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adabmDCA: adaptive Boltzmann machine 
learning for biological sequences
Anna Paola Muntoni1* , Andrea Pagnani1,2,3, Martin Weigt4 and Francesco Zamponi5 

Background
Protein and RNA sequence modelling

In recent years, the number of available protein and RNA sequences has shown an 
impressive growth thanks to the development of high-throughput sequencing tech-
niques. As a consequence, databases like Pfam [1] and Rfam [2], where such biological 
sequences are annotated and classified according to evolutionary relationships, play a 
dominant role in modeling this enormous amount of data.

Abstract 

Background: Boltzmann machines are energy-based models that have been shown 
to provide an accurate statistical description of domains of evolutionary-related protein 
and RNA families. They are parametrized in terms of local biases accounting for residue 
conservation, and pairwise terms to model epistatic coevolution between residues. 
From the model parameters, it is possible to extract an accurate prediction of the 
three-dimensional contact map of the target domain. More recently, the accuracy of 
these models has been also assessed in terms of their ability in predicting mutational 
effects and generating in silico functional sequences.

Results: Our adaptive implementation of Boltzmann machine learning, adabmDCA, 
can be generally applied to both protein and RNA families and accomplishes several 
learning set-ups, depending on the complexity of the input data and on the user 
requirements. The code is fully available at https:// github. com/ anna- pa-m/ adabm DCA. 
As an example, we have performed the learning of three Boltzmann machines mode-
ling the Kunitz and Beta-lactamase2 protein domains and TPP-riboswitch RNA domain.

Conclusions: The models learned by adabmDCA are comparable to those obtained 
by state-of-the-art techniques for this task, in terms of the quality of the inferred 
contact map as well as of the synthetically generated sequences. In addition, the code 
implements both equilibrium and out-of-equilibrium learning, which allows for an 
accurate and lossless training when the equilibrium one is prohibitive in terms of com-
putational time, and allows for pruning irrelevant parameters using an information-
based criterion.

Keywords: Boltzmann machine learning, Protein modelling, RNA modelling, Statistical 
inference
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In spite of this constant increase of sequence data, the tertiary structure of the cor-
responding domains is nowadays not experimentally accessible for the majority of 
the known protein and RNA sequences. To compensate for this experimental gap, in 
silico protein and RNA domains modeling has shown an incredible predictive power 
in determining their structure  [3, 4]. An interesting way to achieve this goal is to per-
form data-driven modeling to reproduce some relevant statistical properties of the data 
(observables).

The so-called Direct Coupling Analysis (DCA) [5, 6] turns out to be particularly suc-
cessful in using available homologous sequence data to infer structural determinants of 
the underlying protein or RNA domains [7]. In a nutshell, the DCA inference strategy 
provides a simple and informative interpretation of the inferred set of model parame-
ters in terms of remarkably accurate contact map prediction. Among the different DCA 
implementations, Boltzmann machine learning [8–11] turns out to be one of the most 
efficient in terms of: (1) the accuracy of structural predictions in its direct use, or as 
input of more complex deep learning supervised strategies [12–15]; (2) the effectiveness 
to generate artificially-designed sequences that fold similarly to their natural counter-
parts [16]; (3) the ability to predict mutational effects [17, 18]. However, the quality of 
the Boltzmann machine deeply depends on the quality of the learning, which is intrinsi-
cally linked to the way the model observables are computed within the training, usually 
employing a Monte Carlo Markov Chain (MCMC).

Here, we present adabmDCA, an adaptive Boltzmann machine learning computational 
strategy that, taking as input a multiple sequence alignment of a target protein or RNA 
domain, infers efficiently an accurate statistical model of the sequence data with the two-
fold aim of (1) providing an accurate contact map prediction of the target domain, and 
(2) generating artificial sequences that are statistically close to indistinguishable (and 
thus bona fide biologically functional) from the natural. The code implements the so-
called Boltzmann machine learning algorithm [19] by performing a gradient ascent of 
the a posteriori probability of the model given the input data. At variance with other 
implementations, adabmDCA copes with both protein and RNA data, and encompasses 
the ability of pruning redundant parameters (as described in [11]). Finally, it provides a 
standard equilibrium learning and also a non-equilibrium learning, based on the con-
trastive divergence technique [20], which is more suitable for structured data.

An introduction to Boltzmann learning of biological models

The input of Boltzmann learning is a multiple sequence alignment (MSA) of a protein or 
a RNA family. The MSA contains M aligned sequences of length L of the same domain 
family, characterized by a certain structure and/or function. The key idea behind DCA is 
that evolutionarily related sequences show, together with a strong conservation signal on 
key residues (for instance in presence of active sites), large correlations among pairs of 
residues due to (mostly) structural constraints. If a random mutation affects the residue 
present on a certain site i, a compensatory mutation may be needed to appear in sites j 
in contact with residue i in order to preserve the overall structure of the domain. How-
ever, correlations alone provide poor results in terms of contact prediction (due to the 
presence of spurious correlations among sites not in direct contact), and therefore more 
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sophisticated techniques such as DCA have been used to reliably extract the underlying 
coevolutionary signal.

In the following, we assume that each natural sequence s = (s1, . . . , sL) belonging to 
a protein or RNA family is an independent and identically distributed (i.i.d.) sample 
of an unknown distribution (correlations due to phylogeny will be addressed through 
a standard re-weighting scheme explained below). Each residue si takes value from an 
alphabet of q symbols representing all possible amino-acids or nucleic acids plus a ‘-’ gap 
symbol ( q = 21 in the case of protein sequences or q = 5 for RNA). Given a MSA, we 
aim at finding a probability measure over sequences of length L that is able to accurately 
reproduce a set of chosen observables computed from the data. In particular, Boltzmann 
learning aims at reproducing all (or a subset of ) the one-site and two-site empirical fre-
quency counts. By applying the maximum entropy principle  [21], the least-constrained 
distribution that characterizes our data is a Boltzmann distribution:

where Z is the normalization factor (the so called partition function in statistical-physics 
terminology) ensuring the proper normalization of the distribution, and J and h are the 
set of Lagrange multipliers assuring the fit of the moments, or, from a statistical physics 
point-of-view, the coupling matrices and the fields associated with the Potts model in 
Eq. 1. This probability quantifies the likelihood that a candidate sequence s belongs to 
the protein/RNA family characterized by the set of parameters J,h . However, DCA aims 
at solving the related inverse problem: given a family’s MSA, how to determine the set of 
unknown parameters?

From a Bayesian perspective, the inverse problem can be mapped into the problem of 
finding the set of couplings J and fields h which maximize the posterior probability of the 
unknown parameters given the set of observed configurations of natural sequences

where P({sµ}) is the evidence (since it is independent of the unknown parameters, it will 
be neglected in the following), P({sµ}|J,h) is the likelihood function, which describes 
how probable it is to randomly draw the sequences in the MSA from the distribution 
parametrized by (J,h) ; and P(J,h) is the prior probability distribution over the space of 
parameters. Recalling that sequences are i.i.d., the likelihood factorizes over sequences:

The prior P(J,h) provides additional information on the unknown parameters and it is 
exploited to avoid over-fitting. Indeed, very often a fully connected model (i.e. a model 
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for which all couplings J are in principle different from 0) produces an over-parametri-
zation of the unknown distribution as signaled by a large amount of noisy and negligible 
coupling parameters [11]. A practical way to control this behavior is to impose a sparsity 
prior over the coupling matrices: the two most used priors are the so called ℓ1 and ℓ2 
regularizations, which force the inferred couplings to minimize the associated ℓ1 and ℓ2 
norms multiplied by a tunable parameter � that sets the regularization strength. A com-
plementary approach consists in setting a priori a probable topology suggested by the 
mutual information between all pairs of residues [22]. Here, as discussed in the following 
section, we will follow an information-based decimation protocol originally proposed 
in [11].

To set the stage, we first start by discussing the case, in which no prior informa-
tion is considered. The maximization of the posterior distribution then turns out to 
be equivalent to the maximization of the likelihood function, or, equivalently, to the 
log-likelihood:

It is easy to prove that the log-likelihood is a globally convex function of the unknown 
parameters, hence a simple gradient ascent strategy is in principle able to find the opti-
mal set of parameters. More precisely, starting from any initial guess for the parameters 
{

Jt=0,ht=0
}

 , one can set up the following update scheme:

until a fixed point is reached. Here, ηh and ηJ are the learning rates associated with the 
fields h and the coupling parameters J respectively. A simple computation shows that the 
gradient terms involve averages of simple observables over the Boltzmann measure Eq. 1 
with parameters at iteration time t:

The stationary point is reached when the left hand sides of the equations are zero, i.e. 
when the single and double residue empirical frequency counts (i.e. the terms fi(a) and 
fij(a, b) resp.) match the one- and two-site marginals pi(a) and pij(b) of the model P. A 
formal definition of these quantities will be given in the next sections. Unfortunately, in 
spite of the relatively simple structure of the model, we are not able to exactly compute 
the marginal probability distributions. A practical way to overcome this limitation is to 
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estimate them at each step t of the iteration by using a MCMC algorithm as explained in 
the following section.

Implementation
Input data and pre‑processing

adabmDCA takes as input a MSA in FASTA format of the target protein or RNA 
family. To reduce the effect of phylogenetic correlations, we re-weight the statisti-
cal significance of each sequence, penalizing highly similar sequences in the MSA, 
as originally presented in  [23]. In practice, with each of the M sequences of the 
MSA we associate a statistical weight wµ ( µ ∈ 1, . . . ,M ) equal to the inverse num-
ber of sequences having at least 80% of identical residues with sequence µ (including 
sequence µ itself ).

To deal with unobserved (pairs of ) symbols in one (or two) column(s) of the MSA, 
we add a small pseudo-count α to the empirical frequency counts. This prevents the 
emergence of infinitely large parameters (in absolute value) associated with vanishing 
empirical frequencies. Finally, the one- and two-site frequencies are given by:

where f datai  and f dataij  are computed from the MSA as:

with Meff =
∑

µ wµ being the effective number of weighted sequences.

Initialization

In adabmDCA, it is possible to initialize the set of parameters in three ways: (1) all 
couplings and fields can be initially set to zero, (2) they can take value from a given 
set of parameters (from an input file), or (3) they describe a profile model, i.e. an inde-
pendent-site Potts model where the first empirical moments are perfectly matched by 
means of the fields

but all couplings are set to zero. Empirically, it turns out that choice (3) is the one that 
shows the fastest convergence of the algorithm. We also allow for the other two types of 
initializations as they can be convenient in some cases.
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Adaptive Monte Carlo Markov Chain

The Boltzmann learning algorithm consists of a series of training epochs. At each epoch 
t, we estimate numerically the marginal probability distributions of the model p(t)i (a) 
and p(t)ij (a, b) using a MCMC strategy. More precisely, we use Ns independent Markov 
chains, each of which samples Nc configurations. The results presented in this work are 
obtained using a Metropolis-Hasting [24, 25] update scheme, but the code also allows 
one to opt for a Gibbs sampling strategy [26]. At the end of each epoch t, we update the 
model parameters according to Eq. 9 by estimating the p(t)i (a), p

(t)
ij (a, b) according to the 

following relation:

adabmDCA allows one to use either persistent chains, i.e. chains initialized only at the 
first epoch, or transient chains where each independent chain is initialized at each 
epoch. We consider two types of chain initialization: (1) by extracting sequences uni-
formly at random, (2) by randomly picking natural sequences from the MSA, propor-
tionally to their weights w.

By default, adabmDCA uses transient chains initialized to uniformly extracted random 
sequences, but different options can be set. In particular, we found that the persistent 
option seems to reduce the equilibration time as one may expect that an equilibrium 
configuration extracted from the model at time t − 1 is a good candidate starting point 
for the same chain at time t provided that the value of the parameters at time t is not too 
different from that at t − 1.

In order to achieve accurate learning, it is of utmost importance to accurately estimate 
the gradient of the log-likelihood. From a computational point of view, the bottleneck 
is the accurate estimation of the one- and two-site marginals pi(a) and pij(a, b) . Two 
main conditions dictate the quality of MCMC sampling: (1) an accurate assessment of 
the stationary (i.e. equilibrium) regime of the chain, and, (2) a fair estimate of the mixing 
time.1 To prevent the occurrence of a poor sampling, adabmDCA allows for monitor-
ing and adjusting both the equilibration and sampling times of the Markov Chain, Teq 
and Twait, respectively (in Monte Carlo sweeps units, one sweep being equal to L Monte 
Carlo steps).

Let sin be the configuration sampled by chain i after Teq + nTwait steps. We define three 
type of sequence identities or overlaps, i.e.
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1 adabmDCA estimates the mixing time of the MCMC through the auto-correlation time of the sampled configurations
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aimed at quantifying how similar two target configurations are:

• The external overlap between configurations sampled by two different chains at the 
same sampling time n

• A first-time internal overlap measuring the similarity between two consecutively 
sampled configurations on the same chain: 

• A second-time internal overlap measuring the distance between configuration sam-
pled at time n and n+ 2 on the same chain: 

At each iteration, we compute the expectation value µα and the standard error σα (where 
the averages are computed with respect to different chains and over n) of Qα for all three 
types of overlap α ∈ {int1 int2 ext} . We note that, if Teq and Twait were large enough, 
then subsequent samples of the same chain should have the same statistics of samples 
coming from distinct chains, and µext = µint1 = µint2 within statistical errors. There-
fore, we update Twait as follows:

• If |µext − µint2| > 5
√

σ 2
ext + σ 2

int2 we say that our Monte Carlo chains are not suffi-

ciently de-correlated and therefore we increase Twait.
• Conversely, if |µext − µint1| < 5

√

σ 2
ext + σ 2

int1 the chains sufficiently de-correlate 

every Twait steps and, as a consequence, we can reduce Twait.

This allows the chains to be slightly correlated at time Twait but ensures a good de-corre-
lation at time 2Twait, hence guaranteeing that the de-correlation time is in between Twait 
and 2Twait. To increase Twait, we double it, while to reduce Twait, adabmDCA computes 
the average between the current value of the waiting time and the value of Twait before 
the last increasing step. This guarantees to keep the waiting time bounded in the cor-
rect interval of values within the learning process. Then, whatever the outcome of this 
test, we set Teq = 2Twait assuming that 2Twait steps suffice to get equilibrated samples 
starting from the first configuration of the chain. Note that when the starting sample is 
picked uniformly at random, this criterion does not guarantee a perfect equilibration 
because the equilibration time might be in some cases larger than the de-correlation 
time, although this is expected to happen rarely; conversely, for persistent chains, this 
condition guarantees equilibration by construction, because in that case the chains do 
not need to be re-equilibrated at each iteration.

When Twait and Teq are such that µext ∼ µint2 , adabmDCA achieves a well-equil-
ibrated sampling and the Boltzmann machine is guaranteed to converge to a Potts 
model, which not only precisely fits the one- and two-site frequencies, but ben-
efits of several additional properties elaborated in the Results section. However, 
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depending on the properties of the data, several issues can arise: if the true energy 
landscape is sufficiently rugged, Monte Carlo chains may partially visit the feasible 
configurations returning a sampling that strongly depend on the initialization of the 
chains. Similarly, if the model parameters are abruptly adjusted, the dynamic may 
mimic a low-temperature regime of a well-behaved landscape ending up to the same 
sampling issue of the rugged energy landscape. In both cases, the dynamics becomes 
non-ergodic, and therefore the computation of the gradient may be inaccurate. For 
this reason a smooth update of the parameters is encouraged and, in cases when 
this is not sufficient, we found that, using persistent chains with fixed (but large) 
sampling time, adabmDCA performs equally well. In this scenario, even though the 
machine performs the sampling using slightly correlated chains, the quality of the 
inferred model is often not affected. We show an example in the Results section.

Convergence criterion and quality control

Given the global convexity of the problem as a function of the parameters, the con-
vergence of the algorithm can be safely assessed when the gradients are numerically 
close to zero. A convenient proxy for convergence is given by the difference between 
the empirical and the model two-site connected correlations (or co-variances):

The learning halts when the tolerance εc = arg maxi,j,a,b | c
model
ij (a, b)− c

emp
ij (a, b) | is 

∼ 10−2 . Although this quantity is not explicitly fitted during learning, it is a function of 
the one- and two-site frequencies in Eqs. 8, 9 and vanishes at convergence. Empirically, it 
provides a good metric for estimating the quality of the inferred model. At each itera-
tion, we also measure the Pearson correlation coefficient between the empirical and 
model covariances defined in Eqs.  18,  19, which measures a degree of correlation 
between the two quantities independently of the value of εc , i.e. of the spread of the scat-
ter plot of the connected covariance. Moreover, we display the fitting error of the one- 
and two-site statistics computed as εf =

∑

i,a
|fi(a)−pi(a)|

Lq  , εs =
∑

i,j,a,b
|fij(a,b)−pij(a,b)|

L2q2
 ; 

these metrics indeed help in monitoring the training of the Boltzmann machine.
Another interesting observable that can be used to assess the generative power of 

the Boltzmann machine, is the three-site connected correlation

which is not fitted during the training but, as shown in  [10, 11], provides an interest-
ing measure of the generative capability of the model. adabmDCA does not compute 
all possible third order connected correlations because this would be computationally 
heavy. However, it is possible to specify a subset of indices 

(

i, j, k
)

 and (a, b, c) whose cor-
responding measures are computed during the iterations.

(18)cmodel
ij (a, b) = pij(a, b)− pi(a)pj(b),

(19)c
emp
ij (a, b) = fij(a, b)− fi(a)fj(b).

cijk(a, b, c) := fijk(a, b, c)− fij(a, b)fk(c)− fik(a, c)fj(b)
−fjk(b, c)fi(a)+ 2fi(a)fj(b)fk(c) ,
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Gauge fixing

The number of unknown parameters Np =
L(L−1)

2 q2 + Lq exceeds the number of inde-
pendent Eqs. 8, 9 (when setting the partial derivatives to zero), due to the normalization 
constraint on the one-site and two-site statistics, 

∑

a fi(a) = 1 , 
∑

a,b fij(a, b) = 1 and the 
marginalization condition over the two-site statistics, 

∑

a fij(a, b) = fi(b) . As a conse-
quence, any gauge transformation of the type

for arbitrary gi and Ki,j(a) , would keep unchanged the Boltzmann distribution in Eq. 1. 
Among the infinite number of possible gauge transformations, the one of most interest is 
the so-called zero-sum gauge because the couplings obtained by this re-parametrization 
minimize the Frobenius norms associated with the coupling matrices. This transforma-
tion is applied at the end of the Boltzmann machine learning to facilitate the computa-
tion of the DCA scores.

Alternatively, one may fix the gauge at the beginning of the learning, by fixing a redun-
dant subset of the parameters to an arbitrary constant and then update the remaining 
parameters within the learning. To select the redundant subset, for each couple 

(

i, j
)

 , we 
seek the 2q − 1 pairs of colors that give the weakest empirical connected correlations, 
computed as in Eq. 19, and we set to zero the couplings associated with these variables. 
These couplings are fixed to zero also during learning.

Pruning the parameters

Although the gauge fixing removes the degree of variability of the inferred parameters, 
due to the finite sample size of the MSA, the trained model might still be over-fitted. 
Indeed, sequence lengths L in typical MSA range in the interval ∼ 100− 500 . As a con-
sequence, the number of learned parameters is ∼ 107 − 109 , which likely exceeds the 
useful information encoded in the data. A widely used strategy to limit over-fitting is to 
impose an ℓ1 or ℓ2 regularization, i.e. a prior, either to both the set of parameters or to 
the couplings only. In these cases, the update Eqs. 8–9 are replaced by the gradient of the 
log-posterior:

and

(20)Jij(a, b) →Jij(a, b)+ Kij(a)+ Kji(b)

(21)hi(a) →hi(a)+ gi −
∑

j �=i

[

Kij(a)+ Kji(a)
]
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∂ logP
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= fi(a)− pi(a)− �2hi(a) ,
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for the ℓ1 and ℓ2 priors respectively.
The main drawback of these procedures is that the regularization is applied indis-

tinctly to all parameters (relevant and irrelevant). Alternatively, one may a priori 
specifically prune (viz. set to zero) a subset of the parameters observing that even 
though large spurious correlations may arise from non topologically connected sites, 
weak correlations are typically associated with small coupling strengths. As explained 
in [22], one can first determine a starting topology and then run the learning proce-
dure on it. To this end, adabmDCA provides two distinct strategies. Indeed, the user 
can:

• provide as input a given topology (i.e. a set of predefined pairs of residues that will 
not be set to 0); adabmDCA then automatically eliminates all absent parameters 
before the learning;

• iteratively remove negligible couplings up to a target sparsity as explained in  [11]. 
To determine whether a coupling matrix (or element) is negligible, we compute the 
symmetric Kullback-Leibler divergence between the model at the current time-step 
and the same model without that coupling matrix (or element). The latter is used to 
score the parameters and set to zero those with the smallest score. The parameter is 
set to zero element-wise if we remove negligible couplings drawn on different matri-
ces or block-wise if we remove an entire Jij matrix. We refer to [11] for details of the 
element-wise decimation.

Adaptive learning rate

The learning rates ηJ and ηh associated with the update of the fields and couplings, 
respectively, are set by default to a small and constant value, typically 0.05 for proteins 
and 0.01 for RNA families. Alternatively, several adaptive learning rates can be used to 
train the Boltzmann machine: adagrad [27], search-then-converge [28], a modified quasi-
Newton method [29–31] and FIRE [32]. Although using an adaptive learning rate allows 
for a fast training of the parameters (as indicated by a rapid increasing of the Pearson 
correlation coefficient between the data and model covariances already in the first few 
iterations), the possibly large learning rates push the value of the parameters to large 
(absolute) values preventing a good equilibration of the machine within the training, and 
often resulting in over-fitting.

Schematic workflow

To clarify the main adabmDCA road-map we plot in Fig.  1 a schematic representation of 
the features performed by the algorithm (as well as the most important input flags):

• Reading the natural sequences. The algorithm first reads a FASTA file containing the 
multiple sequence alignment of protein or RNA sequences.

(25)
∂ logP

(

Jt,ht|{sµ}
)

∂Jij(a, b)
= fi,j(a, b)− pi,j(a, b)− �2Ji,j(a, b) ,
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• Re-weighting of the sequences. adabmDCA either takes as input a file storing the sta-
tistical weights of the sequences or it applies the re-weighting scheme explained in 
Section 2.1.

• Computation of the observables. Once the weights are computed, it is possible to 
evaluate and store the one-site and two-site frequencies appearing in the log-likeli-
hood (or log-posterior) as in Eqs. 12–13. The pseudo-count α can be arbitrarily set 
or, by default, it takes the value of M−1

eff .
• Initialization of the machine. By default, the machine assumes a fully connected 

model and the parameters are set to zero. Alternatively, a profile model can be cho-

Fig. 1 Workflow of adabmDCA. We show a schematic road-map of the main adabmDCA workflow 
specifying the input flags associated with the possible tasks that can be executed by the algorithm. Lower 
case flags are usually followed by an argument whereas upper case flags appear alone
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sen using a pre-defined flag or the machine can read an input set of parameters from 
a file. The gauge-fixing procedure, as explained in Sect. 2.5 can be performed using 
a specific flag. Furthermore, in cases where the topology is known, adabmDCA can 
read from files the (possibly non-zero) couplings and the fields of the machine and 
set permanently to zero the remaining part.

• Update of the parameters until convergence. At each epoch, adabmDCA performs a 
MCMC sampling as described in Sect. 2.3 to estimate the model statistics. All possi-
ble flags used to set up the MCMC sampling are shown in Fig. 1. By default, the equi-
libration and sampling times are adaptively tuned as described in Sect. 2.3. Then, the 
parameters are updated accordingly to the gradient as in Eqs. 6–7 (or as in Eqs. 22–
23 or  24–25) depending on the presence (or absence) of the regularization terms. 
The learning rate is by default constant during the training but, if required by the 
user, several adaptive learning strategies are implemented (see Sect. 2.7).

• Decimation. If required and if convergence is reached, adabmDCA performs a com-
ponent-wise or block-wise pruning of the coupling matrices according to an infor-
mation-based criterium (see Sect.  2.6). Then, the algorithm alternates the conver-
gence step to the pruning step of the Boltzmann machine until a converged model 
having the required density is sought.

• Output of the results. The algorithm performs a final sampling of the converged 
Boltzmann machine and prints in several files the couplings and fields of the model 
as well as the Frobenius norms, i.e. the Direct Coupling scores, associated with the Jij 
matrices. If required by the user adabmDCA outputs the sampled configurations in 
FASTA format.

In the following, we report few examples to launch adabmDCA in some interesting 
cases, useful to reproduce the results of the following section:

• Learning at equilibrium. Let us train a Boltzmann machine for the sequences con-
tained in file.fasta at equilibrium, starting from a profile model and requiring 
a tolerance of 10−2 for the two-site connected correlations, using our machine. The 
command line will read: 

• Learning out-of-equilibrium. To use persistent chains and avoid the tuning of the 
MCMC characteristic times, we will add: 

• Sampling. Let us sample a given model stored in the file p.dat using Teq = 500 and 
Twait = 250 . The command line reads: 

(26)./adabmDCA -f file.fasta -I -c 1e-2

(27)./adabmDCA -f file.fasta -I -c 1e-2 -L -P

(28)
./adabmDCA -f file.fasta -p p.dat

-i 0-e 500 -t 250 -L -S
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Results
We now discuss some examples of model learning via adabmDCA on protein and RNA 
families.

Learning at equilibrium: PF00014 and RF00059

In this section we show the results obtained for: (1) the Kunitz domain (PF00014 
family from the Pfam database), (2) the TPP riboswitch (RF00059 from the Rfam 
database). The PF00014 MSA is initially pre-processed to remove from the MSA all 
proteins with more than six consecutive gaps. This prevents a learning bias towards 
very gapped configurations. Eventually, the total number of considered sequences 
is M = 13600 for PF00014 and M = 12593 for RF00059, which correspond to a re-
weighted effective number of sequences of Meff = 4364 and Meff = 4920 for PF00014 
and RF00059 respectively.

The Boltzmann machines are trained at equilibrium, i.e. the waiting and equilibrium 
times are updated at each iteration according to the test introduced in Sect.  2.3. The 
behavior of the average of the three overlaps qα for α = {int1, int2, ext} is shown in 
Figs. 2a and 3a (left axis) together with the trend of the waiting time Twait (right axis). 

Fig. 2 Learning of PF00014 at equilibrium We show in a the evolution over the iterations of the three 
overlaps used to monitor the quality of the sampling together with the waiting time Twait. b We plot, for 
all iterations, the fitting errors (red, orange and brown markers) associated with the one-site, two-site 
(connected and non-connected) frequencies computed as defined by εf  , εs and εc in Sect. 2.4. Using a 
blue marker we show the Pearson correlation coefficient between the two-site connected frequencies of 
the natural sequences and of the configurations generated during training. c We plot the projections of 
the natural sequences into the space of the first two principal components (PC1, PC2) of the covariance 
matrix associated with the natural sequences while in d we project the configurations obtained by the 
re-sampling of the converged model into PC1 and PC2 associated with the natural sequences. e Depicts the 
behavior of the positive predictive value (PPV) versus the number of non-trivial contact predictions, i.e. those 
associated with site indices |i − j| > 4 , for adabmDCA, plmDCA [33] and Mi3-GPU [31]. f We instead plot 
the contact maps used for the comparison in e: gray blocks are associated with the ground-truth obtained by 
Pfam-interactions [35], while the colored markers indicate whether the Frobenius norms computed 
using the parameters retrieved by the three methods are larger than 0.20
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One can see that the distribution of the mean for the three quantities show statistically 
compatible values. Interestingly, starting from the beginning of the training, their aver-
age value is very close to the mean overlap among all pairs of natural sequences used 
within the learning, shown as qMSA in the plot. The waiting time is typically increased at 
the beginning of the training and it seems to stabilize at the final iterations.

The quality of the Boltzmann machine is monitored during the learning as shown 
in Figs. 2b and 3b where we display the Pearson correlation coefficient between the 
model and the empirical connected two-site frequencies as computed in Eqs. 19 (left 
axis) as a blue line together with the mean error achieved in fitting the one-site and 
(connected or non-connected) two-site frequencies (right axis). At the final iteration 
we get a very accurate model as signaled by the high value of the Pearson correlation 
coefficient and the small values of the fitting errors, which are perfectly retrieved if 
one samples the final models using a very long Monte Carlo Markov Chain (black 
squared point), i.e. by imposing Teq = 5000 and Twait = 2500. The generative power 
of the Boltzmann machines is corroborated by comparing the Principal Component 
Analysis (PCA) of the generated sequences with the natural sequences as shown in 
Figs. 2, 3c, d respectively. The sampled configurations in panel (d) are projected onto 
the first two principal components of the natural sequences in panel (c). As suggested 
by the spatial localization of the sequences and their distribution, our converged 
models are able to generate sequences that lie in the same non-trivial sub-space 
spanned by the natural sequences.

Fig. 3 Learning of RF00059 at equilibrium. a The evolution over the iterations of qext , qint1 and qint2 used to 
tune the waiting time Twait . b We plot the fitting errors (red, orange and brown markers) εc , εf  and εs , and the 
Pearson correlation coefficient between the two-site connected statistics of the natural sequences and of the 
configurations sampled during training (blue markers). c Depicts the projections of the natural sequences 
into the space of the first two principal components (PC1, PC2) of the covariance matrix associated with 
the natural sequences; in d we show the projection the re-sampled configurations, obtained from the 
converged model, into PC1 and PC2 associated with the natural sequences. e We show the behavior of the 
PPV versus the number of non-trivial contact predictions, i.e. those associated with site indices |i − j| > 4 , 
for adabmDCA, plmDCA [33] and bl-dca [34]. f Displays the contact maps used as ground truth (gray 
markers) for the TPP riboswitch and those obtained by the DCA scores larger than 0.20 associated with the 
three compared methods
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Finally, we compare the predicted contact maps of the Kunitz domain and of the 
TPP riboswitch with the following state-of-the-art DCA-based algorithms: plm-
DCA [33] and Mi3-GPU [31] for PF00014 and bl-dca [34] for RF00059, one pseudo-
likelihood method and two Boltzmann machine-based methods to infer Potts models 
for protein and RNA sequences respectively.

In all cases, coupling parameters are first converted to zero-sum gauge before comput-
ing the average product corrected Frobenius norms [33]. For PF00014, we consider as 
ground-truth the atomic distances retrieved by Pfam-interactions [35], a method 
which computes the minimum distance, for all possible pair of sites, among all avail-
able crystal structures in the Protein Data Bank (PDB). For RF00059 we perform an 
analogous analysis among the TPP riboswitch known structures downloaded from the 
Protein Data Bank. In Figs. 2, 3e we plot the positive predictive value of the prediction 
of the non-trivial contacts, i.e. those residue pairs (i,  j) having |i − j| > 4 , for the three 
methods, and in Figs. 2, 3f we overlap our ground-truth (in gray) and the most probable 
contact according to the three-methods, i.e. the pairs with whom we associate a score 
larger than 0.20. For Mi3-GPU we consider the model obtained applying an ℓ2 regulari-
zation with strength parameter � = 0.02 ; the machine obtained for the ℓ1 regularization 
gives a dramatically worse results in terms of contact predictions (not shown). Panel (e) 
suggests that the three considered methods achieve comparable performances, as it is 
equivalently represented in panel (f ).

Learning out‑of‑equilibrium: PF13354

In this section we show the results obtained for the Beta-lactamase2 domain. The mul-
tiple sequence alignment used within the training is constructed as follows. Using the 
Hidden Markov Model associated with the PF13354 family, we scanned the NCBI [36] 
database to obtain aligned sequences compatible with the model. We then keep 
sequences that have less than 20% of gaps and concurrently those having less than 80% 
redundancy (as a consequence Meff ∼ M in this case). We also removed the sequence 
of the TEM-1 protein, and all sequences very similar to it. This last step was necessary 
to study deep mutational scanning data in [11] and we use here the same alignment for 
sake of simplicity. Training a Boltzmann machine using well-equilibrated Monte Carlo 
chains is barely practical as the waiting time necessary to produce uncorrelated samples 
is huge and constantly increasing over the iterations (not shown). To solve this issue, 
we resort to a persistent sampling strategy, i.e. at each new iteration the Monte Carlo 
chains are initialized at the last configurations of the previous iteration, of 103 chains, 
each one sampling 10 configurations, with fixed waiting time Twait = 25 and equilibrium 
time Teq = 50 sweeps. In Fig.  4a we display the overlap between independent chains 
qext , which is similar to that of the MSA of the natural sequences qMSA , while qint1 and 
qint2 grow over the iterations suggesting that the samples are highly correlated. The fit-
ting quality of the model is measured by using the Pearson correlation coefficient (blue 
markers) and the fitting errors over the one-site and two-site statistics (red, orange and 
brown markers) as shown in Fig. 4b; these measures are compatible to those obtained by 
a learning at equilibrium. To check the quality of the learning out-of-equilibrium, we re-
sample the converged model and test the generative properties of the learned machine. 
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The Pearson correlation coefficient and the fitting errors of the converged model are 
retrieved only if the configurations obtained by the re-sampling step are sufficiently de-
correlated: indeed, to obtain the performances shown using black markers in Fig. 4b one 
has to set Twait ∼ 105 which is the value of the waiting time that guarantees qint1 ∼ qint2 . 
The remarkable results of the Beta-lactamase2 model are confirmed by the PCA analy-
sis in Fig. 4c, d and by the contact prediction depicted in panels (e) and (f ). In this case, 
adabmDCA achieves a reconstruction similar to that of plmDCA and outperforms Mi3-
GPU where the adaptive strategy to sample statistically independent equilibrium con-
figurations fails to produce a result due to the too large auto-correlation time estimated.

This result suggests that although we are not able to achieve an equilibrium sam-
pling due to the large auto-correlation time, yet the resulting model retains the gener-
ative properties of an equilibrium-trained Boltzmann machine. Not only this result is 
important from a practical point of view, as this allows for a significant reduction of the 
computational time of the overall process, but it also opens new research directions in 
the field of out-of-equilibrium learning. We mention that if the procedure is performed 
using randomly initialized chains, instead of persistent chains, the quality of the con-
verged model is achieved only setting a waiting time similar to that used in the training, 
as if the model had kept memory of the learning set-up. A similar behavior has been 
observed and discussed more systematically in [37] in the context of learning Restricted 
Boltzmann machines.

Fig. 4 Learning of PF13354 out-of-equilibrium. a We show the three overlaps qext , qint1 and qint2 of the 
sampled configurations used to estimate the model statistics as a function of the iterations (left axis) and 
the waiting time Twait between two consecutive samples (right axis). At difference with the learning at 
equilibrium, Twait is here kept constant during the training and the configurations are correlated as suggested 
by the differences between the distributions of qint1 , qint2 and qext . b The plot of the quality metrics used to 
estimate the goodness of the training: in blue we show the Pearson correlation coefficient between the 
two-site connected frequencies of the natural sequences and of the evolving model as a function of the 
iterations (blue markers, left axis) and the fitting errors (red, orange and brown markers, right axis) computed 
as εc for the two-site connected statistics and as εf ,s for the one-site and two-site non-connected statistics. 
c, d We show the projections of the natural sequences and of the re-sampled sequences into the first 
two principal components of the natural sequences while in e we plot the positive predictive value curve 
associated with the contact map prediction (shown in f) for the Beta-lactamase2 domain
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Running time

We discuss in this section the computation time of adabmDCA. The running time 
needed by adabmDCA is often larger than the ones shown by the other methods used 
here for comparison: our machine spent 22, 53, and 98 hours for learning a model for 
PF00014, RF00059, and PF13354, respectively, against one hour and the 75 hours 
required by Mi3-GPU for PF00014 and PF13354 (employing two TITAN RTX GPUs) 
and the two hours needed by bl-dca for RF00059. We stress that the current imple-
mentation exploits a single thread and its running times are compatible with those 
achieved by the Boltzmann machine in [10]. Moreover, the out-of-equilibrium learning 
allows for the training of an accurate machine, out-performing Mi3-GPU and spending 
a running time which is only slightly larger than that needed by Mi3-GPU, a highly opti-
mized algorithm.

Fortunately, a multi-threads implementation of adabmDCA can be certainly attained 
by running in parallel the MCMC sampling, i.e. each thread could perform the simula-
tions of a certain fraction of the MC chains, independently of the other threads. This 
direction will be considered in the future development of the algorithm.

Conclusions
We developed a C/C++ implementation of Boltzmann machine learning for modeling 
RNA and protein sequence families, called adabmDCA. Together with a set of learning 
options that allows for a user-friendly control of the training strategy (including param-
eters initialization, regularization and decimation), it encompasses the possibility of 
adapting the Monte Carlo Markov Chain sampling ensuring an equilibrium training. In 
hard learning regimes, when the de-correlation time of the Monte Carlo chains appears 
to be large, the learning at equilibrium is intractable. In these cases, in adabmDCA it is 
possible to select a slightly out-of-equilibrium sampling whose behavior does not affect 
the quality of the learned model, as suggested by the results on the Beta-lactamase2 
domain. Here, the performances of adabmDCA resemble those of plmDCA in predict-
ing non-trivial physical contacts and outperforms other Boltzmann machine-like imple-
mentations. This promising achievement encourages new research perspectives in the 
field of non-equilibrium learning.
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