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Abstract—This paper closes a special Stream that focuses on 

spatial heterogeneity when mapping biophysical variables over 

agricultural landscape from solar and thermal infrared remote 

sensing. We propose an overview of the highlights from prior 

research, we report the main results of the special stream, and we 

discuss future directions. The main outcomes of the special 

stream are related to: 1) the impact on the remotely sensed signal 

of canopy vertical distribution, shadowing effects, and multiple 

scattering; 2) the notion of spatial resolution limit in relation to 

spatial heterogeneity; and 3) the definition of an optimal sam-

pling strategy to spatialize ground measurements. 

Index Terms—Remote sensing, spatial heterogeneity, upscal-

ing, downscaling, agricultural landscape, forestry. 

I. INTRODUCTION 

GRICULTURAL landscapes, including crops, rangelands 

and managed forests, are typical instances for studying 

global changes. Their evolution is influenced by several fac-

tors, either natural (e.g., climate) or anthropogenic (e.g., 

farmer practices, regional management, governmental incen-

tives). Adapting anthropogenic forcing requires decision-

making systems that rely on diagnostic and prognostic tools. 

In this context, land surface processes are described with bio-

physical models that must be parameterized, calibrated and 

validated. This can be achieved with Earth observation data. 

Remote sensing is one of the most efficient means to cap-

ture spatial patterns related to land surface processes, at given 

temporal sampling and spatial resolution. The remote sensing 

technique is usually chosen according to the targeted variable: 

solar domain to retrieve
1
fraction of absorbed photosynthetical-

ly active radiation (fAPAR), leaf area index (LAI) and gross 

primary production (GPP), or thermal infrared (TIR) domain 

to retrieve land surface temperature (LST). 

A large part of the literature has addressed this topic [1, 2]. 

Due to technical and methodological limitations, most investi-

gations have been conducted under quite homogeneous and 

flat conditions, with the use of decametric to kilometric spatial 

resolution sensors. However, agricultural landscapes are high-

ly heterogeneous, due to crop mosaics and canopy structures. 
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Recent observing systems and modeling improvements now 

allow the investigation of such complex terrains and canopies. 

The IEEE Geoscience and Remote Sensing Letters (IEEE-

GRSL) opened a call for submission of research papers, 

through a Special Stream devoted to solar and thermal infrared 

remote sensing of biophysical variables in agricultural land-

scapes characterized by spatial heterogeneity. Among 23 sub-

missions, eight papers were accepted for publication, tempo-

rally distributed from July 2013 to January 2014. The papers 

addressed the implications of spatial heterogeneity when map-

ping a panel of biophysical variables (surface reflectance, 

chlorophyll fluorescence, LST, LIDAR waveform, GPP, and 

fAPAR), over various agrosystems (forests, orchards, vine-

yards, crops, and grasslands), using different remote sensing 

techniques (active and passive sensors over the solar and 

thermal infrared spectral domains), onboard different plat-

forms (airborne and satellite). 

This paper concludes the Special Stream by focusing on the 

main outcomes in light of prior research. Section II discusses 

how spatial heterogeneity is considered in the literature. Sec-

tion III presents the methodological strategies that have been 

developed to overcome the difficulties induced by spatial 

heterogeneity. Section IV provides an overview of the high-

lights from prior research. Section V details the outcomes 

from the Special Stream. Section VI concludes the paper by 

identifying some critical issues to be addressed in the future. 

II. SPATIAL HETEROGENEITY IN REMOTE SENSING 

In relation to technological constraints and intrinsic charac-

teristics, any remotely sensed measurement corresponds to a 

mixed pixel that depicts horizontal and vertical heterogenei-

ties. As stated by [3], there is no single definition of spatial 

heterogeneity, because it is usually regarded according to the 

considered scales and the targeted variables. 

Spatial heterogeneity results from the patterns observed at a 

given scale that is driven by the sensor sampling capabilities 

[4, 5]. At the landscape scale, spatial heterogeneity is charac-

terized either by the length scale beyond which it cannot be 

captured (textural features) or by the sizes and shapes of land-

scape elements (contextural features) [6]. In this case, spatial 

heterogeneity can be described with land use maps [7] or ge-

omorphological maps [8]. It can also be characterized through 

semi-empirical parameters derived from the angular signature 

of the bidirectional reflectance [9, 10]. At the field scale, spa-

tial heterogeneity is usually defined according to canopy verti-

cal structure [11], horizontal structure [12], or both [13].  

Spatial heterogeneity also results from radiative transfer 
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processes that are driven by spatial structures and land surface 

processes. The solar observations are influenced by several 

factors such as shadowing effects or multiple scattering [12]. 

The thermal observations are also affected by multiple scatter-

ing and shadowing effects, as well as by vegetation and soil 

water status [14]. 

As driven by spatial patterns and land surface processes, 

spatial heterogeneity varies with scale and time. It decreases 

with larger scale [5], and varies with the temporal evolution of 

the elements within the spatial patterns or vertical strata [15]. 

III. METHODOLOGICAL STRATEGIES 

In the context of using solar and thermal remote sensing to 

map biophysical variables over agricultural landscapes, sever-

al methods were developed to account for spatial heterogenei-

ty. We provide an overview of these approaches by dividing 

them into two types: bottom-up and top-down approaches.  

Bottom-up approaches aim to estimate biophysical variables 

over a given extent by accounting for spatial heterogeneity 

within this extent. This includes simulating remotely sensed 

measurements with radiative transfer models (RTM, Section 

III.A), spatializing local ground measurements (Section III.B), 

and correcting errors induced by spatial heterogeneity within 

coarse-resolution pixels (Section III.C). 

Top-down approaches use ancillary information to retrieve 

biophysical variables for scene components horizontally or 

vertically distributed within the pixel. They rely on unmixing 

methods (Section III.D). Spatial heterogeneity is characterized 

by both the description level (e.g., the number of components) 

and the type of ancillary information used for unmixing (e.g., 

LAI, temperature, land use). 

A. Spatial heterogeneity and radiative transfer modeling 

Radiative transfer models (RTM) simulate the remotely 

sensed signal according to a given representation of the scene 

within the pixel. The representation accounts for spatial heter-

ogeneity with different levels of complexity in terms of spatial 

structures and radiative transfer processes. 

At the basic level of complexity, spatial heterogeneity can 

be described by considering few scene components that are 

distributed vertically (e.g., soil and vegetation, eventually 

shaded and sunlit) or horizontally (e.g., land use classes). The 

radiative transfer modeling is then restricted to linear or quad-

ratic combinations of radiative properties such as reflectance 

or temperature [16, 17]. 

At the intermediate level of complexity, 1-D structures are 

associated to turbid RTM to describe vertical heterogeneity. 

They encompass several layers, including the soil, and each 

layer can include several elements with different radiative 

properties [18, 14]. 2-D structures are associated to geometric-

optics models with a limited number of inputs, to describe 

both horizontal and vertical heterogeneity. They include geo-

metrical elements such as parallelepipeds, cylinders, or ellip-

soids in relation to the shapes of trunks, stems, or foliage [19]. 

At the highest level of complexity, 3D mock-ups are associ-

ated to radiosity or ray tracing methods with a large number of 

inputs [20, 21]. They describe the scene as an ensemble of 

elements such as triangles or cells. 

B. Spatial heterogeneity and spatialization methods 

Spatialization methods aim to produce biophysical variable 

maps from a limited number of local measurements distributed 

over a given extent. This requires two steps: first to develop 

spatial sampling strategies and second to apply spatialization 

methods. Both steps rely on using ancillary information to 

characterize the spatial heterogeneity.  

The ancillary information must be strongly correlated with 

the biophysical variable of interest. Different sources of in-

formation are used and can be related to anthropogenic factors 

(e.g., land use), biophysical variables (e.g., GPP), or geomor-

phological drivers (e.g., soil properties). 

Sampling strategies generally use classification maps to op-

timize the number and location of the measurements [22]. 

Spatialization methods rely on either transfer functions (e.g., 

relationships between the measurements and the ancillary 

information), or geostatistics with or without ancillary infor-

mation (e.g., ordinary or collocated kriging) [23]. 

C. Spatial heterogeneity and coarse resolution pixel 

The biophysical variable value at coarse resolution is the 

arithmetic average of the biophysical variable at finer resolu-

tion. When estimating the biophysical variable from remote 

sensing data, this is still the case when the surface is homoge-

neous or when the surface is heterogeneous and the relation-

ship F between the remotely sensed signal and the variable is 

linear. However, when F is nonlinear and the surface is heter-

ogeneous, arithmetic averaging is not valid [24]. The associat-

ed biases have been quantified in different ways: by compar-

ing the biophysical variable value obtained by averaging the 

fine resolution estimates with the one issued from the coarse 

resolution [25, 26], or by combining F non-linearity derived 

from Taylor decomposition with spatial heterogeneity quanti-

fied from variogram analysis [27]. As heterogeneity is scale 

dependent, the biases depend upon the resolution difference 

between the coarse and fine pixels [28]. 

D. Spatial heterogeneity and unmixing methods 

Unmixing methods consist of retrieving the biophysical var-

iable for each homogeneous scene component within the pixel. 

These components are horizontally (e.g., crop mosaic) or 

vertically (e.g., understory and trees) distributed.  

Vertical heterogeneity is commonly addressed by inverting 

linear RTM to retrieve biophysical variables for canopy strata 

(e.g., the LAI for understory and tree crown [17] or the tem-

perature for soil and vegetation [16]). Linear RTMs consider 

only single scattering, which assumes that the vertically dis-

tributed elements do not interact. This is equivalent to project-

ing the vertical distribution on a horizontal plane in the view-

ing direction. The inversion of nonlinear RTM has been main-

ly conducted using LIDAR data, in order to characterize forest 

canopy structure [29]. 

Horizontal heterogeneity in unmixing methods is commonly 

addressed by disaggregating pixels, with ancillary information 

at finer spatial resolution. The goal is to use fine spatial infor-
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mation from high-resolution sensors and high revisit frequen-

cy of coarse-resolution sensors. Disaggregation is usually 

achieved by fitting multi-linear regressions between the bio-

physical variable at coarser resolution and the ancillary infor-

mation at finer resolution. Ancillary information can be the 

same biophysical variable at the resolution of homogeneous 

land units [30], or a panel of other variables [31]. This as-

sumes that the biophysical variable of interest is spatially 

correlated with the ancillary information [32].  

IV. RESULTS FROM PRIOR RESEARCH 

In relation to the topics addressed in Section III, we discuss 

here breakthroughs from prior research. Therefore, some out-

comes are not considered, because they have been widely 

published. Most of them stated that applying methods de-

signed for homogeneous surfaces over heterogeneous areas is 

not adequate. 

Before designing methods for mapping biophysical varia-

bles over heterogeneous surfaces, it is necessary to character-

ize spatial heterogeneity, according to the limited capabilities 

of existing sensors. Capturing spatial heterogeneity requires 

that the pixel size is lower than the length scale of the bio-

physical variable [33]. Furthermore, pixel shape could be 

optimized as a function of spatial heterogeneity [34].  

The signal simulated by RTM depends on both the degree 

of the scene heterogeneity and the ability of the model to de-

scribe this heterogeneity. Many models have been improved to 

account for specific heterogeneities (e.g., leaf or plant clump-

ing, rows, or shadowing effects) [15, 35]. However, when 

comparing models with different complexities over a range of 

spatial heterogeneity, [36] showed that concluding on the best 

model is difficult because of differences in model assump-

tions. 

When spatializing ground measurements to validate bio-

physical variable products at coarse resolution, it is necessary 

to associate an error estimate to the spatialized and/or upscaled 

variable. Only few studies investigated the quantification of 

this error, and they all rely on kriging methods ([37]). 

When considering spatial heterogeneity within the coarse 

resolution pixel, [27] showed that the biases induced by the F 

non-linearity (Section III-C) can reach up to 20% for LAI at 

1 km spatial resolution. The largest biases are observed for 

agricultural areas due to crop patches. These biases are scale 

dependent, and decrease with pixel resolution [24], similarly 

to spatial heterogeneity (Section II). They result from observa-

tion conditions [38, 5], including landscape patterns that 

change with time, radiative transfer processes such as multiple 

scattering and adjacency effects, and instrumental effects such 

as the point spread function (PSF). Finally, the impact of spa-

tial heterogeneity on biophysical variable retrieval depends on 

the degree of the F non-linearity: for LST, [25] reported that it 

is moderate, with uncertainties ranging from 0.5 K to 1 K.  

Unmixing methods from RTM inversion usually rely on 

linear RTM, and address the retrieval of biophysical variables 

for a few scene components only. A critical issue is to make a 

compromise between the number of components describing 

the spatial heterogeneity and the retrieval accuracy of the 

corresponding biophysical variables. It is possible to increase 

the number of scene components by using multi-angular ob-

servations. Thus, [17] retrieved LAI of understory and crowns, 

and [39] estimated temperature of sunlit and shaded compo-

nents, additionally to soil and vegetation. 

Unmixing methods based on pixel disaggregation mostly 

deal with surface temperature [32]. This is motivated by the 

low revisit frequency of high-resolution sensors in relation to 

the high temporal variability of temperature, compared to 

other variables that monotonously and slowly change with 

time (e.g., LAI). Throughout the last decade, an increasing 

amount of ancillary information has been included in the dis-

aggregation schemes (e.g., NDVI, emissivity, and microwave 

brightness temperature) [40, 31]. This requires characterizing 

the relationships between surface temperature and ancillary 

information. However, [41] questioned the scale invariance of 

these relationships. Overall, the obtained accuracy, between 

2 K and 3 K, is still far from the requirements. 

Topography is another source of spatial heterogeneity that 

has been addressed in few studies. Over the solar domain, [42] 

 

TABLE I: OVERVIEW OF THE SPECIAL STREAM PAPER CONTENT. 

Paper 
Spatial  
Heterogeneity 

Scale Agrosystem 
Type of 
Scene  

Radiative 
Transfer Modeling 

Spectral  
Domain 

Variable of  
Interest 

Scientific  
Question 

[45] Horizontal Field Vineyards 2D Linear aggregation TIR LST Directional effect  
on mixed pixel 

[46]  Horizontal Landscape Sparse  

Vegetation 

2D Linear aggregation TIR LST Directional effect  

on mixed pixel 

[47] Horizontal Field Orchard 2D Linear aggregation 

Hybrid model 

Solar Fluorescence Fluorescence  

of mixed pixel 

[48] Horizontal Field Orchard 2D Linear aggregation Solar fAPAR Spatial information  

from high resolution data 

[49] Both Landscape Spruce 3D Ray tracing Solar fAPAR Multiple scattering 

& spatial resolution 

[50]  Both Field Corn, Forest, 
Orchard 

3D Ray tracing LIDAR LIDAR 
Waveform 

Multiple scattering  
& spatial resolution  

[51] Vertical Field & 

Landscape 

Forest 2D Linear  

aggregation 

Solar Reflectance Understory impact  

on signal 

[52] Horizontal Landscape Grassland 
Forest 

2D - Solar GPP Ground sampling  
strategy 
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showed the benefit of including topographic correction within 

turbid RTM. Over the TIR domain, [25] reported an increase 

in accuracy of 1 K when accounting for terrain-induced angu-

lar effects in surface temperature aggregation scheme. 

Finally, an original direction was explored by [43], who 

took advantage of the temporal dynamics of spatial heteroge-

neity. They used the scene component dynamics as a priori 

information to constrain the inversion of an RTM. Similarly, 

[44] constrains RTM inversion by assuming different spatial 

variabilities for each model variable (e.g., unique value within 

the field or within an     pixel window). 

V. OUTCOMES FROM THE SPECIAL STREAM  

Among the four types of methodological strategy discussed 

in Section III and IV, the eight papers published in the Special 

Stream dealt with the bottom-up approach: seven papers ad-

dressed the simulation of remotely sensed measurements, and 

one focused on the spatialization of local ground measure-

ments. The top-down approach was not addressed. Table I 

summarizes the content of the papers in relation to the differ-

ent items discussed in Sections II and III. 

Four papers of the Special Stream addressed the shadowing 

effect on remotely sensed measurements. [45] and [46] 

brought up the influence of these effects on the angular signa-

ture of LST. [46] showed the consequences when intercompar-

ing and validating coarse resolution LST. In the solar domain, 

[47] identified shadowing effects as the cause of discrepancies 

between fluorescence estimates at the tree level and those at 

lower spatial resolutions (≥50 m). Finally, [48] took advantage 

of the very high spatial resolution to identify shadowed and 

sunlit soil to improve fAPAR estimates. 

Three papers of the Special Stream addressed the notion of 

spatial resolution limit in relation to spatial heterogeneity. On 

the one hand, [49] and [50] showed that multiple scattering 

can no longer be neglected when refining the spatial resolution 

up to a few meters. On the other hand, [47] investigated the 

impact of degrading the spatial resolution when mapping veg-

etation fluorescence. They showed that spatial heterogeneity, 

induced by vegetation cover fraction, strongly affects the fluo-

rescence signal within a mixed pixel. 

Vertical heterogeneity was addressed by [51] only. The au-

thors showed that, for boreal forests, the understory could 

contribute up to 40% to the canopy reflectance. They conclud-

ed that it is necessary to account for the understory contribu-

tion when monitoring the temporal dynamics of tree LAI. 

In the unique paper dealing with the spatialization of local 

ground measurements [52], the benefit of using geostatistical 

methods with remote sensing data was investigated. To opti-

mize ground sampling, the authors showed the interest of 

considering the anisotropic feature of horizontal heterogeneity. 

VI. FUTURE DIRECTIONS  

Each of the studies cited in this paper addressed a specific 

heterogeneity. Therefore, the proposed methods and associat-

ed outcomes are not general since they are not representative 

of any range of agricultural landscapes.  

There is a lack of studies dealing with vertical heterogenei-

ty. Unmixing methods that rely on RTM inversion must focus 

on multi-layer models rather than simple linear models. This 

requires using multispectral and multiangular observations.  

We recommend accounting for the difference between tem-

poral dynamics of canopy elements (e.g., understory or tree 

crown). A possible solution is to exploit these dynamics as a 

priori information for RTM inversion, or to decompose the 

time series of the composite signal through wavelet analysis. 

The influence of inherent measurement factors is rarely in-

vestigated when addressing spatial heterogeneity. Multiple 

scattering or topography must be taken into account in both 

RTM direct and inverse modes. We also suggest developing 

correction methods for sensor PSF and gridding artefacts [53].  

Forthcoming sensors with high spatiotemporal resolution 

[54, 55] will offer new possibilities to address these issues. 

Thus, the scientific community can benefit from observations 

compatible with the temporal dynamics and spatial patterns of 

agricultural landscapes. 
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