
HAL Id: hal-03409685
https://hal.science/hal-03409685

Submitted on 29 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A linear optimization oracle for zonotope computation
Antoine Deza, Lionel Pournin

To cite this version:
Antoine Deza, Lionel Pournin. A linear optimization oracle for zonotope computation. Computational
Geometry, In press, 100, pp.101809. �10.1016/j.comgeo.2021.101809�. �hal-03409685�

https://hal.science/hal-03409685
https://hal.archives-ouvertes.fr

A linear optimization oracle for zonotope computation

Antoine Deza

McMaster University, Hamilton, Ontario, Canada

LIX, CNRS, École Polytechnique, Palaiseau, France

Lionel Pournin∗

Université Paris 13, Villetaneuse, France

Abstract

A class of counting problems asks for the number of regions of a central hyper-
plane arrangement. By duality, this is the same as counting the vertices of a
zonotope. Efficient algorithms are known that solve this problem by computing
the vertices of a zonotope from its set of generators. Here, we give an efficient
algorithm, based on a linear optimization oracle, that perform the inverse task
and recovers the generators of a zonotope from its set of vertices. We also pro-
vide a variation of that algorithm that allows to decide whether a polytope,
given as its vertex set is a zonotope and when it is not, to compute its greatest
zonotopal summand.

1. Introduction

Linear optimization consists in finding a vertex of a polyhedron that max-
imizes some linear functional. It is widely used in many areas of science and
engineering. Linear optimization has been used for solving some prominent
questions and has led to formulating a number of other widely studied prob-
lems. While linear optimization itself is known to be polynomial time solvable in
the size of the problem, the complexity of simplex methods, pivot-based linear
optimization algorithms, is still not known, see for instance [1] and references
therein. In contrast to linear optimization that consists in finding just one vertex
of a polyhedron, convex hull computation amounts to enumerate all the faces of
a polytope. A number of practical algorithms have been given that address this
particular problem [2, 3, 4]. Since the number of faces of a polytope of arbitrary
dimension is exponential, for instance in its number of vertices, the worst case
complexity of these algorithms is exponential.

This article considers a case that lies in-between linear optimization and con-
vex hull computation. Just as with linear optimization, we are interested in the

∗Corresponding author
Email addresses: deza@mcmaster.ca (Antoine Deza), lionel.pournin@univ-paris13.fr

(Lionel Pournin)

small dimensional faces of polytopes (their vertices and edges) and, in keeping
with convex hull computations, one of our main goals is to enumerate them.
We are going to do that for a particular class of polytopes, the zonotopes or, in
other words, the Minkowski sums of line segments. Recall that the Minkowski
sum of two subsets A and B of Rd is the set

A+B = {a+ b : a ∈ A, b ∈ B}.

This notion is illustrated in Figure 1 in the particular case of a zonotope
and in Figure 2 in general. By definition, zonotopes are more combinatorial,
and can behave rather differently than arbitrary polytopes. For instance, linear
optimization over a zonotope is linear time solvable in the number of its gen-
erators. Zonotopes arise in a number of counting problems related to different
fields, often in terms of their dual hyperplane arrangement [5, 6, 7, 8]. These
counting problems ask about the number of vertices of a zonotope, where the
zonotope itself is given as the set of its generators. This can be done in practice
by using an efficient, convex-hull-free algorithm that computes the vertex set of
a zonotope from its set of generators, see for instance [9, 10].

Our first contribution is an efficient algorithm that performs the inverse task,
also without requiring any convex hull computation. Given the vertex set of a
polytope P , this algorithm will decide whether P is a zonotope and, if so, it will
return its set of generators. In this sense it can also be considered a decision
algorithm. It is polynomial in the number of vertices of the considered polytope.
In fact, considering complexity in terms of the combined size of the input and
output [2], the algorithms we propose are polynomial.

Our second contribution is an algorithm that provides a practical approach
to the decomposability of a polytope in terms of Minkowski sums, another topic
that has attracted significant attention [11, 12, 13, 14, 15]. It efficiently com-
putes the greatest zonotopal summand of an arbitrary polytope. Let us illustrate
this notion. By a summand of a polytope P , we mean any polytope Q such that
P is the Minkowski sum of Q with another polytope. In Figure 2 for instance,
the octagon P is the Minkowski sum of the triangle Q with the hexagon Z. In
particular, Q and Z are two summands of P . Observe that Z is, up to transla-
tion, the Minkowski sum of three of its edges. In other words, Z is a zonotope.
On the other hand, since Q is a triangle, no line segment—and therefore no
zonotope—can be a summand of Q. In this case, Z is what we call the greatest
zonotopal summand of P .

When a polytope P is given as the convex hull of a finite set of points,
linear optimization is polynomial time solvable in the number of these points

=Z + +
A

B
C

Figure 1: The zonotope Z is the Minkowski sum of the line segments A, B, and C.

2

since it amounts to computing the value of a linear functional at each of them.
According to the theory developed in [16], deciding whether a given point is a
vertex of P is then also polynomial time solvable. Similarly, deciding whether
two points are the extremities of an edge of P can be done in polynomial time.
Our algorithms rely on the ability to solve these two problems. In Section 2, we
will give an explicit linear optimization oracle that provides a practical way to
do that. In section 3, we will recall a number of properties of Minkowski sums
and zonotopes, and derive further properties that will be used in the sequel.

As mentioned earlier, efficients algorithms are known that enumerate the
vertices of a zonotope from its set of generators, see for instance [9, 10]. This
task will appear as a subtask in our algorithms. For this reason, and in order
to keep our article self-contained, we give an algorithm that performs this task
in Section 4. The greatest zonotopal summand of a polytope is defined and
studied at in Section 5, and the algorithm that computes it is described at the
end of the section. Finally, the algorithm that enumerates the generators of a
zonotope from its vertex set is given in Section 6.

2. A linear optimization oracle

We begin the section with a linear optimization oracle that allows to tell
whether the convex hull of a finite subset of Rd is disjoint from the affine hull of
another finite subset of Rd. We then show that this oracle provides a practical
way to decide when a polytope is a face of another when both are given as
convex hulls of finite sets of points. As a consequence, we obtain an explicit
algorithm that efficiently computes the graph of a polytope given either as the
set of its vertices or as the convex hull of a finite subset of Rd. At the end of
the section, we show how our oracle also allows to compute the extreme rays of
a pointed cone given as the conic hull of a set of points.

Consider a finite subset A of Rd and a subset F of A. The convex hull of
A\F and the affine hull of F are non-disjoint if and only a convex combination
of A\F coincides with an affine combination of F ; that is, if and only if there

P = +Q Z

Figure 2: The octagon P is the Minkowski sum of Q and Z.

3

exists a family (αa)a∈A of real numbers such that∑
a∈A\F

αaa −
∑
a∈F

αaa = 0, (1)

∑
a∈A\F

αa = 1, (2)

∑
a∈F

αa = 1, (3)

and αa ≥ 0 when a ∈ A\F . In other words, checking whether conv(A\F) and
aff(F) are non-disjoint amounts to finding a solution to a system of d+ 2 linear
equalities (note here that (1) accounts for d of these equalities) and |A| − |F|
linear inequalities that state the non-negativity of some of the variables. This
feasibility problem, which we denote by (LOA,F) is polynomial time solvable
in |A|, d, and the binary size L of the input (see [16, 1]). In our case and
throughout the section, L is the number of bits needed to store A.

Let us illustrate how (LOA,F) allows for an efficient way to compute the
graph of a polytope given as the convex hull of a finite subset of Rd.

Proposition 1. Consider a finite subset A of Rd. A point x in A is a vertex
of conv(A) if and only if it does not belong to conv(A\{x}).

Proof. The vertices of a polytope are precisely its extreme points. Therefore,
a point x in A is not a vertex of conv(A) if and only if it can be written as
a convex combination of A whose coefficient for x is less than 1. Note that x
appears on both sides of that equality. Solving this equality for x results in an
equivalent equation that expresses x as a convex combination of A\{x}. �

Recall that the affine hull of a single point only contains that point. Hence,
according to Proposition 1, A point x in A is a vertex of conv(A) if and only if
(LOA,{x}) is infeasible. Solving this feasability problem for every point x in A
allows to recover the vertex set of conv(A) in polynomial time in |A|, d, and L.
Proposition 1 can be generalized as follows.

Proposition 2. Consider a finite subset A of Rd. The convex hull of a subset
F of A is a face of the convex hull of A if and only if the affine hull of F is
disjoint from the convex hull of A\F .

Proof. Let F be a subset of A. Consider the orthogonal projection

π : Rd → aff(F)⊥,

where aff(F)⊥ the orthogonal complement of aff(F) in Rd; that is, the set of
the vectors in Rd orthogonal to it. By construction, π sends all the points in F
to a single point x. Now observe that aff(F) is disjoint from conv(A\F) if and
only if x is not contained in the convex hull of π(A\F). By Proposition 1, this
is equivalent to x being a vertex of the convex hull of π(A) which, in turn, is
equivalent to conv(F) being a face of conv(A). �

4

Consider two distinct elements x and y of A. According to Proposition 2,
conv({x, y}) is an edge of conv(A) if and only if (LOA,{x,y}) is infeasible. There-
fore, in order to compute the graph of the convex hull of a finite subset A of
Rd, it is sufficient to solve (LOA,{x}) for every point x in A in order to recover
the vertex set V of conv(A) and then to solve (LOA,{x,y}) for any pair of dis-
tinct points x and y in V in order to decide whether conv({x, y}) is an edge
of conv(A). Since the number of feasibility problems to solve is quadratic in
|A| and each of these problems is polynomial time solvable in |A|, d, and L, we
recover the following well-known result (see [17]).

Theorem 1. Consider a finite subset A of Rd. The graph of conv(A) can be
computed in polynomial time in |A|, d, and L.

Note that, computing the whole 2-skeleton of conv(A) with that procedure
would require solving a number of feasibility problems that is exponential in |A|.
Indeed, the possible candidates for being the vertex set of a 2-dimensional face
of conv(A) would be all the sets of at least three vertices of conv(A). Therefore,
the k-skeleton of conv(A) cannot be computed in polynomial time using the
same ideas when k is greater than 1. However, for any given positive integer
k, it is possible to compute in polynomial time all the faces of conv(A) with
at most k vertices and arbitrary dimension. According to Proposition 2, this
amounts to solve (LOA,F) for every non-empty subset F of A with at most k
elements, whose number is at most a degree k polynomial in |A|.

We now explain how the same ideas allow to compute in polynomial time
the rays of a pointed cone spanned by a finite subset A of Rd\{0}. This will
be used in Section 4 in order to compute the vertices of a zonotope efficiently
from its generators. Recall that the cone spanned by A, or conic hull of A, is
the polyhedral cone made up of all the linear combinations with non-negative
coefficients of the points in A. This cone, which we denote by cone(A), is
pointed when it admits 0 as a vertex. In particular, when A is made up of a
single non-zero point, cone(A) is a half-line incident to 0.

Note that, if A contains a pair of linearly dependent points, then the cone
spanned by A is not affected if one of these points is removed from A. Hence,
we can assume that any two points in A are linearly independent. The following
proposition is the conic counterpart to Proposition 1.

Proposition 3. Consider a finite subset A of pairwise linearly independent
points of Rd\{0} that spans a pointed cone. The half-line spanned by a point x
in A is a ray of the cone spanned by A if and only if the line through 0 and x
is disjoint from the convex hull of A\{x}.

Proof. Consider a point x in A and assume that the half-line cone{x} is a ray
of cone(A). Let H be a supporting hyperplane of cone(A) such that

cone(A) ∩H = cone{x}.

Since any two points in A are linearly independent, x is the only element
of A contained in cone{x} and, therefore, in H. As a consequence, A\{x} is

5

contained in one of the open half-spaces bounded by H and its convex hull is
necessarily disjoint from the line through 0 and x.

Now assume that the line through 0 and x is disjoint from the convex hull
of A\{x}. By Proposition 2, conv{0, x} is an edge of conv(A ∪ {0}). Consider
a supporting hyperplane H of conv(A ∪ {0}) such that

conv(A ∪ {0}) ∩H = conv{0, x}.

Since conv(A ∪ {0})\conv{0, x} is contained in one of the open half-spaces
bounded by H, and since H contains 0, then cone(A)\cone({x}) is also con-
tained in that half-space. Hence, H is a supporting hyperplane of the cone
spanned by A and it intersects this cone along the half-line spanned by x. In
other words, that half-line is a ray of the cone spanned by A. �

Now observe that the line through 0 and a point x in A is disjoint from the
convex hull of A\{x} if and only if (LOA∪{0},{0,x}) is infeasible. Again, this
feasibility problem is polynomial time solvable in |A|, d, and L. In particular, it
follows from Proposition 3 that solving this problem allows to tell whether the
half-line spanned by x is a ray of the conic hull of A.

By these observations, we recover the following.

Theorem 2. Consider a finite subset A of pairwise linearly independent points
of Rd\{0} that spans a pointed cone. The rays of cone(A) can be computed in
polynomial time in |A|, d, and L.

The input of some of the algorithms we describe in the sequel are polytopes
given as the set V of their vertices. In fact, these polytopes could also be given
as any finite set A of points they are the convex hull of. In this case, the
complexity of these algorithms would be in terms of |A| instead of |V|.

3. Combinatorial properties of Minkowski additions

When P and Q are polyhedra, the faces of P +Q are exactly the Minkowski
sums of a face F of P and a face G of Q such that, for some non-zero vector
c in Rd, the linear functional x 7→ c·x is maximized at F in P and at G in
Q, see for instance Proposition 12.1 in [18] or Lemma 2.1 in [11]. As already
mentioned, a zonotope, is the Minkowski sum of a finite set of line segments.
In fact, a zonotope Z contained in Rd is uniquely obtained, up to translation,
as the Minkowski sum of a finite set of pairwise non-homothetic line segments
incident to 0 and whose first non-zero coordinate of the other vertex is positive.
We refer to these particular line segments as the generators of Z.

Now recall that a summand of a polytope P is a polytope Q such that P
is obtained as the Minkowski sum of Q with another polytope. We recall the
following decomposability characterization from [11] that we will use to compute
the 1-dimensional summands of a polytope efficiently.

Lemma 1 ([11, Theorem 2.5]). A polytope P has a summand homothetic to
a polytope Q if and only if P and P +Q have the same number of vertices.

6

Lemma 1 is illustrated in Figure 3 in the case when P is the quadrilateral
T + e, that admits a line segment e as a summand, and Q is a line segment f
homothetic to e. As can be seen, T + e+ f is still a quadrilateral.

We also recall classic counting arguments that will be used to speedup the
computations. If P is a polytope and s is a line segment, we denote by 〈s〉P the
set of the edges of P homothetic to s or, equivalently, parallel to s.

Lemma 2. Consider a d-dimensional polytope P and a line segment s, both
contained in Rd. If s is a summand of P , then

(i) At least d edges of P are contained in 〈s〉P ,

(ii) All the edges of P in 〈s〉P are at least as long as s,

(iii) Every shortest element of 〈s〉P is a summand of P .

Proof. Assume that there exists a polytope Q such that P is the Minkowski
sum of Q and s and consider the orthogonal projection

π : Rd → aff(s)⊥.

Note that the image by π of any element of 〈s〉P is a vertex of π(P). In
fact, π induces a bijection between 〈s〉P and the vertex set of π(Z). Indeed,
first observe that, by convexity, π cannot send distinct elements of 〈s〉P to the
same point. Further consider a vertex v of π(P) and a vector c contained in
aff(s)⊥ such that the map x 7→ c·x is maximized at v in π(P). Observe that
π(P) coincides, up to translation, with π(Q). Hence, x 7→ c·x is maximized at a
vertex of π(Q) and, therefore, at a vertex or an edge of Q parallel to s. Denote
by Qv this vertex or edge of Q. Since c is contained in aff(s)⊥, the map x 7→ c·x
is constant within s. Hence, according to Lemma 2.1 in [11],

π−1({v}) ∩ P = Qv + s. (4)

In other words, the set of the points in P that π sends to v is an edge of P
obtained as the Minkowski sum of Qv and s. Therefore, this edge belongs to
〈s〉P and cannot be shorter than s. In particular Assertion (ii) holds.

Since π(Q) is a polytope of dimension d − 1, it has at least d vertices. As
π projects distinct segments in 〈s〉P to distinct points, 〈s〉P cannot contain less
than d elements. In other words, Assertion (i) holds.

Now observe that, if Qv is an edge of Q for every vertex v of π(P), then
Q still admits a summand homothetic to s. In this case, P has a summand

T T + e T + e + f

Figure 3: A triangle T , its Minkowski sum with a horizontal line segment e (center), and the
Minkowski sum of T + e with a line segment f homothetic to e (right).

7

homothetic to s that is longer than s. We can assume without loss of generality
that s is a longest such summand of P . It follows that Qv is a vertex of Q
for some vertex v of π(P). By Equality (4), some edge of P is a translate of s.
According to Assertion (ii), all the shortest edges of P in 〈s〉P must be translates
of s and, therefore, summands of P , which proves Assertion (iii). �

In the case of zonotopes, the statement of Lemma 2 can be refined. In order
to do that, we recall a well-known property of zonotopes.

Proposition 4. A d-dimensional zonotope has at least 2d vertices.

Proof. Consider a zonotope Z contained in Rd. If Z is d-dimensional, then
it admits d generators that are not all contained in a hyperplane of Rd. The
Minkowski sum of these generators is a d-dimensional combinatorial hypercube
C. By construction, C is a summand of Z. Therefore, according to Lemma 2.3
from [11], there exists an injection from the vertex set of C into the vertex set
of Z. Since C has 2d vertices, the proposition follows. �

Lemma 2 can be improved as follows in the case of zonotope.

Lemma 3. If Z is a d-dimensional zonotope then, for every generator g of Z,
|〈g〉Z |≥ 2d−1 and all the elements of 〈g〉Z are translates of g.

Proof. Consider a d-dimensional polytope Z contained in Rd and a generator
g of Z. By the definition, two distinct generators of Z cannot be parallel. Since
the faces of a Minkowski sum of polytopes are Minkowski sums of their faces,
every edge of Z is a translate of one of its generators. As a consequence, every
element of 〈g〉Z is necessarily a translate of g.

Consider the orthogonal projection

π : Rd → aff(g)⊥.

Observe that π(Z) is a zonotope of dimension d − 1 obtained, up to trans-
lation, as the Minkowski sum of the images by π of the generators of π(Z). By
the argument in the proof of Lemma 2, π induces a bijection between 〈g〉Z and
the vertex set of π(Z). Since π(Z) is a (d−1)-dimensional zonotope, the desired
result therefore follows from Proposition 4. �

By Lemma 3, |〈g〉Z | is at least 2d−1 when g is a generator of a d-dimensional
zonotope Z. Note that |〈g〉Z | is not necessarily a multiple of 2d−1 in general. For
instance, the rhombic dodecahedron is a 3-dimensional zonotope whose exactly
6 edges are obtained as translates of each generator.

4. An efficient algorithm to compute zonotopes

Throughout this section, Z is a fixed zonotope contained in Rd. Recall that
a zonotope is, up to translation, the Minkowski sum of its generators. In this

8

section, we assume that Z is exactly the Minkowski sum of its generators, which
can be done without loss of generality by translating Z, if needed. Denote by
G the set of the non-zero vertices of the generators of Z. The purpose of the
section is to give an algorithm to recover the vertex set of Z from G. Observe
that, since Z is the Minkowski sum of its generators, it is also equal to the
convex hull of all the possible subsums of G; that is,

Z = conv

{∑
x∈X

x : X ⊂ G

}
,

where, by convention, the sum of the elements of X is equal to 0 when X is
empty. In particular, every vertex of Z is the sum of a unique subset of G.
However, not all the subsets of G sum to a vertex of Z. The following theorem
characterizes the subsets of G that have this property.

Theorem 3. Consider a subset X of G. The sum of the points in X is a vertex
of Z if and only if the set [−X] ∪ [G\X] spans a pointed cone.

Proof. Consider the zonotope ZX equal to the Minkowski sum of the line
segments incident to 0 and whose other vertex is a point in [−X]∪ [G\X]. Note
that Z and ZX are translates of one another. More precisely,

Z = ZX + x,

where x denotes the sum of the points in X . As a consequence, x is a vertex
of Z if and only if 0 is a vertex of ZX . Since ZX is the Minkowski sum of
its generators, it is equal to the convex hull of all the possible subsums of
[−X]∪ [G\X]. In particular ZX admits [−X]∪ [G\X] as a subset. Hence, if 0 is
a vertex of ZX , then [−X] ∪ [G\X] is contained in one of the open half-spaces
limited by a hyperplane through 0 and therefore spans a pointed cone.

Since ZX is the convex hull of all the subsums of [−X] ∪ [G\X], it must
contain 0 and be contained in the cone spanned by [−X] ∪ [G\X]. Hence, if
[−X] ∪ [G\X] spans a pointed cone, then 0 is a vertex of ZX . �

Let us illustrate Theorem 3 by showing that 0 is a vertex of Z. Since the first
non-zero coordinate of every point in G is positive, 0 is not a convex combination
of G. In this case, according to Proposition 1, the convex hull of G ∪{0} admits
0 as a vertex. As a consequence, the cone spanned by G is pointed and, by
Theorem 3, 0 is a vertex of Z.

It is worth noting that the condition in Theorem 3 can be checked efficiently.
More precisely, the cone spanned by [−X] ∪ [G\X] is pointed if and only if the
following system of |G| linear inequalities is feasible.

c·g ≥ 1 for all g ∈ X , (5)

−c·g ≥ 1 for all g ∈ G\X . (6)

Indeed, the feasibility of this system is equivalent to the existence of a vector
c ∈ Rd such that the map x 7→ c·x is maximized exactly at 0 within the cone
spanned by [−X] ∪ [G\X]. In other words, this cone admits 0 as a vertex.

9

Theorem 3 already provides a way to compute the vertices of Z. Indeed,
in order to do that, it suffices to check, for each subset X of G whether 0 is
contained in the convex hull of [−X] ∪ [G\X]. It is possible though, that many
of these subsets do not sum to a vertex of Z. In order to avoid considering these
subsets, we will use the following lemma.

Lemma 4. Consider a subset X of G. If X sums to a vertex x of Z, then the
vertices of Z adjacent to x are the sums of x with any element of [−X]∪ [G\X]
that spans an extreme ray of the conic hull of [−X] ∪ [G\X].

Proof. Assume that the sum of the points in X is a vertex x of Z. In this
case, according to Theorem 3, [−X] ∪ [G\X] spans a pointed cone. As in the
proof of Theorem 3, we consider the zonotope ZX whose generators are incident
to 0 on one end and to a point in [−X] ∪ [G\X] on the other. This zonotope is
a translate of Z. More precisely,

Z = ZX + x.

According to this, in order to prove the lemma, we only need to show that
the vertices of ZX adjacent to 0 are exactly the points in [−X] ∪ [G\X] that
span an extreme ray of the conic hull of [−X] ∪ [G\X].

By construction, ZX is the Minkowski sum of its generators. Hence, ZX is
the convex hull of all the possible subsums of [−X] ∪ [G\X]. In particular, it
is contained in the cone spanned by [−X] ∪ [G\X]. Now recall that the edges
of a zonotope are translates of its generators. Therefore, the vertices of ZX
adjacent to 0 must be among the points from [−X] ∪ [G\X]. Consider a point
y in [−X] ∪ [G\X]. The segment with vertices 0 and y is an edge of ZX if and
only if there exists a supporting hyperplane H of ZX such that

ZX ∩H = conv{0, y}.

Since the points of cone([−X]∪ [G\X]) are precisely the multiples by a non-
negative coefficient of the points in ZX , this is equivalent to

cone([−X] ∪ [G\X]) ∩H = cone{y}.

In other words, cone{y} is an extreme ray of the cone spanned by [−X] ∪
[G\X]. �

According to Theorem 2, the condition in the statement of Lemma 4 can be
checked efficiently using the oracle described in Section 2. As discussed above,
this condition can also be checked by solving the feasibility problem made up
of the inequalities (5) and (6) for each generator g of Z, where X is replaced by
X ∪ {g} if g does not belong to X and by G\{g} otherwise.

Let us now give an informal description of our algorithm that computes the
vertices of Z from G. Recall that Z admits 0 as a vertex. Our algorithm starts
from that vertex and computes all the vertices of Z adjacent to it. According to
Lemmas 2 and 4, this can be done in polynomial time in |G|, d, and the binary

10

size L required to store G. Then the procedure is repeated and computes the
vertices of Z adjacent to the new vertices of Z that have been discovered, and so
on until the neighbors of all the discovered vertices have been computed. Since
the graph of a polytope (made up of its vertices and edges) is connected, this
indeed computes all the vertices of Z. In order to further speedup our algorithm,
we use the following proposition that allows to compute only a subset of the
neighbors of each vertex.

Proposition 5. If X is a non-empty subset of G that sums to a vertex x of Z,
then there exists a vertex y of Z adjacent to x such that x− y ∈ X .

Proof. The proof proceeds by induction on the dimension of Z. If Z has
dimension 0, then G is empty and the desired result immediately holds. Assume
that the dimension of Z is positive, and that the desired statement holds for
any zonotope of dimension less than the dimension of Z.

Consider a non-empty subset X of G that sums to a vertex x of Z. Since
X is non-empty and the first non-zero coordinate of any point it contains is
positive, then x is necessarily distinct from 0 and its first non-zero coordinate
must be positive. We will review two cases.

Assume that the first coordinate of x is positive. As Z contains 0, Z must
have an edge incident to x whose first coordinate of the other vertex is less
than that of x. By Lemma 4, the other vertex y of this edge is such that either
x − y belongs to X or to −[G\X]. Since the first coordinate of the points in G
is non-negative, x− y must belong to X , as desired.

Now assume that the first coordinate of x is equal to 0. Since the first
coordinate of the points in G is non-negative, it follows that the first coordinate
of all the points in X must be equal to 0. Moreover, the zonotope generated
by the elements of G whose first coordinate is equal to 0 is a proper face of Z.
Hence, the proposition holds by induction. �

Consider a vertex x of Z and the subset X of G it is the sum of. A conse-
quence of Proposition 5 is that x can be reached from 0 by a path in the graph
of Z that visits only vertices equal to subsums of X . In other words, in order
to discover new vertices of Z from x in the algorithm sketched above, one only
needs to check the points y such that y − x belongs to G\X , and the algorithm
will still compute all the vertices of Z. This is what Algorithm 1 does.

Let us give a detailed description of Algorithm 1 that explores the graph of
the zonotope as for example reverse-search does [3]. In this algorithm, T is the
set of the vertices of Z that have been discovered, but not treated yet in the
sense that their neighbors in the graph of Z are still to be computed. The set of
the vertices that have been treated, in the same sense is denoted by V. Initially,
T only contains 0 and V is empty. Upon completion of the algorithm, V is the
set of the vertices of Z. For each point x in T ∪V, the subset of G that sums to
x is denoted by ξ(x). For instance, ξ(0) is equal to ∅.

While T is non-empty, the algorithm picks a point x from T , and considers all
the points y that are the sum of x with an element of G\ξ(x). By Proposition 5,

11

Algorithm 1: Computing V from G
1 T ← {0}
2 ξ(0)← ∅
3 V ← ∅
4 while T 6= ∅ do
5 Pick an element x of T
6 for every point y in x+ G\ξ(x) do
7 if y does not belong to T ∪ V then
8 if y − x spans a ray of cone([−ξ(x)] ∪ [G\ξ(x)]) then
9 T ← T ∪ {y} and ξ(y)← ξ(x) ∪ {y − x}

10 end

11 end

12 end
13 T ← T \{x} and V ← V ∪ {x}
14 end
15 Return V

one can restrict to only consider these points to enumerate the vertex set of
Z. In Line 7, the algorithm first checks whether y has not been discovered yet
(which can be done in logarithmic time in the number of vertices of Z using an
appropriate data structure). If y has not been discovered, the algorithm checks
in Line 9 whether y is a vertex of Z, using the condition stated by Lemma 4.
According to Theorem 2, this can be done in polynomial time in |G|, d, and the
binary size L required to store G. If y is a vertex of Z, then it is inserted in T
and ξ(y) is computed in Line 10. Once x has been treated, it is removed from
T and placed in V in Line 14.

Theorem 4. There exists a polynomial function p : R3 → R such that the
vertex set of a d-dimensional zonotope with n vertices and m generators can be
computed from the set of its generators in time O(n p(m, d, L)), where L is the
number of bits required to store all these generators.

Proof. By Theorem 2, there exists a polynomial function q : R3 → R such
that the test in Line 9 of Algorithm 1 can be done in time O(q(m, d, L)) for a
d-dimensional zonotope with m generators, where L is the binary size required
to store these generators. Hence, according to the description of the algorithm,
the vertex set of a d-dimensional zonotope with n vertices and m generators can
be computed from the set of its generators in time

O(nm[q(m, d, L) + log n]).

Since n is at most 2m, we obtain the desired result. �

12

5. The greatest zonotopal summand of a polytope

We introduce the greatest zonotopal summand of a polytope in this section.
We also discuss some of its properties and give an efficient algorithm to compute
it for a polytope given as the set of its vertices. In the remainder of the section
P is a fixed d-dimensional polytope with n vertices.

Denote by E the set made up of the edges of P that are also summands
of P and consider a segment e in E . We refer to as e? the unique translate
of e whose one vertex is incident to 0 and whose first non-zero coordinate of
the other vertex is positive. According to Lemma 2, any edge f of P in the
intersection E ∩ 〈e〉P has the same length as e and, therefore, e? and f? must
coincide. In the remainder of the section, we consider the set

G = {e? : e ∈ E}.

While in Section 4, G was a set of points, here G contains line segments.
However, in both cases, G describes the generators of a zonotope.

Definition 1. We call greatest zonotopal summand of P and denote by z(P)
the Minkowski sum of the line segments contained in G.

By this definition, z(P) is a zonotope. Let us show that z(P) is indeed a
summand of P and that it is the greatest such summand.

Theorem 5. For any polytope P , there exists a polytope r(P) with no 1-dimensional
summand such that the Minkowski sum z(P) + r(P) is equal to P .

Proof. Note that distinct line segments in G cannot be parallel. Hence, none
of these segments admit a summand homothetic to another. Since each line
segment in G is a summand of P , their Minkowski sum is necessarily a summand
of P . Therefore, there exists a polytope r(P) such that

P = z(P) + r(P). (7)

Now assume that r(P) has a 1-dimensional summand s. In this case, s is
also a summand of P and, according to Lemma 2, so are the shortest elements
of 〈s〉P . Let e be a shortest element of 〈s〉P . By construction, e? must belong
to G and is therefore a generator of z(P). According to (7), e? + s is then a
summand of P . However, by Lemma 2, e? + s cannot be longer than e, proving
that s cannot be a summand of r(P) in the first place. �

Corollary 1. If P admits a zonotope Z as a summand, then z(P) necessarily
also admits Z as a summand.

Proof. By Theorem 5,
P = z(P) + r(P),

where r(P) does not admit a 1-dimensional summand. Therefore, if a zonotope
is a summand of P , then all of its generators must be summands of z(P). Hence,
that zonotope is itself a summand of z(P). �

13

Recall that n denotes the number of vertices of P . The edges of P are
quadratically-many in n and, as shown in Section 2 they can all be computed in
polynomial time in n, d, and the binary size L required to store all the vertices
of P . It turns out that the vertex set of the Minkowski sum of P with a line
segment can also be computed in polynomial time in n, d, and L. In fact, we
have the following more general observation.

Remark 1. Consider two finite subsets A and B of Rd. According to Theo-
rem 1, the graph of the Minkowski sum conv(A) + conv(B) can be computed
in polynomial time in |A||B|, d, and the number of bits required to store the
points in A and in B. Indeed, this amounts to compute the graph of the convex
hull of A+ B, a subset of at most |A||B| points of Rd.

As a consequence of this remark, the set G of the generators of z(P) can be
computed in polynomial time in n, d, and L as well. Algorithm 2 is a polynomial

Algorithm 2: Computing G and W from V
1 R ← ∅
2 for every subset {x, y} of V such that x 6= y do
3 E ← conv{x, y}
4 if e is an edge of P then
5 if some segment s in R is parallel to e then
6 µ(s)← µ(s) + 1
7 if e is shorter than s then
8 s← e?

9 end

10 else
11 R ← R∪ {e?} and µ(e?)← 1
12 end

13 end

14 end
15 W ← V and G ← ∅
16 for every segment s in R do
17 if µ(s) ≥ d then
18 Compute the vertex set X of conv(W) + s
19 if |X | = |W| then
20 G ← G ∪ {s}
21 for every point x in W\X do
22 Replace x in W by x− s+
23 end

24 end

25 end

26 end
27 Return G and W

14

time algorithm in n, d, and L that not only computes G, but also the vertex set
of r(P). This vertex set is denoted by W in the algorithm. The vertex set of
P , denoted by V, is the only input of the algorithm. Algorithm 2 is split in two
parts. The first part, from Line 1 to Line 14 computes a set R of candidates for
membership in G. In other words, R admits G as a subset. More precisely, R is
obtained by selecting and then translating edges of P such that no two of them
are parallel. In addition, any such selected edge e is shortest in 〈e〉P . Note that
the translation takes place in Lines 8 and 11 where e? is stored in R instead
of e. In this first part of the algorithm, a map µ : R → N is also computed in
Lines 6 and 11 such that µ(s) = |〈s〉P | for every segment s in R.

In the second part of algorithm 2, from Line 15 to Line 26, W is initially set
equal to V and G to the empty set. The segments in R that are summands of
P are placed in G in Line 20 and subtracted from W by the loop in Lines 21 to
23. Lines 18 and 19 check whether a segment s in R is a summand of P using
the Minkowski sum of s with the convex hull ofW instead of its Minkowski sum
with P , allowing for some speedup. This is valid because during the execution
of the loop at Line 16, the 1-dimensional summands of P remain summands of
the convex hull of W until they are found and subtracted from W.

Let us explain how the subtraction, in Lines 21 to 23 of Algorithm 2, works.
By construction, 0 is a vertex of every segment in R. For any segment s in R,
let s+ stand for the non-zero vertex of s. If the convex hull of W admits s as
a summand; that is, if it coincides with R + s for some polytope R, then W is
naturally partitioned into the points that are vertices of R (because they are
the Minkowski sum of a vertex of R with 0) and the points equal to the sum of
a vertex of R with s+. The latter subset is precisely made up of the points inW
that are further displaced by another s+ when the vertex set X of conv(W)+s+

is computed in Line 18. Therefore, in order to recover the vertex set of R, one
only needs to subtract s+ from any point in W\X , which is done in Line 22,
and to keep all the other points in W.

As explained above, all the computations carried out by Algorithm 1 are
polynomial and they are carried out at most a quadratic number of times. In
addition, we have seen in Section 4 that the vertex set of a zonotope can also
be computed from its generators in polynomial time.

We therefore obtain the following.

Theorem 6. For any polytope P , the vertex sets of z(P) and r(P) can be com-
puted in polynomial time in n, d, and the binary size required to store the vertices
of P .

6. Deciding whether a polytope is a zonotope

Throughout this section, P is a fixed d-dimensional polytope with n vertices,
just as in Section 5. Observe that, when P is a zonotope, z(P) is a translate of
P and r(P) shrinks to a single point. In particular, Algorithm 2 allows to decide
whether a polytope P is a zonotope: this will be the case when the set W of
the vertices of r(P) returned by this algorithm is made up of a single point. In

15

Algorithm 3: Deciding whether P is a zonotope

1 G ← ∅
2 for every subset {x, y} of V such that x 6= y do
3 e← conv{x, y}
4 if e is an edge of P then
5 if some segment s in G is parallel to E then
6 if e and s have different lengths then
7 Return 0
8 end
9 µ(s)← µ(s) + 1

10 else
11 G ← G ∪ {e?} and µ(e?)← 1
12 end

13 end

14 end
15 for every segment s in G do
16 if µP (s) < 2d−1 then
17 Return 0
18 end

19 end
20 for every segment s in G do
21 Compute the vertex set of P + s
22 if the number of vertices of P and P + s is different then
23 Return 0
24 end

25 end
26 Return G

order to solve this decision problem, we can give an alternative algorithm that
terminates faster in case the polytope is not a zonotope. Note that, however,
the worst case complexity the same as that of Algorithm 2.

Just as Algorithm 2, Algorithm 3 takes as its only input the vertex set V of
P . The algorithm returns 0 when P is not a zonotope. When P is a zonotope,
it coincides, up to translation, with z(P). In this case, Algorithm 3 returns the
set G of the generators of z(P). This algorithm consists in three parts. The first
part, from Line 1 to Line 14 computes a set of line segments that are candidate
generators of P . Note that this set of line segments is already denoted G since, if
P turns out to be a zonotope, then this set is precisely the set of the generators
of z(P). The computation of G in Algorithm 3 is very similar to the computation
of R in Algorithm 2, except that the algorithm terminates in Line 7 if it finds
two parallel edges of P of different lengths. The map µ : G → N such that, for
any segment s in G, µ(s) = |〈s〉P | is computed in Lines 9 and 11 like the map
µ : R → N is in Algorithm 2.

16

In the second part of Algorithm 3, from Line 15 to Line 19, every line segment
in G is checked, and the algorithm terminates in Line 17 if, for such a segment
s, µ(s) < 2d−1. Indeed according to Lemma 3, P cannot be a zonotope in this
case. In the third part of the algorithm, from Line 20 to Line 25, the vertex
sets of the Minkowski sums of P with the line segments in G are computed, and
the algorithm terminates in Line 23 if for such a segment s, P and P + s do not
have the same number of vertices.

Observe that, if Algorithm 3 does not return 0 then, for every edge e of P ,
all the segments in 〈e〉P are translates of e. Moreover, in this case every edge
of P is a summand of P because any translate of a summand of P remains a
summand of P . Therefore, the set G returned by Algorithm 3 is indeed the set
of the generators of z(P). As a consequence, P is a zonotope.

Finally, observe that a zonotope is always centrally-symmetric and, there-
fore, has an even number of vertices. This very simple test can be done at the
beginning of the algorithm to allow for some further speedup.

Acknowledgement. The authors thank the anonymous referrees for providing
valuable comments and suggestions.

References

[1] T. Illés, T. Terlaky, Pivot versus interior point methods: pros and cons,
European Journal of Operational Research 140 (2002) 170–190.

[2] D. Avis, D. Bremner, R. Seidel, How good are convex hull algorithms?,
Computational Geometry 7 (1997) 265–301.

[3] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra, Discrete & Computational
Geometry 8 (1992) 295–313.

[4] F. Preparata, M. Shamos, Computational geometry: an introduction,
Springer, 1985.

[5] J. Block, S. Weinberger, Aperiodic tilings, positive scalar curvature, and
amenability of spaces, Journal of the American Mathematical Society 5
(1992) 907–918.

[6] A. Deza, G. Manoussakis, S. Onn, Primitive zonotopes, Discrete & Com-
putational Geometry 60 (2018) 27–39.

[7] S. C. Gutekunst, K. Mészáros, T. K. Petersen, Root cones and the reso-
nance arrangement, Electronic Journal of Combinatorics 28 (2021) P1.12.

[8] M. Melamed, S. Onn, Convex integer optimization by constantly many
linear counterparts, Linear Algebra and its Applications 447 (2014) 88–
109.

17

[9] D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Applied
Mathematics 65 (1992) 21–46.

[10] H. Edelsbrunner, J. O’Rourke, R. Seidel, Constructing arrangements of
lines and hyperplanes with applications, SIAM Journal on Computing 15
(1986) 341–363.

[11] A. Deza, L. Pournin, Diameter, decomposability, and Minkowski sums of
polytopes, Canadian Mathematical Bulletin 62 (2019) 741–755.

[12] M. Kallay, Decomposability of polytopes, Israel Journal of Mathematics 41
(1982) 235–243.

[13] W. Meyer, Indecomposable polytopes, Transactions of the American Math-
ematical Society 190 (1974) 77–86.

[14] K. Przes lawski, D. Yost, Decomposability of polytopes, Discrete & Com-
putational Geometry 39 (2008) 460–468.

[15] G. C. Shephard, Decomposable convex polyhedra, Mathematika 10 (1963)
89–95.

[16] M. Grötschel, L. Lovász, A. Schrijver, Geometric algorithms and combi-
natorial optimization, Vol. 2 of Algorithms and Combinatorics, Springer,
1993.

[17] K. Clarkson, More output-sensitive geometric algorithms, in: FOCS 1994
(35th Annual IEEE Symposium on Foundations of Computer Science),
1994, pp. 695–702.

[18] K. Fukuda, Polyhedral Computation, ETH research collection, Zürich,
Switzerland, 2020, https://www.research-collection.ethz.ch/

bitstream/handle/20.500.11850/426218/PolyCompBook20200829.pdf.

18

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/426218/PolyCompBook20200829.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/426218/PolyCompBook20200829.pdf

	Introduction
	A linear optimization oracle
	Combinatorial properties of Minkowski additions
	An efficient algorithm to compute zonotopes
	The greatest zonotopal summand of a polytope
	Deciding whether a polytope is a zonotope

