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A MEAN FIELD GAME MODEL OF FIRM–LEVEL INNOVATION1

MATT BARKER∗, PIERRE DEGOND† , RALF MARTIN‡ , AND MIRABELLE MUÛLS2

Abstract. Knowledge spillovers occur when a firm researches a new technology and that tech-3
nology is adapted or adopted by another firm, resulting in a social value of the technology that is4
larger than the initially predicted private value. As a result, firms systematically under–invest in5
research compared with the socially optimal investment strategy. Understanding the level of under–6
investment, as well as policies to correct it, is an area of active economic research. In this paper,7
we develop a new model of spillovers, taking inspiration from the available microeconomic data. We8
prove existence and uniqueness of solutions to the model, and we conduct some initial simulations9
to understand how indirect spillovers contribute to the productivity of a sector.10
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1. Introduction. When a business invests in research and development (R&D),13

such strategy only takes into account how a potential innovation may increase the14

investing company’s private value. However, other businesses may utilise innovations15

made by the original investing company to increase their own profits. This is known in16

economic literature as the knowledge spillover effect. By only considering its private17

return, businesses systematically undervalue their own innovations and hence under–18

invest in R&D, compared with the socially optimal investment level. To counteract19

the under–investment, governments introduce R&D subsidy policies for certain sectors20

of the economy. In order to effectively allocate such subsidies, it is therefore important21

to understand the extent of under–investment and how it varies between sectors.22

To understand the spillover effect we develop a mean field game (MFG) model of23

firms distributed heterogeneously between sectors and according to their productivity24

level, taking into account their microscopic behaviour. From a microeconomic per-25

spective, the size of knowledge spillovers can be inferred from the network of patent26

citations [15]. When an industrial technology is developed, it often gets patented. As27

part of the patent any previous technology that has been used must be cited. This28

results in a network of patent citations, where each citation can be used as a proxy29

for a spillover from one technology to another, so spillover sizes can be evaluated [11].30

In the model we develop, sectors are connected by a graph that is informed by and31

can be calibrated to the microeconomic network of patent citation data.32

A first model of knowledge spillovers, by Cohen and Levinthal [10], considered33

the stock of knowledge of a firm to depend on the amount of investment in R&D34

of that firm and the total amount of investment by all other firms, through a mean35

field–type interaction. Only an initial analysis of the model was conducted in [10]. A36

later model, acknowledged in Section 13.2 of [1], started from a macroscopic perspec-37
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tive, hence only the aggregate knowledge of the entire economy was considered and38

spillovers were assumed to increase the aggregate uniformly. This does not explain39

how spillovers heterogeneously affect firms. Similar models have also been used to40

study entrepreneurship and intellectual property rights, such as in [2]. There has41

been particularly extensive research of knowledge spillovers in cross–country models.42

In such models, a country’s own output is aggregated and the knowledge level increases43

at a rate that depends on the leading country’s knowledge level. However, simplifying44

assumptions are made that may affect their accuracy, such as in [12], where interac-45

tions take place in a discrete time setting, or [3, 16] where the interactions between46

firms was described only through the evolution of aggregate quantities. In this paper,47

we use an MFG model to both increase the complexity of the description of firms,48

and to link firm–level evolution directly to microeconomic data for spillover sizes.49

There have been several other papers focussing on MFG–type models of knowledge50

spillovers, see [7, 21]. The Boltzmann model studied in both papers doeas not con-51

sider how innovation among firms evolves, nor did it incorporate the microeconomic52

data related to patent citations in its formulation. As a result, the model studied in53

this paper can give greater insight into firm–level dynamics.54

In this paper, we analyse a stationary MFG model describing the spillover effect.55

The MFG model describes the long–term behaviour of firms with full anticipation56

of the future. MFGs were described mathematically by Lasry and Lions [18, 19],57

and simultaneously by Huang, Caines and Malhamé [17] and they build on the work58

of Aumann and related authors on anonymous games [5, 22]. The novelties of the59

system we develop are, first, that the distribution dependence enters into the drift60

term rather than in the cost functional and, second, that we are considering more61

than one population of agents. Therefore our MFG model can be classed as a multi–62

population MFG with a non–separable Hamiltonian. There has been some work in63

both multi–population MFGs (see [9]) and MFG models with non–separable Hamil-64

tonians (see [4, 14]). However, we are aware of no literature for models that display65

both characteristics, so although our model is one dimensional, its interest reaches66

beyond this setting. As a result of the novelty of our model, the techniques we use67

to prove existence and uniqueness are also novel. However, they rely heavily on the68

ability to write a stationary Fokker–Planck equation in the form of an exponential.69

This characteristic has previously been used in [6] to prove existence and uniqueness70

in MFG and BRS models in a slightly different framework.71

The paper is organised as follows. In Section 2, we develop the spillover model by72

describing firm behaviour at a microscopic level and formally deriving the mean field73

limit. In section 3, we describe the MFG problem and prove existence of solutions to74

it. We also show uniqueness of such solutions holds, provided the coupling strength75

between sectors is small enough. In Section 4, we provide some deeper insights into76

the effects of the modelling parameters, through numerical simulations. The first sim-77

ulations show how parameters describing effects unrelated to spillovers (for example78

the discount factor, the noise level and the labour efficiency) change the MFG model.79

Our second group of simulations demonstrate the effect of the spillover network on80

the model. The spillover network is a sector–level network that aggregates the patent81

citation network. We show that the effect of a spillover on any sector is a result of all82

paths to that sector in the associated network, and not just the immediate connections83

between sectors, which is contrary to the current economic state of the art. Finally,84

in Section 5, we briefly discuss future research prospects for the model, including how85

we intend to apply the model to economic questions relevant to R&D subsidy policy.86
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A MEAN FIELD GAME OF INNOVATION 3

2. Model development.87

2.1. The microscopic model.88

Firms. Assume there are L sectors within the economy, and in sector ` there are89

N` firms. We assume firm i in group ` has s`,`
′

i,j links with firm j in group `′, where90

s`,`
′

i,j is a random variable, taking a value s ∈ N with probability 1
N`′

p(`, `′, s). The91

ith firm in sector ` has a productivity level Z`,i ∈ Ω = (0, z̄), which increases as a92

result of employing labour h`,i or due to knowledge spillovers from firms that they93

are linked with. The productivity dynamics are also affected by noise with strength94

σ ∈ (0,∞). As a result, Z`,i evolves according to the following SDE95

dZ`,i(t) =

(h`,i(t))
γ

+
1

N

L∑
`′=1

N`′∑
j=1

s`,`
′

i,j Z`′,j(t)

 dt+ σdB`,i(t)(2.1a)96

L (Z`,i(0)) = m0
` ,(2.1b)9798

where N =
∑L
`=1N`, B`,i is an independent Brownian motion with reflection at99

boundaries 0 and z̄, and γ ∈ (0, 1) represents the inefficiency in converting one unit100

of labour to one unit of knowledge. In the initial condition (2.1b), L (Z`,i(0)) denotes101

the law of the random variable Z`,i(0) and m0
` is an initial distribution, which may be102

different for each sector. We assume firms produce a quantity of differentiated good103

at a rate q`,i according to the production function104

(2.2) q`,i = Z`,i .105

Each firm sells their product at a market–determined price r`,i and maximises their106

profit subject to the other firms’ decisions. Each agent’s profit functional is given by107

(2.3) J`,i(h) = E
[∫ ∞

0

(r`,i(t)q`,i(t)− wh`,i(t)) e−ρt dt
]
,108

where h =
(

(h`,i)
N`
i=1

)L
`=1

. The wage, w, and the discount rate, ρ, are given constants.109

Consumers. Assume there is a representative consumer with preferences given110

by Q = 1
N

∑L
`=1

∑N`
i=1 q

α
`,i, the Dixit–Stiglitz constant elasticity of substitution (CES)111

form, and with average income Y . The value α ∈ (0, 1) is related to the elasticity112

of substitution. The demand for each variety can be found by maximising Q un-113

der the budget constraint that average expenditure is equal to average income, i.e.114
1
N

∑L
`=1

∑N`
i=1 r`,iq`,i = Y . This gives115

(2.4) q`,i = Br
1

α−1

`,i , B = Y R
α

1−α , R =

(
1

N

L∑
`=1

N∑̀
i=1

r
α
α−1

`,i

)α−1
α

.116

For the purposes of the firm–level optimisation problem, we assume R is fixed, in117

that it can’t be changed by any individual firm — this becomes true as N` →∞ for118

each `. For the mathematical analysis we assume B to be a fixed constant, which119

simplifies matters and enhances the model’s relevant features. Later in the numerical120

simulations B will be determined as the solution to a fixed point problem, which121

endogenises the price formation through the interaction between firms and consumers.122
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Firm profits revisited. Now, the profit functional (2.3) can be rewritten as123

J`,i(h) = E
[∫∞

0

(
(Z`,i(t))

α

Bα−1 − wh`,i(t)
)
e−ρt dt

]
, using the consumer behaviour (2.4)124

and the production function (2.2).125

2.2. Mean field limit. When there are large numbers of firms in each sector,126

the microscopic model developed in Section 2.1 can become intractable. Instead, we127

assume the number of firms in each sector, N`, goes to infinity while N`
N → A` for128

some A` ∈ (0, 1), which represents the proportion of firms in sector `. In order to129

derive the limiting mean field model, we first define the empirical distributions for130

each sector ` = 1, . . . , L by mN`
` = 1

N`

∑N`
i=1 δZ`,i , where δZ`,i is a Dirac delta at the131

point Z`,i. We can then rewrite the dynamics (2.1) using mN`
` as132

dZ`,i(t) =

(h`,i(t))
γ

+

L∑
`′=1

(N`′)
2

N

∫
Ω

z′ dm
N`′
`′ (z′, t)

1

N`′

N`′∑
j=1

s`,`
′

i,j

 dt+ σdB`,i(t)

L (Z`,i(0)) = m0
` ,

133

Assuming mN`
` has a limit, m`, as N` →∞ then, in the limiting model, a representa-134

tive firm in sector ` evolves according to the SDE135

dZh,m` (t) =

(
(h`(t))

γ
+

L∑
`′=1

A`′p(`, `
′)

∫
Ω

z′ dm`′(z
′, t)

)
dt+ σdB`(t)(2.5a)136

L
(
Zh,m` (0)

)
= m0

` ,(2.5b)137
138

where, by the law of large numbers, p(`, `′) =
∑∞
s=0 p(`, `

′, s). The corresponding139

profit functional is140

(2.6) J`(h;m) = E

∫ ∞
0


(
Zh,m` (t)

)α
Bα−1

− wh`(t)

 e−ρt dt

 .141

If all firms act in the same way as the representative firm, then the distribution of firms142

with respect to productivity level is given by a system of L Fokker–Planck equations143

∂tm` = −∂z

[(
(h`)

γ
+

L∑
`′=1

A`′p(`, `
′)

∫
Ω

z′ dm`′(z
′, t)

)
m`

]
+
σ2

2
∂2
zzm`(2.7a)144

−

(
(h`)

γ
+

L∑
`′=1

A`′p(`, `
′)

∫
Ω

z′ dm`′(z
′, t)

)
m` +

σ2

2
∂zm`

∣∣∣∣∣
z=0,z̄

= 0(2.7b)145

m`(z, 0) = m0
`(z) .(2.7c)146147

3. The MFG model.148

3.1. Problem formulation. The MFG problem is related to the search for149

Nash equilibria in the optimisation of the profit functional (2.6) while agents evolve150

according to the dynamics (2.5).151

Definition 3.1. The MFG problem is to find a pair (h∗,m∗), where h∗ = (h∗` )
L
`=1152

is a sequence of controls and m∗ = (m∗` )
L
`=1 is a sequence of probability distributions153
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on Ω̄, such that for any other sequence of controls h and every `154

J`(h
∗
` ,m

∗) ≥ J`(h`,m∗)(3.1a)155

and m∗` = L
(
Zh
∗,m∗

`

)
.(3.1b)156

157

Such a distribution is called an MFG equilibrium.158

To find an MFG equilibrium we first describe the Hamilton–Jacobi–Bellman159

(HJB) PDE related to the optimisation part of the problem (3.1a). Then we couple160

the HJB PDE to the Fokker–Planck PDE (2.7) to solve the consistency part (3.1b).161

We start by defining L Hamiltonians H` : Ω×
(
H1(Ω)

)L ×R→ R, for ` = 1, . . . L as162

(3.2)

H`(z,m, λ) = sup
h≥0

(
hγ +

L∑
`′=1

A`′p(`, `
′)

∫
Ω

z′m`′(z
′) dz′

)
λ+

zα

Bα−1
− wh

= (1− γ)
( γ
w

) γ
1−γ

max(0, λ)
1

1−γ + λ

L∑
`′=1

A`′p(`, `
′)

∫
Ω

z′m`′(z
′) dz′ +

zα

Bα−1
,

163

where z ∈ Ω is productivity, m = (m`)
L
`=1 is a distribution of firms in each sector and164

λ is an adjoint variable. The optimal control is given by h∗` =
(
γ
w max(0, λ)

) 1
1−γ , for165

` = 1, . . . , L. Then we define the running profit V`(z, t), for ` = 1, . . . , L, by166

(3.3) V`(z, t) = sup
h`

E
[∫ ∞

t

(
(Z`(s))

α

Bα−1
− wh`(z)

)
e−ρ(s−t) ds

∣∣∣∣Z`(t) = z

]
,167

where Z`(s) follows (2.5). If we let the equilibrium distribution be given by m` (for168

` = 1, . . . , L), then the MFG PDE system is stationary and given by169

V` ∈ H1(Ω)(3.4a)170

m` ∈ H1(Ω)(3.4b)171

− σ2

2
V ′′` + ρV` −H` (z,m, V ′` ) = 0(3.4c)172

− σ2

2
m′′` + (∂λH` (z,m, V ′` )m`)

′
= 0(3.4d)173

V ′` |z=0,z̄ = 0(3.4e)174

−σ
2

2
m′` + ∂λH` (z,m, 0)m`

∣∣∣∣
z=0,z̄

= 0(3.4f)175 ∫
Ω

m`(z) dz = 1 .(3.4g)176
177

It can be shown, using either the dynamic programming principle (c.f [25]) or the178

stochastic maximum principle (c.f. [8]), that V`(z), as defined by (3.3), satisfies the179

HJB equation (3.4c), (3.4e). The Fokker–Planck system (3.4d), (3.4f), (3.4g) comes180

from the distribution in the previous section (2.7) and the consistency condition (3.1b).181

3.2. Existence and uniqueness of solutions to the MFG.182

Definition 3.2. A solution to the innovation MFG model (3.4) is defined to be183

a tuple (m,V ) = (m1, . . . ,mL, V1, . . . , VL) such that m` : Ω → (0,∞), V` : Ω → R184

satisfy (3.4) in the weak sense for each ` = 1, . . . , L.185
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6 M. BARKER, P. DEGOND, R. MARTIN, M. MUÛLS

Theorem 3.3. There exists a solution (m,V ) ∈
[
C2(Ω) ∩ C1

(
Ω̄
)]2L

to (3.4).186

Furthermore, if
∑L
`′=1A`′p(`, `

′) is small enough for every ` = 1, . . . L, then the solu-187

tion is unique.188

Proof outline. As noted in the introduction, this proof is based on the proof of189

existence and uniqueness in [6]. The proof presented here has some technical differ-190

ences compared with the one in [6], hence it is reproduced in full. However, it follows191

a similar framework and so we do not claim the proof to be new. First, for k ∈ [0,∞)192

we introduce an auxiliary system of PDEs defined by193

V k ∈ H1(Ω)(3.5a)194

− σ2

2

(
V k
)′′

+ ρV k −Hk
(
z,
(
V k
)′)

= 0(3.5b)195 (
V k
)′∣∣∣

z=0,z̄
= 0 ,(3.5c)196

197

198

mk ∈ H1(Ω)(3.6a)199

− σ2

2

(
mk
)′′

+

([( γ
w

max(0,
(
V k
)′

)
) γ

1−γ
+ k

]
mk

)′
= 0(3.6b)200

−σ
2

2

(
mk
)′

+ kmk

∣∣∣∣
z=0,z̄

= 0(3.6c)201 ∫
Ω

mk(z) dz = 1 ,(3.6d)202
203

where Hk(z, λ) = (1 − γ)
(
γ
w

) γ
1−γ (max (0, λ))

1
1−γ + kλ + zα

Bα−1 . We use a modified204

version of upper and lower solutions (c.f. [23]) to prove existence and uniqueness205

of a weak solution V k to (3.5) for any k ∈ [0,∞), and use elliptic regularity the-206

ory to show V k ∈ C2(Ω) ∩ C1
(
Ω̄
)
. Next we define mk = 1

‖m̄k‖1
m̄k, where m̄k =207

e
2
σ2

(
kz+

∫ z
0 ( γw max(0,(V k)

′
))

γ
1−γ dy

)
and

∥∥m̄k
∥∥

1
=
∫

Ω
m̄kdz, for k ∈ [0,∞). We prove208

that mk ∈ C2(Ω)∩C1
(
Ω̄
)

and that mk is the unique solution of (3.6). Finally, we de-209

fine a map Φ : [0,∞)L → [0,∞)L by Φ`(k) =
∑L
`′=1A`′p(`, `

′)
∫

Ω
zmk`′ (z) dz for` =210

1, . . . , L, and using the Brouwer fixed point theorem we prove there exists k̄ ∈ [0,∞)L211

such that Φ
(
k̄
)

= k̄. We use the contraction mapping theorem to prove uniqueness212

under certain smallness assumptions for the data. Then it follows, by replacing k̄`213

with Φ
(
k̄`
)

in (3.5) and (3.6), that
(
mk̄, V k̄

)
=
(
mk̄1 , . . . ,mk̄L , V k̄1 , . . . , V k̄L

)
is a214

(unique) solution to (3.4) with the required regularity.215

Solutions to the auxiliary HJB PDE.216

Theorem 3.4. There exists a unique solution V k ∈ C2,τ
(
Ω̄
)

to the auxiliary217

HJB PDE (3.5) for any k ∈ [0,∞) and some τ ∈ (0, 1), where C2,τ
(
Ω̄
)

is the set218

of C2 functions on Ω̄ whose second derivative is Hölder continuous with exponent τ .219

Furthermore, 0 ≤ V k ≤ z̄α

ρBα−1220

Proof. The existence part of the proof uses the theory of upper and lower solu-221

tions, specifically Theorem 4.3. in [20], and follows along similar lines to the proof222

of Proposition 3.12 in [6]. This shows that a solution V k ∈ W 1,p(Ω) to the auxiliary223

HJB PDE exists, for some p ≥ 1, provided the following hold true:224

This manuscript is for review purposes only.
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1. There exist constants
¯
V ≤ V̄ such that ρ

¯
V − zα

Bα−1 ≤ 0 ≤ ρV̄ − zα

Bα−1 , for225

every z ∈ Ω̄.226

2. There exist constants ak ∈ R and bk > 0 such that227 ∣∣∣∣ρu− (1− γ)
( γ
w

) γ
1−γ

(max(0, λ))
1

1−γ − kλ− zα

Bα−1

∣∣∣∣ ≤ ak + bk|λ|p ,228

for every z ∈ Ω, u ∈
[
¯
V, V̄

]
and every λ ∈ R.229

If these two properties hold, then
¯
V ≤ V k ≤ V̄ . The first assertion is true by taking230

¯
V = 0 and V̄ = z̄α

ρBα−1 , which also gives the required bounds for V k. The second231

assertion is true with bk = k+ (1− γ)
(
γ
w

) γ
1−γ , ak = 2z̄α

Bα−1 + bk, and p = 2
1−γ , as then232 ∣∣∣∣ρu− (1− γ)

( γ
w

) γ
1−γ

(max(0, λ))
1

1−γ − kλ− zα

Bα−1

∣∣∣∣
≤ ρ|u|+

(
k + (1− γ)

( γ
w

) γ
1−γ
)

max
(

1, |λ|
1

1−γ

)
+

z̄α

Bα−1
≤ ak + bk|λ|p .

233

Now, since Ω is bounded and p > 2, V k ∈ H1(Ω). To show V k ∈ C2,τ
(
Ω̄
)
, take any234

solution V k to (3.5) and define235

f =
2

σ2

((
σ2

2
− ρ
)
V k + k

(
V k
)′

+ (1− γ)
( γ
w

) γ
1−γ

(
max(0,

(
V k
)′) 1

1−γ
+

zα

Bα−1

)
.236

Then V k is a solution of −u′′+u = f , where f ∈ L2(Ω). So, from the elliptic regularity237

result of Proposition 7.2. p.404 in [24], V k ∈ H2(Ω). Therefore
(
V k
)′ ∈ H1(Ω), and238

so f ∈ H1(Ω) because α ∈ (0, 1). So, from the elliptic regularity result of Proposition239

7.4. p.407 in [24], V k ∈ H3(Ω). Then, by the Sobolev inequality (c.f. Theorem 6240

p.270 in [13]) V k ∈ C2,τ
(
Ω̄
)
.241

To prove uniqueness we use the strong maximum principle and Hopf’s lemma, as242

stated in [13] Section 6.4.2. pp. 330–333. Suppose, for some k ∈ [0,∞), there are243

two solutions V1, V2 ∈ C2(Ω) ∩C1(Ω̄) to (3.5) and V1 6= V2. If we define u = V1 − V2,244

then u must attain its maximum at some point z∗ ∈ Ω̄. Suppose at this point u > 0.245

Note that if this were not the case, we could consider the minimum, as either its246

maximum or its minimum must be non–zero. The argument for the minimum is the247

same as the one for the maximum, so it is omitted. First suppose z∗ ∈ Ω. Since this248

is the maximal point, u′(z∗) = 0, so V ′1(z∗) = V ′2(z∗). Hence, there exists an open,249

connected and bounded region U such that U ⊂ Ω, z∗ ∈ U and250

−σ
2

2
u′′ = −ρu+ ku′ + (1− γ)

( γ
w

) γ
1−γ

[
max (0, V ′1)

1
1−γ −max (0, V ′2)

1
1−γ
]
≤ 0 ,251

for every z ∈ U . So, by the strong maximum principle, u is constant in U . In252

particular, using (3.5b), u(z∗) = 0. But this is a contradiction. The only other case253

is z∗ ∈ ∂Ω and u(z) < u(z∗) for every z ∈ Ω. Then, ∂u
∂ν

∣∣
z∗
> 0 by Hopf’s Lemma,254

but by (3.5c), ∂u
∂ν = ∂V1

∂ν −
∂V2

∂ν = 0. This again leads to a contradiction. Therefore255

V1 = V2 and solutions to (3.5) are unique for every k ∈ [0,∞).256

Proposition 3.5. Fix k, k1, k2 ∈ [0,∞). Then, the unique classical solution to257

the auxiliary HJB PDE (3.5), as found in Theorem 3.4, satisfies the following prop-258

erties:259

1. V k is an increasing function on Ω̄ i.e.
(
V k
)′ ≥ 0260
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2.
(
V k
)′
> 0 for all z ∈ Ω261

3. ‖
(
V k
)′ ‖∞ = supz∈Ω

(
V k
)′

(z) ≤
[

z̄α

(1−γ)Bα−1

]1−γ (
w
γ

)γ
262

4. ‖V k1 − V k2‖∞ ≤ 1
ρ

[
z̄α

(1−γ)Bα−1

]1−γ (
w
γ

)γ
|k1 − k2|263

5. V k is strictly increasing with respect to k264

6. ‖
(
V k1

)′ − (V k2
)′ ‖∞ ≤ 4z̄

σ2

[
z̄α

(1−γ)Bα−1

]1−γ (
w
γ

)γ
|k1 − k2|265

7.
(
V k
)′′

(0) > 0 >
(
V k
)′′

(z̄).266

Proof. Property (1): Suppose, for a contradiction, there exists z ∈ Ω̄ such that267 (
V k
)′

(z) < 0. First, by the boundary condition (3.5c), z ∈ Ω. So, by the boundary268

conditions and continuity of
(
V k
)′

, there exists z0, z1 ∈ Ω̄ with z0 < z1,
(
V k
)′

(z0) =269 (
V k
)′

(z1) = 0 and
(
V k
)′

(z) ≤ 0 for all z ∈ (z0, z1). Suppose that z0, z1 ∈ Ω. Then270 (
V k
)′′

(z0) ≤ 0 ≤
(
V k
)′′

(z1) by construction of z0, z1 and differentiability of
(
V k
)′

.271

Furthermore, V k(z0) > V k(z1) because
(
V k
)′
< 0 in (z0, z1). So, using (3.5b)272

0 = −σ
2

2

((
V k
)′′

(z1)−
(
V k
)′′

(z0)
)

+ ρ
(
V k(z1)− V k(z0)

)
− 1

Bα−1
(zα1 − zα0 ) < 0 .273

This is a contradiction, so z0 = 0 or z1 = z̄. Assume z0 = 0, we will again prove274

a contradiction (the other two cases of z1 = z̄ and both z0 = 0, z1 = z̄ follow along275

similar arguments so their proofs are omitted). Since
(
V k
)′

(0) =
(
V k
)′

(z1) = 0 and276 (
V k
)′

(z) < 0 for all z ∈ (0, z1) then, by continuity of
(
V k
)′′

, we can find ε1, δ1 ∈277

(0, z12 ) such that
(
V k
)′′

(z) ≤ 0 for all z ∈ (0, ε1] and
(
V k
)′′

(z) ≥ 0 for all z ∈278

[z1 − δ1, z1). Furthermore, V k is strictly decreasing on (z0, z1). So, using these two279

facts and continuity of
(
V k
)′

there exists δ ∈ (0, δ1] and ε ∈ (0, ε1] such that280

1.
(
V k
)′

(ε) =
(
V k
)′

(z1 − δ) = min
((
V k
)′

(ε1),
(
V k
)′

(z1 − δ1)
)

281

2. V k(ε) > V k(z1 − δ)282

3.
(
V k
)′′

(ε) ≤ 0 ≤
(
V k
)′′

(z1 − δ).283

Then −σ
2

2

((
V k
)′′

(z1 − δ)−
(
V k
)′′

(ε)
)

+ ρ
(
V k(z1 − δ)− V k(ε)

)
− (z1−δ)α−εα

Bα−1 < 0,284

which contradicts the fact that V k is a solution to (3.5). Therefore,
(
V k
)′ ≥ 0 in Ω̄.285

Property (2): From Property (1), we know
(
V k
)′ ≥ 0. Now suppose, for a286

contradiction, there exists z∗ ∈ Ω such that
(
V k
)′

(z∗) = 0. Then
(
V k
)′′

(z∗) = 0,287

since it is a minimum of
(
V k
)′

. So, by (3.5b), V k(z∗) = zα

ρBα−1 and, since
(
V k
)′

(z∗) <288

d
dz

(
zα

ρBα−1

)
, there exists z0, z1 ∈ Ω with z0 < z∗ < z1 such that289

1.
(
V k
)′

(z0) =
(
V k
)′

(z1)290

2. V k(z0) >
zα0

ρBα−1 and V k(z1) <
zα1

ρBα−1291

3.
(
V k
)′′

(z0) ≤ 0 ≤
(
V k
)′′

(z1).292

Then −σ
2

2

((
V k
)′′

(z1)−
(
V k
)′′

(z0)
)

+ ρ
(
V k(z1)− V k(z0)

)
− 1

Bα−1 (zα1 − zα0 ) < 0,293

which is a contradiction of (3.5b). Therefore,
(
V k
)′

(z) > 0 for all z ∈ Ω.294

Property (3): Since
(
V k
)′

is continuous on Ω̄,
(
V k
)′ ≥ 0 and

(
V k
)′

(0) =295 (
V k
)′

(z̄) = 0, then
(
V k
)′

must have a maximum that it attains at some point z∗ ∈ Ω.296

Furthermore, since
(
V k
)′

is continuously differentiable in Ω, then
(
V k
)′′

(z∗) = 0. So,297
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using the bound on V k found in Theorem 3.4298

0 ≤
(
V k
)′

(z) ≤
(
V k
)′

(z∗) =

[
w

γ
1−γ

(1− γ) γ
γ

1−γ

(
ρV k(z∗)− k

(
V k
)′

(z∗)− (z∗)
α

Bα−1

)]1−γ

≤
[

z̄α

(1− γ)Bα−1

]1−γ (
w

γ

)γ
.

299

Property (4): Take k1, k2 ∈ [0,∞) such that k1 < k2. First we show V k2 −300

V k1 ≥ 0, then we show V k2 − V k1 ≤ ‖(V
k1)
′‖∞

ρ (k2 − k1), and we can conclude using301

Property (3). Let u1 = V k2 −V k1 and assume, for a contradiction, there exists z ∈ Ω̄302

such that u1(z) < 0. Then, u1 attains a minimum at z∗ ∈ Ω̄ and u1(z∗) < 0. First303

suppose z∗ ∈ Ω, then u′1(z∗) = 0 and from (3.5b)304

−σ
2

2
u′′1(z∗) = −ρu1(z∗) + (k2 − k1)

(
V k1

)′
(z∗) > 0 ,305

since
(
V k1

)′ ≥ 0 and u1 < 0. Then, by continuity of u′′1 , there exists an open bounded,306

connected Ω′ ⊂ Ω such that z∗ ∈ Ω′ and u′′1 < 0 for all z ∈ Ω′. So, by the strong307

maximum principle, u1 is constant in Ω′. In particular, u′′1 = 0, which contradicts308

u′′1 < 0 for all z ∈ Ω′. So, z∗ ∈ ∂Ω and u1(z) < u1(z∗) for all z ∈ Ω. However, from309

Hopf’s lemma u′1(z∗) 6= 0, which contradicts (3.5c). So, we conclude that u1 ≥ 0.310

Now let u2 = V k2 − V k1 − ε, with ε =
‖(V k1)

′‖∞
ρ (k2 − k1) < ∞. We assume, for a311

contradiction, there exists z ∈ Ω̄ such that u2(z) > 0. Then u2 attains a maximum312

at z∗ ∈ Ω̄ and u2(z∗) > 0. First suppose z∗ ∈ Ω, then u′2(z∗) = 0 and from (3.5b)313

−σ
2

2
u′′2(z∗) = −ρu2(z∗) + (k2 − k1)

(
V k1

)′
(z∗)− ρε < 0 ,314

since u2 > 0 and ρε ≥ (k1 − k2)
(
V k1

)′
(z∗). Then, by continuity of u′′2 , there exists315

an open bounded, connected Ω′ ⊂ Ω such that z∗ ∈ Ω′ and u′′2 > 0 for all z ∈ Ω′.316

So, by the strong maximum principle, u2 is constant in Ω′. In particular, u′′2 = 0,317

which contradicts u′′2 > 0 for all z ∈ Ω′. So, z∗ ∈ ∂Ω and u2(z) > u2(z∗) for all318

z ∈ Ω. However, from Hopf’s lemma u′2(z∗) 6= 0, which contradicts (3.5c). So, we can319

conclude that u2 ≤ 0.320

Property (5): The proof of Property (4) shows V k is increasing with respect321

to k. Now suppose, for a contradiction, there exists z∗ ∈ Ω̄ such that k1 < k2322

but V k1(z∗) = V k2(z∗). First, assume z∗ ∈ Ω and define u = V k2 − V k1 . Then,323

u(z∗) = 0, u′(z∗) = 0 and u′′(z∗) ≥ 0, since z∗ is a minimum of u. Furthermore, from324

Property (2),
(
V k1

)′
(z∗) > 0. Therefore, using (3.5b), we get the contradiction325

0 = −σ
2

2
u′′ + (k1 − k2)

(
V k1

)′
< 0 .326

Hence, z∗ ∈ ∂Ω, so u′(z∗) = 0 ,using (3.5c). But, u′(z∗) 6= 0 by Hopf’s lemma, which327

is a contradiction. So, V k is strictly increasing with respect to k.328

Property (6): Fix k1, k2 ∈ [0,∞). Let u = V k1 − V k2 . Then, u satisfies329

σ2

2
u′′ = ρu−k1u

′+(k2−k1)
(
V k2

)′−(1−γ)
( γ
w

) γ
1−γ

(((
V k1

)′) 1
1−γ −

((
V k2

)′) 1
1−γ
)
.330
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Suppose for z ∈ Ω, u′(z) ≥ 0. Then, since u′(0) = 0, there exists z0 ∈ [0, z] such that331

u′(y) ≥ 0 for all y ∈ [z0, z] and u′(z0) = 0. Therefore332

0 ≤ u′(z) =

∫ z

z0

u′′(y) dy ≤ 2z̄

σ2

(
ρ||u||∞ + |k2 − k1|

∣∣∣∣∣∣(V k2
)′∣∣∣∣∣∣
∞

)
≤ 4z̄

σ2

[
z̄α

(1− γ)Bα−1

]1−γ (
w

γ

)γ
|k2 − k1| .

333

We can similarly show that u′(z) ≥ − 4z̄
σ2

[
z̄α

(1−γ)Bα−1

]1−γ (
w
γ

)γ
|k2 − k1| if u′(z) ≤ 0.334

Hence,
(
V k
)′

is Lipschitz continuous with respect to k with the required constant.335

Property (7): First, we will show
(
V k
)′′

(0) > 0 and then we will show
(
V k
)′′

(z̄) <336

0. Both steps use a similar method. Note that
(
V k
)′′

(0) ≥ 0 and
(
V k
)′′

(z̄) ≤ 0,337

because
(
V k
)′

(0) =
(
V k
)′

(z̄) = 0 and
(
V k
)

(z) > 0 for all z ∈ (0, z̄). So suppose,338

for a contradiction, that
(
V k
)′′

(0) = 0. Then, since V k ∈ C2,τ
(
Ω̄
)
, we can use339

continuity of V k,
(
V k
)′
,
(
V k
)′′

and (3.5b), (3.5c) to show V k(0) = 0. We can also340

use continuity of
(
V k
)′′

to show that for every C > 0 there exists ε1 > 0 such that341

z ∈ (0, ε1) =⇒
(
V k
)′′

(z) < C. Therefore, for any z ∈ (0, ε1)342

(3.7) V k(z) =

∫ z

0

∫ y

0

(
V k
)′′

(y′) dy′ dy − z
(
V k
)′

(0)− V k(0) <
C

2
z2 .343

Since
(
V k
)′
> 0 in Ω, there exists ε2 > 0 such that

(
V k
)′

increases on (0, ε2). There-344

fore,
(
V k
)′′ ≥ 0 on (0, ε2). Take C = 2

ρBα−1 and ε = min(ε1, ε2, 1). Then, from (3.7)345

(3.8) V k(z) <
z2

ρBα−1
≤ zα

ρBα−1
,346

for all z ∈ (0, ε). But, by rearranging (3.5b) and using
(
V k
)′
,
(
V k
)′′ ≥ 0, we get347

V k(z) ≥ zα

ρBα−1 , which contradicts (3.8). Hence,
(
V k
)′′

(0) > 0. Now suppose, for a348

contradiction, that
(
V k
)′′

(z̄) = 0. Then, since V k ∈ C2,τ
(
Ω̄
)
, we can use continuity349

of V k,
(
V k
)′
,
(
V k
)′′

and (3.5b), (3.5c) to show V k(z̄) = z̄α

ρBα−1 . We can also use350

continuity of
(
V k
)′′

to show that for every C > 0 there exists ε1 > 0 such that351

z ∈ (z̄ − ε1, z̄) =⇒
(
V k
)′′

(z) > −C. Therefore, for any z ∈ (z̄ − ε1, z̄)352

(3.9) V k(z) =

∫ z̄

z

∫ z̄

y

(
V k
)′′

(y) dy+V k(z̄)−(z̄ − z)
(
V k
)′

(z̄) >
z̄α

ρBα−1
−C

2
(z̄−z)2 .353

Since
(
V k
)′
> 0 in Ω, there exists ε2 > 0 such that

(
V k
)′

decreases on (z̄ − ε2, z̄).354

Therefore,
(
V k
)′′ ≤ 0 on (z̄ − ε2, z̄). Take C > 0 such that355

kC

ρ
+
C

2
+
C

1
1−γ

ρ
(1− γ)

( γ
w

) γ
1−γ ≤ α z̄α−1

ρBα−1
,356

and ε = min(ε1, ε2, 1). Then, from (3.9)357

(3.10) V k(z) >
z̄α

ρBα−1
− C

2
(z̄ − z)2 ≥ z̄α

ρBα−1
− C

2
(z̄ − z) ,358

This manuscript is for review purposes only.



A MEAN FIELD GAME OF INNOVATION 11

for all z ∈ (z̄− ε, z̄). But, from (3.5b) and using
(
V k
)′ ≤ C(z̄− z),

(
V k
)′′ ≤ 0, we get359

V k(z) =
1

ρ

(
σ2

2

(
V k
)′′

(z) + k
(
V k
)′

(z) + (1− γ)
( γ
w

) γ
1−γ

((
V k
)′) 1

1−γ
+

zα

Bα−1

)
≤ kC

ρ
(z̄ − z) +

C
1

1−γ

ρ
(1− γ)

( γ
w

) γ
1−γ

(z̄ − z)
1

1−γ +
zα

ρBα−1

≤ zα

ρBα−1
+

(
kC

ρ
+
C

1
1−γ

ρ
(1− γ)

( γ
w

) γ
1−γ

)
(z̄ − z) .

360

So, using (3.10), we get α z̄α−1

ρBα−1 (z̄−z) <
(
kC
ρ + C

1
1−γ

ρ (1− γ)
(
γ
w

) γ
1−γ

)
(z̄−z), which361

contradicts the definition of C. Hence,
(
V k
)′′

(z̄) < 0.362

The auxiliary Fokker–Planck equation.363

Definition 3.6. Fix k ∈ [0,∞) and let V k ∈ C2(Ω) ∩ C1
(
Ω̄
)

denote the unique364

solution to (3.5). Then, we define the function mk : Ω→ (0,∞) by365

(3.11a) m̄k = e
2
σ2

(
kz+

∫ z
0 ( γw (V k)

′
)

γ
1−γ dy

)
366

367

(3.11b)
∥∥m̄k

∥∥
1

=

∫
Ω

m̄kdz368

369

(3.11c) mk =
1

‖m̄k‖1
m̄k .370

Proposition 3.7. For every k ∈ [0,∞), mk ∈ C2(Ω) ∩ C1
(
Ω̄
)

where mk is371

defined by (3.6).372

Proof. First, note that mk is well defined because
(
V k
)′ ≥ 0 and

(
V k
)′

is uni-373

formly bounded. Hence, there exists C ∈ (1,∞) such that m̄k(z) ∈ [1, C] and374 ∣∣∣∣m̄k
∣∣∣∣

1
∈ [z̄, Cz̄], so mk(z) ∈

[
1
Cz̄ ,

C
z̄

]
. Furthermore, mk ∈ C

(
Ω̄
)

because V k ∈375

C1
(
Ω̄
)
. Now, if mk ∈ C2(Ω) ∩ C1

(
Ω̄
)
, then its derivatives would be376

(3.12a)
(
mk
)′

=
2

σ2

(
k +

( γ
w

(
V k
)′) γ

1−γ
)
mk

377

378

(3.12b)

(
mk
)′′

=
2

σ2

(
k +

( γ
w

(
V k
)′) γ

1−γ
)(

mk
)′

+
2γ2

σ2w(1− γ)

( γ
w

(
V k
)′) 2γ−1

1−γ (
V k
)′′
mk .

379

But, since V k ∈ C1
(
Ω̄
)

and mk ∈ C
(
Ω̄
)
, then 2

σ2

(
k +

(
γ
w

(
V k
)′) γ

1−γ
)
mk is well–380

defined and continuous for all z ∈ Ω̄. Hence, mk ∈ C1
(
Ω̄
)
. Then,

(
mk
)′
,
(
V k
)

and381 (
V k
)′′

are continuous in Ω and from Proposition 3.5
(
V k
)′
> 0 in Ω. Hence,

(
mk
)′′

382

is well–defined in Ω,
(
mk
)′′ ∈ C(Ω) and mk ∈ C2(Ω) ∩ C1

(
Ω̄
)
.383
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Theorem 3.8. There exists a unique solution mk ∈ C2(Ω) ∩ C1
(
Ω̄
)

to the aux-384

iliary Fokker–Planck PDE (3.6) for any k ∈ [0,∞).385

Proof. Take mk defined in Definition 3.6. Then, mk ∈ C2(Ω)∩C1
(
Ω̄
)

by Propo-386

sition 3.7. Furthermore, from (3.12), mk satisfies (3.6b), (3.6c). Finally, by con-387

struction, mk satisfies (3.6d). Therefore, a solution to the auxiliary Fokker–Planck388

equation (3.6) exists, it is given by mk, and mk ∈ C2(Ω) ∩ C1
(
Ω̄
)
. To prove unique-389

ness we follow the same proof in [6]. For brevity we only outline the argument here.390

First, with m̄k defined as in (3.11), we can use regularity of m̄k from Proposition 3.7391

to show (3.6) is equivalent to392

mk,
mk

m̄k
∈ H1(Ω)(3.13a)393 (

m̄k

(
mk

m̄k

)′)′
= 0(3.13b)394

m̄k

(
mk

m̄k

)′∣∣∣∣∣
z=0,z̄

= 0 ,

∫
Ω

mk dz = 1 .(3.13c)395

396

Then, by multiplying (3.13b) by mk

m̄k
, integrating over Ω and using integration by397

parts, the system (3.13) is equivalent to398

(3.14) mk ∈ H1(Ω) , there exists Z > 0 such that mk =
1

Z
m̄k ,

∫
Ω

mk dz = 1 .399

From the previous results in this section, we have shown there exists a unique solution400

to (3.14) given by mk from Definition 3.6. Hence, existence and uniqueness of the401

auxiliary Fokker–Planck PDE follows from the equivalence between (3.6) and (3.14).402

The fixed point problem.403

Definition 3.9. Fix k = (k`)
L
`=1 ∈ [0,∞)L. For ` = 1, . . . , L, let V k` be the404

unique solution to the auxiliary HJB PDE (3.5) with constant k`, and let mk` be the405

unique solution to the auxiliary Fokker–Planck PDE (3.6) with constant k`. Then we406

define the function Φ : [0,∞)L → [0,∞)L by407

Φ`(k) =

L∑
`′=1

A`′p(`, `
′)

∫ z̄

0

zmk`′ (z) dz , ` = 1, . . . , L .408

Proposition 3.10. The function Φ defined in Definition 3.9 is bounded. Fur-409

thermore, defining P as the L × L matrix with entries P`,`′ = p(`, `′) and A as the410

column vector (A1, . . . , AL)T , then411

0 ≤ ‖Φ(k)‖1 ≤ z̄ ‖PA‖1 ,412

where the 1–norm ‖ · ‖1 is defined as ‖x‖1 =
∑L
`=1 |x`| for any x ∈ RL.413

Remark 3.11. Due to this proposition, we can define ζ = z̄ ‖PA‖1 and consider414

only the restriction of Φ to [0, ζ]L, which we will still denote by Φ for convenience.415

Proof. Take ` = 1, . . . , L. Then Φ`(k) =
∑L
`′=1A`′p(`, `

′)
∫ z̄

0
zmk`′ (z) dz ≥ 0,416

since p(`, `′) ≥ 0 and mk`′ ≥ 0. Similarly, since mk`′ is a probability distribution,417

This manuscript is for review purposes only.



A MEAN FIELD GAME OF INNOVATION 13

Φ`(k) ≤ z̄
∑L
`′=1A`′p(`, `

′)
∫ z̄

0
mk`′ (z) dz = z̄

∑L
`′=1A`′p(`, `

′). Therefore,418

0 ≤
L∑
`=1

Φ`(k) ≤ z̄
L∑
`=1

L∑
`′=1

A`′p(`, `
′) = z̄ ‖PA‖1 .

419

Theorem 3.12. The function Φ : [0, ζ]L → [0, ζ]L defined in Definition 3.9 is Lip-420

schitz in the 1–norm on RL. The Lipschitz constant is given by
¯
C max`=1,...,LA`P`,421

where P` =
∑L
`′=1 p(`

′, `) and
¯
C depends on ‖PA‖1, but not explicitly on P or A.422

Proof. First, fix k ∈ [0, ζ]. From Property (5) of Proposition 3.5, the continuity423

of V k,
(
V k
)′
,
(
V k
)′′

with respect to z in Ω̄, and equations (3.5b), (3.5c), we find424 (
V k
)′′

(0) =
2ρ

σ2
V k(0) ≥ 2ρ

σ2
V 0(0) =

(
V 0
)′′

(0) > 0 ,425

with the middle inequality an equality if and only if k = 0. Similarly,
(
V k
)′′

(z̄) ≤426 (
V ζ
)′′

(z̄) < 0 with the first inequality an equality if and only if k = 0. Moreover,427 (
V k
)′′

is continuous with respect to k due to (3.5b) and continuity of V k,
(
V k
)′

with428

respect to k, which was proven in Proposition 3.5. Therefore, there exists ε1, ε2 ∈ (0, 1)429

and C1, C2 > 0, independent of k, such that430 (
V k
)′

(z) =

∫ z

0

(
V k
)′′

(y) dy ≥
∫ z

0

(
V 0
)′′

(y) dy ≥ C1z , if z ∈ [0, ε1]

(
V k
)′

(z) = −
∫ z̄

z

(
V k
)′′

(y) dy ≥ −
∫ z̄

z

(
V ζ
)′′

(y) dy ≥ C2z , if z ∈ [z̄ − ε2, z̄] .
431

Furthermore, by continuity of
(
V k
)′

with respect to k and compactness of [0, ζ], there432

exists C3 > 0 such that infk∈[0,ζ]

(
V k
)′

(z) ≥ C3 if z ∈ [ε1, z̄ − ε2]. Note that Cj for433

j = 1, 2, 3 are all independent of k ∈ [0, ζ]. Therefore, if γ ≤ 1
2 , for any k1, k2 ∈ [0, ζ]:434

(3.15)

∫ z̄

0

[
min

((
V k1

)′
(z),

(
V k2

)′
(z)
)] 2γ−1

1−γ

dz

≤
∫ ε1

0

(C1z)
2γ−1
1−γ dz +

∫ z̄−ε2

ε1

C
2γ−1
1−γ

3 dz +

∫ z̄

z̄−ε2
(C2(z̄ − z))

2γ−1
1−γ dz

≤ 1− γ
γ

(C
2γ−1
1−γ

1 + C
2γ−1
1−γ

2 ) + C
2γ−1
1−γ

3 z̄ ,

435

while, using Proposition 3.5, if γ ≥ 1
2436

(3.16)

∫ z̄

0

[
max

((
V k1

)′
(z),

(
V k2

)′
(z)
)] 2γ−1

1−γ

dz

≤ z̄
(

z̄α

(1− γ)Bα−1

)2γ−1(
w

γ

) γ(2γ−1)
1−γ

.

437

Now, with the definition of m̄k in (3.11), for any k1, k2 ∈ [0, ζ] we have438

|m̄k1 − m̄k2 | =

∣∣∣∣∣e 2
σ2

(
k1z+

∫ z
0 ( γw (V k1)

′
(y))

γ
1−γ dy

)
− e

2
σ2

(
k2z+

∫ z
0 ( γw (V k2)

′
(y))

γ
1−γ dy

)∣∣∣∣∣
=

∣∣∣∣∣∣ 2

σ2

∫ k1z+
∫ z
0 ( γw (V k1)

′
(y))

γ
1−γ dy

k2z+
∫ z
0 ( γw (V k2)

′
(y))

γ
1−γ dy

e
2
σ2 u du

∣∣∣∣∣∣ .
439
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Then, using the uniform bound on
(
V k
)′

(y) with respect to k given by Proposition 3.5,440

we get441

|m̄k1 − m̄k2 | ≤ 2C̄1

σ2

∣∣∣∣(k1 − k2)z +

∫ z

0

[( γ
w

(
V k1

)′
(y)
) γ

1−γ −
( γ
w

(
V k2

)′
(y)
) γ

1−γ
]
dy

∣∣∣∣
≤ 2C̄1

σ2

(
|k1 − k2|z +

( γ
w

) γ
1−γ

∫ z̄

0

∫ (V k1)
′
(y)

(V k2)
′
(y)

γ

1− γ
u

2γ−1
1−γ du dy

)
,

442

where C̄1 = e
2z̄
σ2

(
ζ+
[

γz̄α

(1−γ)wBα−1

]γ)
. Then, using Proposition 3.5 and either (3.15)443

or (3.16), we get444

(3.17)

|m̄k1 − m̄k2 | ≤2C̄1

σ2

(
|k1 − k2|z +

( γ
w

) γ
1−γ γ

1− γ
||
(
V k1

)′ − (V k2
)′ ||∞

∫ z

0

max
[ ((

V k1
)′

(y)
) 2γ−1

1−γ
,
((
V k2

)′
(y)
) 2γ−1

1−γ
]
dy

)

≤2C̄1

σ2

(
z + C̄2

)
|k1 − k2| ,

445

where C̄2 = 4z̄
σ2

(
z̄

(1−γ)Bα−1

)1−γ (
γ
w

) γ2

1−γ

(
C

2γ−1
1−γ

1 + C
2γ−1
1−γ

2 + γ
1−γC

2γ−1
1−γ

3 z̄

)
, if γ < 1

2 .446

While C̄2 = γ
1−γ

4z̄2

σ2

(
wz̄α

γ(1−γ)Bα−1

)γ
, if γ ≥ 1

2 . Note that for any k ∈ [0, ζ],
∥∥m̄k

∥∥
1

447

satisfies448

(3.18)
∣∣∣∣m̄k

∣∣∣∣
1

=

∫ z̄

0

e
2
σ2

[
kz+

∫ z
0 ( γw (V k)

′
(y))

γ
1−γ dy

]
dz ≥ 1 ,449

as
(
V k
)′ ≥ 0. So, for any k1, k2 ∈ [0, ζ], using (3.17) and (3.18), we have450

(3.19)∣∣∣∣ ∫ z̄

0

z(mk1 −mk2) dz

∣∣∣∣ ≤ 1

‖m̄k1‖1

∣∣∣∣∫ z̄

0

z(m̄k1 − m̄k2) dz

∣∣∣∣
+

∫ z̄

0

z
m̄k2

‖m̄k1‖1 ‖m̄k2‖1
dz
∣∣∣ ∥∥m̄k1

∥∥
1
−
∣∣m̄k2

∥∥
1

∣∣∣
≤2z̄

∫ z̄

0

|m̄k1 − m̄k2 | dz ≤ 4C̄1z̄

σ2

∫ z̄

0

(z + C̄2) dz|k1 − k2|

=
2C̄1z̄

2(z̄ + 2C̄2)

σ2
|k1 − k2| :=

¯
C |k1 − k2| .

451

Now take k(1), k(2) ∈ [0, ζ]L. Define P` =
∑L
`′=1 p(`

′, `), then recalling the definition452

of Φ given in Definition 3.9 and using (3.19)453

(3.20)

∥∥∥Φ(k(1))− Φ(k(2))
∥∥∥

1
=

L∑
`=1

L∑
`′=1

A`′p(`, `
′)

∣∣∣∣∫ z̄

0

z(mk
(1)

`′ −mk
(2)

`′ ) dz

∣∣∣∣
≤

¯
C

L∑
`′=1

A`′P`′
∣∣∣k(1)
`′ − k

(2)
`′

∣∣∣ ≤
¯
C max

`=1,...,L
A`P`

∥∥∥k(1) − k(2)
∥∥∥

1
,

454

which concludes the proof.455
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Theorem 3.13. For any given data, there exists a solution to the innovation456

MFG (3.4). Furthermore, if ‖PA‖1 is fixed, this solution is unique provided A`P` <
1

¯
C457

for every ` = 1, . . . , L.458

Proof. From Proposition 3.10 and Theorem 3.12, the function Φ : [0, ζ]L → [0, ζ]L459

is a continuous function from a convex compact subset of RL to itself. Therefore, by460

Brouwer’s fixed point theorem, Φ has a fixed point. Furthermore, Theorem 3.12461

shows that Φ is a Lipschitz function in ‖ · ‖1. The Lipschitz constant is given by462

¯
C max`=1,...,LA`P`, where

¯
C depends on ‖PA‖1 but not directly on P` or A`.463

Therefore, for fixed ‖PA‖1, Φ is a contraction map provided A`P` <
1

¯
C for every464

` = 1, . . . , L, and in this case the fixed point is unique.465

Theorems 3.4 and 3.8 proved existence and uniqueness of solutions to equa-466

tions (3.5) and (3.6) respectively for any k ∈ [0, ζ]. Now, if k∗ is a fixed point467

of Φ then (m∗, V ∗) :=
(
mk∗` , V k

∗
`

)L
`=1

is a solution to (3.4), which can be seen468

by replacing k∗` with Φ` (k∗) in (3.5), (3.6) for every ` = 1, . . . , L. Conversely, if469

(m∗, V ∗) is a solution to (3.5), (3.6), then clearly, by defining k∗ co–ordinate wise as470

k∗` =
∑L
`′=1A`′p(`, `

′)
∫ z̄

0
zm`′(z) dz, k

∗ ∈ [0, ζ]L is a fixed point of Φ. Furthermore,471

by uniqueness of (3.5), (3.6),
(
mk∗ , V k

∗)
= (m∗, V ∗). So, existence and uniqueness472

of solutions to the innovation MFG (3.4) is equivalent to existence and uniqueness of473

fixed points of Φ. Hence, there exists a solution to the innovation MFG. Furthermore,474

this solution is unique, provided A`P` <
1

¯
C for every ` = 1, . . . , L.475

Remark 3.14. In practical terms we can guarantee the condition A`P` <
1

¯
C holds476

for every ` = 1, . . . , L provided L is large enough. This is because
∑L
`=1A` = 1. So,477

for fixed ‖PA‖1, when L is sufficiently large we can take A` to be sufficiently small478

so that A`P` <
1

¯
C479

4. Numerical simulations.480

4.1. Consumers. In the previous analysis, we assumed that consumers play a481

passive role in the model. In particular, the constant B has been fixed. However,482

in doing so we have not modelled the active nature of consumers in determining the483

price index R. To include this when implementing our numerical methods we return484

to (2.4) and we normalise economic output to Y = 1. Then, by rearranging (2.4) and485

using the production function q`,i = Z`,i, we get B =
[

1
N

∑L
`=1

∑N`
i=1 Z

α
`,i

] 1
α−1

. So, as486

the number of firms in each sector goes to infinity, B =
[∑L

`=1A`
∫

Ω
zαm`(z) dz

] 1
α−1

.487

Note that this now needs to be solved as a fixed point, as m` itself depends on B.488

4.2. Simulations. We computed simulations with synthetic data, using the nu-489

merical method outlined in Appendix A. From an economics perspective it is impor-490

tant to understand how the model affects the sector–level productivity. The purpose491

of the simulations is to provide initial insights into the role of the modelling parameters492

and of the network configuration.493

Parameter effects. The MFG depends on the parameters σ, w, α, γ and ρ.494

Recall that σ > 0 is the strength of noise in an individual’s dynamics, w > 0 is495

the wage paid to employees, α ∈ (0, 1) is a parameter in the consumer optimisation496

problem which ensures convexity, and γ ∈ (0, 1) is the returns to labour i.e. the497

inefficiency in converting one unit of labour to one unit of knowledge, it also ensures498

convexity of the firm–level optimisation problem.499
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16 M. BARKER, P. DEGOND, R. MARTIN, M. MUÛLS

In order to separate the parameter effects from any effects caused by the sector500

network, we ran simulations with just a single sector. We fixed z̄ = 2, A = A1 = 1 and501

P = 0.1, where z̄ is the maximum productivity level, A1 is the proportion of firms in502

sector 1 and P is the strength of connection from sector 1 to itself. For baseline values,503

(a) Plot of firm distribution with varying α (b) Plot of average productivity against α

(c) Plot of firm distribution with varying γ (d) Plot of average productivity against γ

(e) Plot of firm distribution with varying ρ (f) Plot of average productivity against ρ

Fig. 1: Simulations of MFG with varying α, γ, and ρ
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we took σ = 1, w = 1, ρ = 1, γ = 0.5 and α = 0.5. For each simulation, we varied one504

parameter while keeping all others at the baseline level. Figures 1a and 1b show that505

the relationship between α and the distribution of firms is a complex one. There is506

some α∗ ∈ (0, 1) where the average productivity reaches a maximum, while on (0, α∗]507

average productivity is monotonically increasing, and on [α∗, 1) average productivity is508

monotonically decreasing. Note that, for fixed productivity level and firm distribution,509

a firm’s revenue is r`q` = Zα`

[
1
N

∑L
`′=1A`′

∫
Ω
zαm`′(z) dz

]−1

, which consists of a510

term that increases with respect to α multiplied by a term that decreases with respect511

to α. This results in a competing effect between α and a firm’s revenue, which in512

turn affects a firm’s return on investment, and therefore its level of investment in513

labour. Since labour investment has an increasing effect on average productivity,514

the competing terms in the revenue equation directly correspond to the behaviour515

exhibited in figure 1b.516

Figures 1c and 1d shows the effect of γ on the sector–level productivity. Figure 1d517

shows that as γ increases, the average productivity decreases. Since γ relates to the518

inefficiency of converting one unit of labour to one unit of productive work, it seems519

counter–intuitive at first that average productivity would be a decreasing function of520

γ. Recall that the optimal level of employment is given by h∗ =
(
γ
w max(0, V ′)

) 1
1−γ ,521

which increases productivity at a rate (h∗)γ . Then, h∗ is increasing with respect522

to γ for fixed V ′ if and only if V ′ ≥ w
γ e

γ−1
γ and (h∗)γ is increasing if and only if523

V ′ ≥ w
γ e

γ−1. Hence, the effect of γ on the average productivity depends on V ′ and524

how it changes with respect to γ.525

The effects of ρ and σ on the average productivity, shown in Figures 1e, 1f526

and 2a, 2b respectively, show the same trend: average productivity decreases as each527

parameter increases. The size of ρ is the extent to which a firm discounts future528

profits. As ρ increases, firms care less about the future state of the system and so529

they are less willing to invest in labour; it is an investment whose effect is only on the530

future value of productivity. This results in reduced average productivity in the long531

run, which can be seen in Figure 1f. As σ increases, the randomness in productivity532

evolution of each firm increases. So, the impact of labour on productivity decreases533

with increasing σ, and this is reflected in Figure 2b.534

Finally, Figures 2c and 2d shows that average productivity also decreases with535

increasing wage, w. The wage rate increases the cost of labour. So, we can directly see536

that as the wage increases, the optimal level of employment, and hence the average537

productivity, decreases.538

Spillover size effects. The sector–level network, encoded by the vertex weights539

A` for sector `, and the edge weights p(`, `′) for a transfer of knowledge from sector `′ to540

sector `, is called the spillover network as it describes how knowledge and productivity541

spills over from one sector to another. A path in the spillover network is called a542

spillover path, or just spillover if there is no ambiguity. A path of length 1 from543

sector `′ to sector ` is called a direct spillover, a path of length 2 or greater from544

sector `′ to sector ` is called an indirect spillover, and in both cases sector ` is called545

the receiving sector and sector `′ is the originating sector.546

In almost all economic literature, only direct spillovers have been modelled and547

we are aware of no models that pay attention to the effect indirect spillovers have on548

economic productivity. In this subsection, we begin investigating how the productiv-549

ity of a sector is affected by the structure of the spillover network, and in particular550

the effect of indirect spillovers on productivity. To undertake this investigation, we551
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(a) Plot of firm distribution with varying σ (b) Plot of average productivity against σ

(c) Plot of firm density against productivity
with w = 1, 5, 10

(d) Plot of average productivity against value
of w

Fig. 2: Simulations of MFG with varying σ and w

conducted three types of simulations. The first simulations were to model the six552

networks in Figure 3, to provide initial insight into how indirect spillover paths affect553

the distribution of firms. In the second simulations, we randomly generated spillover554

networks in models with three sectors and used the collected data to hypothesise a555

relationship between the average productivity of a sector and the size of spillovers556

(direct and indirect) it received. In the final simulations, we tested our hypothesis557

on more randomly generated spillover networks, this time for models with 10 sec-558

tors, which more closely resembles the number of sectors in the real economy. We559

showed that the hypothesis developed accurately describes the relationship between560

the spillover network and the average productivity of firms, moreover there was a561

20% reduction in error when direct and indirect spillovers were taken into account,562

compared with when only direct spillovers were considered. Therefore, our conclusion563

from this preliminary investigation is that indirect spillovers have a significant effect564

on economic productivity in our model and they should not be ignored.565

The networks in Figure 3 provide insight into how indirect spillovers affect the566

distribution of firms, in comparison to direct spillovers. In network 1, sector C has one567

direct spillover, in network 2 it has one direct spillover and one indirect spillover of568
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length 2, and in network 3 it has two direct spillovers. So, the difference in productivity569

in sector C between network 2 and network 1 will show the effect of an indirect spillover570

compared with having no spillover, and the difference between networks 3 and 2 will571

show the effect of an indirect spillover compared with a direct spillover. The differences572

in density of sector C are plotted in Figure 4a. From the plots, it can be seen that573

the density of firms is larger at high productivity levels in network 2 compared with574

network 1 and the density is lower at low productivity levels. This means that the575

indirect spillover from sector A to sector C has a positive effect on sector C, skewing576

the distribution towards higher productivity levels. The same behaviour can be seen577

when we compare sector C in network 3 to network 2, however the effect is an order578

of magnitude larger. Therefore, although an indirect spillover path has some positive579

effect compared with no path at all, the effect is less strong than a direct spillover580

path.581

In Figure 4b, sector D of networks four to six were modelled. For sector D:582

in network 4 there is one indirect spillover with path length 2; network 5 has one583

indirect spillover with path length 2 and one with path length 3; finally network 6584

has an infinite number of indirect spillovers, one for every path length. We have585

plotted the difference in density of sector D between network 5 and network 4 and586

between networks 6 and 5. The difference between network 5 and network 4 shows587

the effect of an indirect spillover of length 3, while the difference between network 6588

and network 5 shows the effect of indirect spillovers of all lengths greater than 3. For589

the difference between network 5 and network 4, the same qualitative result as the590

difference between network 2 and network 1, in Figure 4a, is observed. This suggests591

that having spillover paths of greater length do have positive impacts on productivity,592

but with reduced impact for increased path lengths. Interestingly, sector D in network593

6 is less productive than sector D in sector 5. Further investigation showed that if B594

is fixed, rather than the solution of a fixed point problem, then the effect that more595

paths result in greater productivity returns, see figure 4c. The reason for this is not596

immediately obvious and warrants further study. Since the observed change is very597

small, it can’t be ruled out that this result is an artefact from simplifications in the598

model.599

In the second set of simulations, we took a closer look at how the spillover network600

structure affects the average productivity within each sector. Recall that if, given a601

network, we know the value of the fixed point, k∗, of the function Φ defined in Defini-602

tion 3.9. Then the average productivity in sector ` is
∫

Ω
zm`(z) dz =

∫
Ω
zmk∗` (z) dz.603

So, to understand the relationship between average productivity and the network,604

we first need to understand the relationship between
∫

Ω
zmk`(z) dz and k`, for any605

k` ≥ 0. Then, we also need to understand the relationship between k∗` and the L×L606

matrix S with entries defined by S`,`′ = A`′p(`, `
′), because607

k∗ = S

(∫
Ω

zmk∗` (z) dz

)L
`=1

.608

In Figure 5, we have plotted
∫

Ω
zmk(z) dz against k. The relationship appears to609

approximately follow610

(4.1)

∫
Ω

zmk(z) dz = z̄ − b0
kb1 + b2

,611

for some b0, b1, b2 > 0, as can be seen by the second line in Figure 5. To understand the612

relationship between the fixed point of Φ and the matrix S, we considered networks613
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A

B C

(a) Network 1

A

B C

(b) Network 2

A

B C

(c) Network 3

A

B C

D

(d) Network 4

A

B C

D

(e) Network 5

A

B C

D

(f) Network 6

Fig. 3: Sector–level networks for simulations in Figures 4a and 4b

of three vertices, with A` = 1/3 for all `. We created a random network between the614

vertices by choosing a connection probability p, and making a directed edge between615

vertices with probability p. We then weighted each directed edge with a random616

weight, chosen from a uniform distribution on [0, 1]. We repeated this 100 times for617

each connection probability, and recorded both the size of direct spillovers to each618

sector and the value of the fixed point of Φ. Figures 6a and 6b shows a scatter plot619

of k∗` , the `th co–ordinate of the fixed point of Φ, against the sum of direct spillover620

strengths
∑L
`′=1 S`,`′ . In the simulations with a high connection probability, Figure 6a,621

there is a strong linear relationship between k∗` and
∑L
`′=1 S`,`′ . However, with low622

connection probabilities, Figure 6b, the simulations tend to follow one of two weaker623

linear relationships with the row sum.624

To understand the relationships further, we can look at the equation that k∗` ∈625

[0,∞) implicitly satisfies: k∗` =
∑L
`′=1 S`,`′

∫
Ω
zmk∗

`′ dz, wheremk` is defined by (3.11).626

So, if sector ` receives no spillovers then k∗` = 0. If it has only direct spillovers, then627

it is only connected to sectors with no spillovers. So, by defining f(k) =
∫

Ω
zmk dz628

(4.2) k∗` = f(0)

L∑
`′=1

S`,`′ .629

We can see this linear relationship between k∗` and
∑L
`′=1 S`,`′ in Figures 6c and 6d,630

where we have taken the simulated points in Figure 6b, and split the data into those631

points which have only direct spillovers and those that have indirect spillovers as well.632

In Figure 6c, where sectors with only direct spillover paths are considered, the linear633

relationship described by (4.2) can be clearly seen.634

To understand how the value of k∗` depends on the matrix S in the case of indirect635

spillovers, we can return to the definition of the spillover size and f(k). If we assume636

that f is approximately linear for sectors with indirect spillovers, i.e. f(k) = f0 +f1k,637
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(a) Difference in density of sector C between
networks 2 and 1, and networks 3 and 2

(b) Difference in density of sector D between
networks 5 and 4, and networks 6 and 5

(c) Difference in density of sector D between
networks 5 and 4, and networks 6 and 5, with
fixed B = 1

Fig. 4: Simulations of MFG comparing distribution of firms in sectors C and D with
respect to productivity in networks 1, 2 and 3, and networks 4, 5 and 6 from Figure 3

then638

(4.3) k∗` = (S(f01 + f1k
∗))` ,639

where 1 is the vector of length L with ones in every entry. Using the identity (I +640

f1S)−1 =
∑∞
n=0 f

n
1 S

n, we can rearrange (4.3)641

(4.4) k∗` = f0

∞∑
n=0

fn1
(
Sn+11

)
`
,642

which gives a way to estimate the value k∗` directly from the initial data. Therefore,643

combining estimates (4.1) and (4.4), we can estimate the value of average productivity644

from the matrix S by645

(4.5)

∫
Ω

zm`(z) dz = z̄ − b0(
f0

∑L
`′=1

∑∞
n=0 f

n
1 (Sn+1)`,`′

)b1
+ b2

.646
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Fig. 5: Plot of average productivity against size of k in auxiliary Fokker–Planck

equation (3.6) and plot of y = z̄ − (z̄−1.4)
k2+1 for comparison

(a) Probability of directed edge = 0.8 (b) Probability of directed edge = 0.2

(c) Probability of directed edge = 0.2, and
length of longest path to sector = 1

(d) Probability of directed edge = 0.2, and
length of longest path to sector > 1

Fig. 6: Relationship between k∗` and sum of direct spillovers
∑L
`′=1 S`,`′
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The relationship suggests that the average productivity depends on Sn for every n647

i.e. on indirect spillovers of every path length. Moreover, if f1 is small enough, the648

effect of a spillover path is decreasing by an order of magnitude for every increase in649

path length, which agrees with our initial simulations of networks 1–6.650

In order to verify the hypothesis, in the final simulations we ran a regression to es-651

timate the parameters f0, f1, b0, b1, b2 and provide evidence that approximation (4.5)652

is accurate. We performed 1000 simulations on networks of ten vertices, with connec-653

tion probability chosen randomly and uniformly distributed in [0, 1], with connection654

strength chosen randomly and uniformly in [0, 3], and with sector sizes A` also ran-655

domly chosen. We ran a nonlinear regression, of the form (4.4), on sectors with656

indirect spillovers, to obtain optimal values of f0 and f1. Then, using the optimal657

values of f0 and f1 we ran a second nonlinear regression, of the form (4.5), to find the658

optimal values of b0, b1 and b2. Table 1 gives estimates for the parameters fi and bi.659

We found that average productivity does behave approximately according to (4.5),660

with table 1 suggesting a statistically significant result. Visually, this can be seen661

in Figure 7b, where we plotted (4.5) using the optimal values of fi and bi. We also662

computed estimates for the model663

(4.6)

∫
Ω

zm`(z) dz = z̄ − b̄0(
f̄0

∑L
`′=1 S`,`′

)b̄1
+ b̄2

,664

which assumes average productivity depend on direct spillovers only, and plotted the665

result in Figure 7b. Comparing plots 7a and 7b shows that the model (4.5), which666

includes the effects of indirect spillovers, provides a more accurate estimate for average667

productivity than model (4.6), which only accounts for the effect of direct spillovers.668

This is reconfirmed by the 20% reduction in R–squared error when indirect spillover669

paths are included in the model. Therefore, indirect spillover paths can not be ignored670

as a factor determining a sector’s productivity.671

5. Conclusion and future research. We have developed an MFG model of672

firm–level innovation from a microscopic formulation. The model can be calibrated to673

fit economic data of spillovers, so its economic validity can be verified. We have been674

able to prove existence of solutions and, under a smallness assumption on the data,675

uniqueness. We have investigated numerically how the modelling parameters and the676

spillover network affects the sector–level productivity, through the development of a677

simple algorithm that takes advantage of the structure of the proof of existence and678

uniqueness.679

In future work, we hope to compare the MFG model with the socially optimal680

behaviour, as described by the mean field optimal control problem. We will also use681

patent–level data to calibrate and test the two models for their accuracy. We hope the682

comparison between the social optimum and the competitive equilibrium will suggest683

a method for implementing socially optimal subsidy policies for R&D.684

Appendix A. Numerical Methods. The numerical method we designed to685

solve (3.4) is informed by the structure of the proof of existence and uniqueness. The686

method of proof relies on the contraction mapping theorem to find a fixed point of the687

map Φ, defined in Definition 3.9. We are also required to solve a fixed point problem688

to find the value of the parameter B. In light of this, our numerical method proceeds689

as follows, after choosing an initial guess k0 ∈ [0,∞)L, B0 ∈ [0,∞) and tolerances690

δ1, δ2.691

This manuscript is for review purposes only.



24 M. BARKER, P. DEGOND, R. MARTIN, M. MUÛLS

1. Given ki ∈ [0,∞)L and Bi ∈ [0,∞), solve (3.5b), (3.5c) using the following692

method, based on a Newton–Raphson method in a Banach space.693

(a) Define F (v) = −σ
2

2 v
′′ + ρv − kv′ − (1− γ)

(
γ
w

) γ
1−γ (v′)

1
1−γ − zα

Bα−1 . We694

want to find zeros of F (v).695

(b) We define dF (v)(u) = −σ
2

2 u
′′ + ρu − ku′ −

(
γ
wv
′) γ

1−γ u′, which is the696

Fréchet derivative of F .697

(c) Denote by V
ki`,B

i

0 the initial guess for the `th component of the solution698

to (3.5b), (3.5c) with k = ki` and B = Bi.699

(d) Given V
ki`,B

i

n , we compute the next iteration, V
ki`,B

i

n+1 , using a Newton–700

Raphson method: V
ki`,B

i

n+1 = V
ki`,B

i

n − dF
(
V
ki`,B

i

n

)−1 (
F
(
V
ki`,B

i

n

))
.701

(e) Continue iteratively until
∥∥∥F (V ki`,Bin

)∥∥∥
1
≤ δ1 and define V i,` = V

ki`,B
i

n702

2. Given V i, compute the solution to (3.6b) using (3.11) and denote it by mi703

3. Define ki+1 = Φ
(
ki
)

and Bi+1 =
[∑L

`=1A`
∫

Ω
zαm`(z) dz

] 1
1−α

704

4. If
∥∥ki+1 − ki

∥∥
1

+ |Bi+1 −Bi| ≤ δ2 then stop the iteration process and define705

the MFG solution (m,V ) =
(
mi, V i

)
. Otherwise return to Step 1.706

Variable Coefficient estimate Standard error t stat p value
f0 2.29 2.13× 10−3 1080 0
f1 0.483 3.64× 10−4 1330 0
b0 0.892 4.37× 10−4 2040 0
b1 1.27 9.49× 10−4 1330 0
b2 0.978 4.71× 10−4 2080 0

Table 1: Table of regression results related to linear regression (4.5)

(a) Plot of average productivity against right
hand side of (4.5), with optimal values for
fi, bi

(b) Plot of average productivity against right
hand side of (4.6), with optimal values for
f̄0, b̄i

Fig. 7: Plots of average productivity against (4.5) with models for k` given by con-
sidering direct and indirect spillovers (4.4) or only direct spillovers (4.6)
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