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THE EQUIVARIANT COMPLEXITY OF MULTIPLICATION IN FINITE FIELD
EXTENSIONS

JEAN-MARC COUVEIGNES AND TONY EZOME

ABSTRACT. We study the complexity of multiplication of two elements in a finite field extension
given by their coordinates in a normal basis. We show how to control this complexity using the
arithmetic and geometry of algebraic curves.
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1. INTRODUCTION

Let K be a finite field of cardinality q. Let L/K be a finite field extension of degree n. Given a
normal K-basis B of L we can represent elements in L by their coordinates in B. Exponentiation
by q then corresponds to a cyclic shift of coordinates and can be computed at almost no cost. It is
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2 JEAN-MARC COUVEIGNES AND TONY EZOME

a natural concern in this context to bound the computational complexity of computing the product
of two elements of L given by their coordinates in B. There is a rich litterature about constructing
normal bases where the cost of multiplication is as small as possible. See [9] for a survey. In
this work we define and study the symmetric equivariant complexity νsymq (n) of multiplication
in the finite field extension L/K. This is the Galois equivariant counterpart to the symmetric
bilinear complexity µsymq (n). It is the size of the smallest decomposition of the multiplication
tensor as a sum of pure equivariant tensors. This is an invariant of the field extension L/K in
the sense that it only depends on q and n. While the symmetric bilinear complexity µsymq (n)
partially controls the cost of multiplication in L (it only accounts for bilinear operations), in
contrast, the symmetric equivariant complexity νsymq (n) provides an asymptotic estimate for the
total cost of multiplication in any normal basis: the linear part of the calculation consists of
3νsymq (n) convolution products, that can be computed in quasi-linear time. We are interested in
proving upper bounds for νsymq (n). For example we prove that νsymq (n) is bounded by a constant
times ⌈logq n⌉ in full generality. This implies that the cost of multiplication in any normal basis
is quasi-linear. We also provide methods to bound νsymq (n) for given q and n.

Section 2 is a quick tour of various definitions of complexity in the context of multiplication in
finite field extensions. In Section 3 we recall the elementary properties of the algebraic complex-
ity of a bilinear map. We introduce in Section 4 the equivariant complexity of a C-equivariant
bilinear map, where C is a given finite group. We prove in Section 5 an inequality between the
equivariant complexity of a C-equivariant bilinear map and the bilinear complexity of its coordi-
nates. The Galois equivariant complexity of multiplication in a finite field extension is introduced
in Section 7. The effect of extension and restriction of scalars on (equivariant) complexities is
studied in Sections 8 and 9. We present in Section 10 and 11 a general geometric recipe to bound
from above the Galois equivariant complexity of multiplication in a finite extension L/K of finite
fields. We first construct a cyclic cover ρ ∶ Y → X between two K-curves, then realise L/K as
the residual extension of the fiber of ρ above some inert rational point on X . Evaluation and
interpolation on Y naturally produce K[C]-linear maps. In the special case when X and Y are
elliptic curves our construction generalizes the one presented in [7]. While the Chudnovsky’s
method [6, 15, 1, 5, 12] to bound µsymq (n) relies on the existence of curves with small genus hav-
ing many points, our construction requires Jacobians of small dimension having a point of large
order. In Sections 13 and 14 we enhance the specific case when Y and X both have genus one.
Although this special case is not optimal (because we lack rational points on elliptic curves when
q is small compared to n) we have enough control on the group of points on an elliptic curve to
prove a satisfactory asympotic statement, using the general properties of equivariant complexity
established in Sections 5, 7, 9. In Section 15 we explain how to better bound νsymq (n) for given
q and n using the construction of Section 10. We experiment with three examples in Sections
16, 17, 18. These examples illustrate how the knowledge of special linear series on low genus
curves helps bounding νsymq (n) at a minimal computational cost. We conclude in Section 19
with remarks and questions.

This study has been carried out with financial support from the French State, managed by
CNRS in the frame of the Dispositif de Soutien aux Collaborations avec l’Afrique subsahari-
enne and by the French National Research Agency(ANR) in the frame of the Programmes
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CIAO (ANR-19-CE48-0008), FLAIR (ANR-17-CE40-0012 ANR-10-IDEX-03-02) and CLap-
CLap (ANR-18-CE40-0026), and by the Simons foundation.

Experiments presented in this paper were carried out using the PlaFRIM experimental testbed,
supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Con-
seil Régional d’Aquitaine (see https://www.plafrim.fr/).

2. VARIOUS COMPLEXITIES

There are several notions of complexity in the context of mutliplication in a degree n extension
L/K of finite fields. We assume that we are given a basis B and the coordinates of the two
operands in B. The output consists of the coordinates of the product in the basis B.

In the computational model of straight line programs, one may count all arithmetic operations
in K : additions, subtractions, multiplications. This is a reasonable choice but it means that we
ignore the cost of memory access. Another option is to also omit additions, subtractions, and
multiplications by a constant in K. One then only counts multiplications of two registers. This
can be justified if the number of additions, subtractions and multiplications by a constant, is of
the same order of magnitude as the number of multiplications.

In a more algebraic setting one may count the non-zero coordinates of the multiplication tensor
in the basis B̂ ⊗ B̂ ⊗ B. When B is a normal basis, this number can be written n × CB where
CB is an integer often called the complexity of the normal basis B. It was shown by Mullin,
Onyszchuk, Vanstone and Wilson [11] that CB is at least 2n−1. This means that if we only allow
products between the coordinates of the inputs (no intermediate result) the number of arithmetic
operations is at least quadratic in n, and most of the time even cubic. This is a rather pessimistic
model that is well adapted to low capacity computing devices.

A more intrinsic algebraic approach is to define the bilinear complexity of multiplication in
L/K as the rank r of the multiplication tensor. The rank is independent of the basis. Given a
decomposition of the multiplication tensor as a sum of r pure tensors, we can compute products
at the expense of r multiplications between two registers, 3rn multiplications by a constant, and
3r(n − 1) additions. According to Chudnovsky and Chudnovsky, r is bounded by a constant
times n. But this says little about the cost of the linear part of the algorithm, since the bound 3rn
is quadratic in n.

We define in Sections 4 and 7 the equivariant algebraic complexity of multiplication in L/K.
The underlying idea is to stick to the intrinsic algebraic approach but restrict the linear part of
the algorithm to Galois equivariant linear forms : convolution products in the algebra of the
Galois group. Respecting the symmetries of the problem is a natural restriction in view of the
importance of convolution products in fast arithmetic. See [10, 17, 8].

3. ALGEBRAIC COMPLEXITY OF A BILINEAR MAP

We recall standard definitions about complexity of bilinear maps. A complete introduction
can be found in [3][Chapter 14]. Let K be a commutative field. Let V and W be two finite
dimensional K-vector spaces. Let

t ∶ V × V →W

https://www.plafrim.fr/
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be a K-bilinear map. We let V̂ be the dual of V . For φ1, φ2 in V̂ and w in W we define the
bilinear map

πw,φ1,φ2 ∶ V × V // W

(v1, v2) � // φ1(v1)φ2(v2)w
and we say that πw,φ1,φ2 is a pure bilinear map.

If φ1 = φ2 = φ we write πw,φ for πw,φ,φ and call πw,φ a pure symmetric map. For t a K-
bilinear map we define the complexity RK(t) of t to be the smallest integer such that t is the
sum of RK(t) pure maps. In case t is symmetric we define the symmetric complexity SK(t) of
t to be the smallest integer such that t is the sum of SK(t) pure symmetric maps. Equivalently
SK(t) is the smallest integer k such that there exist two K-linear maps

⊺ ∶ V →Kk and � ∶ Kk →W

such that
t(l1, l2) = �(⊺(l1) ●k ⊺(l2))

where the ●k between ⊺(l1) and ⊺(l2) stands for the componentwise product in Kk.
The vector space of bilinear maps has a basis consisting of pure maps. So any bilinear map

t ∶ V × V →W has complexity

RK(t) ⩽ dimW × (dimV )2.

The vector space of symmetric bilinear maps has a basis consisting of dimV × dimW pure
symmetric maps and dimV × (dimV − 1)/2 × dimW maps of the form

πw,φ1,φ2 + πw,φ2,φ1 = πw,φ1+φ2 − πw,φ1 − πw,φ2 .

So any symmetric bilinear map t ∶ V × V →W has symmetric complexity

SK(t) ⩽ dimW × (dimV ) × (3 dimV − 1)/2.
If

t1 ∶ V1 × V1 →W1 and t2 ∶ V2 × V2 →W2

are two symmetric K-bilinear map, their tensor product

t1 ⊗ t2 ∶ (V1 ⊗ V2) × (V1 ⊗ V2) // W1 ⊗W2

(v1 ⊗ v2, v′1 ⊗ v′2) // t1(v1, v′1)⊗ t2(v2, v′2)

has symmetric complexity

(1) SK(t1 ⊗ t2) ⩽ SK(t1) × SK(t2).
If t1 ∶ V1 × V1 → W1 and t2 ∶ V2 × V2 → W2 are two symmetric K-bilinear map, we say that

t2 is a restriction of t1 is their exist two K-linear maps ⊺ ∶ V2 → V1 and � ∶W1 →W2 such that
t2 = � ○ t1 ○ (⊺ × ⊺). It follows that SK(t2) ⩽ SK(t1).
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4. EQUIVARIANT ALGEBRAIC COMPLEXITY

Let C be a finite group of order n. Let K be a commutative field. Let K[C] be the group
algebra. We denote

⋆ ∶ K[C] ×K[C] // K[C]
the (convolution) product in K[C]. Through its identification with Hom(C,K) the group algebra
inherits a componentwise product

◇ ∶ K[C] ×K[C] // K[C]
(∑c∈C ac.c,∑c∈C bc.c) � // ∑c∈C(acbc).c

For any positive integer k we denote ◇k the map

◇k ∶ (K[C])k × (K[C])k // (K[C])k

((ai)1⩽i⩽k, (bi)1⩽i⩽k) � // (ai ◇ bi)1⩽i⩽k

If L and M are two finitely generated left K[C]-modules, we say that a K-bilinear map

t ∶ L ×L→M

is a C-equivariant bilinear map if

t(c ⋅ l1, c ⋅ l2) = c ⋅ t(l1, l2)
for any l1, l2 in L and c in C. If α1 and α2 are two K[C]-linear maps from L to K[C], and if
and m is a vector in M , we define the C-equivariant K-bilinear map

γm,α1,α2 ∶ L ×L // M

(l1, l2) � // (α1(l1) ◇ α2(l2)).m

We say that γm,α1,α2 is a pure C-equivariant K-bilinear map. If α1 = α2 = α we write γm,α for
γm,α,α and call γm,α a pure symmetric C-equivariant map. For t a C-equivariant K-bilinear
map we define the equivariant complexity of t to be the smallest integer RK,C(t) such that t is
the sum of RK,C(t) pure C-equivariant maps. In case t is symmetric we define the symmetric
equivariant complexity of t to be the smallest integer SK,C(t) such that t is the sum of SK,C(t)
pure symmetric C-equivariant maps. Equivalently SK,C(t) is the smallest integer k such that
there exist two K[C]-linear maps

⊺ ∶ L→ (K[C])k and � ∶ (K[C])k →M

such that
t(l1, l2) = �(⊺(l1) ◇k ⊺(l2)).

Let C1 and C2 be two finite groups. Let V1 and W1 be two finitely generated K[C1]-modules.
Let V2 and W2 be two finitely generated K[C2]-modules. Let

t1 ∶ V1 × V1 →W1 and t2 ∶ V2 × V2 →W2
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be two symmetric K-bilinear map. We assume that t1 is C1-equivariant and t2 is C2-equivariant.
The tensor product over K

t1 ⊗ t2 ∶ (V1 ⊗ V2) × (V1 ⊗ V2) // W1 ⊗W2

(v1 ⊗ v2, v′1 ⊗ v′2) // t1(v1, v′1)⊗ t2(v2, v′2)
is C1 ×C2-equivariant and has symmetric complexity

(2) SK,C1×C2(t1 ⊗ t2) ⩽ SK,C1(t1) × SK,C2(t2).

5. GENERAL UPPER BOUNDS

Let C be a finite group of order n. Let e be the identity element in C. Let M be a left
K[C]-module. We let

M̂ = HomK(M,K)
be the dual of M as a K-vector space. Let

M̌ = HomK[C](M,K[C])
be the dual of M as a K[C]-module. For any φ in M̌ and m in M we write

φ(m) =∑
c∈C

φc(m).c

and thus define n coordinate forms (φc)c∈C in M̂ . We check that

φc(m) = φe(c−1.m)
so the K-linear map

M̌ // M̂

φ � // φe

is an isomorphism of K-vector spaces. For every ψ in M̂ we write ψC for the corresponding
element in M̌ . So

ψC(m) =∑
c∈C

ψ(c−1.m)c.

We now let L and M be two finitely generated K[C]-module. We assume that M is free. So
there exists a K-vector space W such that

M =⊕
c ∈C

c.W

as a K-vector space. Let t ∶ L × L → M be a C-equivariant K-bilinear map. There are n maps
(tc)c∈C such that tc ∶ L ×L→W is K-bilinear for every c in C and for x and y in L we have

t(x, y) = ∑
c ∈C

c.tc(x, y).

We check that
tc(x, y) = te(c−1.x, c−1.y)
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for every c ∈ C and x, y in L. The map

BilC(L,M) // BilK(L,W )
t � // te

is thus an isomorphism between the K-vector space BilC(L,M) of C-equivariant K-bilinear
maps from L × L to M , and the space BilK(L,W ) of K-bilinear maps from L × L to W . For
every u in BilK(L,W ) we write uC the corresponding map in BilC(L,M). So

uC(x, y) =∑
c∈C

c.u(c−1.x, c−1.y).

Let α1 and α2 in Ľ. Let (α1,c)c∈C be the n forms in L̂ such that

α1(l) = ∑
c ∈C

α1,c(l).c

for every l in L. We similarly define n forms (α2,c)c∈C in L̂. Let w ∈W and let t = γw,α1,α2 . Then
for l1 and l2 in L we have

t(l1, l2) = (α1(l1) ◇ α2(l2)) .w =∑
c∈C

α1,c(l1)α2,c(l2)c.w.

We deduce
te(l1, l2) = α1,e(l1)α2,e(l2)w so te = πw,α1,e,α2,e .

Equivalently, if β1 and β2 are in L̂ and w is in W we have

γCw,β1,β2
= γw,βC1 ,βC2 .

We deduce that if L and M are K[C]-modules with M free, and if t ∶ L × L → M is a C-
equivariant bilinear map, then every decomposition of te as a sum of k pure K-bilinear maps
results in a decomposition of t as a sum of k pure C-equivariant K-bilinear maps. So

RK,C(t) ⩽ RK(te) ⩽ rank(M) × (dimK(L))2.

And in case t is symmetric

(3) SK,C(t) ⩽ SK(te) ⩽ rank(M) × dimK(L) × (3 dimK(L) − 1)/2.

6. THE COMPLEXITY OF MULTIPLICATION IN FINITE FIELDS

Let K be a finite field with q elements and let L be a degree n ⩾ 1 extension of K. The
multiplication map ×L ∶ L × L → L is K-bilinear and symmetric. Its complexity RK(×L) is
usually denoted µq(n) and its symmetric complexity SK(×L) is denoted µsymq (n). Chudnovsky
and Chudnovsky have proved [6] linear upper bounds for these complexities using interpolation
on algebraic curves. Their method has been extensively studied and improved, notably by Sh-
parlinsky, Tsfasmann, Vladut [15], Shokrollahi [14], Ballet and Rolland [1, 2], Chaumine [5],
Randriambololona [12] and others, achieving sharper and sharper upper bounds for the complex-
ity of multiplication in finite extensions of finite fields. We will use the following theorem.

Theorem 1 (Chudnovsky). There exists an effective absolute constantQ such that µsymq (n) ⩽ Qn
for all n ⩾ 1 and all prime power q.
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Let K be a field with q elements. Let n ⩾ 1 be an integer. Let L be a degree 2n − 1 extension
of K. Let K[x]n−1 be the K-vector space of polynomials with degree ⩽ n−1. The multiplication
map K[x]n−1 ×K[x]n−1 → K[x]2n−2 is a restriction of the multiplication map L × L → L. The
multiplication map K[x]/xn × K[x]/xn → K[x]/xn is a restriction of K[x]n−1 × K[x]n−1 →
K[x]2n−2. So the symmetric complexity of multiplication in the quotient K[x]/xn is bounded
from above by µsymq (2n − 2). So

(4) SK(× ∶ K[x]/xn ×K[x]/xn →K[x]/xn) ⩽ Qn
for some effective absolute constant Q. In case q ⩾ 2n − 1, plain interpolation shows that the
symmetric complexity of K[x]n−1 × K[x]n−1 → K[x]2n−2 is ⩽ 2n − 1, and the same holds for
multiplication in K[x]/xn. More precise, more general and stronger statements can be found in
[3, 1, 12].

7. THE EQUIVARIANT COMPLEXITY OF MULTIPLICATION IN FINITE FIELDS

Let K be a finite field with q elements and let L be a degree n ⩾ 2 extension of K. Let C be
the Galois group of L/K. Since L is a free K[C]-module of rank one and ×L ∶ L × L → L a
C-equivariant K-bilinear map, we define νq(n) to be the C-equivariant complexity of ×L over
K. We similarly define νsymq (n) to be the C-equivariant symmetric complexity of ×L over K.
We deduce from Equations (1) and (2) that

µsymq (n1n2) ⩽ µsymq (n1) × µsymq (n2)(5)
and

νsymq (n1n2) ⩽ νsymq (n1) × νsymq (n2)(6)

whenever gcd(n1, n2) = 1.
The equivariant complexity νsymq (n) controls the computational difficulty of multiplying two

elements in L given by their coordinates in a normal basis. Indeed assume that νsymq (n) = σ.
There exist two K[C]-linear maps

⊺ ∶ L→ (K[C])σ and � ∶ (K[C])σ → L

such that

(7) l1 × l2 = �(⊺(l1) ◇σ ⊺(l2))
for any l1, l2 in L. We note that ⊺ is a linear map between two free K[C]-modules of respective
ranks 1 and σ. Once chosen a basis of L we can describe ⊺ by a σ × 1 matrix with coefficients in
K[C]. Giving a basis of L as a K[C]-module boils down to choosing a normal basis of L/K.
Similarly � can be described by a 1 × σ matrix with coefficients in K[C]. So using Equation (7)
we compute the product of two elements in L given by their coordinates in a given normal basis
in three steps:

1. Apply ⊺ to either element.
2. Multiply the two elements thus obtained in K[C]σ using the ◇σ law.
3. Apply � to the result.
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The first step requires twice σ multiplications in K[C]. We note that multiplication in K[C]
is the standard convolution product. The second step is a ◇σ product between two vectors in
K[C]σ. The third step requires σ multiplications in K[C]. The only bilinear step is the second
one. All the multiplications in the first and third steps involve a variable and a constant. The
total cost (omitting additions) is 3σ convolution products between vectors of length n and σn
multiplications in K.

8. EXTENSION OF SCALARS I

Let K be a commutative field. Let V and W be two finite dimensional K-vector spaces. Let
t ∶ V × V → W be a K-bilinear map. Let SK(t) be the symmetric complexity of t. Let L be a
finite field extension of K. We set VL = V ⊗K L, WL =W ⊗K L, tL = t⊗K L. Let SL(tL) be the
symmetric complexity of tL as an L-bilinear map. We have

(8) SL(tL) ⩽ SK(t).
We denote by SK(×L) the symmetric complexity of ×L ∶ L×L→ L, the multiplication map in

L seen as a K-bilinear map. Then

(9) SK(t) ⩽ SL(tL) × SK(×L).
This is [12, Lemma 1.10]. We deduce from Equations (8) and (9) that

µsymqm (n) ⩽ µsymq (n)(10)
and

µsymq (n) ⩽ µsymqm (n) × µsymq (m)(11)

whenever gcd(m,n) = 1.

9. EXTENSION OF SCALARS II

We state the equivariant counterpart to the inequalities in Section 8. The main motivation for
extension of scalars is to increase the number of rational points in the context of the geometric
methods presented in Section 10. Let C be a finite group of order n. Let K be a commutative
field. Let L and M be two finitely generated K[C]-modules. Let t ∶ L ×L →M be a symmetric
C-equivariant K-bilinear form. We denote SK,C(t) the symmetric equivariant complexity of t.

Let L be a finite field extension of K. We set LL = L⊗K L, ML =M ⊗K L, tL = t⊗K L. We
call SL,C(tL) the symmetric equivariant complexity of tL. We have

(12) SL,C(tL) ⩽ SK,C(t).
Let SK(×L) be the symmetric complexity of ×L ∶ L ×L→ L, as a K-bilinear map. Then

(13) SK,C(t) ⩽ SL,C(tL) × SK(×L).
We deduce from Equations (12) and (13) that

νsymqm (n) ⩽ νsymq (n)(14)
and

νsymq (n) ⩽ νsymqm (n) × µsymq (m)(15)
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whenever gcd(m,n) = 1.

10. A GEOMETRIC CONSTRUCTION

Let K be a finite field with q elements. We call p the characteristic of K. Let Y be a smooth
absolutely integral projective curve over K. Let C be a cyclic group of K-automorphisms of Y .
We call n the cardinality of C. We assume that n ⩾ 2 and p does not divide n. We call X the
quotient Y /C. This is a smooth absolutely integral projective curve over K. We call ρ ∶ Y → X
the quotient map. Let r be an effective divisor on Y . We assume that r and c.r are disjoint for
every c in C. We set

R =∑
c∈C

c.r

and call K[R] the residue ring atR. We identify the ringK[r] to the subring of K[R] consisting
of functions vanishing at c.r for every c in C different from e. As a K-vector space

K[R] =⊕
c∈C

c.K[r].

So K[R] is a free K[C]-module. The multiplication map K[r] × K[r] → K[r] is K-bilinear
and symmetric. We denote σ its symmetric complexity. According to Equation (3) this is an
upper bound for the C-equivariant symmetric complexity of K[R] × K[R] → K[R]. So there
exist two K[C]-linear maps

⊺ ∶ K[R]→K[C]σ and � ∶ K[C]σ →K[R]
such that

l1 × l2 = �(⊺(l1) ◇σ ⊺(l2))
for l1, l2 ∈ K[R].

Let a ∈ X(K) such that the fiber B = ρ−1(a) is an integral K-scheme with residue field L.
The residue field L is a free K[C]-module of rank 1.

Let D be a divisor on X/K. We call E = ρ−1(D) the pullback of D on Y . Let ε be a local
equation of D in a neighborhood of a and ρ(R). Seen as a function on Y this is a local equation
of E in a neighborhood of B and R. Let

eB ∶ H0(Y,OY (E)) // L
f � // (f × ε) mod B

be the evaluation map at B. We similarly define

e2
B ∶ H0(Y,OY (2E)) // L

f � // (f × ε2) mod B

These maps are morphisms of K[C]-modules. For f1 and f2 in H0(Y,OY (E)) we have

e2
B(f1 × f2) = eB(f1) × eB(f2).

We assume that eB is surjective. Since p does not divide n, the ring K[C] is semi-simple. So the
kernel of eB is a direct factor. We deduce that eB has a right inverse

e⋆B ∶ L→H0(Y,OY (E))
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which is K[C]-linear. Let

eR ∶ H0(Y,OY (E)) // K[R]
f � // (f × ε) mod R

and
e2
R ∶ H0(Y,OY (2E)) // K[R]

f � // (f × ε2) mod R
be the evaluation maps at R. These are K[C]-linear maps. We assume that e2

R is injective.
Since the ring K[C] is semi-simple, the image of e2

R is a direct factor of K[R]. We deduce the
existence of a left inverse

e⋆R ∶ K[R]→H0(Y,OY (2E))
to the evaluation map e2

R. Let s1 and s2 be two funtions in H0(Y,OY (E)), representing the two
elements

eB(s1) = (s1 × ε) mod B and eB(s2) = (s2 × ε) mod B
in L. The product s3 = s1s2 belongs to H0(Y,OY (2E)) and

e2
R(s3) = eR(s1) × eR(s2) ∈ K[R].

So
s3 = e⋆R(eR(s1) × eR(s2)) = e⋆R(�(⊺(eR(s1)) ◇σ ⊺(eR(s2))))

and the K-bilinear map

(16) e2
B ○ e⋆R ○ � ○ ◇σ ○ (⊺ × ⊺) ○ (eR × eR) ○ (e⋆B × e⋆B) ∶ L ×L→ L

is the multiplication map in L. We observe that

⊺ ○ eR ○ e⋆B ∶ L→K[C]σ

and
e2
B ○ e⋆R ○ � ∶ K[C]σ → L

are K[C]-linear maps. We deduce that

(17) νsymq (n) ⩽ σ.

11. A GENERAL BOUND

We would like to instantiate the construction in Section 10 so as to obtain a sharp bound for
the equivariant symmetric complexity of multiplication in a degree n extension of a finite field
K with cardinality q. We assume that n is prime to q. We let X be a smooth absolutely integral
curve over K such that

(18) X(K) /= ∅.
We assume that the Jacobian JX has a point

(19) s ∈ JX(K(µn)) of order n, such that Fq(s) = qs
where Fq is the Frobenius of JX/K. A sufficient condition for such an s to exist is that the
characteristic polynomial χ(x) of Fq has a root in Z` congruent to q modulo n, for every prime
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` dividing n. This is granted if n divides the cardinality χ(1) of JX(K), and 1 is a simple root
of χ modulo ` for every prime ` dividing n. That is

(20) χ(1) = 0 mod n and gcd(χ′(1), n) = 1.
We look for a curve X with smallest possible genus satisfying these conditions. Condition (20)
cannot hold if n > (1 +√

q)2g. On the other hand we heuristically expect to find a curve X with
genus gX equal to g and satisfying condition (20) provided

(21) g ≫ logq n.
Conditions (18) and (19) and Kummer theory imply the existence of a curve Y over K and an
unramified Galois cover ρ ∶ Y → X with cyclic Galois group of order n. We can even force a
K-point on X to split completely in Y . We take a, B = ρ−1(a), r, R = ∑c∈C c.r, D, E = ρ−1(D),
e2
B and eR as in Section 10. The condition

(22) eB is surjective and e2
R is injective

is granted if
deg(E −B) > 2gY − 2 and deg(2E −R) < 0

or equivalently
degD ⩾ 2gX and deg r ⩾ 2 degD + 1.

This last condition is easy to check but a bit restrictive. A more delicate sufficient condition
for (22) is

E −B is non-special and dimH0(Y,OY (2E −R)) = 0.
We summarize the above discussion in the theorem bellow.

Theorem 2. Let K be a finite field with q elements. Let n ⩾ 2 be a prime to q integer. Let
ρ ∶ Y → X be an unramified Galois cover between two smooth absolutely integral curves over
K. We assume that the Galois group C of ρ is cyclic of order n. Let a ∈X(K) such that the fiber
ρ−1(a) is integral. Let r be an effective divisor on Y such that r and c.r are disjoint for every c
in C. Let D be a divisor on X/K. We assume that

(23) degD ⩾ 2gX and deg r ⩾ 2 degD + 1.
or

(24) E −B is non-special and dimH0(Y,OY (2E −R)) = 0.
where gX is the genus of X . Then νsymq (n) ⩽ σ where

σ = SK(× ∶ K[r] ×K[r]→K[r])
is the symmetric complexity of multiplication in the residue ring of r.

If r is deg r times a point in Y (K), the symmetric complexity σ of K[r] ≃ K[x]/xdeg r is
linear in the degree of r according to Equation (4). If r is reduced and irreducible then σ is linear
in the degree of r according to Theorem 1. If r is a sum of deg r pairwise distinct K-rational
points then σ = deg r.
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12. NON-SPECIAL DIVISORS

In order to verify Condition (24) in Theorem 2, we need a simple criterion for a divisor to be
non-special in this context. Let K be a field with characteristic p. Let X and Y be two smooth
absolutely integral curves over K. We call gX the genus of X and gY the genus of Y . Let
ρ ∶ Y → X be a Galois unramified cover with cyclic Galois group C of order n ⩾ 2. We assume
that n is prime to p. Let ρ̂ ∶ JX → JY be the induced map on Jacobian varieties. The kernel of ρ̂
is a cyclic group scheme of order n. There is a non-degenerate pairing

eρ ∶ Ker ρ̂ ×C → µn.

If γ is a divisor class in the kernel of ρ̂ and c ∈ C, we let Γ be a divisor in γ and G a function on
Y with divisor ρ−1(Γ). We set

eρ(γ, c) =
G ○ c
G

.

A consequence of the existence of eρ is that Ker ρ̂ is isomorphic to µn.
Let D be a divisor on X with degree gX − 1. Let E be the pullback of D on Y . The degree of

E is n(gX −1) = gY −1. If E is special then the K[C]-moduleH0(Y,OY (E)) is non-zero. Since
p is prime to n, there exists an eigenvector ϕ for the action of C on H0(Y,OY (E)) ⊗ K(µn).
Let N be the effective divisor on Y ⊗K(µn) such that (ϕ) = N −E. Then N is the pullback of
an effective divisor M on X ⊗K(µn). And M −D is in the the kernel of ρ̂.

To summarize, if D is a divisor on X with degree gX − 1, then the pullback E = ρ−1(D) has
degree gY − 1. And it is special (effective) if and only if there exists a degree gX − 1 effective
divisor M on X ⊗K(µn) such that D −M is in the kernel of ρ̂.

13. ELLIPTIC CURVES

In this section we adapt the general method of Section 10 to the special case of elliptic curves.
The main reason for this restriction is that we have a good control on the group of rational points
on an elliptic curve. Restricting to elliptic curves is not optimal but it enables us to prove such
an asymptotic statement as Theorem 5.

We let K be a finite field with cardinality q and characteristic p. Let n ⩾ 2 be an integer. Let
Y be an elliptic curve over K. We assume that Y has a K-point t of order n. We call X the
quotient of Y by the group C generated by t and ρ ∶ Y →X the quotient isogeny. Let a in X(K)
such that the fiber B = ρ−1(a) of ρ above a is an integral K-scheme. We call L its residue field.
Let v be a point in X(K). We assume that v − a is not in the kernel of the dual isogeny ρ̂. We
call D the degree 1 divisor on X consisting of the single point v with multiplicity 1. We call E
the divisor ρ−1(D). We let u be a non-zero point in ρ(Y (K)).We assume that u − 2v is not in
the kernel of ρ̂. We let r be the formal sum of one point in the fiber of ρ above u plus one point
in the kernel of ρ. Let R be the closure of r under the action of C. So R is the sum of the two
split fibers of ρ above the origin oX and u. We let ε be a local equation of D in a neighborhood
of oX , a and u. In this setting the evaluation map e1

B ∶ H0(Y,OY (E)) → L is an isomorphism
between two free K[C]-modules of rank 1. The evaluation map eR ∶ H0(Y,OY (2E)) → K[R]
is an isomorphism between two free K[C]-modules of rank 2. The symmetric complexity of
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multiplication in K[r] ∼ K × K is 2. We deduce that νsymq (n) is bounded by 2. But νsymq (n)
cannot be equal to 1 for n ⩾ 2 because L is integral and Kn is not. So νsymq (n) = 2.

Theorem 3. Let K be a field with cardinality q and characteristic p. Let n ⩾ 2 be an integer. Let
Y be an elliptic curve over K having a K-point t of order n. Let X be the quotient of Y by the
group C generated by t. Let ρ ∶ Y →X be the quotient isogeny. Let a ∈X(K) such that the fiber
B of ρ above a is integral. Let u be a non-zero point in ρ(Y (K)). Let v ∈ X(K). We assume
that neither v − a nor u − 2v are in the kernel of the dual isogeny ρ̂. Then νsymq (n) = 2.

14. AN ASYMPTOTIC BOUND

Using Theorem 3 we now prove an asymptotic bound on the equivariant complexity νsymq (n)
without any restriction on q or n. We let K be a field with cardinality q and characteristic p. Let
n ⩾ 2 be an integer. We first assume that

(25) n2 ⩽ 2√q
and

(26) q ⩾ 37.
There are two consecutive multiples of n2 in the Hasse interval [q+1−2√q, q+1+2√q]. At least
one of them is not congruent to 1 modulo p. So there exists an elliptic curve Y over K such that
Y (K) is divisible by n2. We deduce that Y has a K-point t of order n. We call X the quotient of
Y by the group C generated by t and ρ ∶ Y →X the quotient isogeny. Let P be a point in X(K)
and let Q be any point in Y (K̄) such that ρ(Q) = P . We set κ(P ) = Fq(Q) −Q where Fq is the
Frobenius endomorphism of Y /K. We thus define a morphism

κ ∶ X(K)/ρ(Y (K)) // Kerρ = C
P � // Fq(Q) −Q

which is easily seen to be an injection, therefore a bijection because the two sets have the same
cardinality. We deduce the existence of at least one point a in X(K) such that κ(a) = t. We call
B = ρ−1(a) the fiber of ρ above a. This is an integral K-scheme. We call L its residue field.

We need a point v inX(K)such that v−a is not in the kernel of ρ̂. There are at least ∣X(K)∣−n
such points. So the existence of v is granted provided

∣X(K)∣ − n ⩾ 1.
The later inequality follows from Conditions (25) and (26). We also need a non-zero point u in
ρ(Y (K)) such that u − 2v is not in the kernel of ρ̂. There are at least

∣X(K)∣
n

− n − 1

such points. So the existence of u is granted provided
∣X(K)∣
n

− n ⩾ 2.

The later inequality follows again from Conditions (25) and (26). Applying Theorem 3 we
deduce the following.
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Theorem 4. Let q be a prime power and n ⩾ 2 an integer. If q ⩾ 37 and n ⩽
√

2√q then
νsymq (n) = 2.

In case Conditions (25) and (26) are not fullfiled we let λ be the smallest integer such that
λ ⩾ 4 logq n and λ ⩾ 6. We set q′ = qλ and check that (q′, n) satisfy Conditions (25) and (26).
Using Theorem 4 in conjunction with Equation (13) and Theorem 1 we deduce the following
theorems.

Theorem 5. Let q be a prime power and n ⩾ 2 an integer. Let λ be the smallest integer such that
λ ⩾ 4 logq n and λ ⩾ 6. Then νsymq (n) ⩽ 2 × µsymq (λ).

Theorem 6. There exists an absolute constantQ such that the following is true. Let q be a prime
power and n ⩾ 2 an integer. Then νsymq (n) ⩽ Q × ⌈logq n⌉.

The next theorem now follows from Theorem 6 and the existence of an algorithm to compute
products in K[x]/xn at the expense of O(n log(n)∣ log(log(n))∣) operations in K. See [4].

Theorem 7. Let K be a finite field of cardinality q. Let L/K be an extension of degree n ⩾ 2. Let
B be a normal basis of L/K. There exists a deterministic algorithm that computes the product of
two elements in L given by their coordinates in B at the expense of

⩽ Q × n × ⌈logq(n)⌉ × log(n) × ∣ log(log(n))∣

operations in K where Q is an absolute constant.

Compared to [7, Theorem 4] we save a logn factor on both the running time and the size of
the model. Theorem 7 is also more general since it applies to any normal basis and does not rely
on any ad hoc redundant representation as in [7].

15. BOUNDING νsymq (n)
We explain how to use Theorems 3 and 2 to bound νsymq (n) for given q and n. If we plan to

use an elliptic curve, we look for the smallest integer λ such that the Hasse interval

[⌈qλ + 1 − 2qλ/2⌉, ⌊qλ + 1 + 2qλ/2⌋]

contains a multiple of n. We then look for an elliptic curve over a field with qλ elements satis-
fying the hypotheses of Theorem 3. We pick random curves and compute their cardinality using
Schoof’s algorithm and its variants [13], until we find a curve with order divisible by n. We then
check for the existence of a point of order n.

If we want to use the general method of Section 10, we look for the smallest integer g such
that (√q + 1)2g is reasonably larger than n. We then pick random curves of genus g over a
field with q elements, until we find one whose Jacobian has order divisible by n. We then check
the hypotheses of Theorem 2. We illustrate this method with a few examples in the following
sections. We will see how to verify the hypotheses of Theorem 3 at the least computational cost.
The knowledge of the zeta function suffices in many cases.
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16. THE CASE q = 7 AND n = 5

Since n belongs to the Hasse interval

[⌈7 + 1 − 2
√

7⌉, ⌊7 + 1 + 2
√

7⌋] = [3,13]

there is an elliptic curve E such that E(K) ≃ Z/10Z. We can take Y to be the smooth projective
model of

y2 = x3 + x + 4.
The point t = (6,4) ∈ Y has order 5. The quotient of Y by the group C generated by t is the
elliptic curve X with affine equation

y2 = x3 + 3x + 4.

Since the kernel of the quotient by C isogeny ρ ∶ Y →X is split, the kernel of the dual isogeny ρ̂
is isomorphic to µ5. The only rational point in it is the origin oX because n is prime to q −1. The
image ρ(Y (K)) has order 2. The point

a = (0,2) ∈X(K)

has order 5. So it does not belong to ρ(Y (K)). The fiber B = ρ−1(a) contains no K-point. So it
is irreducible. We set

u = (6,0) ∈X(K)
the unique K-rational point of order 2 on F . So u belongs to ρ(Y (K)). We take

v = (0,5) ∈X(K).

Since 2v has order 5, it must be different from u. Since the only K-point in the kernel of ρ̂ is oX
we easily check that v − a and u − 2v are not in this kernel. Applying Theorem 3 we deduce that

νsym7 (5) = 2.

The following computer session implements this calculation in SageMath (Version 9.4) [16].

sage: q=7;K=GF(q);n=5;a=K(1);b=K(4)
....: E=EllipticCurve([a,b]);E.order()
10
sage: t=E(6,4);n*t
(0 : 1 : 0)
sage: rho = E.isogeny(t);F = rho.codomain()
Elliptic Curve defined by y^2 = x^3 + 3*x + 4
over Finite Field of size 7
sage: a=F(0,2);5*a
(0 : 1 : 0)
sage: u=F(6,0);v=F(0,5);u-2*v
(2 : 5 : 1)
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17. THE CASE q = 11 AND n = 239

We try the general method first. We then see what can be achieved using elliptic curves and
extension of scalars.

17.1. Using a genus 2 curve. Let X be the smooth projective model of the hyperelliptic curve
with equation

y2 = x5 + x3 + 2x2 + 3.
This is a genus 2 curve. The characteristic equation of the Frobenius Fq of X is

χ(t) = t4 + 7t3 + 33t2 + 77t + 121.

So X has q + 1 + 7 = 19 points over K. Its Jacobian has χ(1) = 239 = n points. This is a prime
integer. The factorization of χ(t) modulo n is

χ(t) = (t − 11)(t − 1)(t2 + 19t + 11).

So there is a point s in JX[n] such that Fq(s) = qs. Let w0 ∈ X(K) be the unique place at
infinity. The class of 2w0 is the unique divisor class of degree 2 on X having positive projective
dimension. There exists a curve Y over K and a Galois cover ρ ∶ Y →X with cyclic Galois group
of order n such that the fiber of ρ above w0 splits completely over K. The kernel of ρ̂ ∶ JX → JY
is the subgroup generated by the class s. We observe that the class of q generates a subgroup
of index 2 in the multiplicative group (Z/nZ)∗. So Galois action on the non-zero classes in the
kernel of ρ̂ has two orbits.

Let w1 and w2 be two points in X(K) having distinct x-coordinates. The linear pencil of the
divisor w1 +w2 has projective dimension zero, that is

H0(X,OX(w1 +w2)) = K.

Let v1, v2, v3, v4, v5 be five points in X(K). We assume that v1, v2, v3, v4, v5, w1, and w2
are pairwise distinct. Since the cardinality of JX(K) is odd, the multiplication by two map is
a bijection of it. We deduce the existence of five effective degree two divisors D1, D2, D3, D4,
D5 such that 2(Di − 2w0) is linearly equivalent to w1 + w2 − vi − w0 for 1 ⩽ i ⩽ 5. The divisor
2Di − 3w0 is linearly equivalent to w1 +w2 − vi. It is a non-special divisor.

Let ξ be any non-zero divisor class in the kernel of ρ̂. For each 1 ⩽ i ⩽ 5, the divisor class
2Di − 3w0 − ξ is the class w1 + w2 − vi − ξ. At most two among these five classes are effective.
Otherwise the class w1 + w2 − ξ would have positive projective dimension. So it would be the
class of 2w0. Then ξ = w1 +w2 − 2w0 would be K-rational. A contradiction.

Since there are only two Galois orbits on the non-zero classes in Kerρ we deduce that there
exists a v among v1, v2, v3, v4, v5 such that w1 + w2 − v − ξ is ineffective for all ξ in this
kernel. We call D the effective degree two divisor such that 2(D − 2w0) is linearly equivalent to
w1 +w2 − v −w0.

Because n is a prime integer, every fiber of ρ above a rational point of X is either irreducible
or completely split. Since de genus of Y is

gY = 1 + n(gX − 1) = 1 + n = 240,



18 JEAN-MARC COUVEIGNES AND TONY EZOME

the number of K-rational points on it is bounded from above by q + 1 + 2gY
√
q < 1604. So the

number of split fibers is ⩽ 1603/239 < 7. So there are at least 13 points (ai)1⩽i⩽13 in X(K) with
an irreducible fiber above them.

At most two among the (ai)1⩽i⩽13 make the class of D−ai effective. Otherwise D would have
positive projective dimension. So it would be linearly equivalent to 2w0. Then w1 +w2 − v −w0
would be principal. But w1 +w2 has projective dimension 0 and v is distinct from w1 and w2. A
contradiction.

Let ξ be any non-zero class in the kernel of ρ̂. At most two among the (ai)1⩽i⩽13 makeD−ai−ξ
effective. Otherwise D − ξ would have positive projective dimension. So it would be linearly
equivalent to 2w0. Then ξ would be the class of D − 2w0 and it would therefore be K-rational.
A contradiction.

Since Galois action has two orbits on the non-zero classes in the kernel of ρ̂, we deduce that at
least 13 − 2 − 2 × 2 = 7 rational points ai on X have irreducible fiber ρ−1(a) and make D − a + ξ
non-special for every ξ in Ker ρ̂. We let a be any of them.

We let r be the three times any point on Y above w0. The ring K[r] is isomorphic to K[x]/x3.
Since K has q ⩾ 5 elements, plain interpolation shows that the symmetric complexity of multi-
plication in K[r] is ⩽ 5. Applying Theorem 2 we deduce

νsym11 (239) ⩽ 5.

The following computer session implements this calculation in SageMath (Version 9.4) [16].

sage: q=11;K=GF(q);KX.<X>=FunctionField(K);KXY.<Y>=KX[];
a=K(2);b=K(0);c=K(3);
KC.<y> = KX.extension(Y^2-X^5-X^3-a*X^2-b*X-c)
g = KC.genus();LP=KC.L_polynomial();t=LP.parent().gen()
sage: ZP=LP(1/t)*t^(2*g)
t^4 + 7*t^3 + 33*t^2 + 77*t + 121
sage: n=numerator(ZP(1))
239
sage: Fnt.<t> = PolynomialRing(GF(n));factor(Fnt(ZP))
(t + 228)*(t + 238)*(t^2 + 19*t + 11)

17.2. Using an elliptic curve and extension of scalars. We now try to bound νsym11 (239) using
the method in Section 13. We let λ be the smallest integer such that the Hasse interval

[⌈qλ + 1 − 2qλ/2⌉, ⌊qλ + 1 + 2qλ/2⌋]
contains a multiple of n. For λ = 1 we find the interval [9,15]. For λ = 2 we find the interval
[111,133]. For λ = 3 we find the interval [1296,1368]. None of these three intervals contain a
multiple of 239. So we must take λ ⩾ 4. The best we can hope with this method is to prove that

νsym11 (239) ⩽ 2µsymq (4).

Since q ⩾ 7 we have µsymq (4) ⩽ 7. So νsym11 (239) ⩽ 14. This is not as good as the bound already
obtained in Section 17.1.
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18. THE CASE q = 13 AND n = 4639

Let X be the smooth projective plane quartic with equation

Y 3Z +X3Y + 2XY Z2 + Y Z3 + 11X3Z + 9X2Z2 + 10XZ3.

This is a genus 3 curve. The characteristic equation of the Frobenius Fq of X is

χ(t) = t6 + 9t5 + 51t4 + 197t3 + 663t2 + 1521t + 2197.
So X has q + 1 + 9 = 23 points over K. Its Jacobian has χ(1) = 4639 = n points. This is a prime
integer. The factorization of χ(x) modulo n is

χ(t) = (t − 13)(t − 1)(t + 2195)(t + 3726)(t2 + 3380t + 13).
So there is a point s in JX[n] such that Fq(s) = qs. Let w0 ∈ X(K) be the point (0 ∶ 0 ∶ 1).
There exists a curve Y over K and a Galois cover ρ ∶ Y → X with cyclic Galois group of order
n such that the fiber of ρ above w0 splits completely over K. The kernel of ρ̂ ∶ JX → JY is the
subgroup generated by the class s. We observe that the class of q generates the multiplicative
group (Z/nZ)∗. So Galois action is transitive on the non-zero classes in the kernel of ρ̂.

Let w1, w2 and w3 be three non-colinear points in X(K). The linear pencil of the divisor
w1 +w2 +w3 has projective dimension zero, that is

H0(X,OX(w1 +w2 +w3)) = K.

Let v1, . . . , v7 be seven points in X(K). We assume that v1, v2, v3, v4, v5, v6, v7, w1, w2 and
w3 are pairwise distinct. Since the cardinality of JX(K) is odd, the multiplication by two map
is a bijection of it. We deduce the existence of seven effective degree three divisors D1, . . . , D7
such that 2(Di − 3w0) is linearly equivalent to w1 +w2 +w3 − vi − 2w0 for 1 ⩽ i ⩽ 7. The divisor
2Di − 4w0 is linearly equivalent to w1 +w2 +w3 − vi. It is non-special.

Let ξ be any non-zero divisor class in the kernel of ρ̂. For each 1 ⩽ i ⩽ 7, the divisor class
2Di − 4w0 − ξ is the class w1 + w2 + w3 − vi − ξ. At most three among these seven classes are
effective. Otherwise the class w1 + w2 + w3 − ξ would have positive projective dimension. So
it would be the class K − Pξ where K is the canonical class and Pξ is a point on X . Because
Galois action is transitive on the non-zero classes in the kernel of ρ̂, there would exist for every
such class ξ a point Pξ such that w1 + w2 + w3 − ξ is the class K − Pξ. We consider the points
Ps, P2s, P3s, P4s associated with s, 2s, 3s, 4s, where s is a generator of the kernel of ρ̂. These a
four pairwise distinct points and P2s − Ps is linearly equivalent to P4s − P3s. So the linear series
of Ps + P4s has positive projective dimension. A contradiction because X is not hyperelliptic.

So we can assume that w1 +w2 +w3 − vi − ξ is ineffective for 1 ⩽ i ⩽ 4. Since the Galois group
of K acts transitively on the non-zero classes in the kernel of ρ̂ we deduce that 2Di − 4w0 − ξ is
ineffective for any ξ in Ker ρ̂ and any 1 ⩽ i ⩽ 4.

At least one among D1, D2, D3, D4 has projective dimension zero. Otherwise there would
exist four points P1, P2, P3, P4 such that Di is linearly equivalent to K − Pi for 1 ⩽ i ⩽ 4. So
2(K−Pi) is linearly equivalent to w1+w2+w3+4w0−vi. We deduce that 2P2+v1 ∼ 2P1+v2 and
2P3 + v1 ∼ 2P1 + v3 and 2P4 + v1 ∼ 2P1 + v4. So these classes have positive projective dimension.
There exist three points Q2, Q3, and Q4 such that 2P1 + v2 ∼ K −Q2, 2P1 + v3 ∼ K −Q3, and
2P1+v4 ∼K−Q4. So v2+Q2 ∼ v3+Q3 ∼ v4+Q4. A contradiction becauseX is not hyperelliptic.
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We call D one among D1, D2, D3, D4 having projective dimension zero. And let v be the
point such that 2(D − 3w0) is linearly equivalent to w1 +w2 +w3 − v − 2w0.

Because n is a prime integer, every fiber of ρ above a rational point of X is either irreducible
or completely split. Since de genus of Y is

gY = 1 + n(gX − 1) = 1 + 2n = 9279,
the number of K-rational points on it is bounded from above by q + 1 + 2gY

√
q < 66926. So the

number of split fibers is ⩽ 66925/9279 < 15. So there are at least 9 points (aj)1⩽j⩽9 in X(K)
with an irreducible fiber above them.

Let ξ be any non-zero class in the kernel of ρ̂. At most three among the (ai)1⩽i⩽9 makeD−ai−ξ
effective. Otherwise D − ξ would have positive projective dimension. So it would be linearly
equivalent to K −Pξ for some point Pξ on X . Because Galois action is transitive on the non-zero
classes in the kernel of ρ̂, there would exist for every such class ξ a point Pξ such that D − ξ is
the class K − Pξ. We consider the points Ps, P2s, P3s, P4s associated with s, 2s, 3s, 4s, where
s is a generator of the kernel of ρ̂. These a four pairwise distinct points and P2s − Ps is linearly
equivalent to P4s − P3s. So the linear series of Ps + P4s has positive projective dimension. A
contradiction because X is not hyperelliptic. So at least six among the (ai)1⩽i⩽9 make D − ai − ξ
ineffective for the chosen non-zero ξ and thus for all its conjugates. So we can assume that
D − ai − ξ is ineffective for any 1 ≤ i ≤ 6 and any non-zero ξ in the kernel of ρ̂.

At most three among the (ai)1⩽i⩽6 make D − ai effective. Otherwise D would have positive
projective dimension. A contradiction.

We let a be one among (ai)1≤i≤6 such thatD−a is ineffective. We let r be the divisor consisting
of four times any point on Y above w0. The ring K[r] is isomorphic to K[x]/x4. Since K has
q ⩾ 7 elements, plain interpolation shows that the symmetric complexity of multiplication in
K[r] is ⩽ 7. Applying Theorem 2 we deduce

νsym13 (4639) ⩽ 7.

The following computer session implements this calculation in SageMath (Version 9.4) [16].

sage: q=13;K=GF(q);KX.<X>=FunctionField(K);KXY.<Y>=KX[];
a=K(1);b=K(2);c=K(0);d=K(10);e=K(9);f=K(11);h=K(0)
KC.<y> = KX.extension(Y^3+Y*(a+b*X+X^3)+c+d*X+e*X^2+f*X^3+h*X^4)
g=KC.genus();LP=KC.L_polynomial();t=LP.parent().gen();
sage: ZP=LP(1/t)*t^(2*g)
t^6 + 9*t^5 + 51*t^4 + 197*t^3 + 663*t^2 + 1521*t + 2197
sage: n=numerator(ZP(1))
4639
Fnx.<t> = PolynomialRing(GF(n));factor(Fnx(ZP))
(t+2195)*(t+3726)*(t+4626)*(t+4638)*(t^2+3380*t+13)

19. REMARKS AND QUESTIONS

The symmetric equivariant complexity νsymq (n) provides a good control on the computational
difficulty of multiplying two elements in a degree n extension of a field K with q-elements, given
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by their coordinates in any normal basis. We have shown how to bound νsymq (n) using points
of order n in Jacobians over K. We need a Jacobian with smallest possible dimension having
a point of order n. A natural question is : given q and n, which is the smallest possible g such
that there exists a Jacobian of dimension g over a field with q elements, having a rational point of
order n ? Are there asymptotic families that are good with this respect ? Modular towers produce
curves with many points but they have too much ramification to be useful here.

In practice, we pick random curves of genus g over a field with q elements, until we find
some whose Jacobian has order divisible by n. A difficulty is that for large g we do not have a
convenient model for a universal curve of genus g. We could restrict to hyperelliptic curves but
their Jacobians tend to be smaller, so this restriction affects the efficiency of the method.

In general, the rank of a tensor can be studied using geometric tools such as secant varieties.
The problem of bounding µsymq (n) and νsymq (n) is mainly of arithmetic nature however. Because
if we base change to some degree λ extension of K, for λ large enough, the difficulty vanishes
and we obtain µsym

qλ
(n) ⩽ 2n − 1 and νsym

qλ
(n) = 2.

We may wonder if Theorem 6 is optimal, even roughly. Given q and some bound C, are there
only finitely many n such that νsymq (n) ⩽ C ? such that νsymq (n) ⩽ C ∣ log(log(n))∣ for example ?
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