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Ductile crack growth using cohesive GTN model

Mamadou Méı̈té, Noé Brice Nkoumbou Kaptchouang, Yann Monerie, Frédéric

Perales, Pierre-Guy Vincent

Abstract This chapter presents a three-dimensional simulation of ductile crack

growth using a recent GTN cohesive approach. A cohesive-volumetric finite element

approach is adopted. The behavior of the material is characterized by a hardening

bulk constitutive law inside the finite elements together with a softening traction-

separation law at the interfaces between elements. The traction-separation law re-

cently proposed by [1] rests on the micromechanical Gurson-Tvergaard-Needleman

model for ductile damage and fracture, and the reduced kinematics of a surface. It

takes into account the effect of local I1 and J2 stress invariants via a dependence of

the cohesive model to the surrounding bulk stress. The efficiency of this cohesive-

GTN model is underlined through the 3D numerical simulation of a compact tension

test. The results show a strong tunneling in the crack front shape. The crack propa-

gates faster at the midsection than at the side-surface. Large gradients of local stress

and strain through the specimen thickness during crack growth are observed. Es-
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pecially, the stress triaxiality is higher at the midsection than at the side-surface,

leading to more damage in the cohesive zone due to cavity growth.

Introduction

One way to simulate crack initiation and propagation involves finite elements with

cohesive zones. In this approach, the micromechanisms of material degradation that

take place in the fracture process zone ahead of the crack tip is modeled by a co-

hesive function termed as traction-separation law (TSL). It is expressed as a re-

lationship R = R([u]) between the stress vector R and the displacement jump [u]
across the two surfaces of the crack. The peak value of such a cohesive function

defines the cohesive strength, R0. The area under this curve refers to the separation

energy, Γ0, giving the work spent in the cohesive zone for the creation of a unit crack

area. Although several authors [2, 3, 4, 5] have successively simulated several crack

growth experiments with one set of cohesive parameters (R0, Γ0), it is now admitted

that in the course of ductile fracture, these parameters are not material constants

and therefore are not directly transferable from one experiment to another. In other

works such as those of [6], different cohesive parameters depending on the position

through the thickness of the specimen have been introduced in order to simulate

crack growth experiments on steels with good accuracy. Moreover, the values of the

cohesive parameters for a single material also depend on the shape of the TSL used

in the simulations [7, 8]. One drawback of phenomenological cohesive functions is

that they don’t explicitely take into account the physics of micromechanical phe-

nomenon leading to fracture such as the void nucleation, growth and coalescence

in ductile failure of metals. Furthermore, cohesive zone model capabilities are also

limited by their surface reduced kinematics, which only contain relevant quantities

such as the crack normal opening and the crack sliding displacement, but nothing to

describe the effect of crack plane stretching due to in-plane strain as in a volumet-

ric 3D element [9]. This limitation makes it difficult to use a single set of cohesive

parameters to model crack growth under different constraint conditions. Contrast-

ingly, the framework of continuum micromechanics, with a physical modeling of

the kinematics of voids nucleation, growth and coalescence inside a matrix material

have led to a set of poroplasticity models that can properly describe damage pro-

cess in ductile metals under different constraints conditions. Within this approach,

the Gurson-Tvergaard-Needleman (GTN) model [10, 11, 12, 13] is surely the most

widespread model to characterize ductile fracture. A physically based TSL that cap-

tures the mechanism of the ductile failure process of metals can be derived from a

micromechanical modeling of a voided unit cell. This idea has been introduced by

[14] who computed a TSL as a response of a GTN unit cell under uniaxial straining

conditions. A step to improve the cohesive zone models for a wider range of lo-

cal constraints has been undertaken by introducing a dependency of the shape of the

traction separation law and the magnitudes of cohesive parameters to some variables

characterizing the local stress and strain states such as the accumulated plastic strain
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ε
p
eq [15, 16], the stress triaxiality ηΣ [17, 18, 19, 20, 21], the equivalent strain rate

ε̇eq [22, 23]. In these works, the cohesive strength R0 and the cohesive energy Γ0 are

updated during the simulation according to the local stress and strain states through

some specific functions (R0 = R0(ε
p
eq, ε̇eq,ηΣ , ...), Γ0 = Γ0(ε

p
eq, ε̇eq,ηΣ , ...)) where

the variables (εp
eq, ε̇eq,ηΣ ) are computed in the nearest continuum element to the

cohesive zone. The dependency of the cohesive parameters to stress triaxiality and

strain rate was obtained through a range of unit cell simulations under different biax-

ial loadings with a GTN model in [17, 18, 19, 20] and a rate-dependent GTN model

in [22, 23]. Some authors also characterize the cohesive parameters for simulation of

the tearing of large ductile plate by using a combination of GTN simulations and ex-

periments. The peak stress and dissipated energy are identified throughout a detailed

analysis of the process of necking localization and shear failure performed with

GTN-like models [24, 25, 26, 27]. Another straightforward approach to develop

physically based TSL consists in modeling the cohesive zone as a virtual thin layer

representing a discontinuity band in the material with the corresponding regular-

ized discontinuity kinematics [28, 29, 30]. The jumps of displacements fields across

the discontinuity band naturally induce a projection of the stress-strain constitutive

model into a traction stress-displacement jumps law as discussed in [31]. This for-

malism enables the use of bulk constitutive relations embedding more details on the

damage micromechanisms and crack initiation than a pure phenomenological TSL.

The cohesive response is given by the traction stress and the displacement jump

across the band. It can be used with a conventional zero thickness cohesive element,

and in this case, the band thickness introduced to derive the cohesive model remains

a parameter. Nonetheless, the surface (or thin layer) kinematics does not give rise

to in-plane strains. As a consequence, the capability of cohesive band models to

properly handle high triaxiality effects remains limited. One way to overcome this

limitation is discussed in [9], where the cohesive band strain tensor is enhanced with

in-plane components, which are evaluated as the average of the in-plane strains from

the nearest volumetric elements on each side of the cohesive zone.

Following these ideas, [1] recently derived a TSL from the original GTN model

and applied it to simulate crack growth in a compact tension specimen made with

a standard ferritic steel (2D plane strain computations). The TSL results from a

projection of the GTN porous plasticity model into a finite thickness discontinuity

band kinematics. A single variable has been added to enhance the kinematics and

to take into account the high triaxiality effects. Here, a 3D finite element compu-

tation is presented to investigate the capability of this new TSL to simulate ductile

crack growth. This chapter is organized as follows. First, the equations of the GTN

traction-separation law of [1] are recalled. Second, an analysis of a 3D finite ele-

ment simulation of crack growth in a steel compact tension specimen is performed.

Particular attention is paid to the crack front shape and to the heterogeneity of the

stress and strain fields along the thickness of the specimen. In particular, the local

traction-separation evolution is not a priori given. Its spatial evolution near the crack

tip when going from the specimen midsection to the side surface is investigated.
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Cohesive zone model for ductile failure

A GTN-like cohesive zone model has been developed in [1] by a projection of the

so-called volumetric GTN damage model onto a cohesive kinematics. The TSL re-

produces the behavior of a single bulk element made of a GTN material. This cohe-

sive model is briefly described below.

Cohesive interface model

The cohesive zone is seen as a thin layer interface inside a bulk material, and the

strain tensor is approximated by a function of the displacement jump [u] across the

interface with the help of a scaling rule [32, 28, 29]

ε ≈ [u]⊗s n

h
=





εnn εnt εns

εnt 0 0

εns 0 0



 with εnn =
[un]

h
, εnt =

[ut]

2h
, εns =

[us]

2h
(1)

where (n, t, s) is the local basis, n being a unit normal vector to the interface and t, s

the two unit vectors defining the tangent plane. The h parameter is a length scale of

the cohesive model and (u⊗s v)i j = (uiv j +u jvi)/2. The kinematics (1) is extended

by introducing an additional in-plane parameter p in order to enhance the range of

strain triaxiality affordable by the cohesive model

ε =





εnn εnt εns

εnt p 0

εns 0 p



 (2)

GTN model

The GTN yield surface writes [10, 11, 12, 13]

Σ 2
eq

σ2
y

+2q1 f ∗ cosh

(

3

2
q2

Σm

σy

)

−1−q3 f ∗2 = 0 (3)

where Σ is the stress tensor, Σm = (1/3) trΣ is the hydrostatic stress, Σeq =
√

(3/2)Σd : Σd is the on Mises equivalent stress, Σd = Σ −Σm i is the deviatoric

part of Σ , and i is the second-order identity tensor. Coefficients (q1,q2,q3 = q2
1) are

constants. The flow strength of the homogeneous and incompressible plastic ma-

trix surrounding the voids is denoted by σy. The porosity is denoted by f and an

effective porosity f ∗ related to void coalescence is introduced
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f ∗ =







f for 0 ≤ f ≤ fc

fc +
f ∗u − fc

f f − fc

( f − fc) for fc < f
(4)

where fc is the porosity at onset of void coalescence, and f f is the fracture porosity,

f ∗( f f ) = f ∗u = 1/q1. Isotropic hardening is introduced by the expression of σy(ε̄),
where the scalar variable ε̄ is interpreted as an average plastic strain of the matrix

material surrounding the voids. The evolution of ε̄ is governed by an equivalent

plastic work expression

Σ : ε̇ = (1− f )σy
˙̄ε (5)

The evolution of the porosity is governed by a void growth rate and a strain con-

trolled void nucleation rate [33]

ḟ = (1− f ) tr ε̇ +A ˙̄ε with A(ε̄) =
fN

sN

√
2π

exp

(

−1

2

(

ε̄ − εN

sN

)2
)

(6)

where fN is the volume fraction of void nucleating particles, εN is an average nucle-

ation strain parameter and sN is a standard deviation.

Cohesive GTN traction-separation law

The time integration of the model derived in [1] is briefly summarized below. Let

us denote ε , f and ε̄ the cohesive strain, porosity and average plastic strain at time

t. At the previous time step, their values are denoted by ε(t−δ t), f (t−δ t) and ε̄(t−δ t).

The increment between two time steps of the cohesive strain δε writes

δε =





δεnn δεnt δεns

δεnt δ p 0

δεns 0 δ p



 (7)

Giving quantities at time t, and average strain at time t − δ t, the porosity and the

average strain are updated

f = f (t−δ t)+(1− f (t−δ t))(δεnn +2δ p)+A(ε̄(t−δ t))δ ε̄ (8)

ε̄ = ε̄(t−δ t)+δ ε̄ (9)

with

δ ε̄ =
Tnn δεnn +2Tnt δεnt +2Tns δεns +Ttt δ p+Tss δ p

1− f (t−δ t)
(10)

and
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Tnn =
1

q2
H(χ(t−δ t))+

4

9
D(χ(t−δ t))

δεnn −δ p

(δε)eq

Tnt =
2

3
D(χ(t−δ t))

δεnt

(δε)eq

Tns =
2

3
D(χ(t−δ t))

δεns

(δε)eq

Ttt = Tss =
1

q2
H(χ(t−δ t))− 2

9
D(χ(t−δ t))

δεnn −δ p

(δε)eq

ηε̇ =
(δε)m

(δε)eq

(11)

where χ(t−δ t) stands for {ηε̇ ,q1 f ∗( f (t−δ t))} and H and D are two general functions

H(ηε̇ , f ) =
2

3

(

arcsinh

(

2ηε̇

f

)

− arcsinh(2ηε̇)

)

(12)

D(ηε̇ , f ) =
√

(2ηε̇)2 +1−
√

(2ηε̇)2 + f 2 (13)

Then, the components of the cohesive stress R = Σ · n are straightforwardly evalu-

ated at time t































Rn = σy(ε̄)

(

1

q2
H(χ)+

4

9
D(χ)

δεnn −δ p

(δε)eq

)

Rt = σy(ε̄)
2

3
D(χ)

δεnt

(δε)eq

Rs = σy(ε̄)
2

3
D(χ)

δεns

(δε)eq

(14)

where χ stands for {ηε̇ ,q1 f ∗( f )}.

Estimate of the in-plane strain

The in-plane strain p is estimated by considering information coming from a volu-

metric element adjacent to the cohesive zone. A strain rate triaxiality ηvol
ε̇ is com-

puted using both the stress state Σ vol in a volumetric element adjacent to the cohesive

zone and the normality rule of the GTN model

ηvol
ε̇ =

q1q2 f ∗ sinh

(

3

2
q2

Σ vol
m

σy

)

2
Σ vol

eq

σy

(15)

The in-plane strain increment δ p is estimated such that the strain rate triaxiality

inside the cohesive zone is equal to ηvol
ε̇ . As outlined in [1], it was observed that
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the resulting triaxiality ηvol
ε̇ decreases when increasing damage in the cohesive zone

during a C(T) test simulation. This can lead to an artificially delay of crack growth

because the standard GTN model does not predict any damage at low stress triaxial-

ity. Therefore, [1] propose to transfer the volumetric stress Σ vol to the cohesive zone

up to the onset of coalescence (when f reaches fc). For the post-coalescence stage,

Σ vol is kept constant.

Unloading rule and initial stiffness

An unloading rule and an initial finite stiffness are then added to the TSL by modi-

fying the cohesive stress as below [1]

R(int) =































Rn
[un]

[un]max

(

1− exp

(

−αn
[un]max

h

))

Rt
[ut]

[ut]max

(

1− exp

(

−αt
[ut]max

h

))

Rs
[us]

[us]max

(

1− exp

(

−αs
[us]max

h

))

(16)

where [un]max, [ut]max, [us]max are the maximum values of separation in each di-

rection occurred so far during the loading process. The terms [ui]/[ui]max with

i = {n, t,s} in (16) describe an elastic linear unloading up to the origin. The ex-

ponential part allows to introduce an initial stiffness to the TSL when [u] vanishes.

The initial slope in various directions is calibrated by setting the parameters αn,

αt, and αs accordingly. The unloading behavior is completed by assuming the irre-

versibility of damage and hardening during loading process. From a practical point

of view, two additional tests are performed in the integration scheme

if f < f (t−δ t) then f = f (t−δ t) (17)

and

if ε̄ < ε̄(t−δ t) then ε̄ = ε̄(t−δ t) (18)

Implementation into XPER computer code

The GTN cohesive zone model has been implemented in the XPER computer

code dedicated to the simulation of fracture dynamics of heterogeneous materials

[34, 35]. Each mesh element or group of mesh elements is treated as an independent

body. Frictional cohesive zone models are introduced at interface between bodies by

a modification of Signorini-Coulomb conditions [36, 37]. The bulk behavior inside

each element is governed by a hardening behavior without any damage. The cohe-

sive model has been implemented under the assumption of proportional loading and
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the cohesive stress given by (14) is estimated using the total cohesive strain ε instead

of the strain increment tensor δε . Under this assumption, the strain rate triaxiality

in the cohesive zone is equal to the strain triaxiality defined in (15). The transfer of

information from the volume element to the cohesive zone, which is a key point of

the model, is schematically illustrated in Fig. 1. The general equations used for the

numerical implementation of the cohesive model are summarized in Appendix C of

[1] and the reader is referred to this for an exhaustive and detailed description.

element

slave contact

element
master contact

cohesive zone

Fig. 1 The average stress in the slave element adjacent to the cohesive zone is used to evaluate an

imposed strain triaxiality ηvol
ε in the cohesive zone. The in-plane strain p in the cohesive zone is a

function of ηvol
ε and [u].

Application: 3D numerical simulation of a compact tension

fracture specimen

Modeling

A finite element analysis is performed on a deeply cracked compact tension C(T)

fracture specimen with smooth side-surfaces. Remind that the primary motivation

to use deeply cracked specimens is to guarantee conditions leading to high crack-tip

constraint (i.e., high triaxiality of stress) with limited-scale plasticity [38]. More-

over, this type of specimen displays the highest triaxiality compared to any type of

standard fracture specimen [2, 39, 6, 38, 40, 41, 42]. Here, a0 denotes the initial

crack depth and is set to 19.92 mm, while W = 40 mm is the specimen width (ra-

tio a0/W ≈ 0.5). The specimen thickness is set to B = 20 mm. The details of the

specimen dimensions and the finite element mesh are displayed in Fig. 2. The axis

of the global coordinate system (x,y,z) are along the crack extension direction, the

loading direction, and the thickness direction, respectively. The plane z = 0 defines

the midsection of the specimen, and z = 10 mm defines the side-surface (see Fig. 2).

Symmetry conditions enable analyses using a quarter of C(T)-specimen. But since it

is not possible to apply symmetry conditions on the cohesive elements in the crack

plane in XPER code, one-half of the specimen is modeled with appropriate con-

straints (Uz = 0) at the midsection (z = 0). The mesh is refined over a surface 10 x
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Fig. 2 C(T) specimen: Details of the geometry and half-symmetric three-dimensional finite ele-

ment mesh. Mesh size in the crack propagation region is 0.2 x 0.2 x 0.5 mm3 in (x, y, z)-axis,

respectively.

7 x 10 mm3 in front of the crack tip. The mesh size for the elements in this central

zone is 0.2 x 0.2 x 0.5 mm3 along the (x, y, z) respectively, while a coarser mesh

is used outside this zone. The half-symmetric, 3D model for this specimen has a

total number of 82803 nodes and 74560 hexahedra solid elements with eight-nodes.

Since the crack path is known, cohesive zones are only put on the crack plane in

front of the crack tip, assuming pure mode I crack propagation. Four contact nodes

per cohesive zone are introduced. The material surrounding the cohesive zones is an

isotropic elastic-plastic solid with incremental J2 plasticity constitutive model. The

Young modulus and Poisson’s ratio are respectively denoted by E and ν . The GTN

cohesive model described in the previous section is used for the cohesive zones. The

hardening (for both solid elements and cohesive zones) is described by

σy(ε̄) = σ0(1+Kε̄)1/n (19)

where σ0, K and n are three coefficients. The material parameters are reported in

Table 1 for a specific ferritic steel (15NiCuMoNb5, German designation WB36).

The initial porosity is denoted by f0. Computation is performed under the small

strain assumption. The length scale parameter controlling the localization is set to

h = 0.4 mm which is in the order of magnitude for ductile fracture in ferritic steels.

The numerical parameters controlling the initial slope of the cohesive stress are set

to αn = 2.3 104,αt = αs = 1.8 105. Those values lead to an initial stiffness of the

cohesive stress of the order of 1017 Pa/m in both normal and tangential directions.

An estimate of those parameters as a function of the GTN material properties is

given in appendix B in [1].

Two vertical displacement increments, Uy and −Uy, are simultaneously applied

at the two upper and lower pin holes, respectively. Both pin holes are partially filled

with a purely elastic material having the same elastic properties than the specimen
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Table 1 Material parameters of the study.

Elasticity E (GPa) ν
205 0.3

Hardening σ0(MPa) K n

376 900 7.2

GTN f0 fc f f εN sN fN q1 q2

0.001 0.05 0.2 0.3 0.05 0.2 1.25 1

material. A tie constraint is used on the nodes at the interface between the load

pin and the specimen. Computation is made using an explicit finite element solver

with an implicit contact resolution within a dynamical formulation [35]. A time step

δ t = 1.610−8s is used. Since all the involved constitutive laws are time-independent,

a high velocity (U̇y = 0.2m.s−1) is prescribed in order to run the simulation in a

reasonable time. The mass density is set to 7.8 103 kg/m3 as a standard value for

most of steels. It is worth mentioning that this implicit-explicit coupled cohesive-

volumetric computation was approximatively performed in 60 days with 10 GB of

RAM memory and 40 cores.

Results

Fig. 3 shows the load (Force Fy) vs Crack Opening Displacement (COD approxi-

mated here by 2Uy) curve obtained from the simulation. The simulation reproduces

the drop of the load typically observed in C(T) tests. Furthermore, Fig. 4 and Fig. 5

illustrate the high level of heterogeneity of the local fields in terms of von Mises

stress and accumulated plastic strain. Two specific surfaces of the specimen are

shown, namely, the mid-thickness surface (at z = 0, symmetry plane) and the side-

surface (at z = 10 mm, free-edge surface). It is seen that large plasticity develops in

the crack-front vicinity promoting stable crack propagation. Note that the zone with

high level of accumulated plastic strain in the crack front vicinity is different for the

two surfaces. It appears to have a more rounded shape on the mid-section surface

than on the side-surface. Note also that this plastic zone is larger at the free surface

near the rear of the specimen in the case of the mid-section surface compared to the

side-surface. Fig. 6 shows the deformed mesh of the specimen geometry model with

the separation of its crack lips (crack mouth) and von Mises stress distribution in the

uncracked ligament. Fig. 7 shows the shape of the crack front for some COD val-

ues. According to the plot, the crack-front, initially straight and uniform through the

thickness, propagates faster in the specimen midsection than near the side-surfaces.

For a given value of the crack opening displacement, the crack extension ∆a has

the highest value at the midsection and sharply decreases when going from the mid-

section to the side-surfaces. This kind of crack profile exhibiting a tunneling effect

through specimen thickness has been observed both numerically and experimen-
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Fig. 3 Load (Force Fy) vs. Crack Opening Displacement (COD approximated by 2Uy) curve ob-

tained from the 3D numerical simulation of a compact tension fracture specimen.

Fig. 4 Half-symmetric, 3D FE simulation of the C(T) specimen with smooth side-surfaces. Von

Mises stress field on the smooth side-surface (left) and at the midsection-surface corresponding to

the symmetry plane (right). Initial configuration. Uy = 1.9244 mm.

tally for specimen geometries with smooth side-surfaces [43, 44, 6, 45, 46]. From

a microscopic point of view, the gradient of local constraint through the thickness

leads to a damage mainly governed by void growth at the center of the specimen

and shear dominated conditions at the side surface, the latter often leading to shear-

lip formation [46]. Note that the crack growth due to shear dominated conditions at

edges is limited in the current simulation since the cohesive model is based on the

GTN model which predicts low damage at low triaxiality. Nevertheless, the simu-

lation can still predict crack growth through the entire thickness of the specimen.

Fig. 8 shows the evolution of the stress triaxiality during loading. It is plotted at the

initial crack tip (at a0) for different points through the thickness (different z values).

This figure illustrates the strong heterogeneity of the stress triaxiality through the
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Fig. 5 Half-symmetric, 3D FE simulation of the C(T) specimen with smooth side-surfaces. Accu-

mulated plastic strain field on the smooth side-surface (left) and at the midsection-surface (right).

Initial configuration. Initial configuration. Uy = 1.9244 mm.

Fig. 6 Half-symmetric, 3D FE simulation of the C(T) specimen. Deformed mesh: opening of crack

lips and von Mises stress localization during ductile crack propagation. Uy = 1.9244 mm.

thickness and also its complex evolution during loading. It appears that the stress

triaxiality is higher at the midsection (z = 0) than at the side-surface (z = 10 mm).

Fig. 9 shows the stress triaxiality with respect to the position through the thickness

for different COD values. Here, it is plotted at the maximum current crack tip (at

a(t,z = 0)). It appears that the stress triaxiality is relatively high at the midsection

and sharply decreases at the side-surface. The observation that the crack advances

faster in the midsection than at the side-surfaces is related to a higher stress tri-

axiality at midsection than at the side-surfaces. Let us recall that, in the cohesive

model, damage is related to cavity growth. This cavity growth is controlled by the

trace of the plastic strain rate. The high values of the stress triaxiality observed here

should induce high values of the triaxiality of the strain rate in the cohesive model

(the strain rate triaxiality in the cohesive model depends on the local stress around
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Fig. 7 Evolution of the crack front. COD ≃ 1.67mm, (light gray line), COD ≃ 2.08 mm (gray line),

COD ≃ 2.5 mm (dark line). Top: crack in real dimensions. Bottom: figure is stretched in the crack

extension direction for a better visualization. COD approximated by 2Uy.

the cohesive zone through equation (15)), which should favor cavity growth and

damage. This is verified in Fig. 10 which displays the strain triaxiality ηvol
ε at the

crack front (remind that under the assumption of proportional loading, the strain

rate triaxiality in the cohesive zone is equal to the strain triaxiality, see paragraph

related to the implementation of the cohesive zone model into XPER). It is seen that

the peak of the strain rate triaxiality is reached faster in the midsection than on the

side-surface.

The spatial and temporal heterogeneity of the stress and strain triaxiality fields

lead to various traction-separation responses along the crack-front as it is depicted

in Fig. 11. From this figure, it can be observed that a higher peak cohesive stress is

obtained at midsection (points with label ”A”) than at the side surface (points with

label ”D”). Moreover, at midsection, the peak cohesive stress increases between the

positions ”1” and ”2” and then seems to stabilize between the positions ”2” to ”3”.

An opposite trend is obtained at the side surface where the peak cohesive stress de-

creases between the positions ”1” and ”2” and then seems to stabilize between the

positions ”2” and ”3”. As pointed out in [1], a significant feature of the cohesive

model is that the shape of the local cohesive response is not a priori given but di-

rectly arises from the loading and the micromechanical model. In a close way, at

midsection the shape of the cohesive response goes from a door-like model to a tri-

angular model during crack propagation. At side surface, the overall shape does not

vary significantly but the curve seems more flattened and spread out. From this fig-

ure, the surface cohesive energy (estimated as the area under the curve) is computed

and reported in Fig. 12. The surface cohesive energy is higher at midsection than at

the side surface. At midsection and side surface, it decreases between the positions
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Fig. 8 Evolution of stress triaxiality with respect to Crack Opening Displacement (COD approx-

imated by 2Uy). Stress triaxiality is reported at the initial crack tip (at a0) for four distinct points

through the thickness (four distinct z values).
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Fig. 9 Evolution of the stress triaxiality through the thickness for different COD values (approxi-

mated by 2Uy). Stress triaxiality is reported at the maximum current crack tip (at a(t,z = 0)).

”1” and ”2” and then seems to stabilize between the positions ”2” and ”3”. At inter-

mediate points (points with labels ”B” and ”C”), it increases between the positions

”1” and ”2” and then seems to stabilize between the positions ”2” and ”3”. After a
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COD ≃ 0.83 mm 1.04 mm 1.25 mm

1.46 mm 1.67 mm 1.88 mm

2.09 mm 2.3 mm 2.51 mm

Fig. 10 Strain triaxiality field ηvol
ε (yellow) and crack surface (red) for different COD values (ap-

proximated by 2Uy). The triaxiality field is clipped above the value of 0.2.

phase of crack propagation initiation, it appears that the crack propagation is done

at a steady state.

Conclusion

This chapter presented a 3D numerical simulation of ductile crack growth in a 20

mm thick compact tension C(T) fracture specimen with smooth side-surfaces made

of a ferritic steel by employing a cohesive model. This cohesive model was de-

veloped in [1] by incorporating the concepts of micromechanics based upon the

GTN poroplasticity model within a cohesive zone model. The traction-separation

law of the cohesive model derives from the projection of the volumetric GTN dam-

age model onto a cohesive kinematics. It takes into account the effect of local I1

and J2 stress invariants via a dependence of the cohesive model to the surround-
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Fig. 11 Local cohesive responses at distinct points: normal cohesive stress with respect to normal

displacement jump (normalized values).

ing bulk stress. The simulation showed a high level of heterogeneity of von Mises

stress and accumulated plastic strain fields in the specimen. Moreover, the simula-

tion showed that the crack growth profile through the thickness exhibits a relatively

strong tunneling effect. During the simulation, it appears that the crack-front, ini-

tially straight and uniform through the thickness, propagates faster in the specimen

midsection than near the side-surfaces. It is shown that this crack-front extension

is related to a higher stress triaxiality at midsection than at the side-surfaces. It is

also shown that the peak of the strain triaxiality is reached faster in the midsection

than on the side-surfaces which favors damage by cavity growth. After a phase of

crack propagation initiation, the local cohesive response stabilize leading to a steady

state propagation of the crack. All the findings provided from the present simula-

tion are consistent with the literature observations. Hence, this triaxiality dependent

cohesive GTN model seems relevant to deal with problems of ductile fracture in

thick-specimen made of ferritic steel but also in thick components. The model effi-
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Fig. 12 Local surface cohesive energy at distinct points.

ciency could be tested in the case of crack initiation and propagation in other types

of fracture specimens in order to estimate the feasibility of transfer of ductile tearing

properties from specimens to components, which remains a challenging task. This

is the scope of next coming works.
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