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Abstract—In this paper, a Nonlinear Model Predictive Control
(NMPC) has been employed to solve point-stabilization problems
with static and dynamic obstacles avoidance. The algorithm
was implemented on a mobile robot with two differential drive
wheels. In NMPC, a cost function is formulated to minimize an
error between the reference and the current state of the system
subject to constraints. The major drawback of NMPC is the
computation time, which results from predicting the system’s
state over a horizon. However, in this work, the resulting optimal
control problem is converted to a discrete nonlinear programming
problem using a recently developed toolkit. Dynamic obstacles
avoidance is incorporated as a time-varying constraint and can
be affected by a short prediction horizon. On the other hand, a
long prediction horizon affects the computation time. For this, a
terminal state penalty is added to the cost function to guarantee
the stability of the control using a relatively shorter prediction
horizon. The performance of the proposed controller achieving
both static and dynamic obstacles avoidance is verified using
several simulation scenarios.

Index Terms—NMPC, Obstacles Avoidance, Mobile Robots

I. INTRODUCTION

Due to the rapid technological development in the twenty-
first century, a wide range of applications for mobile robots in
various sectors have attracted great interest from researchers.
Unmanned vehicles comprising of aerial, ground, and under-
water vehicles have been utilized for many applications such
as mine clearance [31], patrolling mission [32], surveillance
[2], search and rescue mission [6] and educational research
purposes [5]. However, several unmanned vehicles in use today
are not fully autonomous because of the presence of human-in-
the-loop. The human’s natural intelligence and skills are being
utilized to pilot the robot’s navigation. The problem of human-
in-the-loop systems is the reliability of the communication
system between the robots and the human in the base station.
Problems such as delay, bandwidth limitation, jamming, and
loss of signals are critical to the reliability of communication
systems. In order to remove the human from the loop, the
systems should be converted to partial or fully autonomous
so as to solve or minimize the effects of the communication
issues and also to automatically avoid obstacles and hazardous
conditions. A suitable automatic control algorithm would then
be employed to pilot the robot.

Several approaches have been used in the literature to pilot
mobile robots autonomously. They include dynamic feedback
linearization [30], Lyapunov control [17], smooth time-varying
control [25] and piece-wise continuous feedback control [10].
However, these approaches do not incorporate constraints on
the mobile robots states which are pertinent especially for
obstacles avoidance.
Therefore, the natural candidate for the control of autonomous
systems is the Model Predictive Control due to its flexibility,
its ability to handle both soft and hard constraints as well
as its ability to compute optimal control inputs for nonlinear
systems. Several works such as [15], [19], [38] have dealt
with stabilization problems for nonholonomic mobile robots.
Others such as [12], [16], [21], [33] solve trajectory tracking
and path following problems using MPC. Many others such as
[27], [28], [39] consider solving point stabilization and track-
ing problems simultaneously without incorporating obstacles
avoidance.
On the other hand, safety has become the eternal theme of
autonomous vehicles [35]. Active collision avoidance system
has become a research hot-spot in the field of automotive
due to its ability to effectively improve traffic safety [20].
Static obstacles avoidance have been dealt with in [1], [22]
for tracking problems, in [36] for pursuit-evasion games, in
[14] for point-stabilization and in [35], [40] for path following
problems. Dynamic collision avoidance among multiple mo-
bile robots has been considered in [29]. The literature [11] on
dynamic obstacle avoidance has dealt with for an Unmanned
Aerial Vehicles (UAV) while [20] has presented dynamic
trajectory panning and tracking with dynamic obstacles for an
Unmanned Ground Vehicle (UGV). These works incorporated
the obstacles avoidance in the cost function and have to make
additional computations to predict the trends of the obstacles.
This prediction is pertinent because the LIDAR sensor, which
is used for detecting the obstacle can only provide the current
information of the obstacles. It is therefore interesting to work
on another obstacle avoidance method that would not require
predicting the movement of the obstacles.
In this paper, we design an NMPC based dynamic obsta-
cles avoidance algorithm that only needs the instantaneous



Fig. 1. Schematic diagram of differential drive robot

position of the obstacles for a point-stabilization problem.
Different from the work in [20], our algorithm does not
require additional computation for predicting the speed of
the obstacles which could lead to higher computation time
and wrong prediction in the case of intelligent obstacles. This
method incorporates obstacle avoidance as a constraint to be
considered while solving the optimal control problem. The
second contribution of this paper is that, the proposed ap-
proach could be used to simultaneously handle both static and
dynamic obstacles avoidance. Finally, the third contribution
of this paper is that we have compared the performance of
two discretization methods, the 4th order Runge-Kutta and
the Euler method.
The remaining part of the paper is organized as follows:
in Section II, we presented the theoretical background on
the kinematic model of the mobile robot, the discretization
method, and the obstacles detection and avoidance techniques.
Section III presents the controller design and implementation.
The simulation results are presented in Section IV while in
Section V we draw conclusions and future perspectives.

II. PRELIMINARIES

This paper primarily addresses the control problem and
dynamic obstacles avoidance of the differential drive robot
class of nonholonomic mobile robots. In this section, the kine-
matic model, discretization methods, and obstacles avoidance
techniques are presented.

A. Kinematic Model of nonholonomic mobile robots

A kinematic model of a mobile robot governs how wheel
speeds map to robot velocities, while a dynamic model governs
how the torques map to robot acceleration. In this paper, we
will focus on the kinematic model and ignore the dynamic
model. The kinematic model of the nonholonomic wheeled

mobile robot of unicycle type in Figure 1 can be represented
in (1). The details can be obtained from [18], [24].

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(1)

where the state variable x = [x, y, θ]T denotes the position of
the robot in chassis frame of reference and the heading angle.
The control variable u = [v, ω]T denotes the linear speed and
the angular speed.
The kinematic models are said to be nonholonomic because
with slight manipulation we can obtain a differential constraint
in (2):

ẋ sin θ − ẏ cos θ = 0 (2)

Since linear approximations are usually regarded as the first
step for the analysis and control design of a nonlinear system.
Thus if the linearized system is controllable, then the original
nonlinear system is at least locally controllable and feedback
stabilizable. However, the linearized model is not controllable,
because the rank of the controllability matrix is 2 instead of
the number of states (3); See [13] for a detailed explanation.
The driftless form of nonholonomic robots (3) was investigated
for weaker controllability (sufficient) conditions from nonlin-
ear systems theory. Eventually, it was proved using Brockett’s
theorem [9] that the system 1 is small-time locally controllable
[8], [13] ẋẏ

θ̇

 = v

cos θsin θ
0

+ ω

00
1

 (3)

B. Runge-Kutta Discretization Method

Several works involving discrete NMPC for controlling
nonholonomic robots utilized the Euler method (also called
Euler forward method [22], [36]. The resulting discrete model
is given in (4). However, the Euler method does not give
good approximate solutions of nonlinear ordinary differential
equations for a larger sampling time (Ts) because it only uses
one slope. It is reasonable to assume that using more estimates
of slopes at the mid-point and the end of the interval would
result in more accuracy, see [23] for more details.

xk+1 = xk + Tsf(tk, xk) (4)

In this present paper, we employ the classic Runge-Kutta
method (RK4) which is the most widely known member of
the Runge-Kutta family. Let us represent the kinematic model
of nonholonomic robots (1) as an initial value problem (5).{

ẋ = f(t, x)
x(t0) = x0

(5)

The RK4 approximation of x(tk+1) is xk+1 which depends
on the current value xk and some weighted average of four
increments as depicted in figure 2. Each increment is a
function of the sampling time and an estimated slope specified



Fig. 2. Runge-Kutta Discretization

by a function of the right-hand side of the differential equation.
The mathematical representation of RK4 is given as:

xk+1 =
1

6
Ts(s1 + 2s2 + 2s3 + s4) (6)

Such that: 
s1 = f(tk, xk)
s2 = f(tk +

Ts

2 , xk + Ts
s1
2 )

s3 = f(tk +
Ts

2 , xk + Ts
s2
2 )

s4 = f(tk + Ts, xk + Tss3)

(7)

The first slope s1 is at the beginning of the interval (this is
Euler’s method). The slopes s2 and s3 are both at the mid-
point of the interval while the s4 is at the end of the interval.

C. Obstacle’s Detection and Avoidance

To incorporate obstacle avoidance in our NMPC formu-
lation, the first problem is the detection method. In mobile
robotics, LIDAR (acronyms for light detection and ranging)
sensor is usually employed to detect the position and the size
of an obstacle. Having detected the positions (xobs, yobs) and
the diameter of the obstacle dobs, the next is writing a suitable
program so that the robot would avoid the obstacle. Several
methods of avoiding obstacles were summarized in [7]. The
most suitable for NMPC is the bug-type algorithm. In Bug
algorithms, the robot moves on the shortest path from its initial
position towards the goal position until when it encounters an
obstacle. The algorithm forces the robot to move tangentially
around the surface of the obstacle and then return to its
original path after completely dodging the obstacle. Therefore
the constraint in (8) is added during the formulation of the
NMPC for obstacles avoidance.√

(xrob − xobs)2 + (yrob − yobs)2 ≥ (robs + rrob) (8)

where xrob, yrob and rrob are the positions and the radius of
the robot respectively.

III. CONTROL DESIGN AND IMPLEMENTATION

In this section, we present the mathematical formulation of
NMPC, the solution and coding approach and the simulation
environment for implementing the controller.

A. Nonlinear Model Predictive Control Design

Model Predictive Control (MPC) is a feedback implemen-
tation of optimal control using finite prediction horizon and
online optimization. MPC is also known as Receding Horizon
Control (RHC) where a future control sequence minimizing
an objective function is minimized over a finite horizon. The
advantages of MPC comprise its ability to: control multi-
variable coupled dynamical systems, handle constraints on the
states, handle constraints on control inputs, handle nonlinear-
ities in the systems model conceptually. In addition, MPC
have systematic design approach and has a well understood
tuning parameters, i.e prediction horizon length and weighting
matrices [3], [34], [37].
Since the model of the system to control is central to the
design of MPC, we discretize the nonlinear model of the
nonholonomic robot using the RK4 method and formulate
discrete NMPC by solving the following Optimal Control
Problem (OCP):

min
u∈Rnu×N

JN (x0,u) (9)

Subject to

x(0) = x0,

x(k + 1) = f(x(k),u(k)); k ∈ {0, 1, ...N − 1},
||x(k)− xobs(k)|| ≥ rrob + robs

xmin ≤ x(k) ≤ xmax k ∈ {1, 2, ...N},
umin ≤ u(k) ≤ umax k ∈ {0, 1, ...N − 1}

(10)

where:

JN (x0,u) =

N−1∑
k=0

V (x(k),u(k)) +W (x(N)) (11)

The term V (x(k),u(k)) is called the running cost which can
be computed by penalizing the deviation of the system’s state
x(k) and control input u(k) from the reference state xr(k)
and reference control input ur(k) respectively. Generally, the
running cost are defined as:

V (x(k),u(k)) = ||x(k)−xr(k)||2Q+ ||u(k)−ur(k)||2R (12)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite
symmetric weighting matrices. N is the prediction horizon
assuming that the length of the prediction and control horizon
is the same. As previously explained, in point stabilization
problem, the state reference xr(k) is a fixed value, thus the
control, reference ur(k) = 0. In the case of trajectory tracking
problem, the state reference xr(k) is time varying, therefore
the deviation of control input from the reference can be
penalized due to computational advantages such as rendering
the optimal control problem easier, avoiding control values
with expensive energy [26].
The term W (x(N)) is referred to as terminal cost which is
used for stability purpose. It can be computed by penalizing
the last entry from the state prediction x(N) from its reference
xr(N). Terminal cost can be defined as:

W (x(N)) = ||x(N)− xr(N)||2P (13)



where P ∈ Rn×n is a positive definite weighting matrix. The
solution of the optimal control problem (9) is the optimal
control sequence of the form:

u∗ = (u∗(0),u∗(1), ...,u∗(N − 1)) (14)

The first part (u∗ = u∗(0)) is applied to the robot, while the
rest are discarded.
The weight matrices are tuned and the best values that stabilize
the controller are chosen. The Q and R matrices are found
to be diagonal matrices with diagonal elements defined as
(1, 1, 0.001) and (1, 1) respectively. The weight on the terminal
penalty cost is found to be 10000 ∗Q.

B. Simulation Environment

In this work, the NMPC algorithm was coded using an
open-source symbolic framework for automatic differentiation
and optimal control software, CasADi [4]. The optimal control
problem was converted to a nonlinear programming problem
using a multiple shooting approach (where both the states and
the control variables are considered as optimization parame-
ters). The CasADi toolkit was interfaced with an Interior Point
OPTimizer (IPOPT), also an open-access software, to provide
the solution. Simulink environment in Matlab was used to set
up the control system. The output of the controller is sent to
the system for an update whereas the state measurement, the
reference position, and the obstacles parameters are feed to
the controller at each sampling instant for re-computation of
the new control strategy.

IV. RESULTS AND DISCUSSION

This section presents the simulation results of our control
objective under static and dynamic obstacles.

A. Static obstacles Avoidance

To achieve point stabilization with static obstacles avoidance
using discrete NMPC, the robot starts from an initial pose
x0 = [−1m,−1m,−π4 rad] and aimed to reach a goal pose
xg = [1m, 1m, π4 rad] encountering two static obstacles at
(0m, 0m) and (0.8m, 0.6m). The diameter of each obstacle is
0.3m while the diameter of the robot is 0.04m. The sampling
time is chosen to be 0.1sec and a prediction horizon N = 20
was selected leading to prediction horizon time T = 2secs.
The robot’s actuator saturation limits are selected randomly
such that the linear velocity v ranges from 0 to 0.04m/s and
the angular velocity ω ranges from −π8 rad/s to π

8 rad/s.
The result using the Euler discretization method is presented

in Figure 3. Although the controller was able to move from
its initial pose to the goal position, it should be noted that
the controller’s output was not smooth with the Euler method,
which is not suitable for physical implementation on robots.
We then perform the same experiment with the RK4 discretiza-
tion method. The result is presented in Figure 4(a) and shows
a smooth trajectory of the control profiles much better than
the Euler method.
To examine the effects of the length of prediction horizon
on the computation time, we present the result of the same

Fig. 3. Euler method with N=20

problem in Figure 4(b) and 4(c) which uses a shorter prediction
horizon. It can be seen that a longer prediction horizon gives
a smoother control profile and consequently the higher the
computation time, as shown in Figure 5. It is pertinent to note
in 4(c) that despite using a prediction horizon of N = 5,
the RK4 method still gives better results than Euler with a
prediction horizon of N = 20.

B. Dynamic Obstacle Avoidance

In the case of dynamic obstacle avoidance, a larger simula-
tion environment is required so that the robot must encounter
the two obstacles moving at a different speed. The robot’s
actuator saturation limits are selected randomly such that the
linear velocity v ranges from 0 to 0.4m/s and the angular
velocity ω ranges from −π4 rad/s to π

4 rad/s. The diameter
of the robot and the obstacles are the same as in the case of
static obstacles. The initial position and the speed of the two
obstacles are respectively given as (−0.3m, 2m) and 0.05m/s
for the first and (−2m, 0m) and 0.12m/s for the second
obstacle, both moving from left to right to block the path of the
robot at different positions. The result of dynamic obstacles
avoidance is presented in Figure 6. The robot navigated from
its initial pose [−3m,−2m,−π4 ] and aimed to reach its goal
pose [1, 3, π4 ] while encountering two moving obstacles along
the way.
The trajectory of the robot and the obstacles at four-time
instances is depicted in Figure 6(a). At t = 0 the initial
positions of the robot and the obstacles are marked. We can
see that it then encounters a moving obstacle (shaded circle)
at t = 7secs. The robot avoided collision with the obstacle
by trying to get around it then moved towards its goal. It
then encounters another moving obstacle (the shaded circle)
at t = 15secs, avoided it and to reach its final destination
around t = 23secs.



(a) RK4 method with N = 20

(b) RK4 with N = 10

(c) RK4 method with N = 5

Fig. 4. Static Obstacles Avoidance
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Robot Trajectory, t = 7 secs

S

G

-4 -3 -2 -1 0 1 2

x-axis [m]

-3

-2

-1

0

1

2

3

4

y
-a

x
is

 [
m

]

Robot Trajectory, t = 15 secs
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Fig. 6. Dynamic Obstacle Avoidance

V. CONCLUSION

This paper dealt with static and dynamic obstacles avoid-
ance for point stabilization problems using discrete NMPC.
Two discretization methods are compared the Euler and RK4
method. The latter achieved better performance than the for-
mer. The obstacle avoidance was integrated as an inequality
constraint during the formulation of the NMPC. Stability was
achieved using terminal cost inclusion. The effect of a long
prediction horizon on the controller computation time was
analyzed, showing that a higher prediction horizon leads to
higher computation cost. The results obtained showed that
our approach can be used to handle both static and dynamic
obstacles without the need for additional computation.
As for future work, we will try to adapt our controller to a
complex tracking and path following problems and then deploy
it on physical robots.
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