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Willis coupling in water waves

Metamaterials have their constitutive parameters engineered in different kinds of classical waves through tailor-made resonating structures. In acoustics, recent developments allow us to realize Willis coupling, the cross term between stress and velocity, or momentum and strain, which is challenging to be realized by conventional means. In this work, we numerically demonstrate such a concept is also valid in the domain of linear surface water waves, adding a new member for water wave metamaterials with effective constitutive parameters going beyond conventional composites, in addition to already demonstrated negative refraction and negative gravity. The Willis coupling in water waves features a directional dependence of wave propagation, which can be useful for applications such as in seismic isolation, coastal protection, water-wave energy-harnessing, and also for constructing non-Hermitian exceptional points.

 .

 . Elastic or mechanical metamaterials, boosted with the recent availability of additive manufacturing, allow the constructions and demonstrations of Willis coupling through the notion of artificial resonating structures, which are exactly metamaterials' original promise in giving novel constitutive parameters.

 .

 . With the

background of the recent demonstrations of Willis coupling in acoustics and elastic flexural waves, it becomes curious to ask whether Willis coupling also exists for water waves, which are indeed a kind of mechanical waves, like acoustic waves and elastic waves in a solid, for completeness. As we shall see later, the Willis coupling features different wave impedances in the forward and backward propagating directions. We expect different reflectance and absorbance in different directions. That may be useful to construct cavities and to tune resonating conditions in different directions. Unlike acoustic or elastic waves, we found that for water waves, the Willis coupling can extend to very small frequency by proper three-dimensional designs.

Although metamaterials for water waves are much less developed at the moment, the investigations here may find applications in coastal protection, damping, and also energy harvesting [START_REF] Salandra | Conception of a 3D metamaterial-based foundation for static and seismic protection of fuel storage tanks[END_REF][START_REF] Clamond | An efficient model for three-dimensional surface wave simulations. Part II: Generation and absorption[END_REF] . The water (transparent blue region) runs along the x-direction with height ℎ 0 = 0.4m and is supported by a rigid bottom (dark gray color) in the negative z-direction. Within the water region, several unit cells of Willis metamaterials, which are constructed by mushroom-shaped pillars (green color) and crescentshaped walls (gray color), are clamped to the rigid bottom. The mushroom stalk is represented by a cylinder with a radius of 𝑟 𝑝 = 0.03m and height of ℎ 1 = 0.37m, and the mushroom head is represented by a disk with a radius of 𝑟 𝑜 = 0.26m and thickness of 𝑑 1 = 0.03m. The pillars (in green color) are submerged in water a distance 𝑑 2 = 0.03m away from the water surface, while the height of the crescent-shaped walls exceeds the height of the water, so the water can flow on the top of the pillar but blocked by the crescent-shaped walls. The dashed box in (b) shows a unit cell of the Willis metamaterials with a lattice constant 𝑎 in the x-direction, and the red dots indicated that the metamaterials are also periodic in the y-direction with a lattice constant 𝑤. The crescent shape of the walls (gray color) is generated by the difference between two circular disks with radii 𝑟 𝑜 = 0.26m and 𝑟 𝑖 = 0.24m with a relative shift Δ =0.025m between the two disks. A rotation angle 𝜃 of the crescent wall in the anti-clockwise direction is defined with respect to the positive x-axis.

In this work, we investigate a design of water-wave metamaterial to achieve the Willis coupling term and investigate its physical meaning. Here we consider a three-dimensional (3D) water wave system contains several unit cells of Willis metamaterials arranged periodically in both x-and y-directions. As shown schematically in Fig. 1(a) for the side view and 1(b) for the top view, the water (transparent blue color) with a height of ℎ 0 is supported by a rigid bottom in the negative z-direction, water wave propagations along the x-direction. Within the water, several unit cells of the Willis metamaterials are clamped to the rigid bottom, each unit cell consists of a mushroom-shaped pillar (green color) with a crescent-shaped wall (gray color) covered on its top. In the mushroom-shaped pillars, the cylinder with a radius of 𝑟 𝑝 = 0.03m and height of ℎ 1 =0.37m represented the mushroom stalk, and the disk with a radius of 𝑟 𝑜 and thickness of 𝑑 1 represented the mushroom cap. The mushroom pillars (green) are completely submerged in water, with a distance of 𝑑 2 below the water surface (at 𝑧 = 0), while the height of the crescent-shaped walls exceeds the water surface, so that the water waves can flow on the top of the pillar while blocked by the crescent-shaped walls. The crescent shape of the walls is generated by the difference between two circular disks with radii of 𝑟 𝑜 = 0.26m and 𝑟 𝑖 = 0.24m, respectively, a relative shift Δ =0.025m between two disks, and the rotation angle 𝜃 in the anti-clockwise direction is defined with respect to the positive x-axis. The dashed box in Fig. 1(b) shows a unit cell of the Willis metamaterials with a lattice constant 𝑎 in the x-direction, and the red dots indicated that the metamaterials are also periodic in the y-direction with a lattice constant 𝑤. Without losing generality, we set ℎ 0 = 0.4m, ℎ 1 = 0.37m, 𝑎 = 𝑤 = 0.6m, 𝑟 𝑖 = 0.24m, 𝑟 𝑜 = 0.26m, 𝑑 1 = 0.03m, 𝑑 2 = 0.03m, and relative shift Δ = 0.025m as a starting example. The metamaterials break the mirror symmetry along y-axis when the rotation angle 𝜃 is other than ±90°, and the designed configuration with general 𝜃, will be sufficient to generate significant Willis coupling as a constitutive parameter, with free-space wavelength (inside the background region without resonators) being more than 6 times larger than the size of the unit cell (𝑎) to validate an effective medium picture. The water wave, described using a potential flow approach [START_REF] Maurel | Revisiting the anisotropy of metamaterials for water waves[END_REF][START_REF] Berraquero | Experimental realization of a water-wave metamaterial shifter[END_REF] for an incompressible and irrotational fluid with viscosity being neglected here [START_REF] Dupont | Type of dike using C-shaped vertical cylinders[END_REF] , has its velocity potential Φ (velocity 𝒗 = -∇Φ) in the bulk region satisfying the Laplace equation

∇ 2 Φ = 0, (1) 
together with a boundary condition on the water surface at 𝑧 = 0:

𝜕 𝑧 Φ = 1 𝑔 𝜕 𝑡 2 Φ, (2) 
and zero normal gradient of Φ on all the rigid walls, including the bottom water surface (at 𝑧 = -ℎ 0 ) and the surfaces of the structures. The standard acceleration 𝑔 caused by gravity is taken as 9.8ms -2 in this work. In the background region without the structures (labeled with subscript "0"), Eq. ( 1) and ( 2) can be reduced by using separation of variables between 𝑥 and 𝑧 as a wave equation for water waves propagating along the x-direction (where the time variable has been suppressed by timedependence exp(-𝑖𝜔𝑡) with 𝜔 the angular frequency in units of rad/s):

𝜕 𝑥 𝑞 = 𝑖𝜔 1 𝑔 𝜑̇, 𝜕 𝑥 𝜑̇= 𝑖𝜔 1 ℎ ̃0 𝑞.
(

) 3 
The acceleration potential 𝜑̇ on the water surface and the area flux 𝑞 in the wave equation are defined by

𝜑̇≜ -𝑖𝜔Φ, 𝑞 ≜ ∫ 𝑣 𝑥 𝑑𝑧 0 -ℎ = ℎ ̃0𝜕 𝑥 𝜑,
with ℎ ̃0 being the ratio between the area flux and the surface velocity in the background region. ℎ ̃0 varies with the wavenumber 𝑘 0 by ℎ ̃0 = tanh(𝑘 0 ℎ 0 ) /𝑘 0 , giving rise to the frequency dispersion 𝜔 2 /𝑘 0 2 = 𝑐 0 2 = 𝑔ℎ ̃0 with wave speed 𝑐 0 decreases with an increasing frequency. Now, we go to the region with the structures. The crescent-shape walls are designed to break the mirror symmetry and induce a Willis coupling. Then, the wave equation, the homogenized version of Eq. ( 3), has to be written in a matrix form as

𝜕 𝜕𝑥 ( 𝑞 𝜑̇) = 𝑖𝜔 ( 1/𝑔 eff 𝑖𝜏 eff -𝑖𝜏 eff 1/ℎ eff ) ( 𝜑q ) (4) 
where 𝑔 eff is the effective gravity and ℎ eff is the effective height of the metamaterial section. A non-zero 𝜏 eff is unavoidably introduced in the 2×2 constitutive matrix to represent the Willis coupling arising from the mirror symmetry breaking. Eq. (4) approaches to Eq. (3) when 𝑔 eff = 𝑔, ℎ eff = ℎ ̃0 and 𝜏 eff = 0 if the metamaterial goes back to the background medium. We have assumed reciprocity to have a zero sum for the two off-diagonal elements. If the system is lossless, the constitutive matrix is Hermitian, and 𝜏 eff becomes purely real. If the system does not break mirror symmetry, we have Eq. ( 4) preserved by 𝑞 → -𝑞 and 𝑥 → -𝑥 so that 𝜏 eff should be zero as expected. The direct consequence of a non-zero Willis coupling can be considered by solving Eq. (4) for the eigenmodes to obtain the dispersion relationship of the metamaterial

𝑘 2 = 𝜔 2 ( 1 𝑔 eff 1 ℎ eff -𝜏 eff 2 ), (5) 
which now contains the Willis coupling parameter 𝜏 eff in modifying the dispersion relation of the background medium. The sign of the 𝜏 eff depends on the direction of the crescent-shaped wall (and being revealed in the difference between the forward and backward reflectance in the later part). The wavenumber, although modified, is the same for both the forward and backward modes although mirror symmetry is broken. This comes from the time-reversal symmetry of the lossless system instead. It also means that the sign flipping of 𝜏 eff , e.g. from a mirror operation on the system, should not change the index in Eq. ( 5). On the other hand, the sign of 𝜏 eff and its magnitude will affect the impedances defined here by 𝑍 ± ≜ ±𝜑̇/𝑞, for the forward (+) and backward (-) propagating or decaying modes. They become different from each other for a non-zero Willis coupling and are governed by

𝑍 ± = 𝑔 eff ( 𝑘 𝜔 ∓ 𝑖𝜏 eff ). (6) 
The Willis coupling parameter 𝜏 eff affects the expression of 𝑘 and introduces an additional term in 𝑍 ± . The dispersion relationship together with the impedances allow us to identify the three constitutive parameters (effective medium) as

1 𝑔 eff = 𝑘 𝜔 2 𝑍 + + 𝑍 - , 1 ℎ eff = 𝑘 𝜔 2𝑍 + 𝑍 - 𝑍 + + 𝑍 - , 𝑖𝜏 eff = - 𝑘 𝜔 𝑍 + -𝑍 - 𝑍 + + 𝑍 - . (7) 
These formulas generalize the conventional case 1/𝑔 eff = 𝑘/(𝜔𝑍) and 1/ℎ eff = 𝑘𝑍/𝜔 when there is no Willis coupling (𝑍 + = 𝑍 -= 𝑍 and 𝜏 eff = 0 ). On the other hand, we can perform 3D full-wave simulations, consisting of the microstructures (COMSOL Multiphysics in solving Eq. ( 2) and ( 1)), with two distinct excitations iterated by 𝑗 = 1,2. Deep inside the metamaterial and across a single unit cell from 𝑥 = 0 to 𝑥 = 𝑎, we can obtain the 𝜑̇ and 𝑞 fields on the two sides of a unit cell.

Then, a finite-difference approximation of Eq. ( 4), i.e. in the local limit |𝑘|𝑎 ≪ 𝜋, becomes

( Δ𝑞 Δ𝜑̇) = 𝑖𝜔𝑎 ( 1/𝑔 eff 𝑖𝜏 eff -𝑖𝜏 eff 1/ℎ eff ) ( 〈𝜑̇〉 〈𝑞〉 ), (8) 
where the discrete difference and the macroscopic 𝜑̇ field are obtained by some averaging over the boundary of the unit cell

Δ𝜑̇= 1 𝑤 ∫ 𝑑𝑦 (𝜑̇(𝑎, 𝑦) -𝜑̇(0, 𝑦)), (9) 
〈𝜑̇〉 = 1 2𝑤 ∫ 𝑑𝑦 (𝜑̇(𝑎, 𝑦) + 𝜑̇(0, 𝑦)), (10) 
with 𝑎 and 𝑤 being the periodicities of the metamaterial in the x-and y-direction. Similar definitions hold for the area flux 𝑞.

For simplicity, Eq. ( 10) evaluates the macroscopic field by an algebraic average of the boundary fields as a straightforward introduction. For 3D simulations, we also average along the z-direction as well. We have developed a scheme based on an integral approach in obtaining these macroscopic fields in order to have better accuracy at a finite frequency in the Appendix.

Nonetheless, Eq. ( 8) allows us to extract the constitutive matrix numerically by

𝑖𝜔𝑎 ( 1/𝑔 eff 𝑖𝜏 eff -𝑖𝜏 eff 1/ℎ eff ) = ( Δ𝑞 1 𝛥𝑞 2 𝛥𝜑̇1 𝛥𝜑̇2 ) ( 〈𝜑̇1〉 〈𝜑̇2〉 〈𝑞 1 〉 〈𝑞 2 〉 ) -1 , (11) 
where subscript 𝑗 stands for the 𝑗-th excitation. Here, we excite the metamaterial with 3 unit cells (beyond which the results converge) and extract the constitutive matrix using Eq. (11) from the fields of the central unit cell by shining an incident wave from the left-(𝑗 = 1) and right-(𝑗 = 2) hand sides of the whole metamaterial. The numerically extracted effective medium is shown in dimensionless units in Fig. 2(a) to (c) for 𝑔/𝑔 eff , ℎ ̃0/ℎ eff and 𝜏 eff 𝑐 0 respectively. In the long-wavelength limit, the effective medium parameters start from 𝑔/𝑔 eff ≅ 1, ℎ ̃0/ℎ eff ≅ 1 (because the flow is nearly unaltered without blocking) and 𝜏 eff = 0. Their magnitude increases significantly when it is near to the resonance frequency around 0.28Hz. The Willis coupling significantly deviates from zero (we will see its effect in reflectance later). The dimensionless impedances 𝑍 ± /𝑍 0 for the forward and backward modes evaluated from effective medium are shown in Fig. 2(d), where 𝑍 0 is the impedance of the background medium defined as 𝑍 0 = √𝑔 ℎ ̃0 ⁄ . The Willis coupling now introduces an imaginary part in the two impedances with the same magnitude but opposite signs in the passbands (Eq. ( 6) with real 𝑘, 𝑔 eff and 𝜏 eff ). In the bandgap, 𝑘 becomes purely imaginary and the real part of the two impedances becomes zero. The band structure evaluated from the effective medium (𝑔 eff , ℎ eff and 𝜏 eff ) with Eq. ( 5) is shown as solid lines in Fig. 2(e), which clearly shows the signature of a resonance gap at around 0.28Hz (with gap bottom at Brillouin zone edge while gap top at the centre). For comparison, the simulated band structure from 3D-full wave simulations is also plotted as red symbols in the same figure, it can be seen that the band structures from effective medium reproduced very well of the simulated ones, showing accuracy of the effective medium not only for the acoustic band in the low-frequency regime, but also for the band above the stop band, which is reminiscent of high-frequency homogenization theories that go beyond the usual quasistatic limit [START_REF] Craster | High-frequency homogenization for periodic media[END_REF][START_REF] Nemat-Nasser | Homogenization of periodic elastic composites and locally resonant sonic materials[END_REF] . It is worth to note that from the solved eigenmodes for the Willis metamaterial in the forward (with Bloch factor exp(𝑖𝑛𝑘 0 𝑎)) and backward (with Bloch factor exp(-𝑖𝑛𝑘 0 𝑎)) cases, the impedance on one side of the unit cell for each mode can also be evaluated by 𝑍 ± = ±(∫ 𝑑𝑦 𝜑̇)/(∫ 𝑑𝑦 𝑞), with the solved impedance and band structure, the effective medium parameters can also be evaluated with Eq. ( 7) [START_REF] Li | Double-negative acoustic metamaterial[END_REF] . Compared to the excitation method we adopt in this work, the eigenmode method gives an accurate 𝑘 but can only be used within a passband. Local resonance dips can be found at around 0.28 Hz in both cases. For comparison, the amplitudes for transmission (red square symbols) and reflection (blue circle symbols) obtained from the 3D full-wave simulations are shown in Fig. 3(a) and (b). It can be seen that the transmission and reflection spectra reproduced from effective medium agree well with the simulated ones, which verify the accuracy of the extracted effective parameters, the good agreement between the effective medium and fullwave simulations results from that the wavelength in the background medium is larger than 6 times of the unit cell. We emphasize that the effectively medium is only extracted once but it can work for different number of unit cells in the spectra.

In fact, the transmission amplitude |𝑡| (also phase) is the same for forward and backward incidence for reciprocity, so is |𝑟| when the system is lossless. The effect of a non-zero Willis coupling in a lossless system can be revealed in the phase of the complex reflection amplitude in the forward ( 𝑟 𝑓 ) and backward (𝑟 𝑏 ) directions. The relative phase |arg(𝑟 𝑓 /𝑟 𝑏 )| against wavenumber 𝑘 0 for the case of one unit cell evaluated from the effective medium is plotted (blue solid line) in Fig. 3(c) wave simulations for both one-unit cell (blue circle symbols) and four-unit cells (red square symbols) cases are shown in Fig. 4(c), which are nearly the same for both cases, except at individual frequencies where |𝑟| becomes very small to have some ambiguity in defining a phase of 𝑟 accurately. It means that this asymmetry between forward and backward reflection phases is a property of individual unit cells. The relative phases evaluated from effective medium agree well with the simulated ones, which not only verifies the accuracy of the effective medium but also demonstrated the existence of non-zero Willis coupling.

We have chosen to put the resonators at the centre of the square unit cell (0.6m × 0.6m). The reflection phase can in principle depend on how we define the boundary of the unit cell. For the current system, we have some flexibility to define the boundary of the unit cell by a small shift 𝜉 in the x-direction, which will induce a phase shift on arg(𝑟 𝑓 /𝑟 𝑏 ) by -4𝜉𝑘 0 , being linear in wavenumber 𝑘 0 . Fig. 3(c) shows the linear fit (black dashed line) of the simulated relative phase for one-unit cell, but it will not be able to renormalize the resonating asymmetry of reflection phases by such a shift of unit cell boundaries, indicating the Willis coupling cannot be eliminated by the convention in defining the boundaries of a unit cell: the Willis coupling is a genuine effect. We also note that if the crescent-shaped walls are now changed to point to the negative x-direction (changing 𝜃 = 0° to 𝜃 = 180°), the phase will gain an additional minus sign (still the same magnitude in Fig. 3(c)), which is also equivalent to a sign flipping on the 𝜏 eff shown in Fig. 2(c).

FIG. 3. Transmission |t| (red color

) and reflection amplitude |r| (blue color) for one-unit cell (a) and four-unit cells (b), the lines are evaluated from effective medium, and the symbols are calculated from 3D full-wave simulations. (c) The relative phase |arg(𝑟 𝑓 /𝑟 𝑏 )| for one unit cell evaluated from effective medium (blue solid line), and the simulated relative phase for one-unit cell (blue circle symbols) and four-unit cells (red square symbols). The black dashed line is a linear fitting of the simulated relative phase for one-unit cell with a function of -4𝜉𝑘 0 , if we try to renormalize the asymmetry of reflection phases using a shift of unit cell boundaries by a distance of 𝜉 in the xdirection. When a material loss is added into the system, both the reflection amplitude (not affected by the convention of unit cell boundaries) and phase can become asymmetric for the two incident directions. It is generally valid for different orientations of the crescent walls (rotation angle 𝜃). For any values other than ± 90°, mirror symmetry with respect to the y-axis is broken, and if we incorporate a resonance with loss, significant asymmetry in the reflection amplitudes can be observed, as the result of a non-zero Willis coupling. The loss is introduced by adding friction term in Eq. ( 2) for an illustrative purpose here, specifically, a 10% imaginary part of the real part in 𝜔 is added (equivalently to add loss in 1/𝑔) at the hollow regions of the crescent-shaped walls. Figure 4(a) plots the transmission amplitude (green dotted line), forward reflection amplitude (blue solid line), and backward reflection amplitude (red dashed line) evaluated from effective medium for the case of 𝜃 = 0°, 𝑟 𝑝 = 0.03m with 4 unit cells and 10% loss. In this case, the reflection amplitude in the forward direction is generally lower than the backward one, as in the forward incidence, the water wave can enter the cavity, making a larger absorption and hence a smaller reflection than the case of backward incidence. The differences between the forward and backward reflectance amplitude reveal the 
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Backward existence of Willis coupling, which significantly deviates from zero even in the long-wave limit in Fig. 4(a), due to that the impedance is nearly matched to the background (see. Fig. 2d that the real part of 𝑍 is very near to the one of background medium, as the flow is nearly not blocking in the while height except near to water surface). Distinguished from other mechanical wave systems such as acoustics or elastic waves in solid, water waves are unique by its surface wave characteristics, so impedance matching can be easily achieved in this case and Willis coupling in the long-wave limit region can be realized, which is not straightforward to be obtained in other mechanical waves. The asymmetry also exists in the phase as well (similar to Fig. 3c, results not shown). It is worth to note that a dip of reflection in a single incidence direction, e.g., the dip in the forward reflectance near f=0.15Hz in Fig. 4(a), is a non-Hermitian exceptional point, with both eigenvalues and eigenvectors degenerate for the scattering matrix, and also for the constitutive matrix [START_REF] Gear | Unidirectional zero reflection as gauged parity-time symmetry[END_REF] . We then increase the impedance of the Willis metamaterials by increasing the radius of the mushroom stalk 𝑟 𝑝 , hence more water will be blocked by the metamaterials which will introduce significant impedance mismatch. The results for the same system with 𝑟 𝑝 = 𝑟 𝑜 = 0.26m are shown in Fig. 4(b), a dip in transmittance spectrum (green dotted line) can be seen around the bandgap regime from 0.25Hz to 0.39Hz, and near this regime the contrast between forward and backward reflectance amplitude increases significantly and reach its maximum near 0.26Hz, where there is a dip in forward reflectance amplitude. It can be seen from Fig. 4(b) that by introducing the huge impedance mismatch within the resonance bandgap, the significant effect of Willis coupling is tuned from the long-wave region to the region near bandgap. So by changing the radius of the mushroom-shaped pillars, equivalent to changing the surface impedance of the Willis metamaterials, the region with significant Willis coupling can be artificially modulated. For comparison, the transmittance amplitude (green rhombic symbols), the forward (blue circle symbols) and the backward (red square symbols) reflectance amplitude calculated from the 3D full-wave simulations are also plotted in Fig. 4(b), good agreements between the effective medium and the simulations can be achieved, which demonstrates that the effective medium is also valid for loss cases. In the loss case, though the Willis coupling magnitude can be reduced [START_REF] Melnikov | Acoustic meta-atom with experimentally verified maximum Willis coupling[END_REF] , the Willis coupling term 𝜏 eff 𝑐 0 can still be observed from the effective method (similar to Fig. 2c, results not shown). Both the Willis coupling term 𝜏 eff 𝑐 0 in effective medium and the asymmetry in reflectance amplitude demonstrate the existence of Willis coupling in the loss case. The contrast in the forward and backward reflectance can also be revealed in the asymmetric field pattern for forward and backward incident cases. Specifically, we plot the vertical displacement field profile |𝜁| for both incidences at the frequency 0.26Hz in Fig. 4(c), where the forward reflectance is a dip in the spectra in Fig. shown. We can see that the contrast between forward and backward reflectance amplitudes reaches its maximum around 0.26Hz for all rotation angles: 𝜃 = 0° (blue solid lines), 𝜃 = 50° (red dashed lines) and 𝜃 = 70° (green dotted lines). The contrast between forward and backward reflectance amplitudes decrease when 𝜃 evolves from 0° to 70°, and go to zero when 𝜃 = 90°

(results no shown), where the mirror symmetry with respective of y-axis is preserved again so that the Willis coupling 𝜏 eff 𝑐 0 and the asymmetry in phase return to zero. So the effect of Willis coupling can be observed once we have resonance, mirror symmetry breaking and a sufficient amount of loss added to the system, with this concept, we can tune the configuration of the Willis metamaterials by varying the rotation angles, changing the scales of the crescent-shaped walls or the mushroom-shaped pillars to approach the maximum of Willis coupling magnitude [START_REF] Melnikov | Acoustic meta-atom with experimentally verified maximum Willis coupling[END_REF] . With proper tuning of the loss and the size of the resonator, an absorption device without reflection can be designed as well, which may be useful for wave manipulation in seismic isolation, coastal protection, water-wave energy-harnessing.

In summary, we have shown that Willis coupling is possible for linear surface water waves as a constitutive parameter not captured by conventional constitutive relationship, with both theoretical model and design. While it has been shown possible in acoustic waves and elastic waves in solid, its occurrence in water waves completes its existence in general mechanical wave systems. To achieve a significant effect, e.g. as an asymmetric reflection amplitude or phase against the different directions of incidence, one would need to break mirror symmetry with local resonance. It can be used to construct directional dependence of wave impedance and to add an additional degree of freedom in manipulating water waves in general.

APPENDIX

We establish the effective medium (with y-dependence eliminated by (1/𝑤)∫ 𝑑𝑦, where 𝑤 is the width of the channel):

( Δ𝑞 Δ𝜑̇) = 𝑖𝜔𝑎 ( 1/𝑔 eff 𝑖𝜏 eff -𝑖𝜏 eff 1/ℎ eff ) ( 〈𝜑̇〉 〈𝑞〉 ), (A1) 
which satisfies

𝜕 𝑥 ( 〈𝑞〉 〈𝜑̇〉 ) = 1 𝑎 ( Δ𝑞 Δ𝜑̇) (A2) 
Integrating Eq. (A2) along the x-direction over a unit cell allows us to identify Δ𝜑̇ and Δ𝑞 stated as Eq. ( 9). The macroscopic/effective fields 〈𝜑̇〉 and 〈𝑞〉 are smoothed out version of the microscopic fields and can be regarded as a sort of interpolated version from their values at the unit cell boundaries. For example, for linear interpolation with averaging

(1/𝑎)∫ 𝑑𝑥 where 𝑎 is the length of periodic cell along 𝑥, we obtain the algebraic-average definition of 〈𝜑̇〉 and 〈𝑞〉 in Eq. (10).

Suppose we are allowed to know a bit more on the microscopic model, in contrary to a complete black-box. In this case, the interpolation (Eq. ( 10)) can be improved to get a smaller numerical dispersion from the finite-difference approximation. In our current case (Fig. 1), we simplify the microscopic model, in one unit cell, by assuming the scattered field arises from a point source at the centre of a unit cell to generate both monopolar (𝑚) and dipolar (𝑝) sources: where 𝑍 0 = √𝑔/ℎ ̃0 is the intrinsic impedance of the background medium.

We substitute it into Eq. (A6) and request validity for arbitrary 𝜑̇( 0) (𝑎/2) and 𝑞 (0) (𝑎/2) (due to the generality of the effective medium framework for different excitations), we can prove (A8)

It returns to Eq. ( 10), the algebraic average, in the lowest order approximation of 𝑘 0 𝑎. By exciting the metamaterial with several unit cells with two different kinds of excitations, we can obtain two sets of macroscopic fields: 〈𝜑̇𝑗〉, 〈𝑞 𝑗 〉, Δ𝜑̇𝑗, Δ𝑞 𝑗 using Eq. (9) and Eq. (A8), and from these macroscopic fields we can extract the effective medium according to Eq. (11).

FIG. 1 .

 1 FIG. 1. (a) Side view and (b) top view of the Willis metamaterial for water wave propagation. (a)The water (transparent blue region) runs along the x-direction with height ℎ 0 = 0.4m and is supported by a rigid bottom (dark gray color) in the negative z-direction. Within the water region, several unit cells of Willis metamaterials, which are constructed by mushroom-shaped pillars (green color) and crescentshaped walls (gray color), are clamped to the rigid bottom. The mushroom stalk is represented by a cylinder with a radius of 𝑟 𝑝 = 0.03m and height of ℎ 1 = 0.37m, and the mushroom head is represented by a disk with a radius of 𝑟 𝑜 = 0.26m and thickness of 𝑑 1 = 0.03m. The pillars (in green color) are submerged in water a distance 𝑑 2 = 0.03m away from the water surface, while the height of the crescent-shaped walls exceeds the height of the water, so the water can flow on the top of the pillar but blocked by the crescent-shaped walls. The dashed box in (b) shows a unit cell of the Willis metamaterials with a lattice constant 𝑎 in the x-direction, and the red dots indicated that the metamaterials are also periodic in the y-direction with a lattice constant 𝑤. The crescent shape of the walls (gray color) is generated by the difference between two circular disks with radii 𝑟 𝑜 = 0.26m and 𝑟 𝑖 = 0.24m with a relative shift Δ =0.025m between the two disks. A rotation angle 𝜃 of the crescent wall in the anti-clockwise direction is defined with respect to the positive x-axis.

FIG. 2 .

 2 FIG.2. Effective medium for the Willis water-wave metamaterial: (a) 𝑔/𝑔 eff ; (b) ℎ 0 /ℎ eff ; (c) 𝜏 eff 𝑐 0 , with real/imaginary part in blue/red color. The dimensionless impedances 𝑍 ± /𝑍 0 (with 𝑍 0 being the impedance of the background medium) for the forward and backward modes are shown in (d) with Re(𝑍 + /𝑍 0 ) = Re(𝑍 -/𝑍 0 ) in blue color, and Im(𝑍 + /𝑍 0 ) and Im(𝑍 -/𝑍 0 ) in red and green colors, respectively. (e) The band structure asymptotically estimated from effective medium 𝑘 2 = 𝜔 2 /(𝑔 eff ℎ eff ) -𝜔 2 𝜏 eff 2 is shown as solid lines. For comparison, the band structure solved from the 3D full-wave simulations is shown in symbols (red circles). The geometric parameters of the metamaterial are ℎ 0 = 0.4m, ℎ 1 = 0.37m, 𝑎 = 𝑤 = 0.6m, 𝑟 i = 0.24m, 𝑟 o = 0.26m, 𝑟 𝑝 = 0.03m, 𝑑 1 = 0.03m, 𝑑 2 = 0.03m, 𝛥 = 0.025m, and 𝜃 = 0°.

  asymmetric phase between forward and backward reflectance, and the phase difference changes sharply around resonance, where the Willis coupling magnitude |𝜏 eff | reach its maximum. The relative phase |arg(𝑟 𝑓 /𝑟 𝑏 )| from full-

FIG. 4 .

 4 FIG. 4. (a) Transmission (|𝑡|, green color), forward reflection (|𝑟 𝑓 |, blue color), and backward reflection (|𝑟 𝑏 |, red color) amplitudes for four unit cells of the loss metamaterial with 𝜃 = 0° and 𝑟 𝑝 = 0.03 m. The lines are evaluated from effective medium, and the symbols are calculated by the 3D full-wave simulations. Material loss is added to the hollow regions of the crescent walls by adding friction term in Eq.(2), specifically, a 10% imaginary part in 𝜔 of their real part is added. (b) The transmission, forward and backward reflection amplitudes for four unit cells of the metamaterial with 𝑟 𝑝 = 0.26m under the same loss condition. (c) The surface displacement |𝜁| field pattern for forward and backward incidence at 0.26Hz (a forward reflection dip in (b)). Linear color scale is normalized to the incident wave. (d) |𝑟 𝑏 | -|𝑟 𝑓 | against frequency for rotation angle 𝜃 of the crescent-shaped walls equal to 0° (blue), 50° (red), 70° (green). The lines are evaluated from effective medium and the symbols are calculated by the 3D full-wave simulations.

  4(b), the field patterns are evaluated by 𝜁 ∝ 𝜑̇ and normalized to the incident wave. Interference between the incident wave and reflected wave for backward incidence can be clearly seen while it is nearly absent in the forward incidence. The different interference field patterns also demonstrate the asymmetry in 𝑟 𝑓 and 𝑟 𝑏 , which further reveals the existence of Willis coupling in the loss case. In Fig.4(d) the asymmetry in reflection amplitude by |𝑟 𝑏 | -|𝑟 𝑓 | against frequency with different rotation angles 𝜃 for the same system with Fig. 4(b) are

  have assumed the y-dependence is already averaged out by (1/𝑤)∫ 𝑑𝑦. The macroscopic version of the wave equation is thereforeΔ𝑞 = 𝑞(𝑎) -𝑞(0) = 𝑖𝜔(𝑎〈𝜑̇〉/𝑔 + 𝑚) Δ𝜑̇= 𝜑̇(𝑎) -𝜑̇(0) = 𝑖𝜔(𝑎〈𝑞〉/ℎ ̃0 + 𝑝) (A4)On the other hand, the local field (solution of free-space) in generating the secondary sources satisfy the complex conjugate, or equivalently [𝜑̇( 0) * (𝑥)𝑞(𝑥) + 𝜑̇(𝑥)𝑞 (0) * (𝑥)] local fields at the boundaries can be expressed in terms of the local fields arriving at the centre of the unit cell (𝜑̇( 0) (𝑎/2) and 𝑞 (0) (𝑎/2))

  Finally, substituting it back to Eq. (A4), we obtain the interpolation formula for the macroscopic field:

	𝑖𝜔𝑚 = Δ𝑞 cos	𝑘 0 𝑎 2		-𝑖𝑍 0 -1 (𝜑̇(𝑎) + 𝜑̇(0)) sin	𝑘 0 𝑎 2	(A7)
	𝑖𝜔𝑝 = Δ𝜑̇cos	𝑘 0 𝑎 2	-𝑖𝑍 0 (𝑞(𝑎) + 𝑞(0)) sin	𝑘 0 𝑎 2
	〈𝜑̇〉 =	𝑍 0 Δ𝑞 𝑖𝑘 0 𝑎	(1 -cos	𝑘 0 𝑎 2	) +	1 2	(𝜑̇(𝑎) + 𝜑̇(0)) sinc	𝑘 0 𝑎 2	,
	〈𝑞〉 =	𝑍 0 -1 Δ𝜑i 𝑘 0 𝑎	(1 -cos	𝑘 0 𝑎 2	) +	1 2	(𝑞(𝑎) + 𝑞(0)) sinc	𝑘 0 𝑎 2	.
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