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Summary. A recurrent question in climate risk analysis is determining how climate change
will affect heavy precipitation patterns. Dividing the globe into homogeneous sub-regions
should improve the modelling of heavy precipitation by inferring common regional distri-
butional parameters. In addition, in the detection and attribution (D&A) field, biases due
to model errors in global climate models (GCMs) should be considered to attribute the
anthropogenic forcing effect. Within this D&A context, we propose an efficient cluster-
ing algorithm that, compared to classical regional frequency analysis (RFA) techniques,
is covariate-free and accounts for dependence. It is based on a new non-parametric dis-
similarity that combines both the RFA constraint and the pairwise dependence. We derive
asymptotic properties of our dissimilarity estimator, and we interpret it for generalised ex-
treme value distributed pairs.
As a D&A application, we cluster annual daily precipitation maxima of 16 GCMs from
the coupled model intercomparison project. We combine the climatologically consistent
subregions identified for all GCMs. This improves the spatial clusters coherence and out-
performs methods either based on margins or on dependence. Finally, by comparing the
natural forcings partition with the one with all forcings, we assess the impact of anthro-
pogenic forcing on precipitation extreme patterns.

Keywords: CMIP; detection & attribution; extreme precipitation; F-madogram; Re-
gional Frequency Analysis

1. Introduction

Since the early 19th century, fossil fuels-based human activities have become one of
the major forces of ecosystem and climate change, defining a new geological era, called
Anthropocene (Crutzen, 2006) or Capitalocene (Malm and Hornborg, 2014; Campagne,
2017). The global warming caused by these activities induces important changes in
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the climate system (IPCC, 2021). Working Group I of the IPCC, which assesses the
physical science of climate change, summarises the latest advances in climate science
to understand the climate system and assess climate change, by combining data from
paleoclimate, observations and global circulation model (GCM) simulations. The latter
are based on differential equations linked to the fundamental laws of physics, thermo-
dynamics and chemistry. GCMs simulate the evolution of various climate variables on
discretised tridimensional meshes with a typical horizontal resolution of 100 [km] or
more. The coupled model intercomparison project (CMIP) (Meehl et al., 2000; Alexan-
der and Arblaster, 2017) aims at comparing the performances of several dozen of GCMs
developed by different research centres, e.g. see Table 1 in Appendix. As numerical
experiments and approximations of the true climate system, these GCMs can produce
different climate responses to different given inputs, e.g. emission scenarios. To reduce
model errors and gain robustness in signal detection, GCMs are often analysed jointly.
In particular, CMIP models have been used in the field of detection and attribution
that aims at finding causual links between the climate response and known external
forcings (see, e.g. Ribes et al., 2021; van Oldenborgh et al., 2021; Naveau et al., 2020).
As a yardstick, the so-called “natural forcings” runs have not been influenced by hu-
man activities and were only driven by external forcings, e.g. solar variations, explosive
volcanic eruptions like Mont Pinatubo in 1991 (see, e.g. Ammann and Naveau, 2010).
Such a numerical setup can be viewed as a thought-experiment and it corresponds to
a counterfactual world, but not to the observed one. In contrast, a factual world is
produced by integrating all forcings, including rising greenhouse gazes, and factual runs
aims at reproducing the observed climatology over the last century. Future periods, say
2071–2100, can also be explored with GCMs but future forcing and emission scenarios
need to be chosen. For example, RCP8.5 for CMIP5 (IPCC, 2013) and SSP5-8.5 for
CMIP6 (IPCC, 2021) will be analysed in this paper. In this context, a natural question
is to wonder how the climate system will change under these scenarios.

Due to their large societal and economical impacts, a vast literature has be dedicated
to answering this question for extreme events. In particular, heavy rainfall and heatwaves
have received a particular attention, see chapters 10 and 11 in the Working Group I
contribution of IPCC (2021) report. In this paper, we focus on annual maxima of daily
precipitation from 1850 to 2100 provided by the factual (all forcings) and counterfactual
(natural forcings only) models listed in Table 1 of the Appendix. Note that our main
climatological goal is not to directly assess changes in heavy rainfall intensities and
frequencies, but rather to detect how spatial patterns (clusters) of yearly maxima of
daily precipitation could be modified by anthropogenic forcing.

To model yearly block maxima, one classical statistical approach is to impose a
parametric generalised extreme value (GEV) distributions (see e.g. Coles et al., 2001;
Davison et al., 2012). For example, each grid point of each individual CMIP model
could be fitted with a spatial structure embedded within the GEV parameters (see, e.g.
Kharin et al., 2013). However, the computational cost can be high (more than 200
years of precipitation data at thousands of grid points for 16 models), especially if the
spatial dependence is included. Another aspect is the ease of interpretation. Well defined
spatial patterns (clusters) in extreme precipitation are very useful for climatologists who
can interpret them according to known physical phenomena (e.g., Pfahl et al., 2017;



RFA and dependence 3

Tandon et al., 2018; Dong et al., 2021). For example, the so-called regional frequency
analysis (RFA) has been frequently used in hydrology, see Dalrymple (1960); Hosking and
Wallis (2005), but it has been rarely implemented in a D&A context, especially within
the CMIP repository. The main idea of RFA is to identity homogeneous regions with
identical distributional features, up to normalising constants. More precisely two positive
absolutely continuous random variables (r.v.) Y1 and Y2 are said to be homogeneous if
there exists a positive constant λ such that

Y2
d
= λY1,

where
d
= denotes equality in distribution. This condition can be reformulated in terms

of their cumulative distribution functions (cdf) Fi(x) = P(Yi ≤ x) with i ∈ {1, 2} as

F2(λx) = F1(x). (1)

Hence, two climate model grid points are said to belong to the same homogeneous region
if they satisfy (1). To visually understand this condition within the CMIP archive, three
grid points, say A, B and C, from the CCSM4 counterfactual run are plotted in panel
(a) of Figure 1. In panel (b), ranked annual precipitation maxima (rescaled by the
empirical mean) of point A are compared to the ones from point B. Panel (d) provides
the same information but between point A and point C. It appears that points A and
B are likely to satisfy (1) and, consequently, could belong to the same homogeneous
region. In contrast, the rescaled distribution at point A is much more heavy-tailed than
at point C. This is not surprising because A and B are nearby and C far away from them.
Still, panels (b) and (d) only rely on the marginal behaviours, and pairwise dependence
information and/or covariates could help finding of homogeneous regions.

Various RFA techniques based on explanatory covariates (e.g., see Asadi et al., 2018;
Fawad et al., 2018, for recent work) have been developed to identify homogeneous regions
which rely on station location features and/or weather patterns to explain precipitation
spatial distributions (see e.g. Burn, 1990; Hosking and Wallis, 2005; Evin et al., 2016).
For example, Toreti et al. (2016) let scale parameters vary as a function of weather station
locations. However, selecting relevant covariates is constrained by their availability,
expert subjectivity and the scale of the problem. In particular, finding appropriate
covariates for heavy rainfall patterns at the global scale is tedious. In addition, assessing
the homogeneity of regions (Hosking and Wallis, 2005) relies on specific moments like
skewness and kurtosis that are not necessary robust (based on the spatial independence
assumption). Other techniques bypass the use of covariates by only working with the
data at hand, here precipitation (Saf, 2009). For example, Le Gall et al. (2021) considered
a ratio of probability weighted moments, see Greenwood et al. (1979) and applied a
clustering algorithm on this ratio. More precisely, this ratio, denoted ω ∈ [0, 1], is mean
and scale invariant, i.e. in compliance with (1), and it is a simple increasing function of
ξ when rainfall extremes can be assumed to either follow a GEV or Pareto distribution
with shape parameter ξ. To illustrate the spatial variability of CMIP rainfall tail index
(i.e. of ω), panel (a) of Figure 2 displays the ratio ω at each grid point of a counterfactual
CCSM4 annual maxima run. Note that grid points A and B exhibit similar ω estimates,
while grid point C differs (lighter tail).
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Fig. 1. Localisation (a), QQ-plots (b) and (d) and scatter plots (c) and (e) of annual precipitation
maxima at three grid points A,B and C in the counterfactual run of the CCSM4 model (1850–
2005). Panels (b) and (d) show the QQ-plots of rescaled precipitation for pairs (A,B) (b) and
(A,C) (d). Panels (c) and (e) display the (rescaled) scatter plots for the same pairs.

All aforementioned RFA techniques has one major drawback. They rely on the as-
sumption of pairwise independence or pairwise conditional independence (given the co-
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variates). Note that Eq.(1) also constraints the marginal behaviour, but does not take
into account of any information about the spatial dependence strength. Still, precip-
itation series at two nearby grid points are likely to be dependent. To illustrate this
point, we can go back to Figure 2. Panels (b) and (e) display the scatter plots (rescaled
by their means) between points A and B, and between points A and C, respectively.
As expected from their local proximity, not only A and B have same similar marginals,
but annual maxima of daily precipipation appears to be strongly correlated. This in-
formation coupled with constraint (1) should play an important role in improving RFA
methods.

Modelling the dependence structure in clustering algorithms can be handled in dif-
ferent ways depending on the assumptions one is ready to make. Fully non-parametric
or parametric approaches can be developed. Explanatory covariates can be included or
difficult to find. For example, Kim et al. (2019) introduced a parametric approach based
on copulas in the context of cluster detection in mobility networks. They grouped sites
subject to intense traffic according to covariates (e.g. geographical), and checked the
dependence strength within each cluster by fitting a multivariate Gumbel copula. Drees
and Sabourin (2021) and Janßen et al. (2020) proposed approaches based on exceedances;
after projecting observations onto the unit sphere, they reduced their dimension through
K-means clustering (Janßen et al., 2020) and principal component analysis (Drees and
Sabourin, 2021). Finally, Bernard et al. (2013) applied a non-parametric approach based
on the F-madogram to weekly precipitation maxima. The so-called F-madogram (Cooley
et al., 2006) is defined by

d =
1

2
E |F1 (Y1)− F2 (Y2)| , (2)

where Yi is the continuous r.v. with cdf Fi. It is a distance which, by construction,
is marginal-free because the r.v. F1 (Y1) and F2 (Y2) are both uniformly distributed on
[0, 1]. Note that if Y1 and Y2 are equal in probability, the distance d = 0. Whenever the
bivariate vector (Y1, Y2) follows a bivariate GEV distribution (see e.g. Gumbel, 1960;
Tawn, 1988), this distance can be interpreted as linear transformation of the extremal
coefficient (see e.g. Cooley et al., 2006; Naveau et al., 2009, and Section 2.2). Bernard
et al. (2013), Bador et al. (2015) and later Saunders et al. (2021) computed this dis-
tance to build a pairwise dissimilarity matrix that was used as an input of a clustering
algorithm. In these two former studies, a partitioning around medoids (PAM) algorithm
(Kaufman and Rousseeuw, 1990) was applied whereas the latter used hierarchical clus-
tering. But, the RFA requirement defined by (1) was not imposed, and so the marginal
differences between Y1 and Y2 were not taken into account. To visualise this issue within
the CMIP repository, it is simple to cluster a counterfactual CCSM4 annual maxima run
with the PAM algorithm† based on the distance d. The resulting map displayed in panel
(b) of Figure 2 shows a few spatially coherent structures, but, overall is very patchy. In

†In all our CMIP analysis, PAM was applied separately to the southern and northern hemi-
spheres. Global analysis (available upon request) were also made, but the climatological inter-
pretation was not as clear as with the hemispheric scale. Also, different numbers of clusters
were investigated and basic criteria like the silhouette coefficient were computed. No particular
number could be clearly identified. But, in terms of interpretation, four clusters appear as a
reasonable compromise between climate understanding, visual simplicity and statistical criteria.
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addition, panel (a) related to the marginals behaviour appears to be unrelated to panel
(b) that describes the spatial dependence. This was expected from the F-madogram
distance, but it would make sense to cluster grid points that are both correlated but also
the same type of marginal, see (1), the essence of the RFA.

To reach this goal, we propose the following work plan. In Section 2, we integrate the
homogeneity condition (1) into a new definition of the F-madogram distance. The prop-
erties of this new dissimilarity, which we call RFA-madogram, is explained by analysing a
special case: the logistic bivariate GEV model in Section 2.2. A non-parametic estimator
of the RFA-madogram is proposed and its asymptotic consistency in law is detailed in
Section 3. Concerning the CMIP database, we compute, in Section 4, a RFA-madogram
dissimilarity matrix on annual maxima of daily precipitation for each CMIP models
listed in Table 1, and then cluster them with the PAM algorithm. Finally, we propose a
method to build a “central” partition that summarises the partitions obtained for each
model and compare the spatial patterns obtained for counterfactual (1850–2005) and
factual (2071–2100) experiments. Section 5 concludes the paper by providing a short
discussion.

2. Joint modelling of dependence and homogeneity

2.1. RFA-madogram
To introduce homogeneity criteria, see Eq.(1), into distance defined in Eq.(2), we propose
to define and study the following expectation

D(c, Y1, Y2) =
1

2
E
∣∣∣∣F2 (cY1)− F1

(
Y2
c

)∣∣∣∣ , (3)

where c > 0 is a normalising positive constant. The D(c, Y1, Y2) is always non-negative

and equal to zero for c = λ when Y2
a.s
= λY1. The homogeneous regions are not defined

a priori, so the existence of λ and its value are not known. We denote

c∗12 = argmin{D(c, Y1, Y2) : c > 0}.

Note that D(c, Y1, Y2) = D

(
1

c
, Y2, Y1

)
, for all positive c. Therefore, c∗12 =

1

c∗21
. The

particular case of equality in distribution, Y1
d
= Y2, corresponds to the case where c∗12 =

c∗21 = 1. An important feature of Eq.(3) is that, under the homogeneity condition of
Eq.(1),

D(λ, Y1, Y2) = d(Y1, Y2),

where d is the classical F-madogram, see Eq.(2). To simplify notations, D or D(c) will
be a shortcut for D(c, Y1, Y2).

The key point from a RFA point of view is that, if Eq.(1) is satisfied, D behaves as
the classical F-madogram distance. Note that D is not a true distance, but a dissim-
ilarity. The triangle inequality is satisfied under homogeneity condition but may not
be valid in general. Still, D captures information about the extremal dependence like
the F-madogram, and, in addition, it encapsulates marginal information concerning the
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Fig. 2. Two summaries of the structure of the precipitation annual maxima of counterfactual
(1850–2005) CCSM4 model. (a) Pointwise ω ratio (Le Gall et al., 2021). High values of ω̂ corre-
spond to heavy tailed distributions. (b) Results of PAM clustering with the F-madogram distance
(Bernard et al., 2013), with four clusters for each hemisphere separately. Each color corre-
sponds to a cluster.



8 Alexandre Tuel

departure from Eq.(1). More precisely, one can show (see Appendix A for the proof)
that

2 |d−D| ≤ E [∆(c, Y1)] + E [∆(c, Y2/c)] , (4)

where the function ∆(c, x) = |F2 (cx)− F1 (x)| measures the difference between the
rescaled cdfs.

To deepen our understanding of D, we comment on the special case of a bivariate-
GEV distributions.

2.2. RFA-madogram for bivariate GEVs
In this section, we suppose that the bivariate vector (Y1, Y2) follows a max-stable distri-
bution (Coles et al., 2001; Fougères, 2004; Guillou et al., 2014) with dependence function
V (., .)

P(Y1 ≤ x;Y2 ≤ y) = exp

[
−V

{
−1

logF1(x)
,
−1

logF2(y)

}]
,

where Fi corresponds to a GEV marginal cdf. If Fi(x) = exp

{
−
(
x

σi

)−1/ξi}
with

ξ1 = ξ2 = ξ, then the equality Y2
d
=
σ2
σ1
Y1 holds and we are in the homogeneity case.The

shape parameter ξ describes the common upper-tail behaviour. The larger ξ is, the
heavier the upper-tail of the distribution. Although complex, Eq. (8) in Appendix C,
summarises howD(c) can be expressed in function of V (., .) and the marginal parameters.

To simplify the dependence strength interpretation, it is common to focus on the
extremal coefficient defined as the scalar θ12 such that

P(Y1 ≤ u, Y2 ≤ u) = {P(Y1 ≤ u)P(Y2 ≤ u)}
θ12
2 .

It is equal to θ12 = V (1, 1). If Y1 and Y2 are independent, then θ12 = 2, while if they
are fully dependent, then θ12 = 1. Appendix D provides the mathematical details to
link the extremal coefficient with D(c). It allows to find an optimal value for rescaling

parameter c∗12. For example, it is possible to show that c∗12 =
σ2
σ1

= λ. for the logistic

GEV model,

V (x, y) =
(
x−

1

α + y−
1

α

)α
, with α > 0. (5)

In particular, the value of the dissimilarity D(c∗12) can be plotted as a function of the
logistic coefficient α and of the ratio ξ1/ξ2. From Figure 3, one can see that the full
dependence case corresponds to α ≈ 0, and the independence case to α = 1. In addition,
the ratio ξ1/ξ2 varies between 1 (homogeneity case) and 10, i.e. cases with ξ1 = 0.1
and ξ2 = 0.01. The dissimilarity is small when both the dependence is strong and the
marginals are homogeneous (leftmost corner). Large dissimilarities correspond to the
opposite cases, a near independence and/or strong heterogeneity in the shape parame-
ters (rightmost corner). Note also that, as the homogeneity and the dependence strength
decrease jointly, dissimilarity increases (concavity of the surface). These features corre-
spond to our goal that, given the same dependence strength, the price to pay is high
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when the RFA condition (1) does not hold. In other words, our aim to cluster grid
points that are jointly strongly dependent and in compliance with (1) seems, at least
conceptually, to have been reached. The remaining question is to know if this strategy
works in practice with the CMIP archive. To answer this, we need to first check that
a non-parametric estimator can be developed and its asymptotic properties can be well
understood.

3. RFA-madogram Inference

Given X ⊂ Rn and n ∈ N, let `∞(X ) denote the spaces of bounded real-valued functions

on X . For f : X → R, let ‖f‖∞ = supx∈X |f(x)|. The arrows “
a.s.−→”, “⇒”, and

“;” denote almost sure convergence, convergence in distribution of random vectors (see
Vaart, 1998, Ch. 2) and weak convergence of functions in `∞(X ) (see Vaart, 1998, Ch.
18–19), respectively. Let L2(X ) denote the Hilbert space of square-integrable functions
f : X → R, with X equipped with n-dimensional Lebesgue measure; the L2-norm is

denoted by ‖f‖2 =
{∫
X f

2(x) dx
}1/2

.

In this section, given a sample of bivariate observations, say (Y1, . . . ,Yn)t, we focus
on the asymptotic properties of two RFA-madogram estimators. Two cases can be
studied: when the marginal distributions, F1 and F2, are known or when we need to
use their empirical estimator, say F̂1 and F̂2. In both cases, the copula function of
the bivariate vector (Y1, Y2)

t, say C(u1, u2), that captures the dependence structure
needs to be inferred. To derive our asymptotic results, we adapt the main ingredients
of Theorem 2.4 from Marcon et al. (2017) to our settings, see Appendix B for details.
With the notation

ac(u) = F2 {cF←1 (u)} ,

we can write

D(c) =
1

2
E |ac (U1)− a←c (U2)| ,

where the bivariate vector U = (U1, U2)
t follows the copula C(u). This leads us to the

estimators

Dn(c) =
1

n

n∑
i=1

Dc (Ui) , with Ui = (F1(Y1,i), F2(Y2,i))
t and Dc (Ui) = |ac (U1,i)− a←c (U2,i)| .

If F1 and F2 are unknown and are replaced by their empirical estimators, we have, with

âc(u) = F̂2

{
cF̂←1 (u)

}
,

D̂n(c) =
1

n

n∑
i=1

D̂c

(
Ûi

)
, with Ûi =

{
F̂1(Y1,i), F̂2(Y2,i)

}t
and D̂c

(
Ûi

)
=
∣∣∣âc (Û1,i

)
− â←c

(
Û2,i

)∣∣∣ .
In practice, D̂n(c) is directly computed from the expression

D̂n(c) =
1

n

n∑
i=1

∣∣∣F̂2(cY1,i)− F̂1(Y2,i/c)
∣∣∣ .
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Fig. 3. Distance (z-axis) D defined in Eq.(3) in the logistic bivariate GEV model example.
The normalising coefficient is chosen as the optimal one, c∗. The x and y-axis indicate the
dependency coefficient α in the logistic dependence, see Eq.(5) and the ratio of tail parameters
i.e. the homogeneity of the two r.v. A ratio equal to one corresponds to the homogeneous case.
A ratio equal to 10 can be illustrated by the realistic case of ξ1 = 0.1, ξ2 = 0.01.
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Still, the definition of D̂n(c) with Ûi facilitates the derivation of theoretical results by
leveraging existing properties of the empirical copula

Cn(u) =
1

n

n∑
i=1

I(Ui ≤ u) and by writing Dn(c) =

∫
[0,1]2

Dc (U) dCn (u) .

In particular, the following classical smoothness condition on copula C is needed, see
Example 5.3 in Segers (2012) for details.
Condition (S)
For every i ∈ {1, 2}, the partial derivative of C with respect to ui exists and is continuous
on the set {u ∈ [0, 1]2 : 0 < ui < 1}.

Proposition 3.1. Let (Y1, . . . ,Yn)t be n independent and identically distributed
random vectors whose common distribution has continuous margins and a copula func-
tion C that satisfies condition (S).

Let D be a C-Brownian bridge, that is, a zero-mean Gaussian process on [0, 1]2 with
continuous sample paths and with covariance function given by

Cov(D(u),D(v)) = C(u ∧ v)− C(u)C(v), u,v ∈ [0, 1]2. (6)

Here u∧v denotes the vector of componentwise minima. We define the Gaussian process
D̂ on [0, 1]2 by

D̂(u) = D(u)− ∂C

∂u1
D(u1, 1)− ∂C

∂u2
D(1, u2)

Then we can write that

a) We have ‖Dn(c)−D(c)‖∞ → 0 almost surely as n→∞. Moreover, as n→∞,

√
n {Dn(c)−D(c)};

{1 +D(c)}2

2

[∫ 1

0
{D(a←c (x), 1)− D(a←c (x), ac(x))} dx+

∫ 1

0
{D(1, ac(x))− D(a←c (x), ac(x))} dx

]

b) We have ‖D̂n(c)−D(c)‖∞ → 0 almost surely as n→∞, and as n→∞,

√
n
{
D̂n(c)−D(c)

}
;

[
−{1 +D(c)}2

∫ 1

0
D̂ {a←c (x), ac(x)} dx

]
c>0

.

4. Analysis of CMIP precipitation for 16 models under two experiments

We now apply the RFA-madogram to the problem of partitioning annual precipitation
maxima from 16 CMIP GCMs (see Table 1 in Appendix) into homogeneous regions.
For each hemisphere of a given GCM run, we estimate the dissimilarity matrix D(c∗)
(Eq.(3)) between each pair of grid points. To cluster from a dissimilarity matrix, the
PAM clustering algorithm is implemented as it is fast, adapted to max-stable distribu-
tions (Bernard et al., 2013), and it does not require the triangle inequality (Schubert
and Rousseeuw, 2021). The counterfactual (1850–2005) and factual (2071–2100) runs
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are analysed separately and later compared to identify possible differences.
With 16 partitions in four clusters for each 16 counterfactual (factual) hemispheric runs,
GCM in-between-model error becomes an issue in terms of interpretation. We there-
fore summarise them in one “central” partitions, which we obtain in two steps. First,
partitions for each counterfactual hemispheric runs are relabelled so as to minimise the
pairwise difference between two partitions by taking each (alternatively) as reference
score. As an example with five grid points, the partitions {1 1 1 2 2 3} and {3 3 3 1 1
2} are equal up to the permutation (1, 3, 2). Then, we compute the probability of each
grid point to belong to each of the clusters, and associate the corresponding grid point
to the cluster of highest probability. For instance, grid point B is assigned to cluster 1
for 6 models out of 16, to cluster 2 for 9 models and to cluster 3 for only one model.
In the so-called central partition, B is then assigned to cluster 2 with probability 9/16.
Partitions for the factual experiment are relabelled in order to minimise the difference
with the counterfactual central partition.

For example, Figure 4 shows the central partitions in four clusters by hemisphere.
Intense colours correspond to points that belong to the same cluster in most, if not all,
model partitions. Beginning with the counterfactual experiment, we first note that the
clusters are very coherent spatially, in stark contrast to marginal- (ω) and dependence-
based (F-madogram) partitions (Figure 2), even though no geographical covariates were
used in the clustering.
The Northern Hemisphere is dominated by two clusters (pink and yellow), with two
others (blue and turquoise) with limited spatial extent. The distribution is more even
in the Southern Hemisphere, and also more zonally symmetric.
These partitions, driven both by homogeneity and dependence, are generally consistent
with precipitation climatology. In the Northern Hemisphere, the pink cluster extends
over the storm track regions of the North Atlantic and Pacific Oceans, and over the
Inter-Tropical Convergence Zone (ITCZ) around 10◦N. The blue cluster covers the dry
subtropics above the Sahara, Southwest Asia and southwest of North America. The
turquoise cluster is located in the dry zone above the cold Pacific tongue, while the
yellow cluster includes most regions with semi-arid and continental climates. Still, it
also includes monsoon-dominated regions (e.g., India) and the dry Arctic.
In the Southern Hemisphere, arid regions in Antarctica and in the dry descent regions
at the eastern edge of the subtropical anticyclones are grouped together in the purple
cluster, while the red cluster covers much of the wet tropics. The orange and green
clusters correspond to the Southern Hemisphere storm track.

Most of the clusters appear to be quite robust across GCMs. Notable exceptions are
the ITCZ regions in the Northern Hemisphere, and the equatorial Pacific and the eastern
Indian Ocean west of Australia in the Southern Hemisphere. This lack of robustness may
be due to the choice of cluster number. In any case, some differences are expected across
GCMs, as they differ in their representation of storm tracks, monsoons or ITCZ location
and dynamics.
At first order, it appears that homogeneity of the distributions plays the dominant role,
with arid or wet regions grouped together in both hemispheres. Still, the clustering is
by design not only based on marginal distributions but also on dependence strength. To
measure the importance of dependence in the spatial structure, we apply our clustering
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Fig. 4. Central partitions of CMIP models (with four clusters for each hemisphere), for (top)
the counterfactual experiment (1850–2005) and (bottom) the factual experiment (2071–2100).
Each colour corresponds to a cluster, with the shade indicating the probability of belonging to
that cluster. In the bottom map, brown crosses indicate points where the most likely cluster is
different between the counterfactual and the factual experiments.
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algorithm to temporally shuffled annual maxima at each grid point. This removes any
spatial dependence between variables while preserving their marginal distributions.
The results of Figure 5 for the CCSM4 model show a much less spatially coherent partition
for the shuffled data. The dependence thus plays an important role in the coherence of
the partition. This role can be further quantified by computing the relative difference
between RFA-madogram on shuffled and non-shuffled data (with respect to the medoids).
For about 2/3 of the grid points, the RFA-madogram takes lower values on the non-
shuffled data, in particular near the medoids.

Fig. 5. Partition of CCSM4 model in the counterfactual experiment based on the RFA-madogram
dissimilarityD(c∗) and PAM algorithm, for (top) original data, and (bottom) data randomly shuffled
in time at each grid point. The clustering algorithm is applied to each hemisphere independently.

We now turn to the comparison of the central partitions between the factual and
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counterfactual experiments. The overall partition structure is very similar in both ex-
periments (Figure 4). The clusters are better defined in the counterfactual experiment
(i.e. cluster probabilities closer to 1) because the sample size is much larger than for the
factual experiment (155 versus 30 years). Globally, differences between the two central
partitions are not significant compared to variability of model partitions compared to
the central partition for either the factual or the counterfactual experiment (not shown).
Hence, we cannot conclude to more spatial pattern variability in the factual world.
The most likely cluster changes for a number of grid points, however, as indicated by
crosses on the bottom panel of Figure 4. In the Northern Hemisphere, the pink (humid)
and blue (arid) clusters expand slightly Northwards. More specifically, the probability
of a given grid point to belong to the pink cluster generally increases at high latitudes,
while the probability to belong to the blue cluster increases around the 25◦N latitude.
In the Southern Hemisphere the green cluster (humid) also expands Southwards.
While the resolution of our analysis is rather low (5◦), these differences are consistent
with the expected polewards shift of major climate zones under climate change, partic-
ulary the arid subtropics and the storm track regions of both hemispheres (Scheff and
Frierson, 2012).

5. Conclusion

When considering multivariate data, extreme value theory can be difficult to handle.
Reducing the dimensionality of extreme precipitation data set is then a challenging
task. Our main goal in this work was to show that a simple and fast clustering approach
based on an interpretable dissimilarity could highlight climatologically coherent regions.

The proposed approach coupled the main RFA idea, i.e. a normalising factor, with
the dependence structure via the F-madogram. The introduced dissimilarity has links
with extreme value theory via the extremal coefficient and tail parameters. The RFA-
madogram neither requires estimating any marginal parameters nor dependence param-
eters. It is fully data-driven and bypasses the need of selecting relevant covariates or
dependence structure.

Our analysis of annual maxima of daily precipitation from each CMIP model provides
more spatially coherent hemispheric regions than some other non-parametric methods
focusing on only one aspect (either homogeneity or dependence). Another contribution
of this work is the handling of multi-partitions as our selected CMIP set has 16 GCM
runs. Our combining approach enables us to compare one multi-model partition of the
factual (all forcings) world with another multi-model partition of counterfactual (natural
forcings) world. It appears that spatial variability between all models for the factual
(resp. counterfactual) experiment appears to be significantly higher than between the
two factual and counterfactual experiments.

In this work, we focus on the spatial structure of annual maxima precipitation in
CMIP models, and on the forcing impact. We did not directly study the changes in
rainfall distributions and frequencies. One interesting perspective would be to model
precipitation intensities and dependence structure within each cluster. This could be
useful for the D&A community. Another aspect is that the statistical approach developed
therein is easy-to-implement and flexible, e.g. it can be used on non-gridded products.
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For example, it could be applied to large weather networks, reanalysis (ERA 5) and
radar products. Such datasets have finer spatial resolution scales than GCMs, and the
dependence structure could be stronger, and consequently the analysis of heavy rainfall
spatial patterns at fine spatial scales improved.
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A. Proof of Eq. (4)

We can write that

2D(c) = E |F2 (cY1)− F1 (Y1) + F1 (Y1)− F2 (Y2) + F2 (Y2)− F1 (Y2/c)|
≤ E |F2 (cY1)− F1 (Y1)|+ E |F1 (Y1)− F2 (Y2)|+ E |F2 (Y2)− F1 (Y2/c)| ,
≤ 2d+ E [∆(c, Y1)] + E [∆(c, Y2/c)]

In the same way, we can write that

2d = E |F1 (Y1)− F2 (cY1) + F2 (cY1)− F1 (Y2/c) + F1 (Y2/c)− F2 (Y2)| ,
≤ 2D(c) + E [∆(c, Y1)] + E [∆(c, Y2/c)] .

It follows that the inequality expressed in Eq.(4) is valid. �

B. Proof of Proposition 3.1

Let a(u) be any continuous non-decreasing function from [0, 1] to [0, 1] and denote its
inverse by a←(u). The map

φ : `∞([0, 1]2)→ `∞([0, 1]) : f 7→ φ(f)

defined by

(φ(f))(a) =
1

2

(∫ 1

0
f (a←(u), 1) du+

∫ 1

0
f (1, a(u)) du

)
−
∫ 1

0
f (a←(u), a(u)) du

is linear and bounded, and therefore continuous. To continue, we need the following
lemma.

Lemma B.1. For any cumulative distribution function H on [0, 1]2 and for any non-
decreasing function a(.) on [0, 1], the function

δ (u) =
1

2
|a(u1)− a←(u2)|

satisfies ∫
[0,1]2

δ (u) dH (u) = (φ(H))(a). (7)
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Table 1. List of 16 CMIP models considered, with institutions, belonging countries and native horizontal
resolution (longitude by latitude in degree). AOR (UoT): Atmosphere and Ocean Research Institute (The
University of Tokyo); CSIRO: Commonwealth Scientific and Industrial Research Organisation; DOE:
Department of Energy; JAMSTEC: Japan Agency for Marine-Earth Science and Technology; NIES:
National Institute for Environmental Studies; NSF: National Science Foundation. Most models come
from the CMIP phase 5, those coming from phase 6 are indicated by ∗. In this paper, models are
regridded to a resolution of 5◦ x 5◦.

Model Institute Country Resolution

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 2.8◦ x 2.8◦

CanESM5∗ 2.8◦ x 2.8◦

CCSM4 National Center for Atmospheric Research (NCAR) USA 1.3◦ x 0.9◦

CESM1-CAM5 NSF, DOE and NCAR USA 1.3◦ x 0.9◦

CNRM-CM5 Centre National de Recherches Météorologiques France 1.4◦ x 1.4◦

CNRM-CM6-1∗ 1.4◦ x 1.4◦

ACCESS1-3 CSIRO and Bureau of Meteorology Australia 1.9◦ x 1.3◦

CSIRO-Mk3-6-0 1.9◦ x 1.9◦

IPSL-CM5A-LR Institut Pierre Simon Laplace France 3.8◦ x 1.9◦

IPSL-CM5A-MR 2.5◦ x 1.3◦

IPSL-CM6A-LR∗ 2.5◦ x 1.3◦

MIROC-ESM JAMSTEC, AOR (UoT), NIES Japan 2.8◦ x 2.8◦

MIROC-ESM-CHEM 2.8◦ x 2.8◦

MRI-CGCM3 Meteorological Research Institute Japan 1.1◦ x 1.1◦

MRI-ESM2-0∗ 1.1◦ x 1.1◦

NorESM1-M Norwegian Climate Centre Norway 2.5◦ x 1.9◦
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Proof of Lemma B.1: Note that

δ (u) = max (a(u1), a
←(u2))−

1

2
(a(u1) + a←(u2)) .

For any u ∈ [0, 1]2, we have

max (a(u1), a
←(u2)) = 1−

∫ 1

0
I (u1 ≤ a←(u), u2 ≤ a(u)) du

and

1

2
(a(u1) + a←(u2)) = 1− 1

2

(∫ 1

0
I (u1 ≤ a←(u)) du+

∫ 1

0
I (u2 ≤ a(u)) du.

)
Subtracting both expressions and integrating over H implies∫

[0,1]2
δ (u) dH (u) =

1

2

(∫
[0,1]2

∫ 1

0
I (u1 ≤ a←(u)) dudH(u1, u2)

+

∫
[0,1]2

∫ 1

0
I (u2 ≤ a(u)) dudH(u1, u2)

)

−
∫
[0,1]2

∫ 1

0
I (a←(u1) ≤ u, a(u2) ≤ u) dudH(u1, u2).

The stated lemma can be deduced by applying Fubini’s theorem on the three double
integrals. �

By Lemma B.1, we obtain for ac(u) = F2(cF
←
1 (u))

Dn(ac) = (φ(Cn))(ac) and D(ac) = (φ(C))(ac).

this leads to
||Dn(ac)−D(ac)||∞ ≤ 2||Cn − C||∞.

Classical results about empirical copulas gives uniform strong consistency, see Segers ....
Similar arguments can be used for D̂n(âc). Now, we can consider the empirical process

Dn =
√
n(Cn − C), D̂n =

√
n(Ĉn − C).

and we can write

√
n
(
Dn(ac)−D(ac)

)
= (φ(Dn))(ac) and

√
n
(
D̂n(âc)−D(âc)

)
= (φ(D̂n))(âc).

We recall now that in the space `∞([0, 1]d) equipped with the supremum norm, Dn ; D,

as n→∞, where D is a C-Brownian bridge, and, as condition (S) holds, then D̂n ; D̂,

as n→∞, where D̂ is the Gaussian process defined in (3.1), see Segers (2012) for details.
In addition, âc converges in probability to ac. The continuous mapping theorem then
implies, as n→∞,
√
n
(
Dn(ac)−D(ac)

)
= φ(Dn) ; φ(D),

√
n
(
D̂n(âc)−D(âc)

)
= (φ(D̂n)) ; φ(D̂),
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in `∞([0, 1]). From the continuity of its sample paths and by the form of the covariance

function (6), the Gaussian process D̂ satisfies

P{∀u ∈ [0, 1] : D̂(u, 1) = D̂(1, u) = 0} = 1.

Ths provides all the elements to conclude the proposition. �.

C. Expression of D(c) in the bivariate GEV case

As |a− b| = 2 max(a, b)− a− b, we have

2D(c) = 2E [max (F2 (cY1) , F1 (Y2/c))]− E [F2 (cY1)]− E [F1 (Y2/c)]

To deal with each term, we recall that the quantile function of F (x; ξ, σ) = exp

[
−
(x
σ

)−1/ξ]
is

F−1(u;σ, ξ) = σ (− log u)−ξ = σzξ, with z = −1/ log(u),

This implies that

Yi
d
= σiZ

ξi
i ,

where Zi follows an unit Fréchet. If follows that, with a12 =

(
cσ1
σ2

)−1/ξ2
,

F2 (cY1)
d
= exp

[
−
(
cY1
σ2

)−1/ξ2]
d
= exp

(
−a12Z−ξ1/ξ21

)
,

then

F2 (cY1)
d
= exp (−a12W1) with W1 = Z

−ξ1/ξ2
1 .

In the same way, with a21 =

(
σ2
cσ1

)−1/ξ1
,

F1 (Y2/c)
d
= exp

[
−
(
Y2
cσ1

)−1/ξ1]
d
= exp

(
−a21Z−ξ2/ξ12

)
then

F1 (Y2/c)
d
= exp (−a21W2) with W2 = Z

−ξ2/ξ1
2 .

By noticing that Wi follows a Weibull distribution with P(W1 > w) = exp(−w−ξ2/ξ1),
the expectation E[F2 (cY1)] can be linked as the Laplace transform of a Weibull r.v.

E [F2 (cY1)] = E [exp (−a12W1)] and E [F1 (Y2/c)] = E [exp (−a21W2)] .

For the bivariate structure, we can write that, for any u ∈ (0, 1),



RFA and dependence 21

P [max (F2 (cY1) , F1 (Y2/c)) ≤ u] = P
[
max

(
exp

(
−a12Z−ξ1/ξ21

)
, exp

(
−a21Z−ξ2/ξ12

))
≤ u

]
,

= P

[
Z1 ≤

(
−a12
log u

)ξ2/ξ1
, Z2 ≤

(
−a21
log u

)ξ1/ξ2]
,

= exp

{
−V

[(
−a12
log u

)ξ2/ξ1
,

(
−a21
log u

)ξ1/ξ2]}
.

Since the r.v. max (F2 (cY1) , F1 (Y2/c)) ≤ u is positive, in the general setup, we have

D =

∫ 1

0

(
1− exp

{
−V

[(
a12
− log u

)ξ2/ξ1
,

(
a21
− log u

)ξ1/ξ2]})
du

−1

2
E [exp (−a12W1)]−

1

2
E [exp (−a21W2)] , (8)

where Wi follows a Weibull distribution with P(W1 > w) = exp(−wξ1/ξ2). Note that

(a12)
ξ2
ξ1 =

1

a21

Conversely, (a21)
ξ1
ξ2 =

1

a12

D. Homogeneous case

In the special case where ξ1 = ξ2 = ξ, we denote θc = V (a12, a21), where a12 =(
cσ1
σ2

)−1/ξ
= 1/a21. Then, we have

P [max (F2 (cY1) , F1 (Y2/c)) ≤ u] = exp

{
V

[(
σ2
cσ1

)−1/ξ
,

(
cσ1
σ2

)−1/ξ]
log u

}
,

= uV (a12,a21).

We can write

D =

∫ 1

0
1− uθcdu− 1

2
E [exp (−a12W1)]−

1

2
E [exp (−a21W2)] (9)

where Wi, i = 1, 2 has cdf equal to exp(−x).
Hence,

D =
θc

θc + 1
− 1

2(1 + a12)
− 1

2(1 + a21)
.
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To minimise D as a function of c, we study the variations of r : x 7−→
V
(
x, 1x

)
1 + V

(
x, 1x

) −
1

2(1 + x)
− x

2(1 + x)
. We suppose that V is differentiable. If the previous function r

admits a minimum, its derivative cancels in some c0. The r′ cancels if and only if the

derivative of x 7−→
V
(
x, 1x

)
1 + V

(
x, 1x

) cancels, if and only if there exists x s.t.
∂V

∂x

(
x, 1x

)
=

1

x2
∂V

∂y

(
x, 1x

)
. In the special case where the dependence is logistic i.e.

V (x, y) =

(
1

x1/α
+

1

y1/α

)α
,

we have
∂V

∂x

(
x, 1x

)
=
∂V

∂y

(
x, 1x

)
, for all positive x. Therefore, if r admits a minimum,

it is for x = ±1. Eventually, for logistic dependence, D is minimal for

c =
σ2
σ1
.
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