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Efficient passive membership inference attack in federated learning

. In this paper, we propose a new passive inference attack that requires much less computation power and memory than existing methods. Our empirical results show that our attack achieves a higher accuracy on CIFAR100 dataset (more than 4 percentage points) with three orders of magnitude less memory space and five orders of magnitude less calculations.

Introduction

In recent years, it has been demonstrated that a machine learning model is vulnerable to different attacks, e.g., membership inference attacks [START_REF] Shokri | Membership inference attacks against machine learning models[END_REF][START_REF] Truex | Demystifying membership inference attacks in machine learning as a service[END_REF], model inversion attacks [START_REF] Fredrikson | Model inversion attacks that exploit confidence information and basic countermeasures[END_REF], attribute inference attacks [START_REF] Prasad Kasiviswanathan | The power of linear reconstruction attacks[END_REF], and property inference attacks [START_REF] Ateniese | Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers[END_REF], which leak sensitive information present in the training dataset. The performance of these attacks depend on various factors, such as the complexity of the trained model (and then its propensity to overfit the data) [START_REF] Truex | Demystifying membership inference attacks in machine learning as a service[END_REF] and the adversary's capabilities [START_REF] Shokri | Membership inference attacks against machine learning models[END_REF], including the adversary's access to auxiliary information, like a dataset statistically similar to the client's training one [START_REF] Shakila Mahjabin Tonni | Data and model dependencies of membership inference attack[END_REF].

Federated learning (FL) [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF] allows clients to participate to training without sharing their local data, but the iterative exchange of models between clients and the orchestrator can disclose additional private information. For instance, an adversary who has access to the mini-batch gradients computed on the client's local dataset may recover some data instances at the client [START_REF] Wang | Beyond inferring class representatives: User-level privacy leakage from federated learning[END_REF][START_REF] Zhu | Deep leakage from gradients[END_REF][START_REF] Zhao | idlg: Improved deep leakage from gradients[END_REF][START_REF] Geiping | Inverting gradients-how easy is it to break privacy in federated learning? NIPS[END_REF][START_REF] Hongxu Yin | See through gradients: Image batch recovery via gradinversion[END_REF], e.g., it can reconstruct up to 97.3% of a client's images to a recognizable level [START_REF] Hongxu Yin | See through gradients: Image batch recovery via gradinversion[END_REF]. The adversary can also detect when new samples with a certain property (even unrelated to the learning task) are added during training to the the client's local dataset [START_REF] Melis | Exploiting unintended feature leakage in collaborative learning[END_REF]. 1 Finally, the adversary can exploit the FL model exchanges to perform advanced client-level membership inference attacks [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF][START_REF] Zhang | Gan enhanced membership inference: A passive local attack in federated learning[END_REF]. As a consequence, when hospitals participate to the FL process (an increasingly popular FL use case), the adversary may infer whether a patient has visited a particular hospital.

In this paper, we a consider a passive attacker who does not interfere with the FL training process and only eavesdrops the exchanged messages. This attacker is also called honest-but-curious and passive global attacker in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF]. We show how the adversary may perform the membership inference attack with much less computational load (five orders of magnitude) and memory space (two/three orders of magnitude) than the state-of-the-art procedure proposed in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF]. Moreover, the proposed attack can be easily adapted to the case when the auxiliary dataset only contains incomplete records (e.g., labels are missing).

2 Background: Passive membership inference attack for FL Federated learning In a cross-device federated learning setting, the clients (e.g., mobiles or IoT devices) cooperate with the server to train a global ML model θ ∈ R d , which minimizes the following (weighted) empirical risk over all the data owned by clients:

min θ∈R d L(θ) = c∈C p c L c (θ) = c∈C p c   1 |D c | (x,y)∈Dc (θ, x, y)   ,
where C denotes the set of clients and D c the local dataset of client c ∈ C with size |D c |, (x, y) ∈ D c is a sample consisting of an input object x and its associated label y, (θ, x, y) measures the loss of the model on the sample and p c is the positive weight of client c, s.t. c∈C p c = 1. To accomplish the above learning task, many distributed learning algorithms were proposed [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF][START_REF] Li | Federated optimization in heterogeneous networks[END_REF] with FedAvg [7, Algo. 1] being the earliest and the most popular one, which we also consider in this paper. Shortly, at each communication round t, the selected client c receives the global model θ t from the server, updates the model following some local stochastic gradient descent updates on its dataset D c and sends this updated model θ t c back to the server, who averages all the received models.

Adversary capabilities

The adversary targets a specific client c and trains an attack model (often a neural network) to infer whether a data point belongs to the target dataset D c [START_REF] Fredrikson | Model inversion attacks that exploit confidence information and basic countermeasures[END_REF][START_REF] Truex | Demystifying membership inference attacks in machine learning as a service[END_REF][START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF]. To this purpose, the adversary needs an auxiliary dataset D a . As in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF], the auxiliary dataset contains both points which do and do not belong to the target dataset (called respectively member and non-member points), i.e., D a ∩ D c = ∅ and D a \D c = ∅. The samples in D a \D c are generated from the same distribution of D c . In the FL setting, it is natural to assume that the adversary knows the architecture of the model under training, and this information is indeed needed by the attack proposed in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF]. Our attack could instead work under a black-box model [START_REF] Fredrikson | Model inversion attacks that exploit confidence information and basic countermeasures[END_REF], where the adversary can query the targeted models with any input and receive the corresponding output (e.g., the score vector for classification problems).

Attack strategy for classification [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF] In [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF], the authors consider m-ary classification problems. During training the adversary collects the models updated by c at specific time instances in the set T . The collected models Θ c = {θ t c , t ∈ T } are called the target models. Since the adversary knows the architecture of target models Θ c , for every data sample (x, y) ∈ D a , it can compute the corresponding gradients by back-propagation, i.e., {∂ (θ, x, y), ∀θ ∈ Θ c }. Besides, it can access the loss values { (θ, x, y), ∀θ ∈ Θ c } and per-layer output values (including the last-layer output which is the prediction vector), i.e., {θ [l] (x) ∈ R s(l) , ∀l ∈ {1, ..., L}, ∀θ ∈ Θ c } where L is the number of layers in θ and s(l) denotes the output size of layer l. These values together with a one hot encoding e y ∈ {0, 1} m of the label y constitute the input I(x, y) to a convolutional neural network ω used for membership inference prediction. The network is trained on {I(x, y), ∀(x, y) ∈ D a } by minimizing the mean square loss.

Note that the size of I(x, y) is (d + 1 + L l=1 s(l)) × |T | + m, which is extremely large for deep neural networks. For instance, when training the ResNet-110 in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF], even when the authors consider only the last four layers' gradients and last three layers' outputs in I(x, y), there are still more than 1.6 million parameters for each target model. Correspondingly, the neural network ω needs to be large as well, e.g., the original implementation requires 256 MB. 2 In addition, the adversary incurs a high computational load to compute XI and XII], which takes at least 1.5 hours on a NVIDIA GeForce GTX 1050 Ti. 3

Efficient passive membership inference attack

In this section, we propose an efficient passive inference attack for FL which releases the adversary from the high computational burden and large memory space requirement. Our attack is depicted in Figure 1.

If the adversary attacks client c, it starts by collecting the target models Θ c = {θ t c , t ∈ T } exchanged between client c and the server. Then, for every data sample (x, y) ∈ D a , it computes the score assigned by target models to the correct label y for the input x. The input of the attack model only includes {θ [L] (x)[y], ∀θ ∈ Θ c }, where α[i] indicates the i th element in the vector α. This choice is motivated by the empirical observation that the temporal evolutions of true label scores for members and non-members data points (i.e., those in ) are easily distinguishable (see Fig. 3 in Appendix). Since target models corresponds to different time instants in the training process, the input can be a time series. We choose then as attack model a fully convolutional network, which is a suited network architecture for classifying time series [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF]. The attack model's architecture is shown in Fig. 4 in Appendix and it is trained minimizing the usual cross-entropy loss.

In comparison to the state-of-the-art attack in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF], our approach requires a much smaller input of size |T |, independently of the size of the target model. As a result, while experiments in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF] are limited to consider 5 target models, because of memory constraints, our attack has not such limit and can take into account a finer-grained temporal evolution. Also the attack model architecture in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF] considers the input as a flat vector, while our architecture is designed to explicitly capture the FL training dynamics, which may expose more information about data point's membership.

As most of the related work, we have assumed that samples in the auxiliary dataset D a consist of inputlabel pairs, but labels may contain particularly sensitive information and then be better protected. Our attack can be easily adapted to deal with the case when the adversary has no access to labels. Indeed, it is sufficient to replace the attack input θ [L] (x)[y] with the entropy of the score vector θ [L] (x) or with its maximum value. The size of the attack model's input does not change, but one can expect the attack accuracy to decrease as less information is available to the adversary. This is confirmed by our experiments in Table 3 in the appendix.

Experiments

We evaluate our attacks on two datasets: one is CIFAR100 which contains 60,000 images for 100 different classes; the other one is Purchase100 which contains 197,324 shopping records for 600 products with customers clustered into 100 classes on the basis of the similarity of their purchases.

For a fair comparison with the baseline in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF], we consider the same FL scenario with 4 clients and data distributed uniformly at random among the clients. The observed epochs are T = {100, 150, 200, 250, 300} for the CIFAR100 dataset, and T = {40, 60, 80, 90, 100} for the Purchase100 dataset. 4 More details on our experimental setup are provided in the appendix.

The attack performance is evaluated in terms of accuracy of membership inference on a test auxiliary dataset. Table 1 shows that our attack requires 2 to 3 orders of magnitued less memory space (the attack model's size) and at least 5 orders of magnitude less computation (Multiply-Accumulate Operations, MACs). For CIFAR100, the accuracy of our attack is at least 5% higher than the baseline. Although our attack is less accurate on Purchase100, we can take advantage of the smaller memory footprint to increase the number of epochs considered |T |. For example, for |T | = 30, the accuracy of our attack increases to 62.3% with the same memory requirement (1.06 MB) and 31 KMACs, still more than 20,000 times less operations than the baseline.

Figure 2 shows the the membership inference attack accuracy decreases when labels are not available, but it is still larger than 75% when the adversary trains the model over the latest 10 epochs. The figure also illustrates client model's train and test accuracy over time and suggests that, in the setting considered in [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF], the model is overfitting the dataset and the FL orchestrator may have stopped the training earlier. Intuitively, overfitting can help the adversary as the model memorizes the training samples. Table 2 confirms this intuition as the accuracy of both attacks decreases when training stops earlier. When overfitting is prevented, our attack is even better than the baseline with up to 11.3% accuracy increase (6.6 percentage points) (see 
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 1 Figure 1: The procedure of our membership inference attack on federated learning. Θ c are the set of target models, D c is the target dataset, D a is the auxiliary dataset and θ L (x)[y] denotes the score of instance x for label y.

Figure 2 :

 2 Figure 2: Attack accuracy and train/test client's model accuracy over time t. Four clients train AlexNet to classify CIFAR100 dataset. The attack model is trained with T = {t -9, t -8, . . . , t}.

Figure 4 :

 4 Figure 4: The architecture of the attack model consisting of three convolution blocks, one-dimensional batch normalization and a final linear layer with binary membership prediction.

Table 1 :

 1 Performance comparison of our passive membership inference attack with the baseline[START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF]. FL training with 4 clients spanning 300 epochs for different datasets and model architectures. Attack accuracy is averaged over all the clients.

	Dataset	Model type	θ T accuracy Train Test	Attack accuracy Memory (MB) Ours Baseline Ours Baseline Ours Baseline MACs
	CIFAR100	AlexNet DenseNet	99% 100%	36% 55%	89.5% 85.1% 84.2% 79.2%	1.06 1.06	1053 1405	6.66K 6.66K	1.44G 1.93G
	Purchase100 Fully connected 93%	82%	60.1% 72.4%	1.06	527	6.66K	0.72G

Table 2

 2 ).

	Observed Epochs	Attack Accuracy Ours Baseline
	5, 10, 15, 20, 25	64.0%	57.4%
	10, 20, 30, 40, 50	82.2%	76.5%
	50, 100, 150, 200, 250 86.4%	79.5%
	100, 150, 200, 250, 300 89.5%	85.1%

Table 2 :

 2 Effect of the adversary's observed epochs on attack accuracy. Four clients trains AlexNet to classify CIFAR100 dataset.

Leaking this information is dangerous, for example the adversary may infer when a person starts visiting a special type of doctor.

The open source code is available at https://github.com/SPIN-UMass/MembershipWhiteboxAttacks/blob/master/ ATTACK-ALEXNET-grad_fed_local.py.

We used the optimized per-sample gradient calculation package offered by Opacus[1].

The number of communication rounds and training epochs coincide, as each client processes one local epoch at each communication round.

https://github.com/SPIN-UMass/MembershipWhiteboxAttacks/blob/master/ATTACK-ALEXNET-grad_fed_local.py.

Appendix

Figures for Section 3 

Experiment details

Federated learning setup The federated learning setup is set to the same as the open-source code provided for [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF]. 5 For CIFAR100 dataset, at each communication round, each client performs one local epoch update using SGD optimizer with batch size 100. The learning rate is set to 0.05 for the first 20 epochs, 0.005 for epochs from 21 to 40 and 0.0005 for the epochs from 41 to 300. For Purchase100 dataset, at each communication round, each client performs one local epoch update using Adam optimizer with batch size 100 and learning rate 0.001.

Our attack setup

To train the attack model, we use the Adam optimizer with batch size 100 and learning rate of 0.001. The model is trained for 100 epochs. For both CIFAR100 and Purchase100 dataset, the model is trained on 2000 members and 2000 non-members data samples and tested on 5000 members and 5000 non-members data samples. Notice that, compared with the baseline [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF], we train on less samples but test on the same numbers of data samples.