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Abstract
Biogas production is rising in the context of fossil fuel decline and the future circular economy, yet raw biogas requires 
puri-fication steps before use. Here, we review biogas upgrading using physical, chemical and biological methods such as 
water scrubbing, physical absorption, pressure swing adsorption, cryogenic separation, membrane separation, chemical 
scrubbing, chemoautotrophic methods, photosynthetic upgrading and desorption. We also discuss their techno-economic 
feasibility. We found that physical and chemical upgrading technologies are near-optimal, but still require high energy 
and resources. Biological methods are less explored despite their promising potential. High-pressure water scrubbing is 
more economic for small-sized plants, whereas potassium carbonate scrubbing provides the maximum net value for large-
sized plants.

Keywords Biogas utilization · Biogas upgrading technologies · Techno-economic analysis · Biogas purification · Biogas 
upgradation challenges · Biomethane
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BPFR  Biofilm plug flow reactor
BCR  Bubble column reactor
CaCO3  Calcium carbonate
CNG  Compressed natural gas
Ca(OH)2  Calcium hydroxide
CO  Carbon monoxide
CO2  Carbon dioxide
CH4  Methane
FBR  Fixed bed reactor
GHG  Greenhouse gas
GRT   Gas retention time
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HPWS  High-pressure water scrubbing
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TBR  Trickle-bed reactor
UFR  Up-flow reactor
VOC  Volatile organic compound

Introduction

Fossil fuels is currently the major energy source, with 
exploitation of fossil fuels meeting about 80% of global 
needs. Diminishing fossil fuel supplies and continuous 
greenhouse gas emissions are critical issues (Fairbrother 
et al. 2019; Ong et al. 2020). Carbon dioxide  (CO2) makes 
up the majority of greenhouse gas emissions (Ahmed et al. 
2014; Silitonga et al. 2018; Zhang et al. 2020a). Increased 
atmospheric  CO2 levels have been contributing to global 
warming and recurrent natural disasters (Abou Rjeily et al. 
2021), which are likely to lead to population migration in 
various regions (Berlemann and Steinhardt 2017; Mofijur 
et al. 2016). As a result, interventions that remove atmos-
pheric  CO2 such as carbon capture and storage, and con-
version are being increasingly investigated and developed 
(Mofijur et al. 2019; Osman et al. 2020; Raza et al. 2019). 
Nonetheless, mass-scale applications of such technologies 
are actually restricted by the lack of economic feasibility 
(Al‐Mamoori et al. 2017; Raza et al. 2019; Vega et al. 2020). 
In addition, for sustainable development and economic 
growth, there must be a transition from carbon-based fos-
sil fuels to neutral- and zero-carbon fuels using renewable 
energy sources. To meet global energy demands, renewables 
should occupy a larger share of energy supply by 2050, even 
though the current rate of progress is significantly lagging 
due to economic implications (Murdock et al. 2020).

A realistic alternative to approaching the world’s growing 
fossil fuel scarcity, energy demands (Ahmed et al. 2013), 
and climate change risks would be to opt for an initiative that 
is traditional, renewable, and economically competitive in 
comparison with fossil fuels, namely biofuels (Hazrat et al. 
2021; Srivastava et al. 2020; Zamri et al. 2021). Biofuel 
production is experiencing considerable research, innova-
tion, and development to meet the growing global energy 

demand (Muhammad et al. 2021; Peng et al. 2020; Rizwanul 
Fattah et al. 2020). Biofuels are expected to consistently sup-
ply nearly one-fourth of the primary energy in 2050 across 
the globe, where biogas is driving the emerging market for 
renewable energy (Nevzorova and Karakaya 2020). The 
biogas market should expand in the areas of cooking, power, 
heating, and transport (Lask et al. 2020).

Biogas can simultaneously address growing waste genera-
tion and management issues. Biogas upgrading technologies 
such as biological and hybrid methods, hydrate separation, 
biotechnologies (biotrickling filter, in situ upgrading), dry 
reforming, chemolithotroph-based bioreactors, and mem-
brane technology are gaining attention, but are yet to be 
popularized on a large scale (Adnan et al. 2019). Differ-
ent strategies have been encouraged to lower costs, such as 
the use of  CO2 in enhanced oil recovery, algae production 
and mineralization, and underground carbon sequestration. 
Nonetheless, further attention should be placed on analysing 
the quality of separated  CO2 for utilization because there 
is little information in this area. Topics of recent reviews 
on biogas upgrading technologies are compared in Table 1, 
showing that few reports address techno-economic analy-
sis, biogas utilization, and challenges. Therefore, we review 
technologies available for upgrading biogas and their chal-
lenges. We explain how to choose technologies based on 
their final utilization and techno-economic feasibility.

Biogas upgrading

Biogas is produced by anaerobic digestion of waste gener-
ated from municipal, agricultural, and industry at moderate-
to-high temperature (Chew et al. 2021; Mofijur et al. 2021). 
The upgrading of biogas aims at separating methane from 
 CO2 and other biogases. Biogas is mainly treated in two 
steps: first, raw biogas is cleaned through the removal of 
toxic compounds, then it is upgraded, or the  CO2 content 
is adjusted to establish a high enough calorific value of the 
biogas (Bose et al. 2019). Although biogas primarily con-
sists of  CO2 and  CH4, a number of compounds may also 

Table 1  Topics of recent reviews on biogas upgrading technologies

Topics Struk et al. 
(2020)

Kapoor et al. 
(2019)

Angelidaki et al. 
(2018)

Sahota et al. 
(2018)

Ullah Khan 
et al. (2017)

Sun et al. 
(2015)

This report

Physical technologies √ √ √ √ √ √ √
Chemical technologies √ √ √ √ √ √ √
Biological technologies √ √ √ √ √ √ √
Techno-economic analysis √ √ √
Biogas utilization √ √ √
Challenges √
Perspectives √ √ √ √ √ √



be present in biogas, namely water  (H2O), dinitrogen  (N2), 
dioxygen  (O2), carbon monoxide (CO), ammonia  (NH3), 
hydrogen sulphide  (H2S), volatile organic compounds 
(VOCs), siloxanes, aromatic and halogenated compounds, 
and hydrocarbons (Préat et al. 2020; Mahmudul et al. 2021). 
Upgrading can improve heating values to 15–30 MJ/Nm3 
(Hosseini and Wahid 2014).

The composition of the biogas is controlled by the pH 
and the nature of raw materials utilized for digestion biogas 
(Chaemchuen et al. 2016). The combustibility of biogas 
is attributed to  CH4, which determines the calorific value. 
Other biogas components are often viewed as contaminants. 
For example,  CO2 significantly lowers the calorific value of 
the biogas, which can be used only for low-quality energy 
needs such as cooking and lighting (Awasthi et al. 2020). 
Moreover, large concentrations of  O2 in the biogas may lead 
to explosions (Stolecka and Rusin 2021). Biogas is mainly 
criticized for its limited ability to reduce carbon emissions 
compared to other renewable sources (Raugei et al. 2020), 
yet a fully optimized process where all by-products are recy-
cled into value-added compounds would be sustainable. In 
particular, more research is needed in cleaning technologies, 
process optimization, development of efficient adsorbents for 
biogas upgrade, improvement of storage systems, reduction 
of  CH4 loss, minimization of environmental consequences, 
maintenance cost and energy usage, and efficient utilization 
pathways for biogas (Adnan et al. 2019; Awe et al. 2017; 
Chaemchuen et al. 2016; Khan et al. 2017).

Available technologies for biogas upgrading

The technologies for biogas upgrading are mainly derived 
from the gas refining industry. These technologies use 
separation and sorption approaches to take advantage of 
the chemical, physical, and biological properties of gas 
components.

Physical technologies

Water scrubbing

The water scrubbing principle utilizes the advantage of dif-
ferent solubility levels of the various components of biogas 
in a liquid scrubbing solution to separate and extract pure 
 CH4 as biogas (Fig. 1). Depending on their solubility, dif-
ferent gas components physically bind with a scrubbing 
solvent. Water scrubbing involves the use of water as a 
selective solvent. This technology is widely used for indus-
trial-scale upgrading (Wylock and Budzianowski 2017) and 
for a diverse array of flow rates of biogas, the most suitable 

category being higher flow rates ranging from 500 to 2000 
 Nm3/h (Petersson and Wellinger 2009).

Hydrogen sulphide  (H2S) has the highest solubility in 
water among biogas components followed by  CO2. However, 
 H2S in gaseous form is harmful and toxic to the environ-
ment. When  H2S is mixed with water, it becomes corrosive 
and odorous; therefore,  H2S is usually pre-separated from 
biogas prior to water scrubbing when it reaches an amount 
higher than 300 to 2500 ppmv (Thrän et al. 2014). Follow-
ing that,  CO2, which is 26 times more soluble than  CH4 in 
water at a temperature of 25 °C, is dissolved in the water 
(Towler and Sinnott 2012). The absorption of  CO2 happens 
at 8–10 bar, yet pressures ranging from 10 to 20 bar are vary-
ingly used at the absorption column (Kapoor et al. 2017). 
As  CH4 has the lowest solubility among the other compo-
nents in biogas, this method is extensively used for cleaning 
biogas with water as a scrubbing agent. With this technol-
ogy, 80–99%  CH4 purity can be achieved; however, it relies 
on the concentrations of non-condensable impurities that are 
inseparable from  CH4, such as  N2 and  O2 (Sun et al. 2015).

In order to facilitate gas-to-liquid mass transfer, an 
absorption column is used where compressed biogas is 
injected upwards from the base and water downwards from 
the top in a counter-current flow (Hosseinipour and Mehr-
pooya 2019). Water saturated biomethane is collected from 
the upper end of the column, whereas the  CO2 and  H2S filled 
water is decompressed in a desorption column to remove 
the  CO2 and  H2S and regenerate pure water for reuse in 
scrubbing. In the desorption column, pressure decreases 
to 2.5–3.5 bar, and residual  CH4 dissolved in the water is 
recovered (Benizri et al. 2019). This regeneration of water 
is crucial due to this technology’s demand for large quanti-
ties of water. Although water recirculation is cost-effective, 
if the water source is a wastewater treatment plant, a single 

Fig. 1  Typical water scrubbing technology used for industrial-scale 
biogas upgradation. Here, water separates enriched methane from raw 
biogas



pass of water is recommended. However, to reduce the cost 
of the single-pass process, the  CO2 is not separated from the 
water, rather, the water/CO2 mix is released into the treat-
ment facility after scrubbing for further treatment.

CO2 is released into the atmosphere only in the case of 
recirculation and water reused in the system. Even then, if 
the biogas flow rates are in the range of 100–1000  Nm3/h 
or 20–200 L/h, it is necessary to supply fresh water into the 
water circulation system to avoid an accumulation of toxi-
cants such as elemental sulphur (Kapoor et al. 2019). Typi-
cally, the  CO2 released in the process of water regeneration 
is not captured. Nevertheless, this loss can be addressed by 
introducing air stripping into the system which can poten-
tially ensure that the purity of the  CO2 is as high as 80–90%. 
Using this method, the produced  CH4 is saturated with 
water, hence drying is required to finalize the upgrading.

Apart from the cost of raw gas compression and water 
processing via circulation pumps, the air stripping step cre-
ates an additional electricity cost to run the air fan required 
for biomethane drying. The loss of  CH4 in this technology 
stands between 3 and 5% as per mathematical calculations; 
however, the claim equipment suppliers occasionally make 
is that this figure can be controlled and kept under 2% (Sun 
et al. 2015). On the other hand, the highest percentage loss 
of  CH4 so far recorded is 18%. Despite all this, this tech-
nology is very environmentally friendly and provides effi-
cient biomethane upgrading without using any hazardous 
chemicals. Overall, water scrubbing technology is found to 
be efficient in removing impurities from biogas (~ 97%  CH4 
recovery), and both  CO2 and  H2S can be removed at once. 
However, higher investment and operating costs are needed 
for this technology.

Physical absorption of organic solvent scrubbing

The fundamentals of the organic solvent scrubbing technol-
ogy (Fig. 2) are identical to water scrubbing, the only differ-
ence being that dimethyl ethers of polyethylene glycol-based 
absorbents such as Selexol® or Genosorb® are used as the 
scrubbing solvent instead of water. This is because these 
organic solvents usually have a higher binding capacity for 
 CO2 and  H2S than water (Zhang et al. 2020b). Better affinity 
means less solvent is needed to run the process. In addition, 
organic absorbents like polyethylene glycol dimethyl ethers 
have low vapour pressure which leads to a minimal loss of 
solvent, resulting in a lower overall requirement for the sol-
vent in this process (Nguyen et al. 2020). The advantage 
of using an organic solvent instead of water is that a small 
volume of solvent does the job efficiently, thereby lowering 
the amount of the solvent and allowing the size of the facility 
to be kept more compact (Yu et al. 2020).

Organic scrubbing is used mainly for the higher flow 
rates of 500–2000  Nm3/h (Ryckebosch et al. 2011). At the 
beginning of the process, both biogas and absorbent are 
cooled down to 20 ℃ and compressed by applying 7–8 bar 
pressure (Angelidaki et al. 2018). In addition to the funda-
mental steps of water scrubbing, organic solvent scrubbing 
technology requires a step to separate water from gas and 
subsequent steps that heat up to 40℃ to promote desorp-
tion of  CO2. Alongside  CO2, moisture content,  O2,  N2, and 
some trace amounts of halogenated hydrocarbons are also 
removed (Andriani et al. 2020). An additional benefit of this 
technology is that organic absorbents are by nature usually 
anti-corrosive; thus, expensive construction using stainless-
steel or extra coating materials is not required resulting in 
reduced investment and operational costs. Further, drying 
the biomethane is not necessary because glycol effectively 

Fig. 2  Typical organic scrub-
bing process using dimethyl 
ethers of polyethylene glycol-
based absorbents as the scrub-
bing solvent. Organic scrubbing 
is efficient in removing carbon 
dioxide, moisture content, oxy-
gen, nitrogen, and trace amounts 
of halogenated hydrocarbons



absorbs both water and halogenated hydrocarbon from the 
raw biogas (Qyyum et al. 2020).

Despite its multiple advantages, the well-developed 
organic solvent scrubbing technology only represents a 6% 
share of the international upgrading market (Zhao et al. 
2017). Using this technology, a 96–98.5%  CH4 recovery rate 
can be achieved, and the loss of  CH4 can be kept below 2% 
with high efficiency (Awe et al. 2017). Like water scrubbing, 
for higher concentrations of  H2S, pre-separation is recom-
mended using an activated carbon filter to minimize energy 
costs. If the concentration is relatively low,  H2S is allowed in 
the scrubbing process. However, as the solubility of biogas 
components is excessively high in organic solvents, regen-
eration is challenging and requires further processing for 
this technology. Because  H2S has even more solubility than 
 CO2 in an organic solvent, with an increasing volume of 
 H2S present in the raw biogas, proportionally more heating 
is necessary to regenerate the solvent. Steam or inert gas 
flow is normally applied to allow absorbent regeneration 
and the prevention of sulphur build-up-related fouling in 
the system (Agbroko et al. 2017). Although this technology 
is more advanced than water scrubbing, the energy demand 
is significantly higher for organic solvent regeneration, and 
the solvents are quite expensive compared to water. In brief, 
organic scrubbing technology offers more than 97%  CH4 
recovery efficiency. Also, it requires less amount of solvent 
because of the high solubility of  CO2, while more energy is 
needed for the regeneration of solvents.

Pressure swing adsorption

The core of the adsorption technique is mainly found in 
porous adsorbents. Adsorbents like zeolite, silica gel, 

activated carbon, activated alumina and polymeric materi-
als offer a high precision selective surface which is useful 
for the preferential adsorption of  CO2 over  CH4 (Hunter-
Sellars et al. 2020). Except for flow rates above 2000  Nm3/h, 
pressure swing adsorption (PSA) (Fig. 3) can be used for a 
broad spectrum of biogas flow points. The adsorbent char-
acteristic is the most crucial determinant of PSA efficiency. 
The separation process of this method relies on the princi-
ples of selective adsorption affinity for different molecular 
sizes. The adsorbents act as a molecular filter with an aver-
age mesh size of 3.7 A°:  CO2 atoms with a molecular size 
of 3.4 A° are adsorbed, whereas  CH4 atoms with a bigger 
molecular size of 3.8 A° are excluded from retention inside 
the absorbent (Nakao et al. 2019). As a result, the  CH4 una-
ble to enter the porous adsorbent is left behind in the biogas 
at an increased concentration.

Apart from exhibiting a linear adsorption isotherm, any 
suitable adsorbent should remain stable both mechanically 
and thermally upon long-term usage, be non-hazardous, and 
readily available (Canevesi et al. 2018). Typically, adsorbents 
are vertically stacked and sequentially interconnected in four 
columns as shown in Fig. 3. Different operational stages of 
the pressure swing adsorption technology are biogas feed-
ing and adsorption followed by blowdown and purging, and 
finally, column pressurization (Vilardi et al. 2020). Adsorp-
tion columns function under 4–10 bar pressure at different 
stages for enhanced  CO2 adsorption (Wahono et al. 2020). 
Upon saturation of any column with  CO2, the gas flow goes 
to the next column which has been already regenerated—this 
step is known as the blowdown phase. The blowdown phase 
lowers the overall energy requirement and serves as the pres-
surization stage for the next adsorption column. Following 
this, the additional pressure is withdrawn from the saturated 

Fig. 3  Pressure swing adsorp-
tion system, which can be used 
for a broad spectrum of raw 
biogas. The separation relies on 
selective adsorption affinity for 
different molecular sizes



column which causes purging of the upgraded biogas and 
completes the regeneration of the adsorbent bed.

The regeneration capacity and efficiency of the upgrading 
of any adsorbent material varies under different temperature 
and pressure conditions. Unaffected by the adsorption pro-
cess,  CH4 remains in the flow and is periodically extracted 
from the tip of the columns under decreased pressure condi-
tions. One of the columns performs adsorption at any given 
time, while the rest are engaged in different stages of regen-
eration. This recurring order of adsorption and regeneration 
takes just 2 to 10 min to complete (Qasem and Ben-Mansour 
2018). Originally developed for industrial use during 1960s, 
the well-developed pressure swing adsorption technology 
has by now gained a 21% global market share (Patterson 
et al. 2011). A 96–98%  CH4 purity on top of a 94–96% 
technical plant can be attained with this technology (Paolini 
et al. 2019). The moisture content of the raw biogas needs 
to be eliminated by condensation before adsorption (Bauer 
et al. 2013a).

Studies (Zhang et al. 2021, 2020c) suggest that  H2S and 
siloxanes should be filtered out with activated carbon filters 
prior to adsorption as they can corrupt the system by being 
irreversibly adsorbed onto the molecular sieves. Generally, 
0.24–0.6 kWh/Nm3 electricity is applied for gas compres-
sion and condensation of moisture (Awe et al. 2017). The 
standard condition for adsorption involves the application 
of 3–8 bar pressure and high temperature ranging from 50 
to 60 °C. There are no other supplementary expenses for 
water supply or heating for adsorbent regeneration. How-
ever, the vent gas from the system with a high concentration 
of  CH4 must be treated diligently before being released into 
the atmosphere (Nisbet et al. 2020), e.g. it can be treated 
by burning using a flox burner. At a glance, pressure swing 

adsorption involves faster installation and relatively easier 
operation due to compact setup. It is suitable for purifying 
small capacities of biogas. However, prior elimination of 
 H2S and moisture is preferable in this technology.

Cryogenic separation

Raw biogas components have different liquefaction and 
solidification temperatures, and cryogenic separation tech-
nology has been developed utilizing this factor. Cryogenic 
technology is popular for isolating impurities from raw 
biogas originating from landfills (Kapoor et al. 2019). In 
the cryogenic separation process, as shown in Fig. 4, the 
temperature of the raw biogas is decreased in a step-by-step 
manner, which helps in sequential and selective separation 
of moisture,  CO2,  N2,  O2,  H2S, and  CH4 from the raw gas 
flow. This sequential separation is also capable of generating 
pure liquefied biomethane (LBM) at a temperature of around 
162 °C to 182 °C (Bauer et al. 2013b). The cryogenic sepa-
ration technology has a promising potential for producing 
liquefied biomethane, and liquefied biomethane has an igni-
tion efficiency equivalent to liquid natural gas (LNG) (Awe 
et al. 2017). It is a good choice for optimization since the 
cryogenic techniques produce products with a high purity 
ranging from 95 to 99% (Baena-Moreno et al. 2019b). The 
process takes place at a constant pressure of 10 bar using a 
series of successive temperature reductions.

At the first step of the cryogenic separation technology, 
the temperature reduction to − 25 °C captures moisture,  H2S, 
and trace amounts of siloxanes and halogens. Following this, 
in the second step the temperature drops to − 55 °C, and 
most of the  CO2 is liquefied and removed from the process 
for further commercial upgrading. At the final polishing 

Fig. 4  Cryogenic separation of raw biogas. This process contains an initial biogas de-moisturizing step followed by a series of multiple compres-
sion and intermittent cooling stages



 

step, residual  CO2 condenses when the temperature reaches 
as low as − 80 °C (Ryckebosch et al. 2011). It is necessary to 
keep applying high pressure throughout the process in order 
to avoid sudden solidification of  CO2 under − 78 °C, which 
can result in operational complications such as congestion of 
pipelines and undesirable fluctuations in temperature. Pre-
removal of water and  H2S can also prove beneficial in this 
regard. A setup of horizontally interconnected compressors 
and heat exchangers is required to meet these operating con-
ditions (Yousef et al. 2016). Additionally, turbines and distil-
lation columns are essential for the full functioning of the 
system, further increasing the overall cost of the cryogenic 
separation technology (Kiss and Smith 2020). Such exten-
sive process equipment setup results in huge investment and 
operational costs.

The operational procedure of the cryogenic separation 
technology usually contains an initial biogas de-moisturizing 
step followed by a series of multiple compression and inter-
mittent cooling stages ranging up to 80 bar pressure. Prior 
to that, raw gas is compressed using up to 200 bar pres-
sure. The huge energy required to reach this high-pressure 
level that is equivalent to 5–10% of the biomethane pro-
duced (Allegue et al. 2012; Hashemi et al. 2019). Despite the 
capability of biomethane liquefaction, cryogenic separation 
has not yet captured the attention of the global market for 
full-scale commercialization and represents only 0.4% of 
the market. A 97% biomethane purity and lower than 2% 
 CH4 loss can be achieved from this promising cryogenic 
separation technology (Andriani et al. 2014). As this tech-
nology is not yet widely used, further research is required 
to obtain reliable data on investment and operating costs. 
From the existing literature, the energy requirement seems 
to lie between 0.42 and 1 kWh/Nm3, which indicates prevail-
ing uncertainties associated with this technology. Cryogenic 
separation is an eco-friendly process, and no chemical usage 
is involved. However, high energy is needed to run this tech-
nology. This technology also involves expensive investment, 
maintenance, and operation costs.

Membrane separation

Membrane separation is a method of separating components 
in solutions by rejecting undesired/unwanted substances and 
also allowing the remaining substances to pass via the mem-
brane. The membrane can also change the solution composi-
tion based on relative permeation rates. Its performance is 
evaluated by the membrane’s capacity to regulate, prevent, 
or improve permeation. A membrane cascade is used to 
enhance membrane performance. Membrane cascades with 
recycling are frequently utilized to attain a higher degree of 
separation. The separation method of a single-stage mem-
brane consists of one membrane module or several such 

modules which are organized in parallel or series without 
recycling.

Membrane separation has numerous applications in 
industrial sectors, including nitrogen production from the 
air, hydrogen recovery with the use of ammonia plants, 
vapour recovery from processed gas streams, and biogas 
treatment and upgrading (Ramírez-Santos et  al. 2018). 
Some new applications with successful commercial pro-
gress include dehydration of natural gas and air (Galizia 
et al. 2017). Intensive research and development efforts are 
being undertaken to broaden the range of uses for gas sepa-
ration membranes.  CO2 capture from industrial emissions 
and power plants is one of the relevant applications in the 
mitigation context of greenhouse gases.

Membrane separation occurs at the molecular level 
employing the fundamental rule of differential permeability 
of different molecules through a membrane (Yong and Zhang 
2020). The constituent molecules of biogas can be arranged 
in order based on their permeation rates, where  CO2 has 
the highest permeability and  CH4 the lowest (Noroozi and 
Bakhtiari 2019). Categories of low and medium flow rates 
with high  CO2 content, especially less than 300  Nm3/h, are 
suitable for membrane separation technology (Niesner et al. 
2013). The driving forces behind membrane separation tech-
nology (Fig. 5) are operating temperature and pressure fol-
lowed by sorption and diffusion coefficients, molecular size, 
electric charge, the difference in concentrations, and finally 
membrane construction material.

The sorption coefficient depends on the condensability, 
with larger molecules showing more condensability than 
smaller ones. In contrast, the diffusion coefficient is reversely 
proportional to molecular size. Therefore, the higher solubil-
ity of  CO2 is dictated by its higher sorption coefficient and 
diffusion coefficient (Hu et al. 2019). Conventional mem-
branes used in this technology exhibit a thousand times more 
preferential selectivity towards  CO2 over  CH4. Preferential 
infusion of  CO2,  H2S, and  O2 leaves behind a gas stream 
saturated with  CH4 and  N2. Polymeric materials like cellu-
lose acetates are chosen over non-polymeric materials for the 
manufacturing membranes on account of their high precision 
selectivity, affordability, easier production, excellent ther-
mal and structural stability under high-pressure conditions, 
and rapid scalability (Selatile et al. 2018). Other organic 
polymerics, for instance, polycarbonates, polysulphones, 
polyimides, and polydimethylsiloxane, are also used for 
manufacturing membranes (Chen et al. 2015).

Membrane separation technology has recently gained 
much attention because of the advances in membrane 
nanotechnology which have been able to further increase 
the selectivity factors, therefore enhancing the biometh-
ane recovery potential (Norahim et al. 2018). This mature 
technology currently represents only a 10% share of the 
worldwide market and is commercially used in two different 



modalities: (1) gas–gas under high-pressure conditions; and 
(2) gas–liquid under low-pressure conditions (Thrän et al.
2014). In the gas–gas module, both sides have a gaseous
state, whereas in the latter module, the gaseous  CO2 and  H2S
atoms diffuse into the fluid state on the opposite side of the
membrane (Kim et al. 2021). Usually, in a gas–gas module,
raw biogas is compressed with 20–40 bar pressure which
results in accumulation of retentate at the inlet rich in biom-
ethane at atmospheric pressure; over 97% pure biomethane
can be produced through decompression to negative pressure
levels by partially recycling the permeate saturated with  CO2
and residual  CH4 (Bauer et al. 2013b).

There are mainly two different arrangements of gas–gas 
modules currently available in the market: one involves 
single-pass membrane modules and the other multiphase 
membrane modules with interior alternative recycling sys-
tems (Hidalgo et al. 2020). The primary drawback of this 
technique is the low  CH4 recovery rate due to the undesir-
able infusion of  CH4 under high-pressure conditions. As a 
result, the highest  CH4 recovery (92%) can be obtained in a 
single-pass unit (Chen et al. 2015). On the other hand, the 
multistage arrangement can boost  CH4 recovery from 80 to 
99.5%. In contrast, gas–liquid units operate at atmospheric 
pressure, where the raw biogas is separated from  CO2 spe-
cific absorbent using a hydrophobic microporous membrane 
partition.

Raw biogas and absorbent flow towards each other in 
a counter cutter mode to facilitate biogas to liquid mass 
transfer (Rafiee et al. 2021). Alkanol amines and other limy 
solutions work best as absorbents in membrane separation 
technology (Ochedi et al. 2020). Amine-based solutions are 
the most efficient and can be regenerated by heating, thereby 

discharging isolated  CO2 through desorption (Zhang et al. 
2018). As the gas–liquid unit operates at atmospheric tem-
perature, the construction and operating costs of this unit 
are logically less than the gas–gas unit. Also, the pure  CO2 
released from the system can be commercially sold. Single-
phase gas–liquid or dual-phase gas–gas membrane separa-
tion configurations can yield a 98–99% biomethane purity 
level through continuous extraction of trace  CH4 from the 
recirculating stream of raw biogas. Yet, with advanced set-
ups that have an internal recirculation system for recovering 
residual  CH4 from the flow, the highest possible purity level 
of 99.5% can be reached with this technology (Liemberger 
et al. 2017). In this case, units interconnected in series run 
the recycling of the exhaust gas from the previous unit;  CO2 
is removed from the very first unit so that the purity of the 
biomethane can be adjusted in the following units (Augel-
letti et al. 2017).

The membrane separation arrangement increases biome-
thane purity; however, its energy cost is higher (Chang et al. 
2020) since two internal compression phases are required 
(Miltner et al. 2017). Technical availability of  CH4 stays 
between 95 and 98% in biogas upgrading plants using the 
membrane separation technique (Casado-Coterillo et al. 
2020). Membrane manufacturers guarantee 96–98% purity 
for gas–liquid and multi-step gas–gas units, conversely, 
92–94% for single-pass gas–gas units (Lu et al. 2018), and 
10–25% for off-gas permeate which needs further treatment 
(Andriani et al. 2014). With either increased pressure or a 
larger membrane surface area,  CH4 concentration can poten-
tially be further increased. Pre-conditioning of raw biogas to 
separate  H2O,  H2S,  NH3, and siloxanes by activated carbon 
filtration and subsequent compression is strongly suggested 

Fig. 5  Membrane separation of raw biogas, operation either as gas–
gas under high-pressure conditions, or gas–liquid under low-pressure 
conditions. In the gas–gas module, both sides have a gaseous state, 

whereas in the gas–liquid module, the gaseous carbon dioxide and 
hydrogen sulphide atoms diffuse into the fluid state on the opposite 
side of the membrane



 

to prevent operating failures such as fast degradation and 
blockage of the micropores, thus prolonging the operational 
life of the system.

The major expense of the membrane separation technol-
ogy is associated with the replacement of the activated car-
bon filter, condensation of contaminants (pre-conditioning); 
pre-compression of raw biogas which requires an electrical 
power supply ranging between 0.2 and 0.38 kWh/Nm3, and 
replacement of the membranes which typically have lifes-
pans of 5–10 years (Bauer et al. 2013a). This technology 
involves higher maintenance costs, up to 4% more initial 
investment cost and 2–3% of the installation cost than the 
other technologies currently available in the market (Bar-
bera et al. 2019). Membrane separation is a simple process, 
easy to install and operate. It is also suitable for low gas 
flow rates, with no substantial increase in costings for small 
units. However, the membrane needs to be replaced within 
1 to 5 years.

Chemical technologies

Chemical scrubbing

Identical to water/organic scrubbing, chemical scrubbing 
follows the same operating principles of a counter-current 
flow arrangement for biogas–liquid mass transfer. However, 
the setup and process of chemical scrubbing (Fig. 6) are 
much simpler and more developed, yielding much better per-
formance based on the efficient utilization of absorbents, for 
instance, alkanol amines or aqueous lime solutions which 
have a high affinity towards  CO2 (Gadikota 2020). A broad 
array of biogas flow rates can be used in chemical scrub-
bing technology although the preferred flow rate range is 
medium, varying from 500 to 1000  Nm3/h (Niesner et al. 

2013). In contrast to other physical scrubbing solvents, 
chemical solvents are particularly advantageous when the 
 CO2 concentration is low in raw biogas (Wang et al. 2020). 
The most prevalent amine scrubbing agent in recent times 
has been a concoction of methyl diethanolamine and pip-
erazine (aMDEA) at a 4:7 aMDEA/CO2 mol ratio (Bauer 
et al. 2013a).

Chemical scrubbing comprises a combined configuration 
of both an absorption and a stripper column. The stripping 
column is facilitated by a reboiler that supplies heat at the 
temperature of 120–160 °C (Angelidaki et al. 2018). This 
setup is suitable for less complex process configurations 
than other physical scrubbing processes (De Guido et al. 
2018). Simultaneously, due to the high pH condition of the 
amine-based solvents, biomass accumulation or eutrophi-
cation is not possible (He et al. 2019). Using the chemical 
scrubbing technology, boosted  CO2 removal can be achieved 
because of the formation of intermediate compounds like 
 CO3

2−,  HCO3
− through the exothermic reaction among  CO2 

and other components available in the scrubbing solution 
(Ryckebosch et al. 2011). Improved solubility capacity of 
 CO2 translates to lower requirements for process configura-
tions, such as scope for compact upgrading facilities and 
less frequent recycling of reduced volume of solvent (Grim 
et al. 2020).

The chemical scrubbing technology can also be per-
formed without using a stripper column. This is the case 
when sodium hydroxide (NaOH) is used as a solvent, 
allowing for chemical regeneration. As an alternative to 
high energy consumption, the NaOH regeneration process 
can be exploited by the biogas upgrading unit via calcium 
carbonate  (CaCO3) precipitation as a beneficial by-product 
(Baena-Moreno et al. 2018). The key parameters affecting 
the NaOH regeneration are the molar ratio between  Na2CO3 
and calcium hydroxide Ca(OH)2, reaction temperature, and 
reaction time, which were analysed by Baena-Moreno et al. 
(2018) to assess the regeneration efficacies. The regeneration 
efficiencies of 53–97% were achieved in the study by vary-
ing these parameters. The results demonstrated the technical 
viability of this process of biogas upgrading via  CaCO3 pro-
duction. However, the presence of NaOH in small quantities 
has no beneficial effect on the regeneration process as well 
as reduces regeneration efficiency because of the common 
ion effect.

The biogas upgrading unit can also benefit from the 
NaOH regeneration process using the calcium—magne-
sium carbonate compound. The NaOH regeneration pro-
cess is found as an alternative to physical processes, whose 
high energy consumption poses economic constraints. In a 
biogas upgrading unit, the impact of calcium–magnesium 
carbonate compound on the regeneration efficiency was 
studied by Baena-Moreno et al. (2019a). Noteworthy effects 
were seen when Ca(OH)2 was used as a precipitating agent. 

Fig. 6  Biogas chemical scrubbing, consisting of both an absorption 
and a stripper column. In this process, the stripping column is aided 
by a reboiler that supplies heat



Indeed, a high regeneration efficiency of 97% was achieved 
using 70 °C reaction temperature. However, under the same 
operational settings, significant variations were found when 
magnesium hydroxide (Mg(OH)2) was used as the precipitat-
ing agent. The results reveal that the efficiency of calcium 
in aqueous carbonation studies is substantially greater than 
that of magnesium. Furthermore, calcium resulted in higher-
quality products to keep the overall economy of the process 
affordable.

Minimal pressure is needed to run the chemical scrub-
bing process, only 1–2 bar during absorption and around 
1.5–3 bar during the process of stripping (Struk et al. 2020) 
which as a whole results in reduced power consumption 
expense. Therefore, the atmospheric pressure (1.01325 bar) 
can be used for operating this technology without strip-
ping. After scrubbing, the absorbent rich in  CO2 and  H2S 
is pumped out of the absorption column and routed to the 
desorption column through heat exchange for the regenera-
tion of the spent solvent. The reboiler attached to the desorp-
tion column supplies heat for the reaction of desorbing  CO2 
from the scrubbing agent through the disruption of chemical 
bonds created at the previous step. In addition, this heating 
process also creates a stream of vapour which functions as 
a stripping fluid in the process. The vapour stream is then 
cooled down in a condenser and recirculated so that the  CO2 
entrapped in the steam can be released and recovered (Basso 
et al. 2021).

The advanced chemical scrubbing technology could only 
capture 22% of the global market because the absorbent 
regeneration process requires temperatures as high as 120 °C 
to 160 °C which significantly increases energy use (Thrän 
et al. 2014). The  CH4 recovery rates of 99.5–99.9% can be 
accomplished with chemical scrubbing which is attributable 
to the excessively low solubility of methane in amine-based 
solvents (Cheng et al. 2019). Even though a  H2S concen-
tration of up to 300 ppmv can be managed in this process, 
pre-removal of  H2S using activated carbon filters is the best 
method to avoid toxic building up in the amine reagents. At 
the same time, prior removal is recommended because if 
 H2S is absorbed, desorption from the solvent post-scrubbing 
requires more energy.

Degradation of amine by  O2 poisoning, successive foam-
ing, salt precipitation, and high corrosion rates of the setup 
are the dominant functioning difficulties of chemical scrub-
bing technologies (Zhang et al. 2019). Still, the investment 
required to tackle these issues is negligible: 3 mg  Nm−3 per 
compound and the cost of 0.12–0.15 kWh/Nm3 power for 
condensing raw biogas and pumping solvent can be consid-
ered moderate (Bauer et al. 2013b). Amine-based solvent 
regeneration typically requires more than 0.55 kWh/Nm3 
power which is responsible for the highest costing chemical 
scrubbing method. Additionally, as the scrubbing agent is 
toxic to the environment and humans, the requirement to 

treat the waste materials from the upgrading plants makes 
the method even more expensive.

Due to the issues mentioned above and despite having 
many other advantages, this technology is not preferred by 
many biogas upgrading plants. The main surveyed studies 
on physical and chemical technologies for biogas upgrading 
are given in Table 2 which compares them by emphasizing 
their raw biogas consumption, clean biogas consumption, 
heat consumption, heat demand, operational cost,  CH4 losses 
and recovery, pre-purification,  H2S co-removal,  N2 and  O2 
co-removal, operation pressure, and outlet pressure. Overall, 
the chemical scrubbing technology offers more than 99% 
of the efficiency of  CH4 recovery, and it can be operated at 
low-pressure conditions. However, this process possesses a 
risk of brackish coagulation and foaming.

Biological technologies

Chemoautotrophic methods

The ability of chemoautotrophic methanogenic microbes to 
convert  CO2 to  CH4 is the basis of chemoautotrophic biogas 
upgrading. Methanogenesis techniques are conventionally 
utilized for the methane enrichment and effective removal of 
 H2S from biogas sourced from landfills or anaerobic digest-
ers (Bharathiraja et al. 2018). For instance, one bacterium 
often called M. thermoautotrophicum is capable of elevating 
the amount of biomethane in the raw biogas from 60 to 96% 
while keeping the  H2 and  H2S concentrations negligible. 
Injecting  H2 from the outside into the system to biologically 
convert  CO2 to  CH4 is used both in producing biomethane 
and in capturing high volume emissions of  CO2 from elec-
tronics manufacturing facilities (Zabranska and Pokorna 
2018).

Nonstop supply of  H2 into the system can result in a 
95%  CH4 concentration in the upgraded biogas (Luo and 
Angelidaki 2013a). Microbes such as methanobacterium, 
methanospirillum, and methanococcus are constantly found 
to support bioconversion of  CO2 to  CH4 upon introduction 
of  H2 inside anaerobic digesters (Zabranska and Pokorna 
2018). In a similar manner, pushing  H2 into the bioreactor 
is shown to escalate microbial activity. The main constraint 
of the chemoautotrophic biogas upgrading technology lies 
in the fact that the current structure of anaerobic reactors is 
not designed to take full advantage of the gas–liquid mass 
transfer for up-scaling.

There are some risks such as deterioration of the structure 
and reduction in the efficiency of anaerobic flocs (Jiang et al. 
2021). Even at a smaller scale, the biomethane composition 
achieved so far is not that promising. Additionally, due to 
the requirement for bulk quantities of  H2, this technology 
must make sure that  H2 is sourced sustainably, for example, 
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through electrolysis using an excess of electricity or from 
an adjacent facility where  H2 is produced as a by-product of 
treating acidic wastewaters (Zhuang et al. 2020). At the same 
time, proper safety measures and operational mechanisms 
need to be in place to carefully control the risk of intro-
ducing the highly inflammable  H2 gas into any anaerobic 
bioreactor.

Photosynthetic biogas upgrading

The photosynthetic potential of microalgae has been utilized 
to design photosynthetic biogas upgrading technology where 
 CO2 is sequestered into microalgae biomass in any microal-
gal cultivation broth as shown in Fig. 7. Eukaryotic micro-
algae and prokaryotic cyanobacteria can remove  CO2 from 
biogas through bioconversion in a photolysis reaction (Devi-
ram et al. 2020). Roughly, 1.8 g  CO2 is needed to produce 1 
gm microalgae. Although a 5%  CO2 concentration usually 
inhibits algal growth, extensive research has successfully 
identified some species which can withstand a  CO2 con-
centration in raw biogas as high as 60% (Zabed et al. 2020).

It has been found that some microalgae such as Chlo-
rella’s growth is suppressed due to the presence of a  H2S 
content higher than 100 ppmv (Kao et al. 2012). On the 
other hand, due to the concurrent presence of some sulphate 
oxidizing bacterial species and spontaneous oxidation of 
 H2S into sulphate by dissolved oxygen (DO),  H2S does not 
reach the inhibitory level (Bahr et al. 2014).  CH4 also does 
not exert any negative impact on microalgal growth up to a 

concentration of 80%. This is because  CO2 is characteristi-
cally less soluble and inert in microalgal cultivation broth.

The efficiency of  CO2 removal is subject to external fac-
tors like availability of sunlight, pH, and concentration of 
dissolved oxygen (DO) in the cultivation of broth (Alami 
et al. 2021). Thus, the optimal conditions for microalgal 
growth are: (1) solar radiation levels at around 200 to 400 
 lEm−2  s−1 (Tredicid 2010); (2) a temperature of 15 °C to 
25 °C, with some microalgae, namely Chlorella, breeding 
well even at 30 °C to 35 °C; (3) a pH of 7–8, though for 
some cyanobacterial species a pH of 9–10 is optimal for 
maximum  CO2 bioconversion given its acidic nature (De 
Godos et al. 2014); (4) a DO volume below 1% because of 
its explosive nature at higher concentration levels (Bahr 
et al. 2014); and finally (5) a gas retention time 0.03 to 
0.3 h for outdoor bioreactor setups and 0.7 to 96 h for 
indoor setups.

Up to 80%  CO2 sequestration with 90% biomethane pro-
duction is achieved using photosynthetic biogas upgrading 
technology, though 6–9%  N2 in the upgraded biomethane 
is still a technical limitation that requires further develop-
ment. Photosynthetic biogas upgrading is one of the top 
environment-friendly technologies of the available biogas 
upgrading technologies due to its  CO2 capturing ability. 
It contributes positively towards reducing  CO2 released 
into the atmosphere. Microalgal biomass produced in 
this process can be further utilized as feedstock for the 
biofuel industry and other valuable new-generation com-
modities such as pharmaceuticals, cosmetics, high protein 
food items, and so on (Alcántara et al. 2013). In addition, 

Fig. 7  Photosynthetic biogas upgrading process. In this process, carbon dioxide is sequestered into microalgae biomass in any microalgal cul-
tivation system. This process is environment friendly due to its  CO2 capturing ability. LED: light-emitting diodes. HRAP: high-rate algal pond



residual nutrients in the anaerobic digester are spontane-
ously consumed by the microalgae community; hence, the 
mitigation of possible eutrophication in digestors is a posi-
tive side effect of this technology.

In situ desorption

In situ desorption technology has been around for around 
20 years. However, it is still under development due to the 
lack of full-scale implementation. The substantially greater 
solubility of  CO2 over  CH4 in water is the basis for the in situ 
enrichment of  CH4. The operational setup includes an anaer-
obic digester interconnected with an external desorption unit 
as shown in Fig. 8a. In this process, sludge is transported to 
an aerated desorption column from the anaerobic digestor 
(Sarker et al. 2018). Air or  N2 flowing in counter-current 
mode easily dissolves  CO2 from the sludge in the desorp-
tion unit. Desorbed sludge is then pumped back into the 
digestor to reabsorb additional  CO2, and the sludge is also 
continuously recycled in the desorption column. It is pos-
sible to easily strip out  H2S together with dissolved  CH4 
and  CO2 from the recirculating sludge by applying a large 
amount of air or  N2, which causes a total reduction in the 
concentrations of  H2S and  CO2 in the raw biogas (Nordberg 
et al. 2012). However, biomethane yield is relatively low 
because of  CH4 losses ranging from 2 to 8%. In a pilot-scale 
configuration, small-sized anaerobic digestors (15  m3 to 19 
 m3) interconnected to desorption columns with a capacity of 

90 L to 140 L provided around 87%  CH4 purity with associ-
ated losses of 8%.

Usually,  CO2 becomes dissociated in the digestor and 
yields H + and HCO3. This process maintains the optimal 
bicarbonate buffer concentration in the system (Silva et al. 
2019). However, as in this technology  CO2 is readily uti-
lized, the concentration of H + is proportionally reduced, 
while the pH level is elevated. Operational parameters, 
mainly pH, should be monitored and controlled regularly 
for the smooth operation of in situ desorption technol-
ogy. To alleviate pH-related challenges, introducing acidic 
waste into the bioreactor for co-digestion has proven ben-
eficial to keeping the pH level within the optimal limit 
(Luo and Angelidaki 2013a). On the other hand, it has 
been found that a higher content of  CO2, primarily in the 
form of bicarbonate, promotes enhanced  CO2 desorption 
due to a quasi-selective separation potential over  CH4. 
Furthermore, the airflow rate is considered another major 
operational determinant of efficient biogas upgrading 
using this technology.

Impurities contained in upgraded biomethane can be 
lowered significantly using a stronger airflow into the des-
orption column, but  CH4 losses will be quite high.  CH4 
purity can be minimized while achieving maximum  CO2 
removal by increasing the sludge retention time in the 
desorption column (Muñoz et al. 2015). To sum up, as 
biological biogas upgrading technologies are still being 
run experimentally in lab-based setups or on a pilot scale, 

Fig. 8  Biogas upgrading by a in situ desorption b ex situ desorption. 
In the in  situ process, an anaerobic digester is interconnected with 
an external desorption unit, while in the ex situ process, an anaero-

bic digester is interconnected with the reactor where hydrogen from a 
renewable source is injected



accurate data on investment and operating, identification 
of limitations and challenges at full-scale operation are 
still ambiguous for these technologies. The main technical 
challenge of in situ desorption technology is the pH level 
reaching above 8.5 which is inhibitory to methanogenesis. 
A pH of 8.5 is the upper limit for both mesophilic and 
thermophilic standard bioconversion of  CO2 to biomethane 
(Bassani et al. 2015).

Ex situ desorption

The ex situ biogas upgradation principle depends on the pro-
vision of carbon dioxide from external sources and hydrogen 
in an anaerobic reactor, which contributes to their eventual 
conversion to methane (Bassani et al. 2017). The ex situ 
process (Fig. 8b) can manage high concentrations of influ-
ent gases, thereby decreasing the gas retention time to 1 h, 
which minimizes the size of the biogas upgrader. The biogas 
efficiency improvement of this technology will result in a 
final methane content of 79% to 98%, depending heavily on 
the type of reactor used (Angelidaki et al. 2018). The low 
gas–liquid mass transfer rate remains the technological chal-
lenge of this technology.

The ex situ biogas upgradation process has several ben-
efits compared to the in situ approach, as shown in Table 3. 
The table summarizes the main studies surveyed to compare 
in situ and ex situ technologies for biogas upgrading in terms 
of the batch reactor, trickle-bed reactor (TBR), fixed bed 
reactor (FBR), biofilm plug flow reactor (BPFR), up-flow 
reactor (UFR), bubble column reactor (BCR), gas retention 
time (GRT), gas recirculation, and temperature. It is found 
that the mature technologies, many of which are physical 
and chemical upgrading technologies, have reached near-
optimum technical and economic feasibility, but are still 
highly energy and resource-intensive. Biological methods 
are explored less, despite showing huge potential in terms 
of techno-economic feasibility. They are also found environ-
ment friendly, and no chemical is required. However, this 
process is limited for large-scale operations, and the pH of 
the gas should be regularly monitored and controlled.

Techno‑economic analysis of biogas 
upgrading technologies

Practically, the energy consumption of a particular energy 
application is distinctive. Biogas upgrading and cleaning 
technologies have been the subject of several reviews and 
literature studies throughout the years, where the primary 
focus of the majority of the studies has been on technologi-
cal and economic feasibility evaluation of the technologies 
(Chaemchuen et al. 2016; Lombardi and Francini 2020; 
Morero et al. 2017; Qyyum et al. 2020; Sahota et al. 2018; 

Sheets and Shah 2018). The upgrading technologies assessed 
by most researchers are criticized for being costly in terms 
of large-scale implementation, and thus the focus of their 
recommendations has been on reducing the cost of operat-
ing such technologies. For example, the upgrading technolo-
gies assessed by Sahota et al. (2018) generate high operating 
costs and are energy-intensive, which restrict the opportu-
nities to scale up these technologies. Hybrid technologies 
have been recommended by the authors to overcome the 
challenges of upgrading technologies.

Among all the parameters affecting the overall energy 
efficiency of the complete biogas upgrading process, the loss 
of  CH4 is the most significant. The pressure swing adsorp-
tion process has a slightly lower energy consumption than 
water scrubbing (WS) but consumes much more energy than 
the chemical adsorption process (Kohlheb et al. 2020). The 
energy consumption required by the chemical adsorption 
process is about 15% less than the water scrubbing process 
(Vilardi et al. 2020). The energy consumption of microalgal 
photosynthesis was investigated in a study (Xu et al. 2019) 
where it was reported that this process was significantly 
more efficient than the other treatments, although verifying 
this conclusion without further details was believed to be dif-
ficult. The energy-saving aspect of the biological upgrading 
method was also evaluated with hydrogenotrophic methano-
gens. However, this evaluation was claimed to be difficult 
because  H2 was required by the technology, given that the 
energy utilization was minimum.

Many researchers have looked into methods to lower 
 CH4 losses and energy consumption in a bid to reduce cost. 
Morero et al. (2017) found water to be the simplest and most 
robust solvent for use in biogas upgrading processes com-
pared with diglycolamine and dimethyl ethers of polyeth-
ylene glycol as it allowed the greatest  CH4 recovery and 
 CO2 capture with lower energy consumption. Similarly, in 
a techno-economic and environmental assessment of five 
upgrading technologies from biogas to biomethane, amine 
scrubbing exhibited the best environmental outcome because 
of its lower electricity use and  CH4 loss (Lombardi and Fran-
cini 2020). However, the selection of an upgrading technol-
ogy is more likely to be affected by cost-effectiveness. For 
instance, high-pressure water scrubbing was found to be 
more cost-effective for small plants, while potassium car-
bonate scrubbing showed the highest net present value for 
large plants (Lombardi and Francini 2020).

In most cases, the cost associated with the building where 
such upgrading processes are located is excluded. There is 
also no data available related to the cost associated with 
the processes that are involved in the biological and in situ 
upgrading methods. The investment costs related to biogas 
upgrading technologies have not changed much in a decade 
(Miltner et al. 2017). The operating and maintenance costs 
related to biogas upgrading plants mostly only include the 
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electricity, labour, water, and chemical costs based on the 
upgrading technology and relevant maintenance methods. 
Cryogenic technology generally has an increased operational 
and maintenance cost due to its low productivity. However, 
despite a high energy efficiency, the chemical absorption 
technology was also reported to have high operation and 
maintenance costs, specifically for large-sized plants. These 
results should be further confirmed by conducting more 
studies.

Costs may become less important when selecting appro-
priate technology, especially when specific biogas quality 
and site requirements are prioritized. Transportation of the 
biogas to the utilization sites also has great potential for cost 
reduction. To mitigate the costs and technological require-
ments of transporting biomethane, Qyyum et al. (2020) 
suggested liquefaction of biomethane, particularly empha-
sizing the benefits of nitrogen expander-based liquefaction 
processes attributed to their simplicity and low investment 
costs. In the techno-economic analysis undertaken by Sheets 
and Shah (2018), it was found that compressed natural gas 
(bio-CNG) generation had the highest rate of return, fol-
lowed by refined biogas, while thermochemical methanol 
and biological methanol production had negative net pre-
sent values. They concluded that improvements to the  CH4 
oxidation rate in the methanotrophs and methanol tolerance 
could reduce the cost of biological conversion. Khan et al. 
(2017) also recommended the biogas conversion to bio-CNG 
as a vehicle fuel because of its lower environmental impact. 
Reducing the loading time and input from the compressor 
and increasing the load mass to the cylinders of the vehicle 
are suggested as means to improve the efficiency of bio-
CNG storage systems.

The maintenance cost and energy demand to upgrade 
raw biogas are the key factors that are usually considered 
while selecting any upgrading technology. This is mainly 

because the maintenance cost is dependent on the opera-
tional expense of each process. Also, the regeneration energy 
of some of the methods makes the process costly and vari-
able. The capital cost increases depending on the operating 
and management costs of individual upgrading technology. 
The investment and maintenance costs of biogas upgrading 
technologies are given in Fig. 9 (Kadam and Panwar 2017; 
Singhal et al. 2017; Vrbová and Ciahotný 2017). These costs 
are mostly based on the selected technology, the standard 
of biogas (raw), expected product standard, and essentially, 
the plant capacity. Generally, the upgrading technologies 
have quite similar capital investment costs which decrease 
only with plant capacity. Studies show that the financing of 
various upgrading technologies is remarkably dependent on 
the individual plant’s capacity. Plants with a lower capacity, 
ranging from 0 to 100  Nm3/h, have an increased fixed invest-
ment cost and vice versa (Khan et al. 2017). Additionally, it 
has also been noted that different membrane materials and 
pressure regulation result in high energy variations.

Membrane separation, organic physical methods and 
water scrubbing are some of the popular technologies as 
their maintenance cost is low. Additionally, some studies 
have outlined that membrane separation, pressure swing 
adsorption (PSA), amine, and water scrubbing currently 
number among the leading biogas upgrading technolo-
gies. According to some reports, even some years back, the 
membrane separation method was reviewed as a big-budget 
and not well-established technology. However, recently, 
it has been gaining rapid market value and interest due to 
the accessibility of specific and low budget materials. The 
membrane-based biogas upgrading technology has shown an 
increasingly positive trend, and the units on the membrane 
are also found at low waste production for small biogas 
upgrading technologies.

Fig. 9  Investment and mainte-
nance costs of various biogas 
upgrading technologies for 
1000  m3 volume, modified after 
(Kadam and Panwar, 2017; 
Kapoor et al., 2019; Khan et al., 
2017). Chemical swing adsorp-
tion showed higher capital and 
maintenance costs, while water 
scrubbing technology contrib-
uted to the lowest investment 
cost



Over the past 10 years, biogas production increased sig-
nificantly in Europe and has also been predicted to increase 
to 40.2 Mtoe in 2030 (Axelsson et al. 2012). Contributions 
from European countries alone were predicted to increase 
the global biogas market from $124 billion in 2010 to $217 
billion in 2016. Even though it has been many years since 
technologies like water scrubbing, amine scrubbing, and 
PSA originally evolved, much research has been carried out 
to make them efficient. The studies include optimizing the 
water scrubber process to minimize the freshwater demand, 
advancing PSA to reduce valves with expensive pressure, 
using absorbent materials with high performance and low 
cost, and lastly, developing an amine process with a cost-
efficient and convenient regeneration process for amine 
solution.

Cryogenic upgrading is the best technology for lique-
fied biogas (LBG) production; however, it is yet to become 
available for extensive commercial operations. Cryogenic 
separation requires the use of several devices and equipment 
which makes it a less suitable choice for biogas upgrading, 
resulting in reduced market popularity in the biogas devel-
opment sector (Khan et al. 2017). Though optimistic views 
suggest that this technology could take a large portion of 
the market share if the functional and economic problems 
are resolved. Amine scrubbing is a well-known traditional 
biogas upgrading method mainly because of its low methane 
release functionality and its potential to deliver high-purity 
infinite methane products. However, recent technologies are 
also capable of upgrading biogas via biological methanation, 
a process in which the  CO2 present in biogas is combined 
with  H2 to generate renewable methane.

A study was conducted by Vo et al. (2018) to investigate 
biogas upgrading in three particular scenarios: upgrading 
by amine scrubbing; by amine scrubbing with  CO2 run to 
ex situ biological methanation; and only by ex situ methana-
tion. The results indicated that the lowest selling price per 
 m3 of renewable methane for the three scenarios were €0.76, 
€1.50, and €1.43, respectively, given that the power genera-
tion cost to generate  H2 was €0.10 per kWh and the cost 
for silage production was €27/t. It has been observed from 
these results that injecting biogas directly to the methana-
tion reactor seems to be economically more beneficial than 
taking  CO2 out of biogas and releasing it to the methanation 
process. Also, it has been established that the selling price 
for renewable methane in the first scenario is significantly 
lower than the others, suggesting that the expense related to 
 H2 is a vital indicator in deciding the cost-effectiveness of 
renewable methane.

Besides the investment and operational costs for metha-
nation and biological processes, the cost associated with 
the electrolysis of hydrogen is also considered. It was 
expected that the expenditure for the methanation plant was 
somewhere between €652 and €785 /kW, and its operating 

expenses were around 4%. However, assumptions about the 
related costs for the biological process could not be made 
as the technique was still under development (Adnan et al. 
2019). In another study (Lombardi and Francini 2020), when 
five leading biogas upgrading technologies, high-pressure 
water scrubbing (HPWS), amine scrubbing, potassium car-
bonate scrubbing (PCS), pressure swing adsorption, and 
membrane permeation were compared based on economic 
and environmental viewpoints through life cycle assessment 
and costing methods, it was seen that electricity consump-
tion was a significant parameter which controlled the results. 
For small-sized plants, HPWS proved to be slightly more 
economically friendly in comparison with others, whereas 
for large-sized plants, PCS demonstrated the maximum net 
value.

Biogas utilization

Biogas is typically a composition of about 50–70% methane, 
25–45% carbon dioxide, 1–5% hydrogen in addition to a 
minute number of other gases like ammonia, water vapour, 
hydrogen sulphide, and halides. According to innovative 
and efficient strategies, managing and utilizing biogas are 
highly desirable for producing sustainable electrical power, 
but utilizing it for heating or lighting purposes is considered 
inefficient and the cause of pollution. Researchers are now 
prompted towards focussing on energy generation from min-
imal carbon sources through modern eco-friendly technol-
ogy due to the increased value of petroleum and large-scale 
use of fossil fuels associated with greenhouse emissions 
(Siddiki et al. 2021).

Biogas is currently known as a field of vigorous research 
and progress and has been given a high priority as it is a fea-
sible substitute to fossil fuels (Yentekakis and Goula 2017). 
As mentioned earlier, biogas contains small quantities of 
other gases except  CO2 which are considered impurities and 
should be removed to upgrade the biogas before utilizing it. 
The concentration of impurities is dependent on the type of 
biogas source. Though it is recommended to remove impu-
rities of the biogas depending on the requirements of each 
utilization process, biogas can also be used in the raw form 
without upgrading. Certain factors like resource availability, 
utilization of biogas, and investment costs need to be con-
sidered when selecting an upgrading technology (Raboni 
and Urbini 2014). Generally, the utilization of biogas occurs 
in two main ways, utilization of biomethane and  CO2. The 
potential utilization of biogas is shown in Fig. 10.

Fuels for vehicles

The application of upgraded biogas for vehicle fuel has 
created interest in the transport sector worldwide. From an 



environmental and resource-efficiency viewpoint, biogas 
serves several benefits compared to other vehicle fuels based 
on biomass. This means the economic competitiveness of 
biogas as a vehicle fuel is elevated which motivates scien-
tists and researchers to proceed with technological develop-
ment targeted at lowering the cost (Dahlgren 2020). It has 
been observed in the past few years that there is an increas-
ing interest in liquefying biogas for its utilization in heavier 
vehicles.

A study was conducted to provide an overview of the 
vehicle fuels produced from biogas and their technologi-
cal advancement with the potential to serve as a transport 
fuel. The only commercially produced fuel using biogas is 
compressed and liquefied methane which lacks advantages 
such as the possibility of fuel cell vehicles being emission-
free compared to other fuels. Then again, the technological 
maturity of these other fuels is less than the compressed 
and liquefied methane. Therefore, increased utilization of 
biogas as compressed and liquefied biomethane provides the 
greatest short-term perspective as an alternative fuel (Prussi 
et al. 2021).

Injecting into the natural gas grids

In recent years, low-grade natural gas resources have been 
a key reason behind biogas utilization becoming the sub-
stitute for natural gas and it has gained great importance 
for this reason (Zheng et al. 2020). To reach the normal 
standard of natural gas, biomethane needs to be introduced 
into the natural gas grids to improve its quality. There has 
also been a request by the European Commission to create 
standards for setting a minimum acceptable range for gas 

quality parameters. Some European countries like Sweden, 
Germany, Switzerland, and France have set their own levels 
for biogas injection into the natural gas grids to avoid any 
equipment damage.

The present biogas upgrading techniques can be utilized 
to maintain these set standards (Nguyen et al. 2020). In 
a Danish investigation, biogas injection into the gas grid 
system for raw and improved/upgraded biogas was evalu-
ated using the Wobbe index (WI) (Aryal and Kvist 2018). 
The Wobbe index is an indication of the heating capacity 
of a gas mixture and reviews the standard of natural gas 
and the potential interchange capacity of different gases. It 
was detected that raw biogas needs to increase the WI from 
28.3 MJ per  m3 to at least 50.76 MJ per  m3 through upgrad-
ing. In addition to that gas consumers also studied the yearly 
consumption of gas to determine an alternative biogas utili-
zation approach to cut the expenditures related to upgrading 
and compressing for gas grid injection.

Engines and gas turbines fuel for electricity 
production

Compared to natural gas, biogas has high resistance with a 
high compression rate and can be used as fuel in combus-
tion motor engines that generate electricity by converting 
mechanical energy. In the southern region of Ecuador, a 
study was conducted to assess the capacity of biogas pro-
duction from landfill waste to feed a power plant. The biogas 
production to supply electricity plants was estimated through 
a local mathematical model. This form of renewable energy 
is often of interest as electricity production is possible from 

Fig. 10  Applications of biogas 
in different sectors, modified 
after (Ullah Khan et al., 2017). 
Biogas can be used as a source 
of heat, power and fuel by 
using appropriate upgradation 
technologies



waste materials. However, it is not an appealing option 
until its large-scale implementation is encouraged through 
the investment of taxpayer or private resources (Barragán-
Escandón et al. 2020). Therefore, to compete with existing 
technologies, these technologies require a boost to gain a 
foothold in the commercial marketplace.

The combined method of producing heat and electricity 
from biogas is considered to play a crucial role in the pro-
cess of energy utilization, in addition to reducing pollution 
in wastewater treatment (Ahmed et al. 2021). A study was 
performed to generate electricity using biogas as the major 
source of fuel from the sewage treatment plant situated in a 
city in Taiwan. The results of this study show that the gen-
erator demonstrated a higher performance with increased 
power load. The mean adjusted concentrations of NOx and 
CO (approximately 15 vol%  O2) released from the genera-
tor at a power load of 30 kW were 17 ppmv and 86 ppmv 
each, respectively. These released gases were significantly 
less than the emission level of the stationary sources set for 
Taiwan, which corresponds to 150 ppmv and 2,000 ppmv, 
respectively. The research, therefore, proved that utilizing 
biogas for small gas turbine power generators did not only 
demonstrate promising results but also performed very well 
in reducing greenhouse gas emissions, leading towards an 
environmentally and economic friendly concept (Chang 
et al.  2019). Biogas is a renewable and environmentally 
friendly fuel. It is possible to use biogas for a variety of 
purposes. The three primary end uses for biogas are the pro-
duction of heat and steam, the generation of electricity, and 
the use of vehicle fuel.

The characterization of biogas according to its sources 
and the impact of the presence of impurities on biogas utili-
zation are given in Table 4. As shown in Table 4, the major 
differences between natural gas and biogas lie in the  CO2 
content, which is higher in biogas, and thus reduces its calo-
rific value compared with natural gas.

Challenges of biogas upgrading 
technologies

As discussed, biogas upgrading technologies utilize a vari-
ety of physical, chemical, and biological technologies. 
Unfortunately, all these different technologies still present 
several challenges that are a barrier to their adoption. Sev-
eral recent articles highlight the challenges of the existing 
biogas upgrading technologies along with the directions for 
future research, namely for technologies like amine scrub-
bing, water scrubbing, pressure swing adsorption, membrane 
process, and cryogenic separation. In this paper, such chal-
lenges have been categorized under three major segments 
that include economic impact, environmental sustainability, 
and technological limitations. Though different stakehold-
ers associated with multiple sectors using biogas upgrading 
technologies are trying to improve their corresponding tech-
nologies, the three above-mentioned challenge categories 
are more or less prevalent in almost all application areas. To 
assure the long-term sustainability of biogas generation and 
utilization, all these challenges should be properly analysed 
and contextualized within local and national contexts.

Table 4  Biogas composition from various sources and the impact of impurities on biogas utilization (Sun et al., 2015; Awe et al., 2017; Ullah 
Khan et al., 2017; Vilardi et al., 2020)

n.a. Not available

Biogas contaminants Biogas 
from 
landfill

Biogas from 
anaerobic 
digestion

Natural gas Operational risks and effect on biogas utilization

Lower value in heating (MJ/Nm3) 23 16 39 –
CH4 (%) 60–70 35–65 85–92 –
CO2 (%) 30–40 15–40 0.2–1.5 Decrease calorific value and anti-knock characteristics of engines, 

and cause corrosion
H2O (%) 1–5 1–5 n.a Corrosion in engines, tanks of gas storage, and compressors due 

to the reaction with  CO2,  H2S,  NH3 to generate acids, and dam-
age by promoting the creation of condensate and ice

N2 (%) 0.2 15 0.3 Decrease calorific value and anti-knock characteristics of engines
O2 (%) 0 1 n.a Corrosion and may increase incidences of explosion
H2 (%) 0 0–3 n.a –
Heavy hydrocarbons (%) 0 0 9 –
H2S (ppm) 0–4000 0–100 1.1–5.9 Corrosion, catalytic converter poison, emissions and may lead to 

adverse health effects
NH3 (ppm) 100 5 n.a Emissions, affect the anti-knock properties of engines, and cor-

rosion
Total  Cl− (mg/Nm3) 100 5 n.a Corrosion in engines



Economic challenges of biogas upgrading 
technologies

Like many other emerging technologies of recent days, 
biogas upgrading technologies are facing significant eco-
nomic challenges, mostly due to the high operating cost of 
biogas upgrading-related generation, operation, mainte-
nance, and utilization. Kapoor et al. (2019) argue that loss 
of useful chemicals from biogas plants is one of the major 
contributors to the economic loss of plants, and sometimes 
the lower generation capacity of plants also increases the 
per-unit operating cost of biogas. Here, the loss of useful 
chemicals also arises from misuse of consumed energy for 
biogas generation, leading to economic loss. Though these 
economic challenges are common in almost all the biogas 
upgrading plants, ex situ biogas upgrading technologies have 
been found to be more economically inefficient compared 
to the in situ biogas upgrading technologies, since ex situ 
settings often require significant expenditure in the creation 
and maintenance of a suitable environment. Despite offering 
a more controlled environment in the case of ex situ biogas 
upgrading technologies, economic inefficiency often leads 
to the exclusion of such approaches in different contexts 
(Kapoor et al. 2019).

There are several techno-economic and energy-economic 
challenges associated with biogas upgrading technolo-
gies that often lead to the adoption of less expensive but 
more energy-intensive technologies, threatening its future 
sustainability and relevance to the corresponding context. 
Unfortunately, many such technologies might be economi-
cally viable, but quite unsustainable and inappropriate (Awe 
et al. 2017). For instance, the adoption of highly effective 
biogas upgrading methodology, cryogenic technology, is 
often disregarded due to the high associated cost, and in such 
cases, inexpensive technologies are adopted (Baena-Moreno 
et al. 2020). In many cases, unsustainable and less appro-
priate biogas upgrading technologies are promoted, due to 
the upfront cost efficiency of the plant installation, which 
causes unprecedented and highly detrimental outcomes in 
the longer term.

However, the economic challenges associated with 
biogas upgrading technologies are not only limited to the 
above-mentioned contexts. The installation of small-scale 
biogas generation plants is often discouraged due to the 
high maintenance costs associated with small-scale plants. 
Especially in developing countries, decentralized small-
scale biogas plants are uncommon due to the comparatively 
higher costs due to limitations of low-cost local resources 
and knowledge gaps (Chen and Liu 2017). Besides, in many 
of these countries, subsidization and government-initiated 
biogas upgradation and promotion programmes are still 
quite uncommon. This means stakeholders cannot be part 
of biogas upgradation initiatives; thus, they either switch to 

other unsustainable energy schemes or are forced to utilize 
biogas without upgradation initiatives. Economic barriers 
to biogas upgrading vary from one method to another. For 
instance, Toledo-Cervantes et al. (2017a) report that the 
cost efficiency of the two biogas upgrading technologies, 
the algal–bacterial photobioreactor and the activated car-
bon filter coupled with a water scrubber, and the significant 
variance in their land requirements, investment cost, and 
environmental impacts, as a whole, lead to a variation in 
cost. Economic challenges lag the upgradation of biogas 
technologies in different contexts.

Challenges related to the assurance 
of environmental sustainability

Biogas is one of the most sustainable energy sources and 
should be modified even more to increase its environmental 
sustainability. Biogas upgrading to biomethane is aimed at 
more sophisticated utilization of biogas for which the hybrid 
technology is required. Usually, the comparatively inexpen-
sive biogas technologies are more environmentally unsus-
tainable, since the environmental protection measures used 
in these technologies have been found to be less in number 
and quality. However, due to the environmental hazards 
that these technologies may cause, an intense cost–benefit 
analysis often determines the economic infeasibility of such 
technologies for a longer period.

In the case of biogas upgrading technologies, assurance 
of environmental sustainability is often determined by sev-
eral variables, i.e. resource consumption, type of emission, 
corresponding hazards, and so on. These variables are asso-
ciated with different processes in multiple ways. For exam-
ple, membrane-based technologies for biogas upgradation, a 
physical method, is quite environmentally friendly since no 
harmful chemical agents are used, making the process non-
hazardous; however, its efficiency is still quite poor (Baena-
Moreno et al. 2020). Activated carbon filter-based biogas 
upgrading technologies often consume a huge amount of 
energy and water. At the same time, it has been found to 
release greenhouse gases (GHGs) (Toledo-Cervantes et al. 
2017a).

GHG reduction by a greater amount through biogas 
upgrading is still a challenging task. However, only 10% 
less GHGs than the reference value can be emitted by the 
PSA technology in the agriculture context (Pertl et al. 2010). 
The specific emissions of GHG associated with biomethane 
generation from energy crops are found as low as 44.6 g 
 CO2eq/kWh, implying an overall reduction of 82% in GHG 
emissions when compared to natural gas (Adelt et al. 2011). 
Nevertheless, biogas upgrading to biomethane using chemi-
cal absorption technology with potassium hydroxide aque-
ous solution has a lower environmental effect than that with 



mono-ethanolamine and sodium hydroxide aqueous solution 
(Leonzio 2016).

The examples discussed above can be considered when 
comparing the effectiveness of two leading physical and 
chemical methods for biogas upgrading in terms of their 
environmental sustainability. In this case, it has been 
observed that the comparatively more environment-friendly 
method is less effective, while the chemical method, despite 
having a satisfactory level of effectiveness, is environmen-
tally unsustainable. The respective potential for environmen-
tal sustainability of different biogas upgrading technologies 
is still in question. However, to reduce environmental pollu-
tion caused by carbon-based fossil fuels, bio-CNG can play 
a critical role as it can be produced as a vehicle fuel from 
biogas (Khan et al. 2017).

Technological limitations to upgrade biogas 
technologies

Process optimization of biogas upgrading technologies is 
urgently required to ensure the long-term sustainability of 
biogas utilization. Different biogas upgrading technologies 
are still facing significant technological l imitations, i .e. 
excessive resource consumption, the association of hazard-
ous chemicals, inefficient strategies, and so on. These tech-
nological limitations vary between different methodologies. 
For example, water scrubbing, a physical method for biogas 
upgradation, has been found to be technologically simple 
but limited because in this process, a significant amount of 
methane is lost due to water adsorption, resulting in a sig-
nificantly low yield (Cozma et al. 2013). This is also the 
case for other physical adsorption-based methodologies for 
biogas upgradation. In such cases, methane adsorption varies 
mostly depending on the type of solvent or adsorbents used 
(Ma et al. 2018).

Chemical scrubbing technology often consumes a sig-
nificant amount of energy due to its inherent design require-
ments. Besides, many of the agents used during chemical 
scrubbing are carcinogenic and hazardous for both human 
and environmental health (Wang et al. 2019). More and 
more innovations are needed here so that harmful chemical 
agents can be replaced by non-hazardous ones. Consider-
ing the availability of the resources at different geographic 
locations, the upgrading processes should be adopted. Apart 
from that low efficiency is a technological challenge that 
many of the biogas upgrading technologies are still facing.

The physical methods for biogas upgradation are facing 
the most significant challenges. For instance, since mem-
brane-based technologies isolate biomethane based on the 
size of the biogas molecules, a good number of contami-
nants also pass through the membrane, reducing the purity 
of the upgraded biogas (Baena-Moreno et al. 2020). Even 
in cases where the isolated biogas is of high purity, other 

technological barriers are present. For example, Yousef et al. 
(2016) reported that upgrading biogas by low-temperature 
 CO2 removal technique offers the high purity of the biogas. 
However, this process itself is quite difficult to implement at 
a large scale due to the difficulties associated with tempera-
ture maintenance and the lack of large-scale technological 
settings. This process does not incorporate methane, one of 
the most important constituents of the biogas isolation strat-
egy. The challenges and benefits of existing biogas upgrad-
ing technologies are given in Table 5. These challenges 
should be overcome to assure more effective implementation 
of biogas upgrading technologies.

Perspectives

There is significant scope to work on biogas upgrading tech-
nologies since this is still an emerging field that requires 
many improvements. All the above-mentioned challenges 
should be overcome through future research and innova-
tions. To overcome the economic challenges associated with 
biogas upgrading technologies, cost reduction in the technol-
ogy is needed. Future research should work on reducing both 
the investment and operating cost of the technologies so that 
the stakeholders can adopt the technologies at a lower cost. 
At the same time, efficiency should be enhanced. As noted 
earlier, many of the less expensive technologies for biogas 
upgradation are quite inefficient. Therefore, increasing 
the efficiency and efficacy at a lower cost is highly recom-
mended for future research. Research should also focus on 
impurity removal from the isolated substances. Technologies 
should be designed in such a way that the impurities and the 
contaminants present in the isolated gaseous substance can 
be easily removed. In this regard, suitable adsorbents should 
be designed so that they do not reduce the yield of the pro-
cess. The harmful chemical agents should also be replaced 
by less harmful and non-hazardous chemicals. The sustain-
ability of the processes also needs to be assured through 
future research and innovations.

Conclusion

Biogas as a renewable energy source has increasingly proved 
to be a promising solution to environmental and energy 
issues in the world, where the application of biogas beyond 
heat and power generation has been expanding in recent 
years. This paper critically reviewed the state-of-the-art 
biogas upgrading technologies and the required character-
istics of biogas for various utilization purposes. The existing 
technologies that are mature and have reached near-optimum 
technical and economic feasibility, and thus noticeable in 
wide-scale applications, are primarily physical and chemical 



Table 5  Challenges and benefits of actual biogas upgrading technologies

Technology Challenges Benefits

Water scrubbing High investment and operating costs
Slow and less efficient process
High pressure is needed for compressing biogas and 

high energy need for water circulation
Congestion due to bacterial growth
High requirement for water despite regeneration
Probable foaming and subsequent  H2S poisoning lead-

ing to corrosion
Less flexibility towards variations of input gas
Additional drying step for removing water from biom-

ethane

High efficiency: around 97%  CH4 recovery
Both  CO2 and  H2S can be removed at once, suitable for 

 H2S concentration less than 300  cm3/m3

Capacity is modifiable upon alterations of temperature 
and pressure

Less than 2%  CH4 losses
Not overly sensitive to impurities
Water is a regeneration of water with ease
No sophisticated system or chemical requirements
Rapidly scalable

Organic scrubbing Complex process with expensive investment and opera-
tion

Expensive for small-scale operation
High energy needs for solvent regeneration
Expensive solvent with difficult handling requirements
Loss of operational efficiency due to dilution of glycol 

into  H2O
Difficult regeneration of solvent if  H2S is not pre-

separated
Heating required for complete regeneration

High  CH4 recovery efficiency (> 97%  CH4)
Less volume of solvent required due to high solubility of 

 CO2
Concurrent separation of contaminants including  H2S
More efficient than water scrubbing
Low  CH4 losses
Recovery of residual methane is possible by heating

Pressure swing adsorption Expensive investment and operation
Prior elimination of  H2S and moisture is preferable
Off-gas from the process needs further treatment
Susceptible to fouling by impurities
High  CH4 loss if valves malfunction
Complicated process control

Highly efficient  CH4 recovery (96–98%  CH4),  H2S is 
removed

N2,  O2, and moisture removal are possible
High pressure but regenerative
Faster installation and relatively easier operation due to 

compact setup
Suitable for small capacities as well
Tolerant to impurities
Clean and water-free biomethane produced
Less energy requirement
Fast adsorbent regeneration

Cryogenic separation Expensive investment, maintenance, and operation
High energy requirements
Use of various expensive process equipment
Contaminant pre-treatment and removal required
Technically complex procedure

Up to 98% high-purity  CH4 recovery
High-purity  CO2 recovery as a by-product which can be 

used for example as dry ice
Minimal additional energy is required to reach liquid 

biomethane (LBM) production level
Very low  CH4 loss
Eco-friendly, no chemical usage is involved

Membrane separation Pre-removal of  H2S and  H2O is strongly recommended
Trade-off between the purity of  CH4 and quantity of 

biomethane due to limited selectivity of membranes
Not appropriate for high-purity requirements
Low  CH4 yield from a single step
Multiple modules are required for high purity
High electricity requirement for producing each unit of 

biomethane
Moderate-to-high  CH4 losses
Possible congestion and contamination of membranes
Membranes need to be replaced within 1–5 years

Cheap investment and operation
Both  H2S and  H2O are separated
Simple compact design, installation, and operation
Easy maintenance without any chemical requirements
Low energy requirement
High reliability
Suitable for low gas flow rates too, no substantial increase 

in costings for small units
CH4 recovery efficiency of the single-pass module is 

around 92%  CH4, for multistage units CH4 purity 
reaches more than 96%  CH4

Overall, environment-friendly process operation



biogas upgrading technologies. However, such technologies 
consume huge amounts of energy and resources, which sig-
nificantly hinder the expansion of the biogas market as a 
promising renewable energy source. The selection of appro-
priate technologies may depend on various factors other 
than costs, such as biogas quality, location, and technology 
requirements.

Less explored are the biological methods in industrial-
scale testing and optimization scenarios, despite showing 
huge potential in terms of techno-economic feasibility and 
the opening of new horizons in hybrid renewable energy 
systems. Large gaps are also present in the pilot scale and 
commercial scale applications of novel technologies like 
hydrate separation, biotechnologies, cryogenic separation, 
and chemolithotrophic-based bioreactors. Cost remains a 
major limitation to widespread biogas application. There-
fore, research and development in increasing optimization of 
biogas upgrading and utilization using techno-economically 
feasible and environmentally friendly technologies need to 
be encouraged using subsidies, grants, and other forms of 
incentives and government support to tackle the world’s 
energy security, waste management, and climate change-
related challenges.
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