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Abstract

Gas detection and discrimination have been, until recently, sensors-specific, with different sensors and tech-

niques used for each of the gases. In this work, we describe a novel approach relying on a single physical

sensor in conjunction with data-driven algorithms for detecting the presence of one of the three dangerous

gases: CO, NO2, and O3 individually or in mixtures. The approach uses a single Metal Oxide (MOX) sensor

coupled with two heaters in its hardware part. Then, its software part uses a supervised machine learning

model. The sensor is exposed to the different gases and their mixtures and would react accordingly with a

change in its electric signals. These raw signals, along with the readings from the heaters, constitute the

primary dataset for the discrimination.

To further enhance the classification results, the raw dataset is augmented by calculating several time-

domain features of each of the measurements. Then, the features are ranked, and the ones with the best

results to solve the classification problem are selected. Once the pretreatment of the data is finished, the

selected features are used to train and validate a multi-support vector machine model. Finally, the results

showcased in this paper highlight the effectiveness of the proposed approach.
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1. Introduction

The recent and quickening technological and industrial advancements made by man are a double-edged

sword. While they helped elevate the quality of life is to its best level, the negatives effects of human

activities are also observed environmentally and, more crucially, health-wise [1]. The concerns raised by

these side effects have led, in part, to the development of monitoring tools [2, 3, 4] and regulation of air

quality [5, 6]. In this work, we undertook the issue of detecting and identifying three of the major pollutant

particles in the air, those are carbon monoxide (CO), ozone (O3) and nitrogen dioxide (NO2).

The study of air quality and the development of sensors for monitoring pollutants is not limited to its

environmental aspect such as the detection of CO/CO2 [7], NO2 [8], and methane [9, 10] but extends into

the scientific [11] and industrial applications such as the detection of volatile organic compounds (VOC)

[12, 13, 14]. Additionally, the research in this area is approached out from several angles. Traditionally,
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researchers have focused on the materials used in the sensors. Most of these studies are listed in several

reviews [1, 15, 16, 17, 18, 19]. Of the more generalized studies, Alrammouz et al. [1] summarized the

advancements made in the field of flexible gas sensors, listing several sensing materials in the process such

as carbon nanotubes, conducting polymers, and the type of sensors used in this work Metal Oxides (MOX).

The latter—alongside Field-effect transistor (FET) devices—were also the focus of a work by Sharma et al.

[16] studying the advancement in sensing H2, whereas Dey [17] and [18] narrowed their focus into sensors

based on Semiconductor Metal Oxide (SOM) and p-type Nickel Oxide, respectively. Alternatively, Yao et

al. [20] and Wang [15] analyzed sensors based on metal-organic frameworks (MOFs), with the first work

highlighting material design and performance of the sensors [20], and the second showcasing their application

and the application of MOF-Based materials.

With the rise of machine learning (ML), data-driven models were combined with the sensors to ob-

tain higher accuracy and achieve multi-gas selectivity [21]. For instance, multicomponent analysis tech-

niques—notably Principal Component Analysis (PCA)—were one of the first techniques used in combina-

tion with sensors to monitor air quality [11, 22]. More recently, PCA was also used for the analysis of gas

mixtures [23], and the detection of up to three pollutants simultaneously [24]. Besides PCA, Montoliu et al.

[25] used multivariate curve resolution to enhance the sensitivity of MOX sensors to different gases.

The complexity of the task, especially in the presence of several gases or mixtures, led the researchers to

use more advanced techniques such as neural networks [26] and Bayesian regularization [27]. In cases similar

to this study (detection of air pollutants), Chu et al. [28] combined a sensor array with neural networks to

detect CO, O3, and NO2 amongst other gases. Similarly, Esposito et al. [29] demonstrated a low-cost sensor

and used dynamic neural networks to estimate the concentration of these pollutants, while Topalović et al.

[30] compared the use of several ML approaches to achieve the same tasks.

The richness of the literature with research exploring different materials and methodologies is proof of

the challenges faced in accurately identifying different gases present in gas mixtures, which remains an open

issue. Most of the established approaches either focus on a specific pollutant and filter out any interference

[9, 31] or try to overcome the challenge of detecting pollutants in gas mixtures by calibrating multiple sensors

(sensor arrays) [28, 29, 30, 32, 33].

In this paper, we tackle the problem of identifying multiple gases in mixtures using a single sensor,

by combining a temperature modulated MOX microsensor with a data-driven model. The method uses

data from the MOX sensor and processes it in 3 steps. The first consists of changing the operating point

of the sensors through temperature modulation, in order to increase the available information in the raw

dataset. Then, the dataset is further augmented by extracting key temporal features. These features are

automatically ranked by the ReliefF algorithm, with the highest-ranked selected by a custom algorithm for

the classification step. Finally, Multi-class SVMs are used for the automatic classification of gases as they

offer a wide choice of kernel functions allowing for the separation of classes (gases) by hyperplanes of varying
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complexity.

Several established works have tackled the problem of discriminating multiple gases using a single sensor.

However, they have either exhibited limited accuracy [12] or cannot be confidently generalized due to the

weak number of the sample used in testing [34]. The results presented in this work, on the other hand, avoid

these shortcomings and showcase the effectiveness of the proposed approach.

This case study focuses on three gases: carbon monoxide (CO), ozone (O3), and nitrogen dioxide (NO2).

Nevertheless, the discrimination method is intended to be scalable by an automatic selection of new sub-

sequent features depending on the gases, thus increasing the features space that can be used to train new

SVM classifiers. Moreover, the wide choice of kernel functions will allow the algorithm to be adapted to the

detection and identification of gases in mixtures with a higher number of gases.

This paper is divided into 7 sections. Section 2 is devoted to the description of the test bench, the

characteristics of the MOX sensor, and the data acquisition procedure. Then, an overview of the gas

discrimination methodology is given in Section 3. In Section 4, the method of augmenting the database by

extracting time-domain features is presented. The ranking and selection of relevant features is explained

in Section 5, and the gas classification algorithm is presented in Section 6. The results and discussions are

detailed and analyzed in Section 7.

2. Sensor description and setup

2.1. The MOX sensor

The detection and identification of the toxic gases in this work are achieved by two components; a

microsensor and an ML-Based model. The process starts with the sensor reacting to the presence of a gas

with a change in its reading. Then, the model uses the readings to correctly classify the gas.

To generate the measurement, in this study, we rely on a MOX microsensor, that is the result of a newly

developed and patented technology by the Institut Matériaux Microélectronique Nanosciences de Provence

(IM2NP) and manufactured by Nanoz-SAS1 [35]. The sensor is composed of four detection zones and two

heaters. The detection zones can be configured to allow for the use of these sensors either in single or

multi-sensor modes.

In this device, the heaters are located with the sensor on a SiO2 membrane. At first, the heaters and

the electrodes are built on a sputtered platinum thin film using photolithography. After which the sensitive

Tungsten trioxide (WO3) layer is deposited through reactive Radio Frequency Magnetron Sputtering. The

WO3 layer is then annealed for two hours at temperatures higher than the operating range for improved

nano-crystallization and stability.

1An operating exclusive worldwide license has been granted to NANOZ SAS, which develops manufactures and sells the

sensors.
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Figure 1: The electric diagram of the MOX sensor [35]. VS1–VS4 are the voltages applied to the sensor resistances RS1–RS4,

respectively. Similarly, VH1 and VH2 are the voltage values across heating resistances RH1 and RH2, respectively.

The electrical configuration for the MOX sensor is shown in Figure 1. The figure also shows how the

device is polarized by a National Instrument PXIe 4140 source meter. In this study, we have chosen to

operate the device in a single sensor mode. The sensor is characterized by its resistance RS and is polarized

by 0.9 V [24]. The heaters, on the other hand, are powered by varying voltage—ranging between 1.4–1.8 V,

as will explained in the next paragraph.

2.2. Experimental setup and data collection

The characterization and evaluation of the sensors are achieved by exposing it to the studied gases in

a controlled environment, to enhances the gas flow hydrodynamics [36]. Therefore, the device is encased

in a 3D-printed prototype test chamber that would improve the gas concentration homogeneity and reduce

the flow recirculation and dead volumes [37]. The test chamber is then placed in a Faraday cage, in which

the sensor is exposed to the different gases to measure its response. For a comprehensive test of the sensor

thresholds, the concentration of the tested gases is varied through a dilution system [24]. The latter allows

for the concentration of pollutant gas to be adjusted between 20 ppb and 16 ppm, in diluted in dry air

under atmospheric pressure and ambient temperature. It is also capable of creating mixtures for a wider

range of tests. The concentrations used in this work are displayed in Table 1. They also constitute the base

concentrations values for all the possible gas mixtures.

Figure 2 gives an explanatory representation of the experimental setup, where the pollutants are mixed

and have their concentration adjusted in the dilution system. The gases are then admitted to the test

chamber where the sensor responds with a change in resistance. The response of the sensor as well as the

states of heaters are recorded continuously in a dataset composed 7 variables :

• The sensors voltage (VS , a constant in this study)
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Table 1: The different concentrations used for each of the pollutant gases in this study.

Gases
Concentrations

C1 C2 C3

CO 2 ppm 8 ppm 16 ppm

NO2 20 ppb 100 ppb 200 ppb

O3 80 ppb 110 ppb 160 ppb

Dry air generator

Ozone generator

CO container

NO2 container

MOX
Sensor

Control System

Data acquisition

Faraday cage

Test chamber

Dilution system

PXIe
National Instruments

Sourcemeter
Heating 
Voltage

Air + Gas

Figure 2: Experimental setup for the microsensor characterization, and the gas classifier training and testing.

• The sensors current (IS)

• The sensors Resistance (RS)

• Heater I voltage (VH1)

• Heater I current (IH1)

• Heater I power (PH1)

• Heater II voltage (VH2)

• Heater II current (IH2)

• Heater II power (PH2)

To obtain a larger set of sensor data and generate more accurate results with the classification model, the

device is operated with variable heater temperatures, i.e. temperature modulation [19, 38]. In this operating

mode, the heating voltage is varied triangularly with a staircase waveform of an amplitude of 0.4 V centered
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on 1.6 V. Each step of the staircase signal has a value of ±0.01 V and a duration of 1 s[24]. The range

of the heater voltages (1.4–1.8 V) results in temperatures ranging between 199–252 °C which correspond to

the edge of detection and the optimal detection temperatures for the studied gases, respectively [24]. This

technique has been proven valuable in the literature. It has been used to increase the experimental data, thus

extending the available information for processing and feature extraction by the use of wavelet transform

[39] or an energy vector approach [32, 40], for instance. On the other hand, it was also used to enhance the

sensitivity and selectivity of the sensors to different gas species [41, 42], with very encouraging results in the

case of MOX sensors and sensors arrays [23, 25, 31, 43].

3. Gas discrimination methodology

Raw data provided by the sensor reflect the variation the latter undergoes when the different gases are

present in the closed chamber. The idea is that each reading of the sensor’s resistance and current combined

with the power information from the two heaters would correspond to a specific gas or a gas mixture, which

leads to the classification problem.

Ideally, the readings from the sensors would lead to a direct—and visual—separation between the different

classes. However, as seen in Figure 3, initial tests based solely on the readings from the system establish that

the gases strongly overlap with each other, particularly in the cases of gas mixtures (CO + NO2, CO + O3,

NO2 + O3, ...). The overlapping of the classes is a complex issue being studied in the literature [44]. It

is even more complex in this work since gas mixtures are themselves overlapping classes of the pure gases.

Hence, to simplify the classification problem, each of the gas mixtures will be considered as a distinct class,

resulting in 7 classes overall: CO, NO2, O3, CO + NO2, CO + O3, NO2 + O3, and All. In these mixtures,

the three levels of concentration indicated in Table 1 are used, to cover all the possible concentrations. For

instance, in the case of the CO + NO2 gas, nine configurations are tested in total, ranging from CO [2ppm]

+ NO2 [20ppb] to CO [16ppm] + NO2 [200ppb].

While considering gas mixtures as distinct classes eliminates one level of the overlapping classes problem,

the classification problem is further accentuated by the use of a single sensor to generate readings, thus

outlining the minimalism of characteristic data that could help distinguish the classes. To overcome this

limitation, one viable solution is to extend the available dataset. This is possible through the extraction of

the temporal, frequency, and energy features of the signals from the sensor and heaters.

The newly extracted features would, however, greatly increase the number of available features and it

would be computationally inefficient to use all of them in the classification model. Thus, the next steps

would be to rank the features according to their influence on the output, and select the feature that would

generate the best results. These selected features would then be used to train a supervised ML model. The

steps of the proposed approach are illustrated in Figure 4.
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Figure 3: Visual representation of the distribution of the classes according to the initial features. It is impossible to separate

the classes linearly.
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Figure 4: Overview of the gas detection and identification process.
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4. Dataset augmentation

Attributes or feature extraction aims to manipulate the data to obtain further information that is not

carried by the raw values of the signal but rather by its tendencies, distributions, and frequency-domain

characteristics, amongst others [45].

The type and number of features to use depend heavily on the nature of the raw signals. For instance,

periodic signals would benefit more from frequency domain analysis rather than time-domain feature ex-

traction. Whereas noisy signal or those used for fault detection—like vibrations—would necessitate both

time and frequency feature extraction [46]. The signals in this work, on the other hand, are non-periodic

and present no noise, hence making time-domain features the most suitable for the present application.

Furthermore, Amir Sattari et al. [34] have recently explored the use of feature extraction in the detection

of the type of flow and the concentration of the gas in a two-phase flow meter. Their study yielded great

results despite the weak number of testing samples preventing better generalization.

4.1. Chosen time-domain features

The most common time-domain features are statistical features that help differentiate between the dif-

ferent sequences of the signal attached to different classes (gases). These are the means (x̄ and the absolute

mean |x̄|), the standard deviation (σ), and the Root Mean Square (RMS) [47]. On the distribution side,

Kurtosis and the Skewness are features used to examine the probability density function (PDF) of each

signal sequence. Table 2 highlights all the features used to augment the dataset in this study, starting with

the aforementioned features and their formulas, and continuing to other dimensionless time-domain features

that have been proven useful in the literature to solve problems of detection and identification [45, 47].

4.2. Features calculation

The features presented in Table 2 are all computed over n samples, and each computed feature over

these samples would constitute one entry n the extended dataset. Hence, to build the extended dataset,

every vector (x) of the raw dataset would be split into k sequences composed of n samples. The number

n can either be defined theoretically (using the signal period, for instance) or empirically by tuning it to

generate the best results. In this work, the initial number n was set to be approximately one second of data

acquisition. However, knowing a sampling period that is equal to Ts ≈ 0.2 s would result in n = 5 which

might be insufficient. We doubled the the value of n inspired by inverse of the Nyquist–Shannon sampling

theorem. To be able to empirically compare the results of different cases, we doubled n a second time. Thus:
n1 =

1

Ts
= 5

n2 =
2

Ts
= 10

n3 =
4

Ts
= 20

(1)
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Table 2: Time-domain features of to be computed for each of the data vectors.

Feature Formula

Mean value (x̄) x̄ =
1

n

n∑
i=1

xi

Absolutes mean value (|x̄|) |x̄| =
1

n

n∑
i=1

|xi|

Standard deviation (σ) σ =

√√√√ 1

n

n∑
i=1

(xi − x̄)2

Root mean square (RMS) RMS =

√√√√ 1

n

n∑
i=1

x2i

Peak value (PV ) PV = max (|x|)

Kurtosis value (KV ) KV =
1

n

n∑
i=1

(xi − x̄)4

σ4

Skewness (Skew) Skew =
1

n

n∑
i=1

(xi − x̄)3

σ3

Crest Factor (CF ) CF =
PV

RMS

Margin Factor (MF ) MF =
PV(

1

n
(

n∑
i=1

√
|xi|
)2

Impulse Factor (IF ) IF =
PV

|x̄|

Form Factor (FF ) FF =
RMS

|x̄|

10



Such configuration strikes balance between the speed of detection and accuracy. As, theoretically, the three

value of n would allow the system to gather enough data to accurately detect and identify the gas, while still

being quick to alarm users to the presence of danger. Once the raw vector (x) is split into k sequences, the

features of each sequence are computed and organized into a matrix (xext) of k rows and 11 columns (the

number of the features), as shown in Figure 5. Finally, the extended dataset of each class is then composed

of the 8 extended matrices, hence raising the number of features from 8 in the raw dataset, into 88 in the

extended one.

𝑥𝑆𝑒𝑞1

𝑥𝑆𝑒𝑞2

𝑥𝑆𝑒𝑞3

𝑥𝑆𝑒𝑞3 ቐ

𝑥1

𝑥2

⋮

𝑥𝑛

𝑥𝑛+1

𝑥𝑛+2

⋮

𝑥2𝑛

𝑥2𝑛+1

𝑥2𝑛+2

⋮

𝑥3𝑛

⋮

𝑥𝑘𝑛+𝑛

Raw Data Vector
𝑥

Sequencing the vector into 
𝑘 sequences of 𝑛 element 

𝑥1 𝑥2 … 𝑥𝑛𝑥𝑆𝑒𝑞1

𝑥𝑛+1 𝑥𝑛+2 … 𝑥2𝑛𝑥𝑆𝑒𝑞2

𝑥2𝑛+1𝑥2𝑛+2 … 𝑥3𝑛𝑥𝑆𝑒𝑞3

⋮

𝑥𝑘𝑛+1𝑥𝑘𝑛+2 … 𝑥𝑘𝑛+𝑛𝑥𝑆𝑒𝑞𝑘

Computing the attributes 
for each sequence

𝑥𝑆𝑒𝑞1

𝑥𝑆𝑒𝑞2

𝑥𝑆𝑒𝑞3

𝑥𝑆𝑒𝑞𝑘

⋮

𝑥 𝑆𝑒𝑞1

𝑥 𝑆𝑒𝑞2

𝑥 𝑆𝑒𝑞3

𝑥 𝑆𝑒𝑞𝑘

⋮

…

𝐹𝐹(𝑥𝑆𝑒𝑞1)

𝐹𝐹(𝑥𝑆𝑒𝑞2)

𝐹𝐹(𝑥𝑆𝑒𝑞3)

𝐹𝐹(𝑥𝑆𝑒𝑞𝑘)

⋮

Extended Data Vector
𝑥𝑒𝑥𝑡

Sequenced Vector

Figure 5: Sequencing and calculation of the features of a raw data vector x.

5. Feature ranking and selection

The extended dataset resulting from the feature extraction has 88 possible predictors for the classification

model. While a classification model with an input this size is feasible, it is not computationally efficient

both in training and online testing. Thus, its size needs to be reduced with a minimum loss of information.

Reducing the size of a database can be done through several approaches. The most known of which is the

PCA [48] and its variants (such as independent component analysis [49]). With these techniques, reducing

the size of a database is achieved by projecting the data into a reduced space by a linear or a non-linear

mathematical transformation. The key advantage of these methods is preserving most of the variability even

with a much-reduced size [11, 22, 50, 33]. However, the dimensions of the reduced space lose their physical

meaning.

The literature is also rich with other approaches for the the selection of the features such as the heuristic
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and iterative Sequential Forward Selection [51] and Sequential Backward Selection [52], or the graphical

Branch and Bound [53] and its subsequent improvements [54, 55], or the algorithmic FOCUS [56, 57].

All of the previously mentioned methods have been used to achieve great results in the literature. However

for this study, we aimed to keep the physical meaning of the signals—hence ruling out PCA—and make

it computationaly possible for an implementation in an embedded system with the sensor—ruling out the

heuristic methods. Thus, we have opted to use the ReliefF methods for the ranking and its scores for the

selection.

5.1. The ReliefF Features ranking algorithm

The Relief method is a widely used approach for feature ranking and selection, and is based on the

nearest neighbor principle [58]. It has had a lot of variance since its release [59, 60, 61]. One of which is its

adaptation for multi-class problems; the ReliefF [62].

In a summary, the ReliefF computes a weight for each of the features. The value of the weight depends

on the performance of the feature in detecting classes. In the initialization phase, all the weights W are

set to 0. Then, for n iteration, the algorithm randomly selects an instance xr from the feature currently

weighted A. With k being a predefined constant, the algorithm proceeds to find the nearest k neighbors to

the instance xr of the same class called Hits (Hxr
), and the nearest k neighbors to this instance of different

classes (called Misses, Mxr ). The k nearest neighbors are computed using the Manhattan distance [62]. The

weight of the feature A, during the iteration i, is computed by Equation 2 [59].

W [A] = W [A]− ∆ (A, xr, Hxr )

n · k
+

∆ (A, xr,Mxr )

n · k
(2)

In this work, the features are numerical and continuous. Thus, the difference function ∆ is equal to [59]:

∆ (A, xr, Ixr ) =
‖A(xr)−A(Ixr

)‖
max(A)−min(A)

(3)

This operation is repeated for all the available features.

5.2. Features Selection

The ReliefF method would result in the ranking of all the features from best to worst, according to their

weights. Nevertheless, the number of features remains unchanged. Some of the features would have negative

weights associated with them and can be directly discarded, but the number of the remaining features would

remain relatively high. In such cases, the number of features can be selected empirically from the highly

ranked ones through trial and error. In this study, on the other hand, the features are selected by applying

a median filter to the numerical differentiation of the ranked weights. This method allows us to keep highly

ranked features and stop when the values of the weights drop suddenly.

The selection algorithm starts by sorting only the positive features and defining a minimum number

of features to be selected. Then, it computes the numerical differentiation (∆SA) and selects features with
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weights greater than the median value of ∆SA. Algorithm 1 describes a pseudo-code of the features selection

methodology. In this algorithm, the selection is applied three times generating three levels of features. Each

subsequent level contains more information and will be used to build a different model for better accuracy

and comparison. The results of each model will be given in Section 7.

Algorithm 1 Pseudo-code of the 3 levels features selection algorithm.
1: Begin

2: Define minimumFeatures, k

3: [ranking, weights] = ReliefF (xext, k) . Run the ReliefF and compute the ranks and weights

4: rankedFeatures = sort(xext, rankings) . Sort the extended features according to their ranks from best to

worst

5: rankedWeights = sort(weights) . Sort the weights from best to worst

6: rankedWeights(rankedWeights ≤ 0) = [ ] . Delete the weights less or equal than 0

7: rankedFeatures = rankedFeatures[0 : rankedWeights.length− 1] . Delete the features with negative or zero

weights

8: selectedFeatures = [0, 0, 0]

9: for j = 1 : selectedFeatures.length do . Computing the numerical differentiation

10: ∆SA(j) = rankedFeatures(j) − rankedFeatures(j − 1)

11: currentFeatures = rankedFeatures

12: for i = 0 : (selectedFeatures.length− 1) do

13: j = 0

14: while currentFeatures(j) > median(∆SA) do

15: j = j + 1

16: if j < minimumFeatures then

17: selectedFeatures(i) = minimumFeatures

18: else

19: selectedFeatures(i) = j

20: currentFeatures = rankedFeatures[j : rankedFeatures.length]

21: End

6. Gas discrimination using Multi-Class Support Vector Machines

Support Vector Machines (SVM) are binary classification methods used for both supervised and unsuper-

vised learning. In this method, the algorithm searches for a seperation hyperplane with an optimal margin

between the two classes. This approach was proposed by Cortes and Vapnik [63], and is formally described

as follows. Let us consider that a training data matrix (x) is composed of m features and a corresponding

assigned label vector y of values C1 and C2, for the two classes. The classifier builds a model which predicts
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the target class y from the input data (the features), by searching for an optimal hyperplane optimizing a

quadratic problem (Equation 4).

min J (a) = 1
2

N∑
i=1

N∑
j=1

aiajgi (x) gj (x) k (x, x)−
N∑
i=1

ai

s.t :
N∑
i=1

aigi (x) = 0, 0 ≤ ai ≤ Dfor i = 1, ..., N

(4)

where g(x) = 1 if x ∈ C1 and g(x) = −1 if x ∈ C2, a = [a1, a2, ..., aN ]
T are the Lagrange multipliers, D is

the penalty parameter, and k(x, x) is the Kernel function. Then, the output is estimated by the decision

function :

y =

 1 , if sign

(
S∑

i=1

aSi g
S
i k(xSi , x) + b

)
= 1

−1 , elsewhere

(5)

whereas:

b =
1

S

S∑
j=1

(
gSj −

S∑
i=1

aSi g
S
i k(xSi , x

S
j )

)
(6)

In this work, since there 7 gases, we use a Multi-Class Support Vector Machine (MC-SVM) classifier.

The version used in this work is the error-correcting output codes (ECOC) classifier, which consists of

several binary SVM used in tandem to solve the multi class problems [64]. The ECOC is used in both in its

"One against One" and "One against All" configurations [65]. In the first configuration, the classifier trains

n ∗ (n − 1)/2 binary SVM, whereas in the second one n binary SVM classifiers are built, with n being the

number of classes. The classification results are obtained by a voting strategy: a pattern is classified to the

class where the maximum number of votes is obtained.

7. Experimentation and results

This section is divided into three parts. The first part is dedicated to the division of the data and the

extraction of the features. The second one focuses on the ranking and the selection of the features. Finally,

the section ends with the results from the SVM classifiers, and comparative analysis of the results between

the different approaches.

7.1. Data preprocessing

As described in Section 2, the sensor delivers 9 measurements per sample. One of these measure-

ments—the sensors voltage—is constant and thus carries no information. Consequently, only the other 8

measurements are to be used for feature extraction and classification.

Furthermore, the data gathered from the experimentation are not uniformly distributed. Table 3 shows

the number of samples per class and highlights the inequality between them. As it is, this dataset would
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cause an issue of imbalanced learning for SVMs. Since, the latter, by design, require the same number

of samples for each class [66]. This problem has been and is still being studied in the literature [67, 68],

resulting in several creative solutions [69, 70].

Table 3: Raw and Extended datasets distribution amongst the 7 classes. FE: Feature Extraction.∗n =
1

Ts

Class Label
Raw data

samples

Samples after FE

n = 5∗ n = 10 n = 20

CO 1 24003 4800 2400 1200

NO2 2 24003 4800 2400 1200

O3 3 16002 3200 1600 800

CO + NO2 4 72009 14401 7200 3600

CO + O3 5 72009 14401 7200 3600

NO2 + O3 6 72009 14401 7200 3600

All 7 40005 8001 4000 2000

The study of imbalanced learning largely comes into play when there is a great difference in the repre-

sentation of the classes. However, implementing such solutions would add additional processing layers, and

is not the purpose of this study, especially with the number of instances for the least represented class is suf-

ficient for training and testing the model. Therefore, to avoid the problems related to imbalanced learning,

the classes datasets are balanced by determining the set with the fewest samples N—in this case, O3—and

then dividing it into a 70% training set and 30% test set. For the rest of the classes, the test sets are built

by randomly selecting 0.3×N samples for each class. These sets are set apart and only used to obtain final

test results. The training sets, on the other hand, are built by randomly sampling 0.7×N instances at each

new step of the cross-validation. As can be seen in Table 3, from the number of samples after the extraction

of the features with different values of n, the class O3 has the fewest samples. Accordingly, the number of

samples used for the training and the test phases will be based on its size.

7.2. Features ranking and selection

Once the features are extracted, the ReliefF algorithm is applied to the resultant training extended sets.

During our testings, the best results were obtained with the number of nearest neighbors k = 12. The

30 highest ranked are displayed in Table 4. The latter shows that the highest-ranked features are mostly

independent of the number of samples per instance (n). It also indicates—counter-intuitively—that the

highest-ranked features are not the ones extracted from the sensor’s measurements, but rather from the

measurements of the first heater VH1, IH1, with the features of IS coming after them.

Furthermore, while the highest-ranked features remain largely unchanged for all values of n, their weights

vary significantly enough with every value of n to be a major factor in changing the outcome of the selection

algorithm. The other major factor is the minimum number of features per iteration, which was set to 4 in
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this study (c.f. Algorithm 1). Thus, the number of predictors used to train the Support Vector Classifiers

varies with n. In Table 4, row colors indicate the features used to train each of the three models per n value.

These features are also shown ranked from highest to lowest in Figure 6, showing the difference between the

three levels. The figure also shows the weights of all the 88 features for the three values of n.

Finally, Figure 7 highlights a better visual separability between the classes according to the highest-

ranked features, compared to using raw readings (Figure 3). The separability is especially visible for the

classes O3 and All in Figures 7a and 7c. The classes CO and NO2 also show better potential for separability

in Figures 7c, indicating the potential of achieving high accuracy with the MC-SVM.
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Table 4: Results of the ReliefF : the 30 highest ranked features for different values of n. FN: Feature Number. VN: Variable

Name. FN: Feature Name. W: Weight. Green: Features used for the first model. Green + Red: Features used for the

second model. Green + Red + Blue: Features used for the third model. Grey : Unused features.

nnn 5 10 20

Rank FN VN AN W FN VN AN W FN VN AN W

1 26 VH1(V) PV 0.07658 26 VH1(V) PV 0.06924 26 VH1(V) PV 0.07122

2 34 IH1(A) |x̄| 0.07616 34 IH1(A) |x̄| 0.06919 34 IH1(A) |x̄| 0.07077

3 25 VH1(V) RMS 0.03942 33 IH1(A) x̄ 0.03324 33 IH1(A) x̄ 0.03476

4 33 IH1(A) x̄ 0.03940 25 VH1(V) RMS 0.03310 25 VH1(V) RMS 0.03468

5 2 IS(A) σ 0.02417 2 IS(A) σ 0.02265 2 IS(A) σ 0.02247

6 10 IS(A) IF 0.02417 10 IS(A) IF 0.02265 10 IS(A) IF 0.02247

7 1 IS(A) |x̄| 0.01922 31 VH1(V) MF 0.01751 17 RS(Ω) Skew 0.01812

8 9 IS(A) MF 0.01922 1 IS(A) |x̄| 0.01715 1 IS(A) |x̄| 0.01696

9 17 RS(Ω) Skew 0.01899 9 IS(A) MF 0.01715 9 IS(A) MF 0.01696

10 31 VH1(V) MF 0.01619 17 RS(Ω) Skew 0.01713 31 VH1(V) MF 0.01652

11 39 IH1(A) Skew 0.01508 39 IH1(A) Skew 0.01623 39 IH1(A) Skew 0.01528

12 49 PH1(W) KV 0.01284 49 PH1(W) KV 0.01305 55 VH2(V) x̄ 0.01131

13 50 PH1(W) Skew 0.01267 50 PH1(W) Skew 0.01285 47 PH1(W) RMS 0.01056

14 28 VH1(V) Skew 0.01110 28 VH1(V) Skew 0.01157 49 PH1(W) KV 0.01032

15 36 IH1(A) RMS 0.01013 36 IH1(A) RMS 0.01062 50 PH1(W) Skew 0.01011

16 18 RS(Ω) CF 0.00862 47 PH1(W) RMS 0.00845 28 VH1(V) Skew 0.01008

17 20 RS(Ω) MF 0.00755 18 RS(Ω) CF 0.00773 44 PH1(W) x̄ 0.01003

18 41 IH1(A) MF 0.00639 41 IH1(A) MF 0.00700 36 IH1(A) RMS 0.00947

19 44 PH1(W) x̄ 0.00612 44 PH1(W) x̄ 0.00672 18 RS(Ω) CF 0.00834

20 42 IH1(A) MF 0.00606 42 IH1(A) MF 0.00669 20 RS(Ω) MF 0.00719

21 47 PH1(W) RMS 0.00598 20 RS(Ω) MF 0.00660 41 IH1(A) MF 0.00699

22 55 VH2(V) x̄ 0.00557 55 VH2(V) x̄ 0.00638 42 IH1(A) MF 0.00669

23 32 VH1(V) IF 0.00485 22 VH1(V) x̄ 0.00521 52 PH1(W) MF 0.00593

24 52 PH1(W) MF 0.00484 32 VH1(V) IF 0.00501 22 VH1(V) x̄ 0.00586

25 22 VH1(V) x̄ 0.00442 40 IH1(A) CF 0.00445 45 PH1(W) |x̄| 0.00468

26 40 IH1(A) CF 0.00434 29 VH1(V) CF 0.00397 23 VH1(V) |x̄| 0.00457

27 29 VH1(V) CF 0.00404 45 PH1(W) |x̄| 0.00396 57 VH2(V) σ 0.00418

28 21 RS(Ω) IF 0.00379 57 VH2(V) σ 0.00376 65 VH2(V) IF 0.00404

29 37 IH1(A) PV 0.00376 37 IH1(A) PV 0.00361 32 VH1(V) IF 0.00366

30 57 VH2(V) σ 0.00355 65 VH2(V) IF 0.00360 40 IH1(A) CF 0.00312
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Figure 6: The rank and the weights of the all features fro all the values of n.
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Figure 7: Visual representation of the distribution of the classes according to the highest-racked features for n = 20.

7.3. Support vector classification results

The results presented in this paragraph showcase all the approaches and the tuning done to the classifiers

to generate the best possible results. Thus, these results are divided into 4 Tables (Tables 5—8). Each table

contains the results of the classification per class, then averaged results of the 7 classes. The training results

represent the results after a k-fold cross-validation on the training set (k = 5), whereas the test results are

gathered from the predictions of the model on a separate test dataset (c.f. Paragraph 7.1). The results are

reported in terms of metrics that are well-established in the literature. These metrics are all computed by

comparing the model’s predictions and the targets. This comparison results in 4 types of predictions per

class: True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). Thus,

models’ performance metrics are listed below.

• The Accuracy (ACC): The most basic metric. It is the ratio of the correctly classified instances
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over the total number of the instances.

ACC(%) =
TP + TN

TP + TN + FP + FN
× 100 (7)

• The Mis-classification Rate (MR):

MR(%) = 100−ACC (8)

• The Precision (PRCN): The ratio of the correctly identified positive class.

PRCN(%) =
TP

TP + FP
× 100 (9)

• The Recall: The true positive rate, or the ratio of correctly identified positives of all the positive

class instances.

Recall(%) =
TP

TP + FN
× 100 (10)

• The F1_Score (F1): Most commonly used for the comparison between the models. It is takes into

account both the Recall and the Precision.

F1 = 2 · PRCN · Recall

PRCN + Recall
(11)

The results in Tables 5– 8 are the best results with these predictors after all the tuning was done.

They are color-coded to facilitate their investigation and the comparison between the different models and

configurations. Perfect scores are colored in purple, while the rest of the scores are colored from green (best)

to red (worst).

Starting with Table 5, it showcases the results from two preliminary models built to serve as references of

base performance. The first model—which we will call Power Model, hereafter—is a classifier that uses the

minimum amount of data, with only three inputs: the power readings from the sensor and two heaters. The

second model is a support vector classifier that relies on the non-transformed raw data from the sensors.

So, it has 8 inputs. This model will be referred to as the Raw Data Model. While both models deliver

good performance overall, notably in the case of the One against all classifiers, they both take a hit in

performance with the binary gas mixtures. However, they still deliver better performance than the first

level models that rely on feature extraction and feature selection using the ReliefF. For instance, in Table 6

(n = 5), the results of the first models with 6 predictors are far worse than those of the Power the Raw

Data Models. The same conclusion can be drawn for the first models in Table 7 (8 predictors) and those in

Table 6 (4 predictors).

The low performance of these models cannot be explained by the number of predictors, as the Power

Model contains even fewer predictors. It can be explained, however, by the predictors used. In these first
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models, most of the predictors come from readings of the first heater (notably VH1). This is especially

relevant for n = 20, where only 4 features extracted from VH1 were used as predictors and no information

from the sensor whatsoever.

The first tier of models highlights that—while the ranking of the feature and the difference between

their weights are important factors for the selection—the distribution of the information is also a primordial

criterion, during the selection of the features. In Algorithm 1, the minimum number of features was included

to mitigate such shortcomings. While its value of 4 was not high enough for the first tier of models,

nevertheless, it forced the addition of 4 features to the second model for the case of n = 10, instead of two

as computed by the median filter (Figure 6d), resulting in the use of 12 predictors. Table 7 shows how the

performance for this tier of models increased significantly, achieving even perfect test results. As for n = 20,

results from Table 8 show that, for the second tier of models, the inclusion of features from the sensor’s

measurements lead to achieving perfect results, even with fewer predictors compared to the case of n = 10,

thanks to the greater number of samples per instance.

The duality of the number of predictors and the number of samples per instance is also visible in the

case of n = 5, where a greater number of predictors (23) is needed to achieve 100% test results because of

the fewer samples used to compute every feature instance.

The results presented in this paragraph demonstrate that achieving perfect discrimination is possible

with multiple configurations. However, a compromise needs to be struck between the speed of detection

and the available computational power, as more samples per instance require more time to be collected, and

more features require a greater computational capacity to be computed.

Finally, Figure 8 and Figure 9 show examples for separating hyperplanes for the cases of n = 10 and

n = 20, respectively.
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Figure 8: Graphical representation of of the separation hydroplanes obtained by the support vector classifiers. Case n = 10.

(a): Linear kernel function. (b): RBF kernel function.
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Figure 9: Graphical representation of of the separation hydroplanes obtained by the support vector classifiers. Case n = 20.

(a): Linear kernel function. (b): RBF kernel function.

8. Conclusion

In this paper, we have investigated the use of a single MOX sensor, temperature modulated, to detect

and identify multiple gas species and mixtures of these species. The temperature modulation allows the

permanent changing of the sensor operating point, and thus its sensitivity to different gases. Then, a

data-driven method that exploits and augments the signals delivered by the microsensor is proposed. The

data augmentation is achieved through time-domain feature extraction. Increasing the raw database by
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extracting temporal features enrich the prior knowledge available while maintaining a clear physical sense

of all features. The significant increase in the feature space gives the potential to extend the algorithm to

detect and identify a larger number of gases.

The newly extracted features were then ranked by the ReliefF algorithm. The highest-ranking features

are then automatically selected as predictors for the MC-SVMs. The automatic selection of the relevant

features (which carry the information necessary for the detection and identification of gases) reduces the

space of the features used in the learning step and, therefore, the complexity of the MC-SVM classifiers.

The Radial Basis Function is used as a kernel and gives promising results.

The experimental results, obtained using data from a test bench of the IM2NP laboratory at Aix-

Marseille University show the relevance of temperature modulation, as the most ranked features, selected by

the ReliefF algorithm are the heaters current and voltage. The performance analysis results highlights the

effectiveness of this method by recording a 100% of accuracy with different metrics (Accuracy, Racall and

F1 metric). Additionally, thanks to the availability of a wide choice of kernel functions, using the MC-SVM

classifier allowed us to build models able to achieve perfect test scores using several configurations. This

flexibility is the result of the well-chosen features that improved the separability of the classes. Furthermore,

the ability to use multiple configurations allows us to strike balance between the speed of detection and the

number of features necessary for accurate discrimination.
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