Theorem 7.22. Let (σt)t∈∆ be a general 1-parameter deformation. Over a finite cover ∆′ → ∆,
there is a family of smooth polarized hyperkähler fourfolds K ′ → ∆′ such that a general fiber K ′

t′

is isomorphic to Kσt and the central fiber is isomorphic to MS(0, L, 1), where S is a general K3
surface of degree 2, with the polarization 6L− 5δ.

The proof will be given at the very end of this section.

Set G := Gr(3, V10)×∆ and consider the blow up

ϕ : G̃ := Blg(V)×{0} G −→ G

(see (45) for the definition of the surface g(V)) . The exceptional divisor E → g(V) is a bundle

of 19-dimensional projective spaces. We view G̃ → ∆ as a degeneration of Gr(3, V10) with central
fiber Blg(V) Gr(3, V10) ∪ E.

Write the deformation in Theorem 7.22 as σt = σ0 + tσ + O(t2), where, by the analysis
of Section 7.5, we may assume that σ is very general in Sym6W∨

3 ⊂
∧

3V ∨10. Consider the strict

transform X̃ ⊂ G̃ of

(57) {([U3], t) ∈ G | σt2|U3 ≡ 0},

with projection π : X̃ → ∆. By (46), the hypersurface Xσ intersects transversely g(V) and div(σ)
is identified with C := Xσ ∩ g(V). Hence

X̃t := π−1(t) '

{
Xσt2

if t 6= 0,

Blg(V) Xσ0 ∪Q if t = 0,

where Q ⊂ E is a bundle of 18-dimensional quadrics over g(V), with smooth fibers over g(V)rC
and fibers of corank 1 over C (this follows from Lemma 7.7 and holds because we performed a
degree-2 base change in (57)).

We identify Kσ with the closed subset of the Hilbert scheme of Xσ defined by

{[U6] ∈ Gr(6, V10) | Gr(3, U6) ⊂ Xσ}.

This defines a subscheme K → ∆? of the relative Hilbert scheme Hilb(X̃ /∆), with fiber Kσ0+t2σ

at t, and we take its schematic closure ρ : K̃ → ∆.

Proposition 7.23. There exists an irreducible component K ′L of K̃0 which is birationally iso-
morphic to S[2], where S is the degree-2 K3 surface of Theorem 7.22.
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Proof. Let [U6] ∈ KL rKM . By Remark 7.11, the scheme-theoretic intersection Gr(3, U6) ∩ g(V)

is two reduced points p1, p2. Let G̃r(3, U6) ⊂ X̃0 be the strict transform of Gr(3, U6), that is, the

blow up of Gr(3, U6) at p1, p2. We have G̃r(3, U6) ∩ Q = {A1, A2}, where Ai, for i ∈ {1, 2}, is
an 8-dimensional linear subspace of the fiber Epi of E over pi, contained in the fiber Qpi of Q

over pi. Every subscheme of X̃0 given by

(58) G̃r(3, U6) ∪R1 ∪R2, Ai ⊂ Ri ⊂ Qpi , [Ri] ∈ Gr(9, Epi)

corresponds to a point of K̃0. Moreover, by Proposition 7.10, these subschemes are parametrized

by an open subset of the fiber Hilb(X̃ /∆)0, whose closure in Hilb(X̃ /∆) (equivalently, in K̃ )

is therefore an irreducible component of K̃0; we denote it by K ′L. Now Qpi is an 18-dimensional
quadric, either smooth or of corank 1, which is smooth at each point of Ai (Lemma 7.7). It
follows that there are exactly two 9-dimensional linear subspaces of Qpi containing Ai if Qpi is
smooth (that is, if pi /∈ C) and one such linear subspace if Qpi is singular (that is, if pi ∈ C).

By construction, an open dense subset K ′0L of K ′L parametrizes subschemes as in (58), where
[U6] ∈ KL is such that Gr(3, U6) ∩ g(V) is reduced (of length 2). The set of such [U6] is exactly
KL rKM . We have a forgetful map

(59)
K ′0L −→ KL rKM

G̃r(3, U6) ∪R1 ∪R2 7−→ [U6].

Let ρ : S(2) → P(W3)(2) be the map induced by the double cover S → P(W3). By definition of
R1, R2, the map in (59) can be identified with the map

S(2) r {ρ−1(2x) | x ∈ P(W3)} −→ P(W3)(2) r {2x | x ∈ P(W3)}

obtained by restricting ρ. In particular, K ′L is birationally isomorphic to S[2] and the forgetful
map K ′L → KL has degree 4. �

Proposition 7.24. The irreducible component K ′L has multiplicity one in K̃0.

Proof. A point x of K ′0L (notation as in the proof of Proposition 7.23) parametrizes a scheme

Z := G̃r(3, U6) ∪ R1 ∪ R2 as in (58), where the scheme-theoretic intersection Gr(3, U6) ∩ g(V) is
the union of two reduced points p1 = [U3,1] and p2 = [U3,2], neither of which is contained in Xσ.

The scheme Z is locally a complete intersection in Y0. Hence there is a well-defined normal
bundle NZ/Y0 and it suffices to prove H1(Z,NZ/Y0) = 0 (because K ′L is an open neighborhood of x

in the fiber HilbP (X̃ /∆)0). In order to simplify notation, set X0 := Xσ0 and X̃0 := Blg(V) X0.
We have

NZ/Y0|G̃r(3,U6) ' NG̃r(3,U6)/X̃0
, NZ/Y0|Ri ' NRi/Qpi

.

One easily checks H1(Ri, NRi/Qpi
(−1)) = 0. In order to prove H1(Z,NZ/Y0) = 0, it therefore

suffices to show

(60) H1(G̃r(3, U6), NG̃r(3,U6)/X̃0
) = 0.

Let G̃r(3, V10) := Blg(V) Gr(3, V10). We have the normal exact sequence

(61) 0→ NG̃r(3,U6)/X̃0
→ NG̃r(3,U6)/G̃r(3,V10) → OG̃r(3,V10)(X̃0)|G̃r(3,U6) → 0.

We claim that

(62) H0(G̃r(3, U6),OG̃r(3,V10)(X̃0)|G̃r(3,U6)) = 0.
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In fact, the natural map ψ : G̃r(3, V10) → Gr(3, V10) is the blow up of the points p1 and p2. Let
A = A1 + A2 be the exceptional divisor of ψ and let OGr(1) be the Plücker line bundle on
Gr(3, V10). Since X0 is a divisor in |OGr(1)| with multiplicity 2 along g(V), we have

(63) OG̃r(3,V10)(X̃0)|G̃r(3,U6) ' OG̃r(3,U6)(ψ
∗OGr(1)− 2A).

Let x be a general point in G̃r(3, U6) and set [U3] := ψ(x) ∈ Gr(3, U6). We may assume that U3

is transverse to U3,1 and U3,2, hence there exists a Segre embedding Φ: P1 × P2 ↪→ P(U6) such
that Φ({(0, 1)} ×P2) = P(U3,1), Φ({(1, 0)} ×P2) = P(U3,2), and Φ({(1, 1)} ×P2) = P(U3). Let

ϕ : P1 → Gr(3, U6) be the map defined by Φ and let Γ ⊂ G̃r(3, U6) be the strict transform of
ϕ(P1). Then Γ ·ψ∗OGr(1) = 3 and Γ ·A = 2, hence Γ · (ψ∗OGr(1)− 2A) = −1. It follows that any

section of the right side of (63) vanishes at general points of G̃r(3, U6) hence is the zero section.
This proves (62).

By (62) and (61), it suffices, in order to prove (60), to prove

H1(G̃r(3, U6), NG̃r(3,U6)/G̃r(3,V10)) = 0.

The differential of ψ defines an exact sequence

0→ NG̃r(3,U6)/G̃r(3,V10) → ψ∗NGr(3,U6)/Gr(3,V10)
a−−→ O⊕10

A1
⊕ O⊕10

A2
→ 0.

The map induced by a on global sections is surjective, because the subspaces of U6 corresponding
to p1, p2 are transverse. Since H1(Gr(3, U6), NGr(3,U6)/Gr(3,V10)) = 0, the desired vanishing follows
from the long exact sequence associated with this exact sequence. �

Proof of Theorem 7.22. By Propositions 7.23 and 7.24, and by (the proof of) [KLSV, Theo-
rem (0.1)], we obtain, as in the proof of Theorem 6.14, after a suitable finite base change, a
smooth family of polarized hyperkähler fourfolds with (smooth) central fiber birationally isomor-
phic to S[2] with the polarization 6L − 5δ. It follows from Remark 3.6 that this central fiber is
isomorphic to (MS(0, L, 1), 6L− 5δ). �

8. The divisor D30

Let (S, L) be a general polarized K3 surface of degree 30. Unfortunately, little geometric
information on S is available and we were not able to find a trivector on some 10-dimensional
vector space V10 to relate S[2] to Debarre–Voisin varieties, nor were we able to decide whether D30

is an HLS divisor. We will however construct on S[2] a canonical rank 4-vector bundle with the
same numerical invariants as the restriction of the tautological quotient bundle of Gr(6, V10) to a
Debarre–Voisin variety.

8.1. The rank-4 vector bundle Q4 over S[2]. By Mukai’s work ([Mu3]), there is a simple
and rigid rank-2 vector bundle F on S with c1(F ) = L and Euler characteristic χ(S,F ) = 10.
Moreover, F is globally generated and the vector space W10 := H0(S,F ) has dimension 10.

With the notation of Section 4.1, we let TF be the tautological rank-4 vector bundle on S[2]

associated with F . We have c1(TF ) = L− 2δ and H0(S[2],TF ) = W10.

Consider now the tautological rank-6 vector bundle TSym2F constructed on S[2] from the

rank-3 vector bundle Sym2F over S.

Lemma 8.1. The natural evaluation map

ev+ : Sym2TF −→ TSym2F

is surjective. Its kernel Q4 is a rank-4 vector bundle over S[2] with c1(Q4) = 2L− 7δ.
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Proof. Consider as in Section 4.1 the double cover p : S̃ × S → S[2] defined by the blow up S̃ × S
of S ×S along its diagonal. Let q1 be the first projection to S, so that TF = p∗(q

∗
1F ). Tensorize

the canonical surjection p∗TF → q∗1F by the vector bundle q∗1F to obtain the exact sequence

(p∗TF )⊗ q∗1F → q∗1(F ⊗F )→ 0.

Its pushforward by the finite morphism p gives with the projection formula a surjection

ev : TF ⊗TF � TF⊗F .

The map ev+ being the invariant part of ev, it is also surjective. Its kernel Q4 is therefore a vector
bundle of rank 4 and we have c1(Sym2TF ) = 5c1(TF ) = 5L− 10δ and c1(TSym2F ) = 3L− 3δ, so
c1(Q4) = 2L− 7δ. �

Remark 8.2. If we replace in this construction F by the Mukai bundle E2 over a K3-surface
of degree 18, the antiinvariant part ev− :

∧
2TE2 � T∧2E2

of ev is the surjection in sequence (22).

So, in the degree-18 case, Q4 was defined as the kernel of ev−.

Lemma 8.3. The vector space H0(S[2],Q4) has dimension at least 10 and is canonically isomor-
phic to the kernel

V10 := Ker(Sym2W10 −→ H0(S, Sym2F )).

We expect this map to be onto, so that V10 would have dimension 10.

Proof. By [D2, Theorem 1] or [K, Theorem 6.6], the canonical maps

H0(S,F ) −→ H0(S[2],TF )

H0(S, Sym2F ) −→ H0(S[2],TSym2F )(64)

H0(S,F )⊗H0(S,F ) −→ H0(S[2],TF ⊗TF )(65)

are isomorphisms. By definition of Q4, we have an exact sequence

0→ H0(S[2],Q4)→ H0(S[2], Sym2TF )→ H0(S[2],TSym2F ).

Since (65) is bijective, its middle space is isomorphic to Sym2H0(S,F ) = Sym2W10; since (64)
is bijective, the rightmost space is isomorphic to H0(S, Sym2F ). We therefore conclude that
H0(S[2],Q4) is isomorphic to V10.

We will show that H1(S,F ⊗ F ) = H2(S,F ⊗ F ) = 0 on a specific K3 surface S of
degree 30 introduced by Mukai in [Mu3, §6], hence on a general K3 surface. This surface has an
elliptic fibration S → P1 with general fiber A1 and Mukai shows that F fits in an exact sequence

(66) 0→ OS(A1)⊕ OS(A1)→ F → OZ(5z)→ 0,

where Z ⊂ S is a smooth rational curve and z is the class of a point on Z. Tensoring (66)
by OS(A1), we get H2(S,F (A1)) = 0, and tensoring it by F , we get H2(S,F ⊗F ) = 0.

Since F is globally generated, we have H1(Z,F ⊗ OZ(5z)) = 0 and, tensoring (66) by F ,
we get a surjection

(67) H1(S,F (A1))⊕2 � H1(S,F ⊗F ).

Mukai showed that on this particular surface, one has H1(S,F ) = H2(S,F ) = 0, hence

(68) H1(S,F (A1)) ' H1(S,F |A1) ' H2(S,F (−A1)) ' H0(S,F (A1 −H))∨,

where OS(H) :=
∧

2F = L is the polarization. Moreover, we have Z ≡
lin
H − 2A1, A1 · H = 8,

and H2 = 30, and the sequence (66) gives an exact sequence

0→ OS(2A1 −H)⊕ OS(2A1 −H)→ F (A1 −H)→ OZ(−z)→ 0.



48 O. DEBARRE, F. HAN, K. O’GRADY, AND C. VOISIN

This implies H0(S,F (A1−H)) = 0, hence H1(S,F (A1)) = 0 by (68). Finally, the surjection (67)
implies H1(S,F ⊗F ) = 0.

Going back to a general K3 surface S, where the vanishings H1(S,F ⊗F ) = H2(S,F ⊗
F ) = 0 still hold, we get

h0(S, Sym2F ) = χ(S, Sym2F ) = 45

and, by definition of V10,

dim(V10) ≥ dim(Sym2W10)− h0(S, Sym2F ) = 10.

This finishes the proof of the lemma. �

From the previous two lemmas, we obtain the following result, where we use, as in Re-
mark 6.1, the package Schubert2 of Macaulay2 ([GS]) to compute the numerical invariants of the
vector bundle Q4 on S[2] (the code can be found in [X]).

Proposition 8.4. Let (S, L) be a general polarized K3 surface of degree 30. The vector bundle Q4

induces a rational map S[2] 99K Gr(6, V10) which corresponds to the polarization given in the last
column of Table 1. Moreover, the vector bundle Q4 has the same Segre numbers as the rank-4
tautological quotient bundle on Debarre–Voisin varieties Kσ ⊂ Gr(6, 10).

8.2. Geometric interpretation. Let X be the image in P(W∨
10) of the scroll P(F∨) by the

projection from S ×P(W∨
10) to P(W∨

10).

We have V10 = H0(P(W∨
10),IX(2)), where IX is the ideal sheaf of X in P(W∨

10). We want
to describe, for general points x, y ∈ S, the 6-dimensional vector space S6,{x,y} defined by the
exact sequence

0→ S6,{x,y} → V10 → Q4,{x,y} → 0.

Proposition 8.5. The vector space S6,{x,y} is the space of quadratic forms vanishing on X and
on the projective subspace P3 = P(F∨

x ⊕F∨
y ) of P(W∨

10).

Proof. The fiber over {x, y} of the evaluation map defined in Lemma 8.1 gives an exact sequence

0→ S6,{x,y} → V10 → Sym2(Fx ⊕Fy)→ Sym2Fx ⊕ Sym2Fy → 0,

hence S6,{x,y} consists of elements of V10 that also vanish on P(F∨
x ⊕F∨

y ). �
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