Around plane waves solutions of the Schrödinger-Langevin equation
Abstract
We consider the logarithmic Schrödinger equations with damping, also called Schrödinger-Langevin equation. On a periodic domain, this equation possesses plane wave solutions that are explicit. We prove that these solutions are asymptotically stable in Sobolev regularity. In the case without damping, we prove that for almost all value of the nonlinear parameter, these solutions are stable in high Sobolev regularity for arbitrary long times when the solution is close to a plane wave. We also show and discuss numerical experiments illustrating our results.
Domains
Analysis of PDEs [math.AP]Origin | Files produced by the author(s) |
---|