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Fault diagnosis and failure prognosis aim to reduce downtime of the systems and to
optimise their performance by replacing preventive and corrective maintenance strategies
with predictive or conditional ones. The knowledge of the current health state of the
systems, provided by diagnostic algorithms, and its time evolution provided by prognosis
algorithms, are necessary for the establishment of predictive and conditional maintenance,
hence the interest given by the scientific community for the development of monitoring
algorithms more and more efficient.

In the literature, there are four main families of approaches for fault diagnosis and fail-
ure prognosis: methods based on physical models, data-driven methods, expert methods,
and hybrid ones. The fast development of data acquisition and storage tools, processing
algorithms, associated with the evolution of instrumentation and process automation
techniques that generate large data flows, has fostered the development of data-driven
approaches. The papers proposed in this book present new methods of fault diagnosis
and failure prognosis which provide solutions to scientific issues such as structured and
unstructured uncertainties, the presence of multiple faults, the lack of prior knowledge
on the conditions of use, feature extraction and selection, model optimisation and online
implementation. The variety of application supports given in this book, ranging from
microelectronics devices to large-scale systems, highlights the implementation constraints
specific to each field of application and present suitable solutions.

In [1], a deep learning method associating wavelet transform for feature extraction
under different frequencies and scales, and a convolutional neural network (CNN) for
feature selection and fault classification is presented. The association of the two filtering
stages (wavelet transform and convolutional functions) allows the processing of the non-
linear mechanism of the processes and the highly correlation among variables. This
approach is successfully validated on a refrigerant-producing process. Wavelet transform
is also used in [2] as a first data processing step, associated with an improved particle
swarm optimization (PSO) and a back propagation (BP) neural network with linearly
increasing inertia weight. The idea is to combine the PBNN with the improved PSO
algorithm for parameter optimisation, thus giving a better precision of the classification.
This method is used for fault diagnosis of a three-phase squirrel cage induction motor,
driven by an AC power supply. The considered faults are bearing damage, stator winding,
inter-turn short circuit, and broken rotor bar. Induction motor is also considered in [3]
which focus their study on the impact of the use of attribute selection methods such as
ReliefF, correlation-based feature selection (CFS), and correlation and fitness value-based
feature selection (CFFS), on the performance of neural classifiers such as probabilistic neural
network (PNN), radial basis function neural network (RBNN), and back propagation neural
network (BPNN). This study analyses the current signal of the induction motor for fault
diagnosis. The results of the study show that ReliefF, CFS, and CFFS have better efficiency
than the unused feature selection approach.

The issue of fault diagnosis under variable operating conditions is dealt in [4] where
the data processing is done by a combination of a statistical tool (Empirical Mode Decompo-
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sition) and an energetic one based on information entropy theory. Then fault classification
is made using a Gaussian mixture model (GMM), which has no need for failure data
when building a degradation identification model. To evaluate the effectiveness of this
algorithm in presence of different operating conditions, a hydraulic pump is used as a
case study, where three kinds of loads are simulated by means of the throttle valve. An
axial piston pump is used in [5] as a case study for the validation of state recognition and
failure prediction algorithm based on multi-class Gaussian process classification for fault
detection and identification, and Gaussian process regression (GPR) for failure prognosis.
The vibration signal is first processed variational mode decomposition (VMD) to extract
intrinsic mode function (IMF) components, then, multi-scale permutation entropy (MPE)
is used for feature selection feature associated with the ReliefF algorithme to reduce the
dimension of feature space.

To deal with the issue of the online implementation of deep learning algorithms related
to the problems of high-quality data accumulation, high timeliness of the data analysis,
and difficulty in embedding deep-learning algorithms directly in real-time systems, [6]
proposes a new progressive deep-learning framework, called (TensorFlow), with a high
degree of flexibility, portability, and rich library of algorithms.

Other innovative fault diagnosis and failure prognosis techniques are presented in
this book [7–9], such as analytical redundancy [10], data-driven analytical redundancy [11],
and cyclostationary analysis [12], with applications in microelectronics, rotating machines
and polymer electrolyte fuel cell.

The papers presented above show the high scientific quality of the work presented
in this book, which gives an overview of the most recent methods used for diagnosis and
prognosis, while providing solutions to known problems in this field. The experimental
results obtained on various systems show the great potential and relevance of the diagnostic
and prognostic tools presented in this book.
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