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Abstract

As shown in Deza et al. [4], for a periodic review Assemble-To-Order (ATO) system
that aims to maximize reward, lowering the degree of component commonality may
yield a higher Type-II service level. This is achieved via separating inventories of all
the shared components for different products. We further study the optimal bill-of-
materials (BOM) structure for two-product ATO systems with arbitrary number of
components. The inventory of a common component can be dedicated or shared be-
tween different products. We show that an optimal BOM can be found between the
following two extremal configurations: either two products share all common compo-
nents, or they do not share any common component.

Keywords: stochastic optimization, assemble-to-order systems, periodic review,
bill-of-materials, base stock, inventory allocation

1. Introduction

Akçay and Xu [2] studied a periodic review assemble-to-order (ATO) system with
an independent base stock policy and a first-come-first-served (FCFS) allocation rule.
They formulated a two-stage stochastic integer nonlinear program where the base stock
levels and the component allocation are optimized jointly. They showed that the com-
ponent allocation problem is an NP-hard multidimensional knapsack problem and pro-
posed an order-based component allocation heuristic rule that commits a component
to an order only if it leads to the fulfillment of the order within the committed time
window. They concluded that their order-based component allocation rule outper-
forms the component-based allocation rules, such as the fixed-priority and fair-shared
rules, see [1, 11]. Huang and de Kok [7] studied periodic-review ATO systems with
linear holding and backlogging costs, installation stock policy, and a FCFS allocation
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rule. They introduced the concept of multimatching which refers to the coupling of
multiple component units and product units. They showed that the FCFS allocation
rule decouples the problem of optimal component allocation over time into determinis-
tic period-by-period component allocation optimization problems. Huang [6] evaluated
the impact of two non-FCFS allocation rules in a periodic review ATO system with
component base stock policy; i.e., the last-come-first-served-within-one-period rule and
the product-based-priority-within-time-windows rule. He proposed three benchmark
mathematical programming models to test the non-FCFS allocation rules and con-
cluded that both rules can not only outperform FCFS allocation rule in certain areas,
but also better address the differences in customer service requirements. Doğru et
al. [5] investigated a continuous review W system and concluded that the FCFS base
stock policy is typically suboptimal. They also provided a lower bound for the optimal
objective value and developed a policy attaining the lower bound under some sym-
metry condition for the cost parameters and a so-called balanced capacity condition
for the solution. Jaarsveld and Scheller-Wolf [10] developed a heuristic algorithm for
large scale continuous review ATO systems which improves as the average newsvendor
fractiles increase. They showed that, for large scale ATO systems, the best FCFS rule
is nearly optimal, and proposed a no-holdback allocation rule which can outperform
the best FCFS rule. Deza et al. [4] studied the impact of component commonality on
periodic review ATO systems. They showed that lowering component commonality
may yield a higher type-II service level. The lower degree of component commonality
is achieved via separating inventories of the same component for different products.
They substantiated this property via computational and theoretical approaches. They
showed that for low service levels the use of separate inventories of the same compo-
nent for different products could achieve a higher reward than with shared inventory.
Finally. considering a simple ATO system consisting of one component shared by two
products, they characterized the budget ranges such that the use of separate inventories
is beneficial, as well as the budget ranges such that component commonality is benefi-
cial. For more details and literature review, please refer to Deza et al. [4] and Liang [9].

A natural research question arising from [4] is how to allocate inventories in ATO
systems optimally to achieve higher reward. In this paper, we study this problem for a
periodic review ATO system with an independent base policy and a FCFS allocation
rule. We analyze the formulation of Akçay and Xu [2] which jointly optimizes the base
stock levels and the component allocation. In particular, we consider two-product
stochastic models with arbitrary number of common components and show that either
full component commonality or non-component commonality does not work worse than
partial component commonality. Components with common function can be replaced
by a single one; such universal component is called common. A common component is
called dedicated if it is used to assemble only one product, and shared if it is shared by
more than one product. A product-specific component that is irreplaceable is called



non-common. In Section 2, we detail the formulations. The main results are presented
in Section 3, the proofs are given in Section 4, and a few future directions are presented
in Section 5.

2. The stochastic programming model

2.1. Akçay and Xu formulation

Following the model proposed by Akçay and Xu [2], we assume:

(1) a periodic review system,

(2) an independent base stock policy is used for each component,

(3) the product demands are satisfied by a FCFS rule,

(4) the product demands are correlated within each period, while the demands over
different periods are independent,

(5) the replenishment lead time for each component is constant,

(6) a product reward is collected if the assembly is completed within the given time
window.

In addition, the following sequence of events is assumed for each period: inventory
position reviewed → new replenishment order of components placed → earlier com-
ponent replenishment order arrive → demand realized → component allocated and
product assembled → associated reward accounted for.

In this model, assembly takes zero time while component lead times are greater than
zero. The model is based on a multi-matching approach proposed by Huang [6] and
Huang and de Kok [7] where multiple components are matched with multiple products
to satisfy demands. In each period within the time window, reward are collected by
satisfying product demands. We recall that the time window is the number of periods
between the order receiving period and the order fulfillment period. In particular, a
time window equal to 0 means that the demand must be fulfilled within the period
the order is received; that is, we must have enough components to satisfy the demand
within that period in order to collect reward. The base stocks of the ATO system are
constrained by a pre-set overall budget. The approach is based on a two-stage decision
model. The first stage consists of determining a base stock level for each component,
and the second stage consists of determining products that need to be assembled in
each period with respect to some constraints reflecting the inventory availability. The
first stage decisions are made before the second stage decisions following a two-stage
stochastic programming framework, see Birge and Louveaux [3]. The objective of
the approach is to maximize the expected total reward collected from the products



assembled within given time windows. Note that while all products are eventually
assembled within L+ 1 periods, the reward are collected only within the pre-set time
windows. The notations are summarized in Table 1.

n number of components
m number of products
i, i′ index of component
j index of product
Si base stock level of component i
ci unit base stock level cost of component i
Li lead time of component i
L maximum lead time among all components; that is, L = max

i
Li

wj time window of product j
k index of period k corresponding to the duration [k, k + 1); k = 0

implies the current period; negative values of k imply previous periods
xj,k number of product j assembled in period k
rj,k reward for satisfying the demand for product j in period k
ai,j number of component i used to assemble one unit of product j; that is,

the bill-of-materials (BOM)
B the budget, i.e.,

∑
i

(ci Si) ≤ B

Pj,k demand of product j at period k
Pj demand of product j at the current period; that is, Pj,0
Di,k demand of component i at period k; that is, Di,k =

∑
j

(ai,j Pj,k)

M number of independent samples
N number of realizations in one sample
l index of sample l = 1, . . . ,M
h index of realization h = 1, . . . , N
d number of dedicated components; d = 0, respectively d = n implies a full

commonality, respectively non-commonality, configuration
x+ the positive part of x; that is, x+ = (|x|+ x)/2

Table 1: Notations

The second stage corresponds to the allocation problem
(
Alloc(S, ξ)

)
, where S = (Si)

is the vector representing base stock levels, ξ = {Pj,k|j = 1, . . . ,m; k = 0,−1, . . . ,−L}
is the vector representing random demands, and Oi,k is the number of component
i available at period k. Note that Oi,k = (Si − DLi−k

i )+ for 0 ≤ k ≤ Li where

DLi−k
i =

∑Li−k
s=0 Di,−s, and Oi,k = Di,0 for Li + 1 ≤ k ≤ L + 1 are inferred from the

base stock policy and a FCFS rule, see Huang [6] and Huang and de Kok [7].



max
m∑
j=1

wj∑
k=0

(rj,k xj,k)
(
Alloc(S, ξ)

)
wj∑
k=0

xj,k ≤ Pj j = 1, . . . ,m

k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤ Oi,k i = 1, . . . , n, k = 0, . . . , L+ 1

xj,k ∈ Z+ j = 1, . . . ,m, k = 0, . . . , L+ 1

The first set of constraints guarantees that assembly will satisfy customer demand.
Please note that wj ≤ L+1. Consequently, replacing the constraint

∑wj
k=0 xj,k ≤ Pj by∑L+1

k=0 xj,k = Pj would yield the same optimal reward. The second set of constraints –
called inventory availability constraints – guarantees that assembly could only happen
when there are enough component inventories. While an optimal allocation can be
computed for a given base stock level S and demand ξ, we still need to determine
the optimal base stock levels. Thus, we use the two-stage stochastic integer program(
Joint(B)

)
where the first stage determines the base stock levels and the second stage

maximizes the expectation of the component allocations:

max IE[Alloc(S, ξ)]
(
Joint(B)

)
n∑
i=1

(ci Si) ≤ B

Si ∈ Z+ i = 1, . . . , n

We recall in Section 2.2 the sample average approximation method used to solve(
Joint(B)

)
.

2.2. Sample average approximation method

The sample average approximation (SAA) method, see Kleywegt et al. [8], consists
of the following steps:

(i) generate M independent samples for l = 1, . . . ,M with N realizations for each
sample. The vector ξNl = (ξ(ω1

l ), ξ(ω
2
l ), . . . , ξ(ω

N
l )) represents the N realizations of

the l-th sample,

(ii) solve the optimization problem (INLP ) for each sample, which is the associ-
ated deterministic version of

(
Joint(B)

)
. where the objective function is set to

1
N

∑N
h=1Alloc(S, ξ(ω

h
l )) as described below. Note that (INLP ) is non-linear not only



due to the integrality constraints but also due to the right hand side of the inventory
availability constraints. Let Ŝl denote the optimal base stock levels for (INLP ) and
Ĝ(Ŝl) denote its optimal objective value.

max
1

N

N∑
h=1

m∑
j=1

wj∑
k=0

(rj,k x
h
j,k)

(
INLP

)
wj∑
k=0

xhj,k ≤ P h
j j = 1, . . . ,m, h = 1, . . . , N

k∑
µ=0

m∑
j=1

(ai,j x
h
j,µ) ≤ Oh

i,k i = 1, . . . , n, k = 0, . . . , L+ 1, h = 1, . . . , N

n∑
i=1

(ci Si) ≤ B

Si ∈ Z+ i = 1, . . . , n

xhj,k ∈ Z+ j = 1, . . . ,m, k = 0, . . . , L+ 1, h = 1, . . . , N

(iii) generate a different sample ξN
′

with N ′ � N realizations and compare the per-
formance among all the base stock vectors Ŝl solved in (ii) by solving

(
Alloc(S, ξN

′
)
)

with S = Ŝl. Let Ḡ(Ŝl) be the new optimal objective value.

(iv) select the optimal base stock vector Ŝ∗ achieving the best performance among
all the base stock vectors; that is, Ŝ∗ = argmax{Ḡ(Ŝl) : l = 1, . . . ,M}.

Let ĜM = 1
M

∑M
l=1 Ĝ(Ŝl), ḠN ′ = Ḡ(Ŝ∗), and G∗ be the optimal objective value

of
(
Joint(B)

)
. Since ḠN ′ ≤ G∗ ≤ ĜM under certain conditions for N,M,N ′, see

Birge and Louveaux [3], ḠN ′ and ĜM are, respectively, a lower and an upper bound
for G∗. For more details concerning the statistical testing of optimality for the SAA
method, and the selection of N , M , and N ′, see Kleywegt et al. [8]. Note that
Oi,k = (Si −DLi−k

i )+ is a non-convex function of Si; and we use the standard Big-M
method to check whether (Si −DLi−k

i ) is positive.

3. Theoretical results for two-product ATO systems

A few additional notations are required in the remainder of the paper. Let (BOMN
◦ ),

(BOMN
• ) and (BOMN

• ) denote, respectively, non-commonality, full commonality, and
partial commonality configurations. Let x◦hj , x•hj and x•hj denote the number of product
j assembled at realization h for, respectively, (BOMN

◦ ), (BOMN
• ) and (BOMN

• ). Let
S◦j i and S•j i denote, respectively, the base stock levels of dedicated component i for
product j for (BOMN

◦ ) and (BOMN
• ). Let S•i′ and S•i′ denote, respectively, the base



stock levels of common component i′ for (BOMN
• ) and (BOMN

• ). Finally, let cj i
denote the cost of component i for product j.

3.1. Two-product system with full overlap

In the full overlap configuration, product 1 and product 2 use exactly the same
set of components. To simplify the analysis, all the product time windows are set to
0 and BOMs are set to 1. In other words, each unit product only contains one unit
component, and the reward can be collected only if the assembly happens in the same
period of the arrival of the demand.

3.1.1. Non-commonality configuration (BOMN
◦ )

The non-commonality configuration consists of two products, each comprising n
different components, as shown in Table 2 where Cj

i denotes dedicated component i
used to assemble product j.

C1
1 C2

1 C1
2 C2

2 . . . C1
n C2

n

P1 1 0 1 0 . . . 1 0
P2 0 1 0 1 . . . 0 1

Table 2: BOM: non-commonality configuration with full overlap

The corresponding SAA formulation (BOMN
◦ ) is as follows:

max
1

N

N∑
h=1

(r1 x
◦h
1 + r2 x

◦h
2 )

(
BOMN

◦
)

x◦h1 ≤ (S◦1 i −Dh
1 )+ i = 1, . . . , n, h = 1, . . . , N

x◦h2 ≤ (S◦2 i −Dh
2 )+ i = 1, . . . , n, h = 1, . . . , N

x◦h1 ≤ P h
1 , x◦h2 ≤ P h

2 h = 1, . . . , N
n∑
i=1

(c1 i S
◦
1 i + c2 i S

◦
2 i) ≤ B

x◦h1 , x
◦h
2 , S

◦
1 i, S

◦
2 i ∈ Z+ i = 1, . . . , n, h = 1, . . . , N

3.1.2. Full commonality configuration (BOMN
• )

In the full commonality configuration, component C1
i and C2

i in (BOMN
◦ ) are re-

placed by a common component Ci where i = 1, . . . , n. Therefore there are n common
components in total, see Table 3.

The corresponding SAA formulation (BOMN
• ) is as follows:



C1 C2 C3 . . . Cn
P1 1 1 1 . . . 1
P2 1 1 1 . . . 1

Table 3: BOM: full commonality configuration with full overlap

max
1

N

N∑
h=1

(r1 x
•h
1 + r2 x

•h
2 )

(
BOMN

•
)

x•h1 + x•h2 ≤ (S•i′ −Dh
1 −Dh

2 )+ i′ = 1, . . . , n, h = 1, . . . , N

x•h1 ≤ P h
1 , x•h2 ≤ P h

2 h = 1, . . . , N
n∑

i′=1

ci′ S
•
i′ ≤ B

x•h1 , x
•h
2 , S

•
i′ ∈ Z+ i′ = 1, . . . , n, h = 1, . . . , N

3.1.3. Partial commonality configuration (BOMN
• )

In a partial commonality configuration, let I be a nonempty and strict subset of
{1, 2, . . . , n} such that components C1

i and C2
i in (BOMN

◦ ) are replaced by a common
component Ci for i ∈ I. Without loss of generality, we can assume that 1 /∈ I and
n ∈ I, see Table 4 where d = n− |I| is the number of dedicated components.

C1
1 C2

1 . . . C1
d C2

d Cd+1 Cd+2 . . . Cn−1 Cn
P1 1 0 . . . 1 0 1 1 . . . 1 1
P2 0 1 . . . 0 1 1 1 . . . 1 1

Table 4: BOM: partial commonality configuration

The corresponding SAA formulation (BOMN
• ) is as follows:



max
1

N

N∑
h=1

(r1 x
•h
1 + r2 x

•h
2 )

(
BOMN

•
)

x•h1 ≤ (S•1 i −Dh
1 )+ i = 1, . . . , d, h = 1, . . . , N

x•h2 ≤ (S•2 i −Dh
2 )+ i = 1, . . . , d, h = 1, . . . , N

x•h1 + x•h2 ≤ (S•i′ −Dh
1 −Dh

2 )+ i′ = d+ 1, . . . , n, h = 1, . . . , N

x•h1 ≤ P h
1 , x•h2 ≤ P h

2 h = 1, . . . , N

d∑
i=1

(c1 i S
•
1 i + c2 i S

•
2 i) +

n∑
i′=d+1

ci′ S
•
i′ ≤ B

x•h1 , x
•h
2 , S

•
1 i, S

•
2 i, S

•
i′ ∈ Z+ i = 1, . . . , n, i′ = d+ 1, . . . , n, h = 1, . . . , N

3.2. Two-product system with partial overlap

In a partial overlap configuration, some components are used only for product 1
or product 2 by design, therefore these components are not allowed to be replaced by
common components.

3.2.1. Non-commonality configuration (BOMN
◦ )

The non-commonality configuration consists of two products, product 1 comprising
n1 different components and product 2 comprising n2 different components.

C1
n+1 . . . C1

n1
C1

1 C2
1 . . . C1

n C2
n C2

n+1 . . . C2
n2

P1 1 . . . 1 1 0 . . . 1 0 0 . . . 0
P2 0 . . . 0 0 1 . . . 0 1 1 . . . 1

Table 5: BOM: non-commonality configuration with partial overlap

Let B◦1 =
∑n1

i1=n+1 c1 i1 S
◦
1 i1

, and B◦2 =
∑n2

i2=n+1 c2 i2 S
◦
2 i2

. Then the corresponding
SAA formulation (BOMN

◦ ) is as follows:



max
1

N

N∑
h=1

(r1 x
◦h
1 + r2 x

◦h
2 )

(
BOMN

◦
)

x◦h1 ≤ (S◦1 i1 −D
h
1 )+ i1 = n+ 1, . . . , n1, h = 1, . . . , N

x◦h2 ≤ (S◦2 i2 −D
h
2 )+ i2 = n+ 1, . . . , n2, h = 1, . . . , N

x◦h1 ≤ (S◦1 i −Dh
1 )+ i = 1, . . . , n, h = 1, . . . , N

x◦h2 ≤ (S◦2 i −Dh
2 )+ i = 1, . . . , n, h = 1, . . . , N

x◦h1 ≤ P h
1 , x◦h2 ≤ P h

2 h = 1, . . . , N
n∑
i=1

(c1 i S
◦
1 i + c2 i S

◦
2 i) +B◦1 +B◦2 ≤ B

x◦h1 , x
◦h
2 , S

◦
1 i, S

◦
2 i,∈ Z+ i = 1, . . . , n, h = 1, . . . , N

S◦1 i1 , S
◦
2 i2
,∈ Z+ i1 = n+ 1, . . . , n1, i2 = n+ 1, . . . , n2

3.2.2. Full commonality configuration (BOMN
• )

In the full commonality configuration, component C1
i and C2

i in (BOMN
◦ ) are re-

placed by a common component Ci where i = 1, . . . , n. Therefore there are n common
components in total, see Table 6.

C1
n+1 . . . C1

n1
C1 C2 C3 . . . Cn C2

n+1 . . . C2
n2

P1 1 . . . 1 1 1 1 . . . 1 0 . . . 0
P2 0 . . . 0 1 1 1 . . . 1 1 . . . 1

Table 6: BOM: full commonality configuration with partial overlap

Let B•1 =
∑n1

i1=n+1 c1 i1 S
•
1 i1

, and B•2 =
∑n2

i2=n+1 c2 i2 S
•
2 i2

. Then the corresponding
SAA formulation (BOMN

• ) is as follows:



max
1

N

N∑
h=1

(r1 x
•h
1 + r2 x

•h
2 )

(
BOMN

•
)

x•h1 ≤ (S•1 i1 −D
h
1 )+ i1 = n+ 1, . . . , n1, h = 1, . . . , N

x•h2 ≤ (S•2 i2 −D
h
2 )+ i2 = n+ 1, . . . , n2, h = 1, . . . , N

x•h1 + x•h2 ≤ (S•i′ −Dh
1 −Dh

2 )+ i′ = 1, . . . , n, h = 1, . . . , N

x•h1 ≤ P h
1 , x•h2 ≤ P h

2 h = 1, . . . , N
n∑

i′=1

ci′ S
•
i′ +B•1 +B•2 ≤ B

x•h1 , x
•h
2 , S

•
i′ ∈ Z+ i′ = 1, . . . , n, h = 1, . . . , N

S•1 i1 , S
•
2 i2
,∈ Z+ i1 = n+ 1, . . . , n1, i2 = n+ 1, . . . , n2

3.2.3. Partial commonality configuration (BOMN
• )

In a partial commonality configuration, let I be a nonempty and strict subset of
{1, 2, . . . , n} such that components C1

i and C2
i in (BOMN

◦ ) are replaced by a common
component Ci for i ∈ I. Without loss of generality, we can assume that 1 /∈ I and
n ∈ I, see Table 7 where d = n− |I| is the number of dedicated components.

C1
n+1 . . . C1

n1
C1

1 C2
1 . . . C1

d C2
d Cd+1 . . . Cn C2

n+1 . . . C2
n2

P1 1 . . . 1 1 0 . . . 1 0 1 . . . 1 0 . . . 0
P2 0 . . . 0 0 1 . . . 0 1 1 . . . 1 1 . . . 1

Table 7: BOM: partial commonality configuration with partial overlap

Let B•1 =
∑n1

i1=n+1 c1 i1 S
•
1 i1

, and B•2 =
∑n2

i2=n+1 c2 i2 S
•
2 i2

. Then the corresponding
SAA formulation (BOMN

• ) is as follows:



max
1

N

N∑
h=1

(r1 x
•h
1 + r2 x

•h
2 )

(
BOMN

•
)

x•h1 ≤ (S•1 i1 −D
h
1 )+ i1 = n+ 1, . . . , n1, h = 1, . . . , N

x•h2 ≤ (S•2 i2 −D
h
2 )+ i2 = n+ 1, . . . , n2, h = 1, . . . , N

x•h1 ≤ (S•1 i −Dh
1 )+ i = 1, . . . , d, h = 1, . . . , N

x•h2 ≤ (S•2 i −Dh
2 )+ i = 1, . . . , d, h = 1, . . . , N

x•h1 + x•h2 ≤ (S•i′ −Dh
1 −Dh

2 )+ i′ = d+ 1, . . . , n, h = 1, . . . , N

x•h1 ≤ P h
1 , x•h2 ≤ P h

2 h = 1, . . . , N

d∑
i=1

(c1 i S
•
1 i + c2 i S

•
2 i) +

n∑
i′=d+1

ci′ S
•
i′ +B•1 +B•2 ≤ B

x•h1 , x
•h
2 ∈ Z+ h = 1, . . . , N

S•1 i, S
•
2 i, S

•
i′ ∈ Z+ i = 1, . . . , n, i′ = d+ 1, . . . , n

S•1 i1 , S
•
2 i2
,∈ Z+ i1 = n+ 1, . . . , n1, i2 = n+ 1, . . . , n2

3.3. Main theorem and examples contrasting and comparing (BOMN
◦ ) and (BOMN

• )

Before stating Theorem 1 in Section 3.3.4, we provide some intuition via simple
examples illustrating that a feasible allocation for partial commonality can be infeasible
for full commonality or non-commonality, and that non-commonality can be beneficial
over full commonality under some conditions.

3.3.1. An allocation feasible for partial commonality but infeasible for full commonality

Due to the plus sign in the (BOMN
• ) and (BOMN

• ) formulations, x•h1 ≤ (S•1 i−Dh
1 )+

and x•h2 ≤ (S•2 i−Dh
2 )+ do not always imply that x•h1 +x•h2 ≤ (S•i′−Dh

1−Dh
2 )+. Assume

that S•i′ > S•1 i +S•2 i in the (BOMN
• ) formulation and consider the following example:

Partial commonality: Let S•1 i −Dh
1 > 0, S•2 i −Dh

2 ≤ 0 and S•i′ −Dh
1 −Dh

2 > 0; then
x•h1 > 0 and x•h2 = 0 forms a feasible allocation for partial commonality.

Full commonality: Let S•i′ = S•1 i +S•2 i < S•i′ and then it is possible to have S•i′ −Dh
1 −

Dh
2 ≤ 0 for i′ = 1, . . . , d. Therefore, x•h1 = 0 and x•h2 = 0 is the only feasible allocation

for full commonality.

3.3.2. Non-commonality can be beneficial over full commonality

Consider an ATO system consisting of 2 components shared by 2 products, and
assume that B = 10, c1 = c2 = r1 = r2 = 1, N = 2, D1

1 = 1, D1
2 = 4, P 1

1 = P 1
2 =

1, D2
1 = 2, D2

2 = 3, and P 2
1 = P 2

2 = 1.



Full commonality: For both realizations, 5 units C1 and 5 units C2 are used to fulfill
previous orders and, at the current period, there is no component available for further
assembly. Therefore, x•h1 = x•h2 = 0 and the optimal value is 0.

Non-commonality: Let S◦1 1 = S◦1 2 = 2 and S◦2 1 = S◦2 2 = 3. For the first realization, 1
unit C1

1 , 1 unit C1
2 and all 3 units C2

1 and 1 unit C2
2 are used to fulfill previous orders.

At the current period, there are 1 unit C1
1 and 1 unit C1

2 still available. Thus, x◦11 = 1.
For the second realization, all components are used to fulfill previous orders. Thus,
x◦21 = 0 = x◦22 = 0 and the objective value is 1.

3.3.3. An allocation feasible for partial commonality but infeasible for non-commonality

Assume that S•i′ < S•1 i +S•2 i in the (BOMN
• ) formulation and consider the follow-

ing example:

Partial commonality: Let S•1 i −Dh
1 > 0, S•2 i −Dh

2 > 0 and S•i′ −Dh
1 −Dh

2 > 0; then
x•h1 > 0 and x•h2 > 0 forms a feasible allocation for partial commonality.

Non-commonality: Let S◦1 i + S◦2 i = S•i′ < S•1 i + S•2 i and then it is possible to have
S◦1 i−Dh

1 ≤ 0 for i = d+1, . . . , n. Therefore x◦h1 = 0 and x◦h2 > 0 is a feasible allocation
for full commonality.

All plus signs in the (BOMN
• ) formulation can be removed for this example. Thus,

any feasible allocation for partial commonality is feasible for full commonality; that is,
full commonality performs at least as well as non-commonality for such instances.

3.3.4. Main theorem

The existence of partial commonality structure makes possible ATO systems more
challenging and significantly increases the number of possible BOMs. Theorem 1 states
that an optimal BOM can be found by assuming either the full commonality or the
non-commonality configuration. Consequently, a search through possibly exponential
number of BOMs can be avoided.

Theorem 1. Given a budget B, let x•h1
∗

and x•h2
∗

denote the optimal solutions of
(BOMN

• ) for h = 1, . . . , N . Then, x•h1
∗

and x•h2
∗

are feasible solutions in either
(BOMN

• ) or (BOMN
◦ ).

4. Proof of Theorem 1

4.1. Two-product system with full overlap

Let xj,h, yj,h and zj,h denote, respectively, a feasible solution for product j in real-
ization h for (BOMN

◦ ), (BOMN
• ) and (BOMN

• ). In (BOMN
• ), due to the symmetry



of the structure, we can assume, at optimality, that the base stock levels of the dedi-
cated components for product 1 are equally distributed; that is, S•1 iα

∗ = S•1 iβ
∗, where

1 ≤ iα ≤ iβ ≤ d. This is also true for the dedicated components for product 2 and
shared components. The base stock levels are independent of the component indexes
i and i′, and therefore we use the following additional notations in Section 4. Let
Yj and Y denote, respectively, the base stock levels of any dedicated component for
product j and any shared component. Recall that a superscripted ∗ indicates an opti-
mal solution. Let Y ∗j denote an optimal base stock level of any dedicated component
for product j; that is, S•1 i

∗ = Y ∗1 and S•2 i
∗ = Y ∗2 for all i. Finally, let Y ∗ denote an

optimal base stock level of any shared component; that is, S•i′
∗ = Y ∗ for all i′.

We have the following assumptions:

1. While proving y∗1,h and y∗2,h are feasible in (BOMN
◦ ), let S◦1 i = Y ∗1 and S◦2 i = Y ∗2

when i = 1, · · · , d; S◦1 i+S
◦
2 i = Y ∗, S◦1 iα = S◦1 iβ and S◦2 iα = S◦2 iβ when i, iα, iβ =

d+1, · · · , n. To simplify the notation, let Xj and Uj denote, respectively, the base
stock levels of dedicated components for product j for (BOMN

◦ ) when i = 1, . . . , d
and i = d+ 1, . . . , n; that is, Xj = Y ∗j and U1 + U2 = Y ∗.

2. While proving y∗1,h and y∗2,h are feasible in (BOMN
• ), let S•i′ = Y ∗1 + Y ∗2 when

i′ = 1, · · · , d; and S•i′ = Y ∗ when i′ = d + 1, · · · , n. To simplify the notation,
let Z and V denote, respectively, the base stock levels of shared components for
(BOMN

• ) when i′ = 1, . . . , d and i′ = d + 1, . . . , n; that is, Z = Y ∗1 + Y ∗2 and
V = Y ∗.

3. The cost of a shared component is equal to the cost of the dedicated component
it replaces. In the full overlap configuration, all components are potential shared
components; that is, c1 i = c2 i = ci′ for all indexes i and i′.

4.1.1. Case N = 1

We first consider the case N = 1; that is, only one realization is used in the SAA
method. The associated formulations (BOM1

◦ ), (BOM1
• ) and (BOM1

• ) correspond to
a deterministic demand where P 1

1 and P 1
2 represent the demands in the current period

for, respectively, product 1 and 2, and D1
1 and D1

2 represent the overall demands from
all previous periods.



max r1 x1,1 + r2 x2,1
(
BOM1

◦
)

x1,1 ≤ (X1 −D1
1)

+

x1,1 ≤ (U1 −D1
1)

+

x2,1 ≤ (X2 −D1
2)

+

x2,1 ≤ (U2 −D1
2)

+

x1,1 ≤ P 1
1 , x2,1 ≤ P 1

2

X1

d∑
i=1

c1 i +X2

d∑
i=1

c2 i + U1

n∑
i=d+1

c1 i + U2

n∑
i=d+1

c2 i ≤ B

x1,1, x2,1, X1, X2, U1, U2 ∈ Z+

max r1 z1,1 + r2 z2,1
(
BOM1

•
)

z1,1 + z2,1 ≤ (Z −D1
1 −D1

2)
+

z1,1 + z2,1 ≤ (V −D1
1 −D1

2)
+

z1,1 ≤ P 1
1 , z2,1 ≤ P 1

2

Z
d∑

i′=1

ci′ + V
n∑

i′=d+1

ci′ ≤ B

z1,1, z2,1, Z, V ∈ Z+

max r1 y1,1 + r2 y2,1
(
BOM1

•
)

y1,1 ≤ (Y1 −D1
1)

+

y2,1 ≤ (Y2 −D1
2)

+

y1,1 + y2,1 ≤ (Y −D1
1 −D1

2)
+

y1,1 ≤ P 1
1 , y2,1 ≤ P 1

2

Y1

d∑
i=1

c1 i + Y2

d∑
i=1

c2 i + Y
n∑

i′=d+1

ci′ ≤ B

y1,1, y2,1, Y1, Y2, Y ∈ Z+

First of all, we want to prove that with the constraint Y ∗1
∑d

i=1 c1 i + Y ∗2
∑d

i=1 c2 i +

Y ∗
∑n

i′=d+1 ci′ ≤ B, either the constraint X1

∑d
i=1 c1 i +X2

∑d
i=1 c2 i +U1

∑n
i=d+1 c1 i +

U2

∑n
i=d+1 c2 i ≤ B or the constraint Z

∑d
i′=1 ci′ +V

∑n
i′=d+1 ci′ ≤ B holds. The former



can be proved by substituting assumptions 1 and 3, while the latter can be proved by
substituting assumptions 2 and 3.

Then, to show that y∗1,1 and y∗2,1 are feasible for either (BOM1
• ) or (BOM1

◦ ), we con-
sider the following three cases.

Case 1: Reward from both product 1 and 2 are 0, i.e. y∗1,1 = 0 and y∗2,1 = 0 and the
point y∗1,1 = 0 and y∗2,1 = 0 is a feasible solution for either (BOM1

• ) or (BOM1
◦ ).

Take (BOM1
• ) as an example:

• y∗1,1 + y∗2,1 = 0 ≤ (Z −D1
1 −D1

2)
+, this is always true by the definition of +.

• y∗1,1 + y∗2,1 = 0 ≤ (V −D1
1 −D1

2)
+, this is always true by the definition of +.

• y∗1,1 = 0 ≤ P 1
1 , y∗2,1 = 0 ≤ P 1

2 , this is always true because P 1
1 andP 1

2 are both
nonnegative.

• y∗1,1, y∗2,1 ∈ Z+, this is always true because 0 is a nonnegative integer.

Note: If the optimal solution y∗j,h is zero, then the point y∗j,h = 0 is feasible for
either (BOMN

• ) or (BOMN
◦ ).

Case 2: We get some reward from exactly one of the products.

Case 2.1: Getting reward only from product 1, i.e. y∗1,1 > 0, and y∗2,1 = 0. We
want to show that the point y∗1,1 > 0, and y∗2,1 = 0 is a feasible solution for BOM1

◦ .

y∗2,1 = 0 is a feasible solution of (BOM1
◦ ). Since y∗1,1 is an optimal solution of (BOM1

• ),
the following inequalities are valid:

y∗1,1 ≤ (Y ∗1 −D1
1)

+

y∗1,1 ≤ (Y ∗ −D1
1 −D1

2)
+

To prove y∗1,1 is feasible in (BOM1
◦ ), we need to show that y∗1,1 ≤ (X1 − D1

1)
+ and

y∗1,1 ≤ (U1−D1
1)

+. Let U2 = 0; that is, all the budget spent on the shared components
is used to buy dedicated components for product 1.

y∗1,1 ≤ (Y ∗1 −D1
1)

+ = (X1 −D1
1)

+ < substitution >

y∗1,1 ≤ (Y ∗ −D1
1 −D1

2)
+ = (U1 −D1

1 −D1
2)

+ ≤ (U1 −D1
1)

+ < recall D1
2 ≥ 0 >

Case 2.2: Getting reward only from product 2, i.e. y∗1,1 = 0, and y∗2,1 > 0. We
want to show that the point y∗1,1 = 0, and y∗2,1 > 0 is a feasible solution for (BOM1

◦ ).



The proof is the same as for Case 2.1 considering U1 = 0.

Case 3: We get reward from both products 1 and 2, i.e. y∗1,1 > 0 and y∗2,1 > 0. We
want to show that the point y∗1,1 > 0 and y∗2,1 > 0 is a feasible solution for (BOM1

• ).

Since y∗1,1 and y∗2,1 is an optimal solution of (BOM1
• ), the following inequalities hold:

y∗1,1 ≤ (Y ∗1 −D1
1)

+

y∗2,1 ≤ (Y ∗2 −D2
1)

+

y∗1,1 + y∗2,1 ≤ (Y ∗ −D1
1 −D1

2)
+

To prove y∗1,1 and y∗2,1 is feasible in (BOM1
• ), we need to show that y∗1,1 + y∗2,1 ≤

(Z −D1
1 −D1

2)
+ and y∗1,1 + y∗2,1 ≤ (V −D1

1 −D1
2)

+.

Since y∗1,1 > 0 and y∗2,1 > 0, all the plus signs can be removed.

y∗1,1 ≤ Y ∗1 −D1
1 and y∗2,1 ≤ Y ∗2 −D2

1

=⇒ y∗1,1 + y∗2,1 ≤ Y ∗1 + Y ∗2 −D1
1 −D1

2

=⇒ = Z −D1
1 −D1

2,

and

y∗1,1 + y∗2,1 ≤ (Y ∗ −D1
1 −D1

2)
+ = (V −D1

1 −D1
2)

+. < substitution >

4.1.2. General case

We assume for N realizations, each with probability 1/N . Without loss of gen-
erality, we omit this constant term in the objectives. In the associated formulations
(BOMN

◦ ), (BOMN
• ) and (BOMN

• ) below, superscripts are use to distinguish different
realizations. For example, x1,h, x2,h, D

h
1 , D

h
2 , P

h
1 , and P h

2 refer to the h-th realization.

max
N∑
h=1

(r1 x1,h + r2 x2,h)
(
BOMN

◦
)

x1,h ≤ (X1 −Dh
1 )+ h = 1, . . . , N

x1,h ≤ (U1 −Dh
1 )+ h = 1, . . . , N

x2,h ≤ (X2 −Dh
2 )+ h = 1, . . . , N

x2,h ≤ (U2 −Dh
2 )+ h = 1, . . . , N

x1,h ≤ P h
1 , x2,h ≤ P h

2 h = 1, . . . , N

X1

d∑
i=1

c1 i +X2

d∑
i=1

c2 i + U1

n∑
i=d+1

c1 i + U2

n∑
i=d+1

c2 i ≤ B

x1,h, x2,h, X1, X2, U1, U2 ∈ Z+ h = 1, . . . , N



max
N∑
h=1

(r1 z1,h + r2 z2,h)
(
BOMN

•
)

z1,h + z2,h ≤ (Z −Dh
1 −Dh

2 )+ h = 1, . . . , N

z1,h + z2,h ≤ (V −Dh
1 −Dh

2 )+ h = 1, . . . , N

z1,h ≤ P h
1 , z2,h ≤ P h

2 h = 1, . . . , N

Z

d∑
i′=1

ci′ + V

n∑
i′=d+1

ci′ ≤ B

z1,h, z2,h, Z, V ∈ Z+ h = 1, . . . , N

max
N∑
h=1

(r1 y1,h + r2 y2,h)
(
BOMN

•
)

y1,h ≤ (Y1 −Dh
1 )+ h = 1, . . . , N

y2,h ≤ (Y2 −Dh
2 )+ h = 1, . . . , N

y1,h + y2,h ≤ (Y −Dh
1 −Dh

2 )+ h = 1, . . . , N

y1,h ≤ P h
1 , y2,h ≤ P h

2 h = 1, . . . , N

Y1

d∑
i=1

c1 i + Y2

d∑
i=1

c2 i + Y
n∑

i′=d+1

ci′ ≤ B

y1,h, y2,h, Y1, Y2, Y ∈ Z+ h = 1, . . . , N

For any realization, the optimal assembly decision will fall into one of the four, mutually
exclusive, outcomes: y∗1,h > 0 and y∗2,h > 0; y∗1,h > 0 and y∗2,h = 0; y∗1,h = 0 and y∗2,h > 0;
and y∗1,h = 0 and y∗2,h = 0.

Consequently the set of all realizations can be partitioned into four non-overlapping
subsets: the subset T++ of realizations in which y∗1,h > 0 and y∗2,h > 0, the subset T+0

of realizations in which y∗1,h > 0 and y∗2,h = 0, the subset T 0+ of realizations in which
y∗1,h = 0 and y∗2,h > 0, and the subset T 00 of realizations in which y∗1,h = 0 and y∗2,h = 0.

According to the definitions of Y ∗1 , Y ∗2 and Y ∗, the following inequalities are valid.
Note that the right hand side of constraints (E1) to (E7) are positive, therefore all



plus signs can be removed.

y∗1,h ≤ (Y ∗1 −Dh
1 )+ h ∈ T++ (E1)

y∗2,h ≤ (Y ∗2 −Dh
2 )+ h ∈ T++ (E2)

y∗1,h + y∗2,h ≤ (Y ∗ −Dh
1 −Dh

2 )+ h ∈ T++ (E3)

y∗1,h ≤ (Y ∗1 −Dh
1 )+ h ∈ T+0 (E4)

y∗1,h ≤ (Y ∗ −Dh
1 −Dh

2 )+ h ∈ T+0 (E5)

y∗2,h ≤ (Y ∗2 −Dh
2 )+ h ∈ T 0+ (E6)

y∗2,h ≤ (Y ∗ −Dh
1 −Dh

2 )+ h ∈ T 0+ (E7)

The T 00 cases being trivial, we just need prove that Theorem 1 holds for realizations
in T++

⋃
T+0

⋃
T 0+.

To obtain an optimal solution, we must satisfy:
Y ∗1 = max

(g,p)∈(T++×T+0)

{
Dg

1 + y∗1,g, D
p
1 + y∗1,p

}
,

Y ∗2 = max
(g,p)∈(T++×T 0+)

{
Dg

2 + y∗2,g, D
p
2 + y∗2,p

}
,

Y ∗ = max
(g,p,q)∈(T++×T+0×T 0+)

{
Dg

1 +Dg
2 + y∗1,g + y∗2,g, D

p
1 +Dp

2 + y∗1,p, D
q
1 +Dq

2 + y∗2,q
}

.

Clearly, either Y ∗ ≥ Y ∗1 + Y ∗2 or Y ∗ < Y ∗1 + Y ∗2 .

Case 1: If Y ∗ ≥ Y ∗1 + Y ∗2 , then the point y∗1,h and y∗2,h is feasible in
(
BOMN

◦
)
. We

need to show that

y∗1,h ≤ (X1 −Dh
1 )+ h ∈ T++ (F1)

y∗2,h ≤ (X2 −Dh
2 )+ h ∈ T++ (F2)

y∗1,h ≤ (U1 −Dh
1 )+ h ∈ T++ (F3)

y∗2,h ≤ (U2 −Dh
2 )+ h ∈ T++ (F4)

y∗1,h ≤ (X1 −Dh
1 )+ h ∈ T+0 (F5)

y∗1,h ≤ (U1 −Dh
1 )+ h ∈ T+0 (F6)

y∗2,h ≤ (X2 −Dh
2 )+ h ∈ T 0+ (F7)

y∗2,h ≤ (U2 −Dh
2 )+ h ∈ T 0+ (F8)

One can check that (E1)⇒ (F1), (E2)⇒ (F2), (E4)⇒ (F5), and (E6)⇒ (F7).



Let U2 = Y ∗2 , for (F3):

U1 = Y ∗ − U2 ≥ Y ∗1 + Y ∗2 − U2 = Y ∗1 ,

thus U1 ≥ Y ∗1 = max
(g,p)∈(T++×T+0)

{
Dg

1 + y∗1,g, D
p
1 + y∗1,p

}
≥ Dh

1 + y∗1,h, h ∈ T++.

Therefore y∗1,h ≤ (U1 −Dh
1 )+, h ∈ T++.

For (F4):

U2 = Y ∗2 = max
(g,p)∈(T++×T 0+)

{
Dg

2 + y∗2,g, D
p
2 + y∗2,p

}
≥ Dh

2 + y∗2,h, h ∈ T++

Therefore y∗2,h ≤ (U2 −Dh
2 )+, h ∈ T++.

For (F6):

U1 −Dh
1 ≥ Y ∗1 −Dh

1 = max
(g,p)∈(T++×T+0)

{
Dg

1 + y∗1,g, D
p
1 + y∗1,p

}
−Dh

1

≥ Dh
1 + y∗1,h −Dh

1 = y∗1,h, h ∈ T+0

Therefore y∗1,h ≤ (U1 −Dh
1 )+, h ∈ T+0.

For (F8):

U2 −Dh
2 = Y ∗2 −Dh

2 = max
(g,p)∈(T++×T 0+)

{
Dg

2 + y∗2,g, D
p
2 + y∗2,p

}
−Dh

2

≥ Dh
2 + y∗2,h −Dh

2 = y∗2,h, h ∈ T 0+

Therefore y∗2,h ≤ (U2 −Dh
2 )+, h ∈ T 0+.

Case 2: If Y ∗ < Y ∗1 + Y ∗2 , then the point y∗1,h and y∗2,h is feasible in
(
BOMN

•
)
. We

need to show that

y∗1,h + y∗2,h ≤ (Z −Dh
1 −Dh

2 )+ h ∈ T++ (G1)

y∗1,h + y∗2,h ≤ (V −Dh
1 −Dh

2 )+ h ∈ T++ (G2)

y∗1,h ≤ (Z −Dh
1 −Dh

2 )+ h ∈ T+0 (G3)

y∗1,h ≤ (V −Dh
1 −Dh

2 )+ h ∈ T+0 (G4)

y∗2,h ≤ (Z −Dh
1 −Dh

2 )+ h ∈ T 0+ (G5)

y∗2,h ≤ (V −Dh
1 −Dh

2 )+ h ∈ T 0+ (G6)

One can check that (E3)⇒ (G2), (E5)⇒ (G4), and (E7)⇒ (G6).



(E1) and (E2)⇒ (G1): Since y∗1,h > 0 and y∗2,h > 0, where h ∈ T++, all the plus signs
can be removed.

0 < y∗1,h ≤ Y ∗1 −Dh
1 and 0 < y∗2,h ≤ Y ∗2 −Dh

2

=⇒ 0 < y∗1,h + y∗2,h ≤ Y ∗1 + Y ∗2 −Dh
1 −Dh

2

=⇒ = Z −Dh
1 −Dh

2 , h ∈ T++

Thus, y∗1,h + y∗2,h ≤ (Z −Dh
1 −Dh

2 )+, h ∈ T++.

For (G3):

Z = Y ∗1 + Y ∗2 > Y ∗

= max
(g,p,q)∈(T++×T+0×T 0+)

{
Dg

1 +Dg
2 + y∗1,g + y∗2,g, D

p
1 +Dp

2 + y∗1,p, D
q
1 +Dq

2 + y∗2,q
}

≥ Dh
1 +Dh

2 + y∗1,h, h ∈ T+0.

Therefore y∗1,h < (Z −Dh
1 −Dh

2 )+ ≤ (Z −Dh
1 −Dh

2 )+, h ∈ T+0.

For (G5):

Z = Y ∗1 + Y ∗2 > Y ∗

= max
(g,p,q)∈(T++×T+0×T 0+)

{
Dg

1 +Dg
2 + y∗1,g + y∗2,g, D

p
1 +Dp

2 + y∗1,p, D
q
1 +Dq

2 + y∗2,q
}

≥ Dh
1 +Dh

2 + y∗2,h, h ∈ T 0+.

Therefore y∗2,h < (Z −Dh
1 −Dh

2 )+ ≤ (Z −Dh
1 −Dh

2 )+, h ∈ T 0+.

4.2. Two-product system with partial overlap

Given that x•h1
∗ ≤ (S•1 i1 − Dh

1 )+ and x•h2
∗ ≤ (S•2 i2 − Dh

2 )+ , where i1 = n +
1, . . . , n1, i2 = n+ 1, . . . , n2, h = 1, . . . , N , we want to prove that either the constrains
x•h1
∗ ≤ (S◦1 i1 −D

h
1 )+ and x•h2

∗ ≤ (S◦2 i2 −D
h
2 )+, or the constraints x•h1

∗ ≤ (S•1 i1 −D
h
1 )+

and x•h2
∗ ≤ (S•2 i2 − D

h
2 )+ hold. Obviously, if we set S•1 i1 = S◦1 i1 = S•1 i1 and S•2 i2 =

S◦2 i2 = S•2 i2 , then the optimal solutions of
(
BOMN

•
)
, i.e., x•h1

∗
and x•h2

∗
, trivially satisfy

these constraints in both
(
BOMN

◦
)

and
(
BOMN

•
)
. Excluding the above constraints,

the remaining part is exactly the same as the full overlap configuration, whose result
is already proved.

5. Conclusion and future work

We show that for two-product periodic ATO systems either full component com-
monality or non-component commonality performs at least as well as any partial com-
ponent commonality formulation. Consequently, the size of the optimal BOM search



space is cut down from an exponential in n to just 2. A possible future direction is
to extend this result to multi-product periodic-review ATO systems. While deriving
the same theoretical results may be challenging, one may consider a computational
approach. Another future direction could be to apply component commonality con-
sidering inventory allocation and component design jointly.
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