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Abstract
Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest
introduction could greatly help focus efforts on prevention and control and thus reduce societal
costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction,
valid for multiple species and produced by machine learning methods, could supplement
the costly species-specific risk analyses currently conducted by governmental agencies. An
elastic-net algorithm was trained on a dataset covering 243 invasive species to map risk of new
introductions in Europe as a function of climate, soils, water, and anthropogenic factors. Results
revealed that the BeNeLux states, Northern Italy, the Northern Balkans, and the United Kingdom,
and areas around container ports such as Antwerp, London, Rijeka, and Saint Petersburg were at
higher risk of introductions. Our analysis shows that machine learning can produce hotspot maps
for pest introductions with a high predictive accuracy, but that systematically collected data on
species’ presences and absences are required to further validate and improve these maps.

1. Introduction

Biological invasions describe inadvertent introduc-
tions of organisms into new territories. While many
entries may not lead to long-term establishment [55],
successful establishments of hazardous species can
have major consequences for ecosystems and eco-
nomies [14, 69]. A reliable prioritization of areas for
potential introduction would be invaluable to inform
surveillance effort [53, 59].

By definition, introduction of a species comprises
entry and establishment [23]. Entry of a pest describes
its movement into an area and establishment the per-
petuation of the species within an area after success-
ful entry [23]. Species distribution models (SDMs)4

are popular data-driven tools that aim at predict-
ing species’ niches on the basis of environmental
characteristics of known locations of occurrences
[48]. Subsequently, a prediction of the potential area

4 Also known as bioclimatic models, climate envelopes, ecological
niche models, habitat models, resource selection functions, range
maps, among others [18].

of establishment is derived by assessing the sim-
ilarity in environmental conditions in other, pos-
sibly unsampled, locations. SDMs are commonly
developed for specific species. While results from
such analyses help to identify risky areas, estimate
potential impact and develop management strategies
[7, 73], they require species-specific data acquisi-
tion, calibration and validation. As a consequence of
the time, effort and expertise required for this task,
such species-specific analyses are only available for
a few hazardous invaders [45]. A generic approach
that could help to identify areas that are generally
more at risk for pest introduction, without having to
first develop a range of species-specificmodels, would
greatly improve evidence-based prevention andman-
agement.

The vast majority of SDMs rely exclusively on
climatic data to predict where a particular species
may establish and maintain a population without
the need for further immigration [30]. For invasive
species, a growing body of literature stresses the role
of anthropogenic factors in the introduction of spe-
cies [42, 43, 49, 72, 74, 76]. Consequently, such data
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could very well improve predictions of hotspots for
species introduction [28]. Nevertheless, there have
been limited efforts to include anthropogenic features
(i.e. predictor variables) into such models [76].

The underlying presence data and the type of
features included into the model determines how to
interpret results. To predict entry risk, the presence
data should only comprise of successful entries of
species into non-native territory. The prediction of
establishment risk, however, benefits from presence
data in native territories to characterize the biocli-
matic conditions favored by the species. SDMs based
exclusively on climate data map areas’ suitability for
establishment. While some anthropogenic features
are expected to ease establishment, others are related
to entry, such as distances to container ports and road
density. Consequently, maps derived from a com-
bination of features, where some relate to entry-risk
and others to environmental suitability for long-term
establishment, depict either entry and/or establish-
ment risk, depending on the feature characteristics
in different locations. As an example, areas around
container ports might be predicted to be at high risk
because many reported presences fall into such areas
because of a higher number of successful pest entries,
whereas some areas further inlandmight be predicted
to be at high risk because the environmental condi-
tions suit long-term establishment.

Here, we use presence data in both non-native and
native territories as well as a large range of features of
which some are expected to be related to entry while
others are related to establishment. As pest introduc-
tion by definition comprises entry and establishment
[23], in what follows we refer to introduction-risk to
express that our results show both entry-risk and/or
establishment-risk depending on the location. Our
use of this terminology is therefore in line with the
FAO’s ISPM definition. Whether higher risk scores
are due to entry-risk or establishment-risk is not per
se important for our aim of informing surveillance
efforts.

We aim to develop a generic modelling approach
to identify hotspots for plant pest introductions.
We assess the risk of presence in Europe for the
whole group of 243 invasive species on the prior-
ity lists (A1 and A2) of the European and Mediter-
ranean Plant Protection Organization (EPPO). The
A1 list contains species that are absent from Europe
while the A2 list contains species with a geograph-
ically limited presence. Notably, our objective is not
per se to predict the current distribution of these
243 species as well as possible, but rather to use
a large set of invasive pest species to derive loca-
tions that might be prone to introduction of such
species, so-called hotspots, to help predict where
future invasions into Europe would be most likely to
occur, possibly also for species not included in our
data. We obtained worldwide data on the presence of

these species from the Global Biodiversity Informa-
tion Facility (GBIF). Background data5 were gener-
ated using three standard methods recommended by
the literature [4, 78]. Global georeferenced data on a
wide range of potential predictors related to climate,
soils, water, and anthropogenic factors were collected,
and an elastic-net machine learning algorithm was
trained on around 341 000 observations across the
globe to predict new introduction of invasive species
as a function of the predictors. The hyperparameters6

were tuned using three cross-validation techniques.
Although the resulting risk maps all have high pre-
dictive performance, they show striking differences
depending on the background data generating tech-
niques and cross-validationmethods considered. Our
analysis shows that machine learning can produce
hotspot maps for plant pest introduction with a high
predictive accuracy, but that systematically collected
data on species’ presences and absences are required
to further validate and improve these maps.

2. Methods

2.1. Data
2.1.1. Species presence
The list of species was obtained from the A1 and A2
list of EPPO (version 2020-09)7. Both lists contain
species that are recommended for regulation as quar-
antine pests in Europe. The A1 list contains species
that are absent from Europe while the A2 list contains
species with limited presence. Subsequently, on the
30th of March 2021, 490 323 worldwide occurrences
of these species were obtained from the Global Biod-
iversity Facility (GBIF) (10.15468/dl.fc5kva). The raw
data was cleaned by removing all points with any
of the following characteristics: reporting year prior
to 1970, fossil specimen, literature-based observa-
tions, preserved specimen, location falling exactly on
the centroids of capitals, or centroids of countries,
or into sea, or on biodiversity institutions assuming
that those are part of a collection [84]. Furthermore,
presences with duplicated values across all features
(i.e. input variables of the models) were removed,

5 Backgrounddata characterize the feature space and act as pseudo-
absences to which presence data are compared within the classific-
ationmodel. They do not necessarily aim to be true absence points,
but rather provide a characterization of possible values features
could take throughout the studied geographic area.
6 The term hyperparameter denotes a parameter that controls the
learning process of the algorithm but that is not directly inferred
from the training (i.e. fitting) of the model as is the case for coeffi-
cients. In otherwords, hyperparameters hold settings that influence
the structure of the model. A standard approach is to tune these
hyperparameters (i.e. optimize) by running the learning algorithm
for different values and choosing the hyperparameter value that
results in the best performance according to a cross-validation pro-
cedure. The elastic-net has two hyperparameters (section 3.4).
7 www.eppo.int/ACTIVITIES/plant_quarantine/A1_list;
www.eppo.int/ACTIVITIES/plant_quarantine/A2_list.
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thereby, we effectively thinned presences at the scale
of the finest environmental predictors. Removing
duplicated datapoints is considered good practice
in machine learning applications because duplicated
entries hold little information while potentially bias-
ing the prediction and inflating performance. Fur-
thermore, as GBIF is a collection of various datasets
removing duplicated datapoints eliminates the risk
that the same individuals were observed and repor-
ted by several people, over multiple years, and/or
in different datasets. In addition, the spatial nature
of the GBIF database results in autocorrelated pres-
ences. This autocorrelation is usually reduced by thin-
ning the presence points before computing SDMs.
Using the spatial resolution of the feature layers is
often used to determine the thinning radius [73].
The presence thinning can be achieved in a com-
putationally faster way by omitting duplicated data-
points. Lastly, all presences from 2020 and 2021
were removed and presences in Europe for these two
years were used for testing model performance (see
section 2.5). The final set of 170 460 presence data,
for which complete and unique combinations of fea-
ture data were available, spans 243 species, 92 famil-
ies, 52 orders, 21 classes and 13 phyla, or more spe-
cifically 133 Arthropoda, 37 Tracheophyta, 2Mollusca,
18 Ascomycota, 1 Negarnaviricota, 15 Basidiomycota,
19 Proteobacteria, 4 Oomycota, 2 Cressdnaviricota,
5Nematoda, 2 Actinobacteriota, 4 Kitrinoviricota, and
1 Chytridiomycota. For model training, we classified
presence of any species as a 1 and pseudo-absence as
0 (see next section).

2.1.2. Background data
The GBIF data usually8 come as presence-only and it
was thus necessary to generate background data rep-
resenting pseudo-absences to train and test our mod-
els, as commonly done in SDMs [4]. While this is
common practice in the SDM literature, there is no
consensus regarding the best approach [70]. The issue
of generating background data is particularly difficult
to resolve when presence data is biased due to spa-
tial variation in reporting [78]. While GBIF is extens-
ively used in ecological research [32], geographic bias
is very likely [8, 24]. We tested three ways to generate
pseudo-absence data all of which find support in the
literature [4, 68, 78].

First, random data were generated on a global
scale covering all parts of the world except the
poles (supplementary material: figure S1 (available
online at stacks.iop.org/ERL/16/114026/mmedia)).
Randomly sampling background data (denoted ran-
dom) is the default strategy in SDMs and frequently
recommended (e.g. [4]). The approach implicitly
assumes that the entire geographic extent is equally

8 Our data comprised 264 absences which were removed to ensure
methodological consistency across all the pseudo-absences.

relevant for the analysis and that the entire pos-
sible feature space should be used as a comparison
to the features of the presence locations. Depending
on the data generating process of the presence-data,
this assumption might not be appropriate. Often,
presence-data are not collected following a strict
sampling protocol. In opportunistic sampling, people
visit someplacesmore than others, for example due to
ease of access or aesthetical reasons. This geographic
bias results in an environmental bias that can result in
biased predictions [11].

Second, conceptually close to the bias-file
approach of the popular SDM algorithmMaxEnt, we
generated data from a biased background which aims
at mimicking the geographic bias in the GBIF data-
base [68, 78]. Here, presences were counted within 5
decimal degree grids. Next, a two-dimensional Gaus-
sian kernel density was estimated on the count-grids
and rescaled such that all values sum to unity. Sub-
sequently, background data points were generated
by sampling from this estimated spatial probability
distribution. With this second approach (denoted
kdbias), the background data tend to remain close to
the presence data, as would be the case if the sampling
areas were kept close to each other (supplementary
material: figure S2). Thereby, an implicit assump-
tion is made that only areas nearby known pres-
ences are relevant for the analysis and that the feature
space used as a comparison to the presences should
be restricted to nearby conditions. By sampling the
pseudo-absences from a background that mimics the
sampling effort of the presence-data, predictions may
become unbiased [11]. However, this technique to
pseudo-absence generation will always result in many
points that are known to be false negatives. As data
generated in this approach will have many locations
with, both, presences and pseudo-absences (supple-
mentary materials: figure S2), performance metrics
will be over-pessimistic.

Lastly, we combined the biasing approach with
Barbet-Massin et al’s [4] recommendation for geo-
graphic exclusion (denoted kd05dfar). Here, we gen-
erated a larger number of data from a biased back-
ground and subsequently removed data that were
less than 5 decimal degrees away from any presence
data (supplementary material: figure S3). From the
remaining background data, a random subset was
sampled such that the resulting data had a balanced
number of presences and background data. Notably,
while Barbet-Massin et al [4] recommended a dis-
tance of two degrees, in latitude or longitude, this
criterion would have resulted in a questionable com-
parison in our case due to the large number and
geographic spread of species presences in our data-
base. Nevertheless, our approach intends to provide
more background data within proximity of the pres-
ences [78], without heavily overlapping background
data with presence data as done in the pure biasing
approach as employed in MaxEnt. Hence, as with the
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second approach, the implicit assumption is made
that areas nearby known presences are more relevant
for the analysis, thereby, addressing the spatial hetero-
geneity of opportunistically sampled presences [11].
However, here the feature space used as a comparison
to the presences does not comprise conditions of areas
where pest presence is reported which should provide
less pessimistic measures of performance.

The final datasets had a balanced distribution of
presences and pseudo-absences, i.e. a sampling pre-
valence of 50% [4, 60].

2.1.3. Features
Various georeferenced data were gathered. Table S1
in the supplementary material provides an overview
for the features and table S2 for the raw data. Data
on climate were obtained from Karger et al [47]. Soil
characteristics were obtained throughOpenLandMap
[1, 33, 34, 36–41, 83]. An indicator of erosion risk
was obtained from theWorld Resource Institute [82].
Information on landcover was obtained from Buch-
horn et al [12]. A dataset on water related indic-
ators was obtained from the World Resource Insti-
tute [81]. An indicator of biodiversity intactness was
obtained from Newbold et al [63]. Data on popula-
tion density were obtained from the Joint Research
Centre [22]. Data on road densities for different
road types were obtained from Meijer et al [61]. An
indicator of anthropogenic pressure on the environ-
ment was obtained from Venter et al [77]. Data on
human-drivenmodification of terrestrial systems was
obtained from Kennedy et al [50]. A spatial layer on
accessibility to cities, measured in driving time, was
obtained fromWeiss et al [80]. Studies advocated for
the use of the gross domestic product (GDP) in ana-
lyses of invasive species [27, 45]. However, GDP is
generally only available at course, country-level, res-
olution. Therefore, we decided to proxy GDP using
spatial data on radiance of nightlights which were
obtained fromHengl [35]. Various studies have found
high correlations between the nightlight radiance and
the GDP and expressed support of using this feature
as a spatially explicit proxy for GDP [9, 10, 25]. Lastly,
georeferenced data for container ports was obtained
from Bartholdi et al [5]. These data comprise lon-
gitude and latitude as well as connectivity indices
for 200 container ports around the world. For each
presence and background point, the minimum dis-
tances to a port and the mean distance to all ports
were computed. Subsequently, connectivity indices of
the closest port, as well as connectivity indices for all
ports, weighted by their inverse distances to a partic-
ular point, were used as features.

2.2. Data processing
First, observations with incomplete data were omit-
ted. For categorical features, the 19most frequent cat-
egories were kept, and other categories were grouped
into one. Next, categorical features were dummy

encoded. In addition to the spatially weighted port
connectivity indices, the following continuous fea-
tures were engineered: the average annual photo-
synthetically active radiation, the standard devi-
ation of the photosynthetically active radiation across
months, the change in population density between
1975 and 2015, and the change in human impact on
the environment between 1993 and 2009. All continu-
ous features were transformed to normality, centered,
and scaled. The best transformation to normality was
estimated from a set of candidate functions using only
the training data [66]. The final datasets, for the three
approaches to background data, have 340 920 points,
half of those being presences and the other half back-
ground data, with complete data for 246 features. Out
of those, 181 features were continuous, and 65 fea-
tures were dummy encoded categories.

2.3. Cross-validation techniques
We implemented and compared three cross-
validation techniques to optimize the model hyper-
parameters (i.e. the parameters of the penalty term
of the elastic-net). First, we followed the most widely
used approach of randomly splitting the data into
folds9 [71]. To manage computational time, we used
five folds. Second, we separated data into contin-
ental spatial blocks (supplementary material: figure
S10). Here, six folds were generated corresponding to
the continents Africa, Asia, Australia, Europe, North
America, and South America. As such, we intended
to assess the transferability of the model across geo-
graphic space [62, 67, 71]. Lastly, we used temporal
splits for cross-validation in which presences were
separated by their year of record and background data
randomly assigned, without replacement, such that
balanced folds were obtained. Due to the exponential
increase in presence records over time (supplement-
arymaterial: figure S4), we divided them into unequal
time periods corresponding to the years 1970–2005,
2006–2011, 2012–2014, 2015–2016, 2017–2018, and
2019, resulting in six folds with an approximately
equal number of presences in each. Through forward
chaining of the temporal folds10, we intended to test

9 A fold is a term used in machine learning to describe subsets of
the data. For example, five randomly split folds correspond to five
data partitions each holding 20% of the training data.
10 We refer to forward chaining to describe an out-of-sample
approach in which the temporal order of the cross-validation folds
is considered. In the first iteration, the cross-validation starts by
training the algorithm on data from the first time-period and val-
idating performance on data from the second time-period. In the
second iteration, data from the first and the second time-period
is used for training and performance validated on data from the
third time-period, and so on. Hence, data available for training is
growing over time. The first time-period is not used for valida-
tion, whereas the last time-period is not used for training within
the cross-validation. This cross-validation, and comparable vari-
ations, is commonly used for time-series analyses. The technique is
reviewed under the name prequential growing window within Cer-
queira et al [13].
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the model’s ability to predict future introductions
(supplementary material: figures S5–S9).

2.4. Algorithm and hyperparameter tuning
The model is a generalized linear model based on a
logit link, equivalent to a logistic model. The model
includes regression coefficients that are estimated
using a learning algorithm called elastic-net [26, 85].
The algorithm is a regularization technique that com-
bines the L1 (sum of absolute coefficient magnitudes)
and L2 (sum of squared coefficient magnitudes) coef-
ficient penalties into the loss function. In doing so, the
model is a generalization of the lasso and ridge regres-
sion approaches and allows for the estimation of pure
versions of the two as well as mixed variants.

We decided to use this training algorithm because
of its ability to find an optimal balance between bias
and variance. The elastic net reduces variance at the
cost of introducing bias to minimize the prediction
error. This approach is called regularization and is
designed to optimize the predictive performance of
the model. The algorithm is computationally relat-
ively fast, memory efficient, and robust to correlated
features. It is thus well-adapted to large scale practical
applications.

The parameters are estimated using a penalized
log likelihood objective function [85]. The likelihood
is based on a binomial distribution and the penaliz-
ation is based on the elastic net penalty. The elastic
net includes a penalty term defined by two hyper-
parameters named α and λ. The hyperparameter
α describes the mixing of the L1 and L2 penalties.
If α equals 1, the elastic net would essentially be
a lasso regression whereas α equal to 0 would res-
ult in a pure ridge regression. The hyperparameter
λ denotes the degree of regularization employed. In
the elastic-net algorithm, the regularization determ-
ines the extent to which coefficient magnitudes affect
the loss function. Consequently, the regularization
determines the extent towhich coefficients are shrunk
toward zero. By shrinking coefficient values, a model
fit is obtained that might generalize the underlying
relationships better.

Both hyperparameters were tuned using a grid
search to maximize the AUC value computed suc-
cessively with the three above-mentioned cross-
validation techniques. In principle, the AUC met-
ric measures the correctness in rankings between
locations which is directly related to our model-
ling objective of identifying areas at risk [2, 68].
However, whenever true absences are not available,
performance metrics represent heuristic measures
only and should therefore be cautiously interpreted
[54, 62]. This is because classification-based perform-
ance metrics such as AUC are not only based on the
correct classification of the presence-class but also
the absence-class. Without true absences, however,
the true number of misclassified absences remains
unknown. Sensitivity and specificity receive equal

attention in our results. The presented values corres-
pond to values obtained at a cut-off of 0.5. For α,
values between 0 and 1 were searched at 0.1 incre-
ments and forλ values between 0 and 1 at 0.025 incre-
ments, resulting in a total of 451 combinations. In the
supplementary material, figures S14–S22 depict the
tuning results, and table S3 depicts the optima, for
each cross-validation technique and background data
generation approach. Only the spatial block cross-
validation resulted in regularized models, while the
random and temporal splits suggested that no reg-
ularization yielded the best performance. No regu-
larization (λ= 0) essentially collapses the elastic net
into a standard generalized linear model with bino-
mial distribution. The tuning results for random and
temporal cross-validation could be related to the spa-
tial clustering of data which resulted in small reg-
ularization values in other studies [2]. While the
lack of regularization was less surprising for the ran-
dom cross-validation, it did surprise us for the tem-
poral cross-validation splits. The tuning-results for
the temporal cross-validation essentially suggest that
the spatial patterns of invasive species reporting were
so stable over time that the algorithms did not need
generalization capability by limiting themodel flexib-
ility (i.e. regularization) to extrapolate to future time
periods. Following the hyperparameter tuning, the
model coefficients were estimated using the entire
training data.

2.5. Test data
It is common practice in machine learning applic-
ations to test the algorithms on data which were
entirely withheld during the processing, tuning, and
training steps. These data are referred to as test
data. The classification performance on the test data
intends to provide objective measures of model reli-
ability for the task at hand. Consequently, the test data
must be constructed in ways that correspond to the
intended use of the model. Ideally, test data should
be completely independent of the training dataset.
Unfortunately, in many cases this is not possible due
to a lack of data availability, and practitioners often
rely on splitting part of the dataset intended for train-
ing,withholding the split data during processing, tun-
ing, and training steps, and using these data only for
testing the final performance.

As mentioned above, our modelling objective is
the prediction of risk of invasive pest introduction
across Europe. Hence, the risk map could support
surveillance if predictions were to describes introduc-
tion risk in future time periods well. Therefore, the
ideal test data would comprise systematically sampled
records which hold novel invasive pest introductions
in Europe sampled in recent months which were
not included in the timeframe of the training data-
set. We were unable to obtain results of systematic
invasive species surveys from the National Plant Pro-
tection Agencies. Furthermore, introductions of new
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invasive pest species (fortunately) remain rare events.
Consequently, generating a test dataset with a suffi-
ciently large number of locations which correspond
to recent introductions of invasive pests is expected
to be difficult even if pest survey data across Europe
would be accessible.

Considering the unavailability of systematically
sampled and fully independent test data, we decided
to omit all data for the years 2020 and 2021. Sub-
sequently, we used presences in 2020 and 2021
which fall into Europe to test the final models’ per-
formance. A random subset of the pseudo-absences
was assigned to the test data such that a bal-
anced dataset was obtained. In doing so, we gen-
erated a test dataset with 13 158 European points
with half being presences and half pseudo-absences.
Notably, majority of the European presence data
in 2020 and 2021 does not represent reporting of
newly introduced invasive pest species but merely
new records of invaders already sighted in earlier
years, albeit at different locations. Hence, it is pos-
sible that temporal dependencies between train-
ing and testing data resulted in too optimistic test
performance.

2.6. Prediction andmapping
To circumvent the problem of differences in the resol-
ution of input layers, longitude, and latitude coordin-
ates for around 870 000 points across Europe were
generated. The number of points was chosen such
that the modelling steps are feasible in terms of
computational time and memory requirements. Sub-
sequently, for all points feature data were extracted
and processed as described above. Tominimize empty
spaces in the risk map, due to systematically miss-
ing input data in certain locations, individual fea-
tures were imputed for 73 380 points, with values of
the geographically closest point within a maximum
distance of 1 decimal degree. Points with partially
missing data mostly fall on coastlines and on in-land
waterbodies. Consequently, missing data is likely due
to resolution-related artifacts of pixels which fall on
non-linear country borders and unavailable inform-
ation for some features.

The trained and tuned models were used to gen-
erate a continuous probability score for introduction
at all points in Europe. All maps are point-based.
Each point was coloured using the probability score.
The figures shown within the manuscript depict
the average probability score across the three back-
ground data approaches, for models tuned on tem-
poral and continental cross-validation techniques.
The sensitivity of this probability to the background
data approach is shown through visualizations of the
range of the probability score which was computed
by taking the difference between the maximum and
minimum values for each point. Individual maps for

all approaches are provided in the supplementary
material (figures S23–S37).

3. Results and discussion

3.1. European hotspots for pest introductions
As our objective is the analysis of hotspots to improve
the management of future introductions, we believe
that temporal cross-validation most closely repres-
ents our objective. However, the spatial-block design
best mimics spatial transferability11 [19, 70, 71]. We
will discuss average results, across different back-
ground generation approaches, for models tuned on
temporal and continental splits.

Figure 1 depicts the average predicted risk of
new introduction, across the three approaches for
background data generation, for models tuned using
temporal and continental cross-validation. Irregu-
lar, polygon-like, surfaces in the maps result from
input data on water indicators which came in the
form of spatial-polygons. More importantly, hot-
spots, i.e. areas with high probability of presence of
at least one invasive species, were consistently pre-
dicted to fall into highly anthropogenically-impacted
areas. The BeNeLux states, Northern Italy, the North-
ern Balkans, and the United Kingdom were generally
predicted to be at higher risk of future introductions.
The contrast between regions at low and high risk was
higher in models tuned on temporal folds compared
to models tuned on spatial folds.

3.2. Feature contributions
The importance of each feature (i.e. variable) was
computed using the Feature Importance Ranking
Measure [29]. Here, we discuss feature contributions
based on their average score across the different back-
ground generation approaches.

For models tuned on temporal splits, the highest
ranked features were temperature-related features
and soil sand content at one meter depth. Locations
characterized by sandier soil were associated with
higher risk scores. Many of the analysed species are
forestry pests. As forests are often characterized by
sandier soils, it could explain why higher values for
the soils’ sand content were found to increase risk.
Minimum, average, and maximum temperatures in
the differentmonths had varying effects. For example,
higher minima in February consistently increased
risk while higher minima in January consistently
decreased it. Next to temperature-related features and
soil sand content, port connectivity, water availabil-
ity, water withdrawal, soil water content, access to cit-
ies, the minimum distance to a port, a spatial proxy
of the gross domestic product (GDP), and the road

11 Transferability describes the ability of the model to generalize
and correctly predict new areas or time periods.
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Figure 1. Probability of new introduction across Europe. The mean risk levels across different models tuned using temporal (a)
and spatial (b) cross-validation.

density, among others, were important. Higher values
for anthropogenic features were generally associated
with higher risk scores12.

12 Access to cities and minimum distance to a port are inversely
related to anthropogenic pressure as higher values correspond to

For models tuned on continental splits, the fea-
ture ranking differed considerably compared to the
models tuned to predict into future time periods.

longer driving times to a city and larger distances to a port, respect-
ively.
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Table 1. Overview of model performances for all cross-validation and background generation techniques. Performance was measured by
the area under the ROC curve computed by cross-validation or using an independent test dataset. An AUC of 1 indicates perfect
classification while an AUC of 0.5 indicates random classification.

Cross validation Test dataa

Cross validation Background data AUC Sens. Spec. AUC Sens. Spec.

Random Random 0.98 0.95 0.93 0.93 0.93 0.93
Random kdbias 0.91 0.83 0.84 0.76 0.75 0.76
Random kd05dfar 0.99 0.95 0.96 0.89 0.85 0.93
Spatial Random 0.95 0.77 0.91 0.93 0.97 0.89
Spatial kdbias 0.84 0.65 0.83 0.74 0.79 0.69
Spatial kd05dfar 0.95 0.77 0.88 0.86 0.93 0.80
Temporal Random 0.97 0.88 0.94 0.93 0.93 0.93
Temporal kdbias 0.87 0.70 0.86 0.76 0.75 0.76
Temporal kd05dfar 0.98 0.89 0.96 0.89 0.85 0.93

Sensitivity (Sens.) and specificity (Spec.) were computed for a threshold of 0.5.
a Test data refers to European data in 2020 and 2021.

Here, anthropogenic features dominated the rank-
ing. Across all approaches to background data, the
degree of nightlight radiance, being our spatial proxy
of GDP, ranked very high as a risk increasing factor.
Accordingly, access to cities, minimum distance to
a port, road densities for various road types, water
withdrawal, the human impact on the environment,
and the population density were important features.
In general, effect directions again suggested that areas
with a higher anthropogenic impact are at a higher
risk. Next to anthropogenic features, higher values
for drought severity, seasonal water variability, elev-
ation, and the land cover classification for moss
and lichen as well as cultivated and managed cro-
pland decreased risk, while the biome classification
for temperate sclerophyll woodland and shrubland,
and higher values for flood occurrences, biodiversity
intactness, organic carbon content in the soil, aver-
age photosynthetically active radiation in September,
and soil water content were associated with increased
risk.

3.3. Model performance
Model performance depended on both the cross-
validation technique and the background generation
approach (see table 1). In terms of cross-validation,
the highest performance scores were obtained by ran-
domly splitting data into folds, followed by temporal
splits and lastly continental splits. Randomly split-
ting not only resulted in higher average performance
scores across validation folds, but also in a severely
reduced variation of performance across folds com-
pared to the temporal and continental techniques
(supplementary material: figures S11–S13). The high
performance with random splitting is likely related to
spatial clustering of species presence. This violates the
independence assumption and leads to models that
overfit to residual dependencies, resulting in overop-
timistic model performance [71]. Within the contin-
ental cross-validation, the validation-scores obtained

for the European continent were AUCs of 0.97,
0.76, and 0.93 for the random, kdbias, and kd05dfar
background data, respectively. In other words, the
algorithms predicted European data well after being
trained exclusively on data in other parts of the
world.

Concerning the background generation
approach, the highest performance scores were
obtained with the random approach, followed by
the geographic exclusion approach (kd05dfar), and
lastly the biased data generation technique (kdbias)
(see table 1). While the very good performance of
the random technique is likely inflated by the large
geographic scale considered here [6, 75], the lower
performance for the biased approach is arguably
over-pessimistic as the approach results in a large
number of data points in the exact same locations yet
opposing classifications for the dependent variable
(supplementary material: figure S2).

While the temporal and spatial block approaches
did result in lower cross-validation performance
scores compared to randomly split folds, they test
and optimize traits of the model that are desirable
for our purpose which led us to present the models
above. The performance of models to predict intro-
duction into new geographic spaces or to provide
a prioritization of areas for future introductions,
is most appropriately estimated by cross-validation
techniques that also simulate those behaviours. In
addition, cross-validation techniques that simulate
the modelling objective result in hyperparameter val-
ues that are optimized for the task. As a result of the
hyperparameter values, feature selection and model
fitting are optimized for the research objective as
well. Having said that, as mentioned above, the tem-
poral patterns of invasive pest reportingwere so stable
over the years 1970–2019 that the temporal cross-
validation, like the random cross-validation, did not
lead to regularized models. Because of the same tun-
ing results, predictions of the temporal and random

8
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Figure 2. Spearman correlation of the European prediction across all combinations for cross-validation and background data
generation.

cross-validation were the same which resulted in the
same test performance as well.While for the data used
here the two cross-validation techniques did not pro-
duce different predictions, this could very well be dif-
ferent in datasets which require more generalization
capacity across time-periods. Therefore, despite the
equivalent results obtained here for the random and
temporal cross-validation, we urge practitioners to
align their cross-validation approach with their mod-
elling objective.

Performance was reasonably good, even for rig-
orous validation approaches such as temporal and
continental splits, indicating that top-down analyses,
through the bundling of species, do not necessar-
ily sacrifice performance per se. Interestingly, global
presence patterns were quite stable over time (supple-
mentarymaterial: figures S5–S9). As hotspots for pest
introductions did not change considerably over the
time horizon 1970–2019, the cross-validation scores
obtained from temporal splits suggest that the mod-
els are very much able to predict future introductions
based on past ones.

3.4. Sensitivity
Despite their somewhat comparable accuracies, the
generated risk maps as well as the importance of the
features of the corresponding models were drastically
different (figure 2). Similar to Austin [3], our analysis
shows that equivalent performance metrics can result
in very different models and outputs.

Figure 3 depicts the difference between the max-
imum and minimum probability values across the
three approaches of generating background data
for models tuned using temporal and continental
cross-validation. The different background genera-
tion approaches resulted in sizable changes in pre-
dicted risk for large parts of France, Germany, North-
ern Spain, and Moldova. Individual maps for all
approaches are provided in the supplementarymater-
ial (figures S23–S37).

Figures 4 and 5 depict the 50 most important
features, on average across different approaches to
generating background data, for models tuned using
temporal and continental cross-validation, respect-
ively. The importance of features, and occasionally
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Figure 3. Difference between maximum and minimum risk level values for Europe across different background generation
approaches for models tuned using temporal (a) and continental spatial-blocks (b) for cross-validation.

coefficient directions, varied considerably suggesting
that very different models were created. See figures
S39–S45 in the supplementary material for further
examples of feature importance in different models.
The results stress the diversity in models that can

be built using the same presence data. Arguably, this
underscores the need to explore sensitivity of results
beyond computing several learning algorithms using
the same data generating process, especially if clear
data on true species absence are unavailable.
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Figure 4. Fifty most important features across different background generation approaches for models tuned using temporal split
cross-validations. The average is depicted as a dot. The line range shows the minimum and maximum values. If coefficients were
consistently negative (i.e. risk decreasing) across all approaches for background data generation, the graph is coloured green. If
coefficients were consistently positive (i.e. risk increasing) across all approaches, the graph is coloured red. If the coefficient
direction changed between the different approaches to generating background data, it is coloured blue.

3.5. Implications for pest surveys
The lack of systematically surveyed species presence
and true absence restricted us from disentangling
whether predictions were a result of monitoring or
reporting bias, or of area characteristics that indeed
promote the introduction of invasive species. As an
example, areas around container ports such as Ant-
werp, London, Rijeka, and Saint Petersburg, were
generally predicted to be at high risk. The literature
frequently discusses the involvement of international
trade [42, 43, 65], in particular via boats and roads
[27, 49], in the introduction of invasive species. Eco-
systems characterized by a high level of anthropogenic

disturbance are expected to facilitate species entry
and establishment [49, 65]. Consequently, our res-
ults would be in line with the expectations from the
literature. However, because regulators, scholars, and
citizens expect that these areas likely contain new
introductions, these locations are also often highly
monitored, which could lead to reporting bias (sup-
plementary material: figure S38).

Systematic survey data on species presences and,
equally important [56, 76], true absences would sus-
pend these concerns entirely. Such data would allow
to measure to what extent pest presences are driven
by anthropogenic features, without having to ponder
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Figure 5. Fifty most important features across different background generation approaches for models tuned using spatial-block
split cross-validations. The average is depicted as a dot. The line range shows the minimum and maximum values. If coefficients
were consistently negative (i.e. risk decreasing) across all approaches for background data generation, the graph is coloured green.
If coefficients were consistently positive (i.e. risk increasing) across all approaches, the graph is coloured red. If the coefficient
direction changed between the different approaches to generating background data, it is coloured blue.

whether these characteristics were exclusively, or par-
tially, related to biases [19, 20, 24, 79]. The inclu-
sion and analysis of anthropogenic features is crit-
ical to further our understanding of externalities from
human-driven land-use change, infrastructure, and
trade. Efforts to include anthropogenic features into
models, except for attempts to correct for data biases,
are lacking [76]. The unavailability of systematic data
for the left-hand side of the equation is likely a major
reason for that.

Absence of a species may be due to one of the
following causes [56]. First, environmental absence
describes locations with unsuitable environmental

conditions. Second, contingent absence describes loc-
ations which are suitable per se, but due to dis-
persal limitations, local extinctions, or an inadequate
size of the suitable patch, among other factors, they
remained free of the species at the time of obser-
vation. Lastly, methodological absence describes loc-
ations which are falsely classified due to underly-
ing biases, or incomplete coverage, in the available
calibration data. SDMs predicting the fundamental
niche aim to correctly classify environmental absences
from presences, whereas contingent absences become
particularly important when predicting the real-
ized niche [56, 76]. Methodological absences taint
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predictions regardless of modelling purpose yet are
likely to prevail in most data used for SDM research
[46]. While appropriate surveying for true absences
requires considerable labour input [58], without such
data, predictions may be biased by the spatial variab-
ility in opportunistic sampling and, as a consequence
of the unknown false negative rate, true model per-
formance remains unknown.

Global estimates suggest that the impact of invas-
ive species runs in the trillions of Dollars [17]. For
Europe, conservative estimates of annual impacts
range from 12.5 to 20 billion Euro [21]. Several thou-
sand species have already invaded Europe and the
annual rates of new establishments are progressively
increasing [45, 49]. The continuous rise in flow of
products and people will likely only aggravate the risk
of biological invasions in the future [15, 16, 43, 44].
Nevertheless, compared to estimates on current and
future impacts, expenses for management and sur-
veillance remain low [51]. While the process of
hazardous invasions will remain random, predict-
ive models in combination with the ever-increasing
amount of georeferenced data can improve support
of decision making in the future.

Harmonizing species surveys and making the res-
ulting data available for research can further improve
the prediction of hotspots. For invasive species on
EPPO’s priority lists, annual surveys are already con-
ducted by the European member states. These data
remain unharmonized across states, inaccessible to
researchers, andwithout records of true absences. The
inclusion of true absences in such efforts is as import-
ant for predictive models as the systematic collection
of presences [56, 76].

This study shows that machine learning meth-
ods allow for the generation of generic risk maps for
invasive pest introduction that represent the underly-
ing data with high predictive accuracy into the future
or into new territories. However, the usefulness of
suchmaps in practice depends critically on the quality
of the underlying data. Ground-validation through
presence/absence data from systematically sampled
observations in the field is required to enable sound
judgement and decision making based on model pre-
dictions. Results of annual pest surveys could iter-
atively be used to test the current models and sub-
sequently feed into updating the risk map. In doing
so, the riskmap could dynamically aid in the continu-
ous surveillance of hotspots of invasive pest introduc-
tions and help gain a better understanding of which
characteristics of these locations lead to more inva-
sion events. Hence, data-driven machine-learning
predictions and ground-validation are not substitutes
but complements in the goal of understanding and
preventing invasive pest introductions.

While our analysis is a critical call for the need of
systematic survey data, we believe the obtained res-
ults are a reason for optimism. In the last decades,

previously unimaginable advances have been made
in the breadth and quality of georeferenced environ-
mental and anthropogenic data and computing tech-
nologies. Consequently, the quality of our predic-
tions is more than ever bottlenecked by the lack of
open data on results of systematic surveys and records
on absence. Considering the current and potential
future impact of invasive species to our ecosystems
and economies, additional funding for species surveys
would likely result in significant paybacks by inform-
ing the design of management strategies using pre-
dictive models.

Next to the data-needs described above, there
are several important avenues for future work. First,
the value of additional information on areas’ gen-
eral risk of pest introduction is largely determined
by the actions regulators and risk managers take
based upon this new information [76]. Consequently,
future research should investigate in which ways data
must be communicated and integrated into the risk
managers’ workflow to enable improved decision-
making. Second, hotspots of pest introductions may
shift under a changing climate. Therefore, future
work could project potential changes in pest intro-
duction hotspots for different climate change scen-
arios to support preparedness. Similarly, shifts in
trade patterns, or human behaviour, could be ana-
lysed if future projections of anthropogenic features
were available. Lastly, data collection through cit-
izen science holds great potential because such efforts
can scale immensely [52]. However, for such data
potential reporting biases must be addressed ideally
at the stage of the data generating process. Future
research on technological approaches, such as mobile
applications [31, 57, 64], which might aim at alle-
viating opportunistic sampling by coordinating cit-
izens’ search efforts into amore systematic spatial and
environmental coverage would be invaluable.

4. Conclusion

Pest risk assessments are commonly developed for
individual species. An overwhelming absence of
information on areas risk toward invasive species
introduction results out of the significant time
and labour requirements of species-specific ana-
lyses which complicates management. We aimed to
develop a genericmodelling approach to identify hot-
spots for plant pest introductions. We assessed the
risk of presence in Europe for the whole group of
248 invasive species on the priority lists (A1 and A2)
of the European and Mediterranean Plant Protec-
tion Organization. Global georeferenced data on a
wide range of potential predictors related to climate,
soils, water, and anthropogenic factors were collected,
and an elastic-net machine learning algorithm was
trained on around 341 000 observations across the
globe to predict new introduction of invasive species
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as a function of the predictors. The algorithm was
tuned and trained for nine setups resulting from the
combinations of three approaches to generating back-
ground data and three cross-validation techniques.

Results revealed that the BeNeLux states, North-
ern Italy, the Northern Balkans, and the United King-
dom, and areas around container ports such as Ant-
werp, London, Rijeka, and Saint Petersburg were at
higher risk for introductions. For models tuned to
predict into future periods, the highest ranked fea-
tures were related to temperature. For models tuned
to predict into other continents, anthropogenic fea-
tures such as the degree of nightlight radiance, access
to cities, minimum distance to a container port, road
densities, the human impact on the environment, etc
dominated the feature importance ranking.

Harmonizing species surveys and making the
resulting data available for research can further
improve the prediction of hotspots. For invasive spe-
cies on European and Mediterranean Plant Protec-
tion Organization’s priority lists, annual surveys are
already conducted by the European member states.
These data remain unharmonized across states, inac-
cessible to researchers, and without records of true
absences. Our analysis shows that machine learning
can produce hotspotmaps for pest introductionswith
a high predictive accuracy, but that systematically col-
lected data on species’ presences and absences are
required to further validate and improve these maps.
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