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In this article, we present and study a new coupled model combining the biological and the mechanical aspects describing respectively the process of the biogas production and the compressible two-phase leachate-biogas flow during the anaerobic biodegradation of organic maters in a landfill, considered as a reactive porous medium. The model obtained is governed by a reactiondiffusion system for the bacterial activity coupled with a compressible two-phase flow system of a non-homogeneous porous medium. We carry out the analysis and the numerical approximation of the model within a variational framework. We propose a full discrete system based on second order -BDF-time scheme and P1-conforming finite element and we derive an efficient algorithm for the coupled system. We perform some numerical simulations in 2D and 3D examples in agreement with the theoretical analysis.

Introduction

Waste management and renewable energy generation are two key issues in nowadays society. A major research field arising in recent years focuses on combining the two aforementioned topics by developing new techniques to handle waste and to use it in the energy production. The anaerobic digestion process is a natural biological process of the decomposition of the organic matter by microorganisms (bacteria) activated in the absence of oxygen. It consists of complex chemical reactions. In the long term, the organic matter is transformed into "biogas" which is a mixture of methane and carbon dioxide. The main steps of the degradation process are hydrolysis, acidogenesis, acetogenesis and methanogenesis, described in bio-mechanical models coupling PDE and ODE systems (see [START_REF] Hassam | A generic and systematic procedure to derive a simplified model from the anaerobic digestion model, No. 1 (ADM1)[END_REF][START_REF] Hénon | Simulation of Transport and Impact of Moisture Content on the Biodegradation[END_REF][START_REF] Gallo | A fully coupled numerical model for two-phase flow with contaminant transport and biodegradation kinetics[END_REF][START_REF] Chenu | Modélisation des transferts réactifs de masse et de chaleur dans les installations de stockage de déchets ménagers: application aux installations de type bioréacteur[END_REF][START_REF] Ahusborde | Numerical Modeling and Simulation of Fully Coupled Processes of Reactive Multiphase Flow in Porous Media[END_REF][START_REF] Pohland | Design and Operation of Landfills for optimum stabilization and biogaz production[END_REF][START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganisms Cultures[END_REF][START_REF] Smith | The theory of the chemostat: dynamics of microbial competition[END_REF]). Most of these models are too complex, widely empirical, and not well suited for mathematical analysis and computations. An increasing research activity have emerged in the modelling to obtain accurate results in waste management but numerically tractable. We refer interested readers to [START_REF] Chenu | Modélisation des transferts réactifs de masse et de chaleur dans les installations de stockage de déchets ménagers: application aux installations de type bioréacteur[END_REF][START_REF] Dollé | Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++[END_REF][START_REF] Rouez | Dégradation anaérobie de déchets solides: Caractérisation, facteurs d'influence et modélisations[END_REF][START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF][START_REF] Rapaport | About biomass overyielding of mixed cultures in batch processes[END_REF][START_REF] Rapaport | About biomass overyielding of mixed cultures in batch processes[END_REF][START_REF] Dimitrova | Model-based optimization of biogas production in an anaerobic biodegradation process[END_REF] and the references therein.

A bacterial dynamics model proposed by Bernard et al. [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF], introduces a mere two step process that single out the dominant part in the bio-chemical transformations, namely, the acidogenesis using Monod's kinetics, and the methanogenesis using Haldane's kinetics. This approach, become now very popular in the field and constitutes our starting point in this paper (e.g. see [START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF][START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Didi | A Luenberger-type observer for the AM2 model[END_REF][START_REF] Arzate | Anaerobic digestion model (AM2) for the description of biogas processes at dynamic feedstock loading rates[END_REF][START_REF] Hmissi | Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester[END_REF][START_REF] Hassam | A generic and systematic procedure to derive a simplified model from the anaerobic digestion model, No. 1 (ADM1)[END_REF]).

Besides, the household waste landfill is a multi-phases medium consisting of solid, liquid and gas and considered as a non-homopgeneous reactive porous medium. The altogether mechanical and biological dynamic is modelled with a coupled PDE-ODEs system describing the biodegradation process that produces a biogas and leachate (see [START_REF] Pinder | Essentials of multiphase flow and transport in porous media[END_REF], [START_REF] Agostini | Is biodegradable waste a porous environment? A review[END_REF] and the references therein). This approach is widely followed in the field, particularly for the control and the optimization of the biogas production purposes. However, it has some limitations, mainly due to the omission of the non-homogeneous character of the porous medium and of the spatial distribution of the biological activity. In addition, influencing factors for accurate modelling, such as the role of humidity in the landfill are underrated within this approach.

In [START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF], the authors proposed a modification of the above approach to overcome partially such limitations by spatializing the biological activity, which is now governed by a diffusion PDEs system coupled to single phase flow (from Darcy flow equations).

In this article, we extend this novel approach to a two phases flow where the gaseous phase "biogas" is included in the model. The goal is to have a more accurate consideration of the mechanical aspects of the complex interaction between the medium and the biological activity in the landfill. The resulting mathematical model and its numerical approximation lead to a computation code in 2D and 3D which improve prediction tools and the waste degradation management.

The article is organised as follows : in Section 2. we introduce the coupled system of equations that consists of a unified model for the complex biological and mechanical interactions in the landfill. We firstly consider the standard ODEs system which describes the hydrolysis/acidogenesis and methanogenesis for the biogas production, under two specific growth rates [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF]. In the spirit of [START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF], we transform the ODEs into a reaction-diffusion system of PDEs to spatialize the bacterial dynamic and to take into account the non-homogeneous distribution of methanogenese bacteria which is a more realistic approach in a waste collection sites ( [START_REF] Shi | Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction-Diffusion Chemostat Model[END_REF], [START_REF] Nguyen-Ngoc | Modeling microbial decomposition in real 3D soil structures using partial differential equations[END_REF], [START_REF] Vanrolleghem | Dynamical Modelling and Estimation in Wastewater Treatment Processes[END_REF]). Secondly, we give the full system governing the compressible two-phase leachate-biogas flow and the biodegradation.

We emphasise that the consideration of the spatial distribution acts as a regularization procedure for the initial ODEs system for which we have established in [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF] the existence of several (stable and unstable) equilibria.

In Section 3., We consider the semi-discrete problems obtained with a second-order time scheme (BDF2) for the reaction-diffusion part and a semi-implicit Euler scheme for the two-phase flow equations. Section 4., is devoted to the full discrete system based on a standard P 1 -conforming finite elements method. In section 5., we present several 2D and 3D numerical results obtained by our computation code which is realized under the open source software FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. , 2. A coupled mathematical model for the biological dynamic and the flow 2.1. The bacterial dynamic: an anaerobic digestion system in two-step

The anaerobic digestion is a biological process that mineralizes organic substrates in the absence of the oxygen. The organic material is then transformed by microorganisms to a mixture (biogas) of methane (CH 4 ) and carbon dioxide (CO 2 ) through a complex reactions in parallel and/or in series. The modeling of this phenomena has been extensively studied over theses last years and several mathematical models describing this process exist in the literature especially as a renewable energy (see [START_REF] Dollé | Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++[END_REF] [31] [START_REF] Rouez | Dégradation anaérobie de déchets solides: Caractérisation, facteurs d'influence et modélisations[END_REF] [8] [START_REF] Chenu | Modélisation des transferts réactifs de masse et de chaleur dans les installations de stockage de déchets ménagers: application aux installations de type bioréacteur[END_REF] [3] and the references therein). The biogas production is a final step in the complex anaerobic digestion process called the methanogenesis.

The methane production process considered in this article is described as follows: a first step of hydrolysis / acidogenesis of the organic mater, represented by its concentration that we denote X, leads to the formation of the carbon dioxide (CO 2 ) and a simple soluble organic mater S . The latter is used as a substrate by methanogenic bacteria B which in turn produce the carbon dioxide (CO 2 ) as well as the methane (CH 4 ). At their death, the methanogenic bacteria in turn constitute a complex substrate to hydrolysis step (see Figure 1).

Figure 1. Scheme used for modeling anaerobic degradation of organic mater

The parameters f 1 and f 2 are the stoechiometric coefficients which represent the parts of organic mater (OM) transformed into simple OM or methane during the "hydrolysis / acidogenesis" step or methanogenesis step respectively. Consequently (1f 1 ) and (1f 2 ) represent the parts of OM transformed into CO 2 during these two steps respectively. K d is the bacterial mortality rate and α is a constant 0 < α ≤ 1 representing the fraction of the biomass mortality reused as a substrate in the methanogenesis. In what follows, we denote by K h the rate of hydrolysis, Y the rate of use of the substrate and µ the specific growth rate.

Based on the principle of mass conservation and the law of bacterial growth, the model which describes the biological activity in this two step process for biogas production is given firstly by the system of ordinary differential equations (2.1), and in which the existence of several (stable and unsta-ble) equilibria has been established (see [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF]).

                                                             dX dt = -K h X + αK d B dB dt = (µ(S ) -K d ) B dS dt = f 1 K h X - 1 Y µ(S )B d[CO 2 ] dt = (1 -f 1 )K h X + (1 -f 2 ) 1 -Y Y µ(S )B d[CH 4 ] dt = f 2 1 -Y Y µ(S )B.
(2.1)

Next, we introduce the spatial diffusion (the spatial dependency of the bacterial dynamic), in order to consider the realistic case of nonhomogenous landfill, and to take into account some heterogeneities of the concentrations of microorganisms. This process was treated in the coupled model with the single phase leachate flow system (see [START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF]). We extend this novel approach to a two-phase flow where the gaseous phase, related to the biogas, is included in the model. The biodegradation model is then given as a reaction-diffusion system coupled with the flow system.

Let Ω be an open bounded subset of R d , d ≥ 2, representing the landfill. We suppose that its boundary Γ := ∂Ω is Lipschitz-continuous and is the union of two parts Γ D and Γ N where Dirichlet and Neumann boundary conditions are respectively imposed, with Γ D ∩ Γ N = ∅. The outward normal vector on Γ will be noted n. We fix a time interval of biogas production [0, T ] where T corresponds to the moment when the leachate begins to stagnate at the bottom of the domain, or the moment when it is necessary to recover the biogas. Following the same approach as in [START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF], the biological activity can be modelled as follows:

(S 1)

                                           ∂U ∂t -div D∇U = F 1 (U) in Ω×]0, T [ dG dt = F 2 (U) in Ω×]0, T [ D ∂U ∂n = 0 on ∂Ω×]0, T [ U(0, •) = U 0 (•), G(0, •) = G 0 (•) in Ω, (2.2) 
where U and G are the dynamic variables of the system (2.2) defined as follows

U = (u 1 , u 2 , u 3 ) t = (X, B, S ) t , G = (u 4 , u 5 ) t = ([CO 2 ], [CH 4 ]) t (2.3) 
, and D is the diffusion coefficients matrix given as follows

D =           D 1 0 0 0 D 2 0 0 0 D 3          
, where D 1 , D 2 and D 3 are, respectively, the diffusion coefficients of X, B and S .

The right-hand members F 1 and F 2 of the first and the second equation respectively in (2.2) are denoted by

F 1 (U) = (F 1 (U), F 2 (U), F 3 (U)) T , F 2 (U) = (F 4 (U), F 5 (U)) T .
(2.4)

and the functions F i , i = 1, 2, .., 5 are defined as follows

F 1 (U) = -K h u 1 + αK d u 2 , F 2 (U) = (µ(u 3 ) -K d ) u 2 , F 3 (U) = f 1 K h u 1 - 1 Y µ(u 3 )u 2 , F 5 (U) = f 2 1 -Y Y µ(u 3 )u 2 , F 4 (U) = (1 -f 1 )K h u 1 + (1 -f 2 ) 1 -Y Y µ(u 3 )u 2 .
Several laws exist for the specific growth rate µ(S ). The most used are the Monod law

µ(S ) = µ m S K S + S (2.5)
and the Haldane law

µ(S ) = µ m S K S + S + S 2 K I (2.6)
where µ m is the maximum growth rate, K S is the half-saturation constant and K I is the inhibition constant. The Monod law is related to saturation and limitation phenomena and the Haldane law is related to saturation and inhibition phenomena [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]. We note that the Monod function can be seen as a particular case of the Haldane function for large values of the parameter K I .

Remark 1. We remark that the second equation of (2.2) can be written as follows

dG dt = F 2 (U) =                (1 -f 1 )K h u 1 + (1 -f 2 ) 1 -Y Y du 2 dt + K d u 2 f 2 1-Y Y du 2 dt + K d u 2                . (2.7)
This remark will be used in the section 3.1 in order to linearize the system (2.2).

The system (2.2) allows us to compute the global rate of production of the biogas which constitutes the main part of the source/sink term in the next PDEs model of the flow in the waste. ,

Compressible two-phase leachate-biogas flow

The waste is considered as a porous medium consisting of a solid matrix, a liquid phase (leachate) and a gaseous phase formed by a binary mixture of methane and carbon dioxide (biogas). The modeling of a two-phase liquid-gas flow is based on a system of coupled equations (Darcy's law and the mass conservation equations) describing the flow of each phase simultaneously. In this context, we cite references [START_REF] Helmig | Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems[END_REF][START_REF] Chen | Computational methods for multiphase flows in porous media[END_REF][START_REF] Kindlein | Numerical modelling of multiphase flow and transport processes in landfills[END_REF][START_REF] Gabbouhy | Un résultat d'existence de solution faible d'un système paraboliqueelliptique non linéaire doublement dégénéré[END_REF][START_REF] Azaïez | Éléments finis pour les fluides incompressibles[END_REF][START_REF] Lichtner | Continuum formulation of multicomponent-multiphase reactive transport[END_REF] for a detailed description of these equations. Based on these references, we are interested in the two-phase leachate-biogas flow.

The mass conservation equation for each of the phases, biogas and leachate, are given by

∂(ρ b θ b ) ∂t + div(ρ b u b ) = α b (2.8) ∂(ρ l θ l ) ∂t + div(ρ l u l ) = α l (2.9)
Where u i , ρ i and θ i are respectively the velocity, the density and the volume content of the fluid i = b, l. The indices b and l represent the biogas and leachate phases respectively. α l and α b are the source term of leachate and the rate of the biogas generation respectively and which will be given later. In what follows, we denote by ϕ the porosity of the medium.

The flow velocity for each phase, leachate and biogas, is governed by the generalized Darcy's law (low Reynolds number Re < 1):

u l = -K k rl (θ l ) µ l (∇p l -ρ l ge z ), (2.10 
)

u b = -K k rb (θ l ) µ b (∇p b -ρ b ge z ). (2.11)
where K, k r j , p j and µ j are respectively the intrinsic permeability, the relative permeability, the pressure and the dynamic viscosity of phase j, for j = l, b. g is the modulus of the gravitational acceleration and e z = ∇z where z is the vertical axis directed downwards.

Source terms

The anaerobic digestion process needs water for the production of biogas, so the source term of leachate α l is related to the rate of the biogas generation α b . We follow the approach of [START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF][START_REF] Agostini | Is biodegradable waste a porous environment? A review[END_REF][START_REF] Aran | Modélisation des Ecoulements de Fluides et des Transferts de Chaleur au Sein des Déchets Ménagers[END_REF][START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]:

α l = -γ α b = -γ g(ω) A m C T b λ cin , (2.12) 
where

γ = M H 2 O /(3.4 × M b ) with M H 2 O
and M b are respectively the molar mass of H 2 O and the biogas, g is an explicit function on the variable ω, the humidity rate defined by θ = ρ 0 ρ ω with ρ 0 the density of the dry medium, A m is the biodegradable part of the waste, C T b is a positive constant and λ cin is the rate of the biogas production (see [START_REF] Gallo | A fully coupled numerical model for two-phase flow with contaminant transport and biodegradation kinetics[END_REF] and [START_REF] Gholamifard | Modélisation des écoulements diphasiques bioactifs dans les installations de stockage de déchets[END_REF]) :

λ cin = dC biogaz dt = d([CH 4 ] + [CO 2 ]) dt . (2.13)
Experimental studies (see [START_REF] Aran | Modélisation des Ecoulements de Fluides et des Transferts de Chaleur au Sein des Déchets Ménagers[END_REF], [START_REF] Gholamifard | Modélisation des écoulements diphasiques bioactifs dans les installations de stockage de déchets[END_REF]) show that below a minimal value ω min and above a maximum value ω max there is no biogas production. The function g increases in [ω min , ω 1 ], is constant in [ω 1 , ω 2 ] and decreases in [ω 2 , ω max ] for some values ω 1 and ω 2 (see Figure 2). The separation interface of the two fluids is characterized by an interfacial tension due to the effects of collision and adhesion between the two phases and so induces a pressure difference called capillary pressure:

p c := p b -p l . (2.14)
Capillary pressure and permeability depend on water content via different empirical models (see for example the models: Van Genuchten [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1[END_REF], Campbell [START_REF] Campbell | A simple method for determining unsaturated conductivity from moisture retention data[END_REF] and Brooks-Corey [START_REF] Brooks | Hydraulic Properties of Porous Media[END_REF]). We can find the parameter values of these model applied in biodegradation in the references [START_REF] Aran | Modélisation des Ecoulements de Fluides et des Transferts de Chaleur au Sein des Déchets Ménagers[END_REF][START_REF] Lanini | Analyse et modélisation des transferts de masse et de chaleur au sein des décharges d'ordures ménagères[END_REF][START_REF] Bellenfant | Modélisation de la production de lixiviat en centre de stockage de déchets ménagers[END_REF]. We use here the Campbell model given as follows in the unsaturated porous medium case:

p c (θ l ) = p ce θ l θ s -b , θ l (p c ) = θ s p c p ce -1 b (2.15) k rl (θ l ) = θ l θ s B with B = 2b + 3 (2.16) k rb (θ l ) = θ l θ s 1 - θ l θ s 2 (2.17)
where θ s is the saturation water content, p ce is a scaling factor and b is a given parameter.

Changes of variables:

,

In what follows we will introduce, instead of the pressures, the heights in column. These quantities are defined by:

h l : = p l -p 0 ρ l g , (2.18 
)

h b : = p b -p 0 ρ l g , (2.19 
)

h c : = h b -h l = p c ρ l g , (2.20) 
where p 0 is the reference pressure, h l (resp. h b ) represents the column height of leachate (resp. of biogas), and h c the capillary height.

Taking into account these new variables, equations (2.10) and (2.11) become:

u l = -K k rl (θ l ) µ l ρ l g(∇h l -e z ), (2.21 
)

u b = -K k rb (θ l ) µ b ρ l g(∇h b - ρ b ρ l e z ). (2.22)
In order to simplify the writing of these expressions, we note

k l (θ l ) : = K k rl (θ l ) µ l ρ l g, (2.23) 
k b (θ l ) : = K k rb (θ l ) µ b ρ l g, (2.24) 
k l and k b represent the hydraulic conductivity of leachate and biogas respectively. Using (2.21) and (2.23) and taking into account that ρ l is constant, equation (2.9) becomes:

∂θ l ∂t -div(k l (θ l )(∇h l -e z )) = α l ρ -1 l (2.25)
Next, we have 

∂θ l ∂t = dθ l dh c ∂h c ∂t = C l (h c ) ∂h c ∂t ( 
C l (h c ) ∂h c ∂t -div k l (θ l )(∇h b -∇h c -e z ) = α l ρ -1 l . (2.29)
The continuity equation of the biogas phase is (with the notation (2.24))

∂(ρ b θ b ) ∂t -div ρ b k b (θ l )(∇h b - ρ b ρ l e z ) = α b (2.30) which implies, since ϕ = θ l + θ b (ϕ -θ l ) ∂ρ b (h b ) ∂t + ρ b (h b ) ∂(ϕ -θ l ) ∂t -div ρ b (h b )k b (θ l )(∇h b - ρ b ρ l e z ) = α b . (2.31)
We assume that the compressibility of biogas obeys the ideal gas equation

ρ b (h b ) = ρ 0b ( p b p 0 ) (2.32)
where p 0 and ρ 0b are respectively the pressure and the reference density.

Taking into account the relation (2.19), the equation (2.32) becomes

ρ b = ρ 0b 1 + h b h 0 (2.33)
where h 0 = p 0 ρ l g , and this gives

(ϕ -θ l ) ρ 0b h 0 ∂h b ∂t -ρ b (h b ) ∂θ l ∂t -div ρ b (h b )k b (θ l )(∇h b - ρ b ρ l e z ) = α b , (2.34) 
or

(ϕ -θ l ) ρ 0b h 0 ∂h b ∂t -ρ b (h b )C l (h c ) ∂h c ∂t -div ρ b (h b )k b (θ l )(∇h b - ρ b ρ l e z ) = α b . (2.35)
We finally get the following system

                                       C l (h c ) ∂h c ∂t + div (u l ) = ρ -1 l α l , k l (h c )u l = ∇h c -∇h b + e z , A 1 (h c ) ∂h b ∂t -A 2 (h c , h b ) ∂h c ∂t + div(ρ b (h b )u b ) = α b , k b (h c )u b = -∇h b + c 1 h b e z + c 2 e z , (2.36) 
which can also be written in the following form

                       C l (h c ) ∂h c ∂t -div (k l (θ l (h c ))(∇h b -∇h c -e z )) = α l ρ -1 l , A 1 (h c ) ∂h b ∂t -A 2 (h c , h b ) ∂h c ∂t -div ρ b (h b )k b (θ l ) ∇h b -ρ b (h b )
ρ l e z = α b .

(2.37)

, where

A 1 (h c ) = (ϕ -θ l (h c ))ρ 0b h 0 , A 2 (h c , h b ) = ρ b (h b )C l (h c ), k l (h c ) = k l (θ l (h c )) -1 k b (h c ) = k b (θ l (h c )) -1 c 1 = ρ 0b ρ l h 0 , c 2 = ρ 0b ρ l ,

Boundary and initial conditions

To complete the equations of the compressible two-phase flow system (2.36), we consider the following boundary and initial conditions. At t = 0, the initial conditions on the column heights in h b and h c are given by

h c (0, x) = h c,0 (x), x ∈ Ω, (2.38) 
h b (0, x) = h b,0 (x), x ∈ Ω. (2.39)
We assume that, at the surface of the domain Γ D , the contact with the atmosphere imposes Dirichlettype conditions on the column heights of h b and h c . The limiting conditions on Γ D are thus given by

h c = h c,D on Γ D ×]0, T [, (2.40 
) .41) We assume that the walls and the bottom of the domain are impermeable. These situations are represented by the following homogeneous Neumann conditions

h b = h b,D on Γ D ×]0, T [. ( 2 
k l (θ l (h c ))(∇h b -∇h c -e z ) • n = v l = 0 on Γ N ×]0, T [, (2.42) k b (θ l (h c ))(∇h b - ρ b ρ l e z ) • n = v b = 0 on Γ N ×]0, T [. (2.43)
Consequently, equations (2.37) together with boundary and initial conditions, give the following sys-, tem (S 2)

                                                                               C l (h c ) ∂h c ∂t -div (k l (θ l (h c ))(∇h b -∇h c -e z )) = α l ρ -1 l in Ω×]0, T [, A 1 (h c ) ∂h b ∂t -A 2 (h c , h b ) ∂h c ∂t -div(ρ b (h b )k b (θ l )(∇h b - ρ b (h b ) ρ l e z )) = α b in Ω×]0, T [, h l = h l,D and h b = h b,D on Γ D ×]0, T [ k l (θ l (h c ))(∇h b -∇h c -e z ) • n = 0 and k b (θ l (h c ))(∇h b -ρ b ρ l e z ) • n = 0 on Γ N ×]0, T [ h c (0, x) = h c,0 (x) and h b (0, x) = h b,0 (x)
in Ω

(2.44)

The final Model

The final mathematical model describing both the degradation of the organic mater and the compressible two-phase leachate-biogas during the anaerobic digestion process for biogas production is given by the system (2.2)=(S1) and the system (2.44)=(S2).

Variational formulation and semi-discrete system

In what follows, We make some assumptions.

Hypothesis 1. The coefficients α, K d , Y, f 1 and f 2 fulfill the following conditions.

1. The proportion of nutrient recycling α cannot exceed 1 0 < α ≤ 1.

(3.1)

2. The mortality rate K d is a positive parameter which is below the maximum growth rate

0 < K d < max s µ(s). (3.2)
3. The rate of use of the substrate is a strictly positive parameter such that

0 < Y < 1. (3.3)
4. The stoechiometric coefficients parameters f 1 and f 2 are strictly positive and satisfy

0 < f 1 < 1 and 0 < f 2 < 1. (3.4) 
,

The final model obtained in (2.2) and (2.44) is weakly coupled, therefore, we can separate the analysis of the system (2.2) and the system (2.44).

Due to the fact that the specific growth rate µ(•) is a nonnegative and bounded function in both Monod and Haldane cases, and all the constants K h , K d , f 1 , f 2 and Y lie in ]0, 1[, it is readily checked that assumptions of Theorem 1 in [START_REF] Bothe | Global wellposedness for a class of reactionadvection-anisotropic-diffusion systems[END_REF] are verified and we have the existence and the uniqueness of the solution of the system (2.2) (see [START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF]). We can also find a theorem of existence and uniqueness for the corresponding incompressible two-phase flow system in [START_REF] Gabbouhy | Un résultat d'existence de solution faible d'un système paraboliqueelliptique non linéaire doublement dégénéré[END_REF].

Semi-discretization in time and variational formulation of the system (S1)

Let τ n = t n+1t n , n = 0, ..., N, where N ∈ N * , be a partition of [0, T ] with t 0 = 0 and t N = T . In what follows we denote by f n the values of a function f at the time t n . The semi-discrete scheme for the system (S1) considered here is the second order backward differentiation formula BDF2 for the variables (X, S , B) and the implicit Euler scheme for the ODE on ([CO 2 ], [CH 4 ]). The problem reads: find

U n+1 ∈ Z = H 1 (Ω) 3 such that Ω 3U n+1 -4U n + U n-1 2τ n • vdx + Ω D∇U n+1 • ∇vdx = Ω F 1 U n+1 • vdx ∀v ∈ Z, (3.5) 
where the initial values are computed as follow: find

U 1 ∈ Z such that Ω U 1 -U 0 τ 0 • vdx + Ω D∇U 1 • ∇vdx = Ω F 1 U 1 • vdx ∀v ∈ Z, (3.6) 
and where the notation ∇U • ∇v means the vector with the components ∇U i • ∇v i , for i = 1, 2, 3.

We linearize the scheme by using the Taylor formula

F 1 U n+1 ≃ F 1 (U n ) + J F 1 (U n ) (U n+1 -U n ) (3.7)
where J F 1 is the Jacobian matrix of the vector function F 1 . Consequently, the final BDF2 scheme reads : find

U 1 ∈ Z = H 1 (Ω) 3 such that Ω τ -1 0 I 3 -J F 1 U 0 U 1 • vdx + Ω D∇U 1 • ∇vdx = Ω τ -1 0 U 0 + F 1 U 0 -J F 1 U 0 U 0 • vdx ∀v ∈ Z, (3.8) 
, and for all n ≥ 1, find U n+1 ∈ Z such that

Ω 3 2τ n I 3 -J F 1 (U n ) U n+1 • vdx + Ω D∇U n+1 • ∇vdx = Ω 4U n -U n-1 2τ n + F 1 (U n ) -J F 1 (U n ) U n • vdx ∀v ∈ Z. (3.9)
On the other hand, by using the Remark 1, the approximation of G at t = t m+1 G m+1 = (u m+1 4 , u m+1 5 ) T , for ,0 ≤ m ≤ n, is given by

u m+1 4 -u m 4 τ m = (1 -f 1 )K h u n+1 1 + (1 -f 2 ) 1 -Y Y u m+1 2 -u m 2 τ m + K d u m+1 2 , (3.10) 
u m+1 5 -u m 5 τ m = f 2 1 -Y Y u m+1 2 -u m 2 τ m + K d u m+1 2 .
(3.11)

Semi-discretization in time and variational formulation of (S2)

The semi descretization in time and linearization of the flow sytem (S2) is realized in the implicit scheme and is written as follow

C l (h n c ) h n+1 c -h n c τ n -div k l (h n c )(∇h n+1 b -∇h n+1 c -e z ) = ρ -1 l α n+1 l
in Ω, (3.12)

A 1 (h n c ) h n+1 b -h n b τ n -A 2 (h n c , h n b ) h n+1 c -h n c τ n -div ρ b (h n b )k b (h n c )(∇h n+1 b - ρ b (h n b ) ρ l e z ) = α n+1 b in Ω, (3.13) 
where the unknowns h n+1 c and h n+1 b are the approximations of h c (t n+1 ) and h b (t n+1 ) such that the initial conditions are h c (0, x) = h c,0 (x) and h b (0, x) = h b,0 (x) in Ω and the boundary conditions are

h n+1 c = h c,D and h n+1 b = h b,D on Γ D , (3.14) k l (h n c )(∇h n+1 b -∇h n+1 c -e z ) • n = 0 on Γ N , (3.15) k b (h n c )(∇h n+1 b - ρ b (h n b ) ρ l e z ) • n = 0 on Γ N . (3.16)
We introduce the following functional space

H 1 = v ∈ H 1 (Ω), v = 0 on Γ D , . (3.17) 
The weak formulation of (3.12)-(3.13) with the conditions (3.14)-(3.16) is written as follows:

,

                                                                 Find h n+1 c ∈ h c,D + H 1 and h n+1 b ∈ h b,D + H 1 such that Ω C l (h n c ) h n+1 c τ n ψdx + Ω k l (h n c )(∇h n+1 b -∇h n+1 c -e z ) • ∇ψdx = Ω ρ -1 α n+1 l ψdx + Ω C l (h n c ) h n c τ n ψdx, ∀ψ ∈ H 1 (Ω) Ω A 1 (h n c ) h n+1 b τ n φdx - Ω A 2 (h n c , h n b ) h n+1 c τ n φdx + Ω ρ b (h n b )k b (h n c )(∇h n+1 b - ρ b (h n b ) ρ l e z )∇φdx = Ω α n+1 b φdx + Ω A 1 (h n c ) h n b τ n φdx + Ω A 2 (h n c , h n b ) h n c τ n φdx, ∀φ ∈ H 1 (Ω) (3.18) 

Discrete problem

We assume in this section that Ω is a polygon domain of R d . Let T h be a partition of Ω into triangles T (in R 2 ) or tetrahedra T (in R 3 ) and we denote by P k (O) the space of polynomial functions defined in a subset O of R d of total degree at most k. In order to define the full descretization of the problem (2.2),(2.44), we introduce the following finite-dimensional functional spaces:

Z h = v h ∈ C( Ω) 3 ; ∀T ∈ T h v h | T ∈ (P 1 (T )) 3 , (4.1) 
H 0,h = v h ∈ C( Ω) ; ∀T ∈ T h v h | T ∈ P 1 (T ) , (4.2) 
and

H 1,h = v h ∈ C( Ω) ; ∀T ∈ T h v h | T ∈ P 1 (T ), v h | Γ D = 0 . (4.3) 

Full discretization of the system (S1)

We discretize the equations (3.8)-(3.11) via the finite element method in the finite dimensional space Z h . The problem consists to find

U 1 h ∈ Z h such that Ω τ -1 0 I 3 -J F 1 U 0 U 1 h • vdx + Ω D∇U 1 h • ∇vdx = Ω τ -1 0 U 0 + F 1 U 0 -J F 1 U 0 U 0 • vdx ∀v ∈ Z h , (4.4) 
, and for all n ≥ 1, find

U n+1 h ∈ Z h such that Ω 3 2τ n I 3 -J F 1 U n h U n+1 h • vdx + Ω D∇U n+1 h • ∇vdx = Ω 4U n -U n-1 2τ n + F 1 (U n ) -J F 1 (U n ) U n • vdx ∀v ∈ Z h . (4.5) 
On the other hand, we seek

G m+1 h = (u m+1 4h , u m+1 5h ) T , for 0 ≤ m ≤ n, such that u m+1 4h -u m 4h τ m = (1 -f 1 )K h u n+1 1h + (1 -f 2 ) 1 -Y Y u m+1 2h -u m 2h τ m + K d u m+1 2h , (4.6) 
u m+1 5h -u m 5h τ m = f 2 1 -Y Y u m+1 2h -u m 2h τ m + K d u m+1 2h . (4.7) 
Remark 2. In our numerical simulations we choose m = n. Nevertheless, we write under this general form because it may be suitable for some applications to have two different time grids for the reactiondiffusion system and for the flow system.

Full discretization of the system (S2)

We discretize the equations (3.18) via the finite element method. The scheme consists to find

h n+1 ch ∈ h c,D + H 1,h and h n+1 bh ∈ h b,D + H 1,h such that                                                                          Ω C l (h n ch ) h n+1 ch τ n ψdx + Ω k l (h n ch )(∇h n+1 bh -∇h n+1 ch -e z ) • ∇ψdx = Ω ρ -1 α n+1 lh ψdx + Ω C l (h n ch ) h n ch τ n ψdx, ∀ψ ∈ H 0,h Ω A 1 (h n ch ) h n+1 bh τ n φdx - Ω A 2 (h n ch , h n bh ) h n+1 ch τ n φdx + Ω ρ b (h n bh )k b (h n ch )(∇h n+1 bh - ρ b (h n bh ) ρ l e z )∇φdx = Ω α n+1 bh φdx + Ω A 1 (h n ch ) h n bh τ n φdx + Ω A 2 (h n ch , h n bh ) h n ch τ n φdx ∀φ ∈ H 0,h (4.8) 

Numerical results

In this section we present some numerical results for the problem (2.2)-(2.44). In all the experiments, we take Ω ⊂ R n , ∂Ω = Γ D ∪ Γ N , with n = 2 for the 2D case and n = 3 for the 3D case as follows:

• L = 10m, • for n = 3 (3D case), Ω =]0, L[×]0, L[×]0, L[ Γ D = {(x, y, 0), with (x, y) ∈]0, L[×]0, L[} • for n = 2 (2D case), Ω =]0, L[×]0, L[ Γ D = {(x, 0), with x ∈]0, L[}
The different parameters used are given in Table [START_REF] Agostini | Is biodegradable waste a porous environment? A review[END_REF] and Table [START_REF] Ahusborde | Numerical Modeling and Simulation of Fully Coupled Processes of Reactive Multiphase Flow in Porous Media[END_REF] and come from [START_REF] Rouez | Dégradation anaérobie de déchets solides: Caractérisation, facteurs d'influence et modélisations[END_REF] and [START_REF] Aran | Modélisation des Ecoulements de Fluides et des Transferts de Chaleur au Sein des Déchets Ménagers[END_REF]. From the same references, we take the initial conditions of the biodegradation system (in mgC/L) as indicated in Table [START_REF] Aran | Modélisation des Ecoulements de Fluides et des Transferts de Chaleur au Sein des Déchets Ménagers[END_REF].

The boundary conditions of the biodegradation system are all homogeneous Neumann conditions. The boundary and initial conditions for the flow system are given in Table [START_REF] Arzate | Anaerobic digestion model (AM2) for the description of biogas processes at dynamic feedstock loading rates[END_REF].

We recall that at each time step, the system (2.2) is approximated by (4.4)-(4.7), and its solution gives the source terms of the two-phase flow system (2.44), approximated by (4.8). We note that some simulations of the 3D case are plotted with the software (Paraview) visualization tool.

Table 1. Parameters of the biodegradation. 

K H (d -1 ) µ m (d -1 ) f 1 f 2 K S (mgC/L) K d (d -1 ) Y α K I (
h c,0 (m) in Ω h b,0 (m) in Ω h c,D (m) on Γ D h b,D (m) on Γ D u l • n on Γ N u b • n on Γ N -1.3 10 -4 0 -0.0002 0 0 0
We recall that the landfill is considered to be an unsaturated and inhomogeneous porous medium due to a non-homogeneous distribution of the initial methanogenic bacteria B 0 as follows

• In 2D: B 0 (x, z) =            1 in Z 1 := {0 ≤ x ≤ L/2 and 0 ≤ z ≤ L/2}, 2 in Z 2 := {L/2 ≤ x ≤ L and 0 ≤ z ≤ L/2}, 3 in Z 3 := {0 ≤ x ≤ L and L/2 < z < L}.
• In 3D: We consider a quasi-uniform mesh of the domain Ω with (952 triangles and 517 vertices) in 2D and (48000 tetrahedras and 9261 vertices) in 3D (see Figure 3). We also consider M bottom (0.75L, 0.001L) a point at the bottom of the zone Z 3 , in which we will observe the evolution of leachate stagnation. From Figure 4, we notice that the the biogas production increases in the whole domain in proportion with the initial concentration of the methanogenic bacteria. More precisely, the mean value of the isovalues represented by "yellow color" goes from 0.06 at time t 1 to 0.52 at time t 4 , for the "blue color" region it goes from 0.12 at time t 1 to 1.02 at time t 4 , and the "red color" part from 0.17 at time t 1 to 1.52 at time t 4 . This agree with the results reported on Figure 6. In Table 5 we summarize the intervals of the isovalues for each region. Using the relationship between water content θ l and capillary height h c (see (2.15) and (2.20)), Figures 9 and10 show the evolution of water content in 2D and 3D, respectively. Thus, we notice that the leachate starts to stagnate at the bottom of the domain at time t 4 . More precisely, Figure 11 shows the evolution of the water content at the point M bottom in two-phase biogas-leachate flow case and one phase leachate flow case (see [START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF]). We notice that the yellow curve "two-phase flow case" indicates the increase of the water content over time, from the initial value θ 0 = 0.37, to the value θ ≈ θ s (value close to saturation), at time t 4 . Almost, the same situation of the start of leachate stagnation was obtained at time t = 2 day in the case of single-phase leachate flow. Therefore, in the two-phase flow case and from the time t 4 , we will not have the biogas production in the small layer at the bottom of the domain because its water content value does not satisfy the condition of humidity for the biogas production. Figure 7 and Figure 8 show respectively the evolution of the column height of the biogas h b in 2D and 3D. We notice in Figure 7(a), which corresponds to time t 1 , the appearance of a sky blue colored area with very low values and which almost coincides with the zone where initially the concentration of the methanogenic bacteria is the lowest. The diffusion process yields a monotonically increasing biogas production and the pressure distribution becomes regular and spatially homogeneous (see the figures (b), (c) and (d) in Figure 7). The time t 4 corresponds approximately to the moment when a leachate stagnation zone will appear at the bottom of the landfill. The moisture condition necessary for the biogas production will not be satisfied in the whole area after this time, this gives a stopping criterion for the algorithm. Accordingly, for the waste landfill management and the energy production, one has to decide either to release the stagnant leachate or to inject to act on the humidity factor which means mathematically to fit the proposed model in the framework of an optimal control approach.

B 0 (x, y, z) =           

Conclusion

In this article, we have considered a new model describing the bacterial activity in a household waste landfill, taken as a reactive and unsaturated non-homogeneous porous medium. The coupling of the two-phase flow in the landfill and their interaction with the biological dynamic allows us to obtain accurately the leachate and the biogas. The outcome of the model, namely the pressure functions of these two phases are the key variables for the waste management and the energy production. The discrete setting which consists of a second order BDF2 time-scheme and finite elements approximation give an efficient discrete framework with respect to the accuracy and reasonable cost requirements. The computation code in 2D and 3D and the numerical simulations confirm the relevance of the model and the associated discrete setting. Finally, we notice that the impact of the humidity on the outcome appears to be important and the combination of the approach we developed in this article with an optimal control strategy may be a promising perspective.

Figure 2 .

 2 Figure 2. The empirical function g(ω).

1 in 1 :

 11 = {0 ≤ x ≤ L/2 , 0 ≤ y ≤ L and 0 ≤ z ≤ L/2}, 2 in 2 := {L/2 ≤ x ≤ L , 0 ≤ y ≤ L and 0 ≤ z ≤ L/2}, 3 in 3 := {0 ≤ x ≤ L , 0 < y < L and L/2 ≤ z < L}.

Figure 3 .

 3 Mesh in 2D and 3D.Taking into account the results obtained in[START_REF] Belhachmi | Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill[END_REF] in terms of CPU computation time, we use partial (and not complete) diffusion. We then consider the diffusion D = {D X = 0.01, D S = 0.03, D B = 0.05} [m 2 /d]. Using Haldane's law which is often more realistic, we obtain the following simulations.

  (a) t = 0.1 day (b) t = 0.5 day (c) t = 1 day (d) t = 1.8 day Figure 4. Evolution of methane production in 2D.

5 .

 5 (a) t = 0.1 day (b) t = 0.5 day (c) t = 1 day (d) t = 1.8 day Figure Evolution of methane production in 3D.

Figure 4 and

 4 Figure 4 and Figure 5 show, respectively, the evolution of methane production in 2D and 3D at different times: t 1 = 0.1 day in (a), t 2 = 0.5 day in (b), t 3 = 1 day in (c) and t 4 = 1.8 day in (d).

Figure 6 . 7 .

 67 Figure 6. Evolution of the average methane production in each zone i , i ∈ {1, 2, 3} (zone 1 corresponds to B 0 = 1 , zone 2 corresponds to B 0 = 2 and zone 3 corresponds to B 0 = 3 ).

  (a) t = 0.1 day (b) t = 0.5 day (c) t = 1 day (d) t = 1.8 day Figure 8. Evolution of the column height of biogas h b in 3D.

9 .

 9 (a) t = 0.1 day (b) t = 0.5 day (c) t = 1 day (d) t = 1.8 day Figure Evolution of the water content θ(h c ) in 2D.

  (a) t = 0.1 day (b) t = 0.5 day (c) t = 1 day (d) t = 1.8 day Figure 10. Evolution of the water content θ(h c ) in 3D.

Figure 11 .

 11 Figure 11. Evolution of the water content θ l at the point M bottom in one phase flow and twophase flow problem.

Table 2 .

 2 Parameters of the porous medium.

	mgC/L)

Table 3 .

 3 Initial conditions for the biodegradation system.

	X 0 (x, y) (mgC/L) S 0 (x, y) (mgC/L) [CO 2 ] 0 (x, y) (mgC/L) [CH 4 ] 0 (x, y) (mgC/L)
	1751	0	0	0

Table 4 .

 4 Initial and boundary conditions for the compressible two phase flow system.

Table 5 .

 5 Table of the Max and Min values of the methane production isovalues in the three zones over time according to the solutions obtained in Figure 4.
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