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Abstract 30 

     31 

Horses have been domesticated by man and historical information mostly associates 32 

horses with men. Nowadays, however, horse riding is essentially practised by 33 

women. Women are also very much involved in equine sciences, with a large 34 

contribution to the understanding of foetoplacental development. While highlighting 35 

the work of female scientists, this review describes the recent advances in equine 36 

foetoplacental studies, focussing on data obtained by new generation sequencing 37 

and progress on the understanding of the role of placental progesterone metabolites 38 

throughout gestation. A second emphasis is made on foetal programming, a 39 

currently very active field, where the importance of maternal nutrition, mare 40 

management or the use of embryo technologies has been shown to induce long term 41 

effects in the offspring that might affect progeny’s performance. Finally, new 42 

perspectives for the study of equine pregnancy are drawn, that will rely on new 43 

methodologies applied to molecular explorations and imaging.  44 

 45 

Keywords 46 

equine; mare; allantochorion; gestation  47 



 

3 

1. Introduction 48 

Horses have been domesticated by man and historical information mostly associates 49 

horses with men, although the working horse’s contribution to the survival of women 50 

in primitive and current civilisations is essential [1].  51 

The horse industry at large supports the development of horse riding, with 52 

reproduction at the heart of the production of horses, whatever the discipline. In 53 

addition, most animals must prove their sporting potential before they are allowed to 54 

breed [4]. With an 11 months pregnancy length, a late implantation, the existence of 55 

two different kinds of placentation and a very late foetal maturation [5,6], the 56 

development of the equine conceptus into a healthy newborn is a challenge both to 57 

the breeder and the veterinarian. Recently, with the sequencing of the equine 58 

genome [7,8] and high throughput gene expression studies becoming more 59 

affordable, large amounts of data have been providing new mechanistic insights on 60 

normal and pathological pregnancy. 61 

The objective of this review is thus to sum up currently available data on horse 62 

placentation, pointing towards recent data and scientific challenges in this scientific 63 

area in particular in response to maternal environment. This review focuses on the 64 

placental period of pregnancy, i.e., from implantation.  65 

 66 

2. Implantation, endometrial cups and placental proteins 67 

As early as 1975, the observation of discrepancies between early pregnancy 68 

diagnosis and actual pregnancy rates in Thoroughbred mares led to the hypothesis 69 

that the stress induced by management systems was important for early and late 70 

pregnancy loss [10], leading the way to modern understanding of maternal influence 71 

on foeto-placental and postnatal development. 72 

The equine embryo enters the uterus at the late morula/early blastocyst stage, where 73 

its movements in the uterine cavity have been shown to be necessary for maternal 74 

recognition of pregnancy (for review [12]). The blastocyst remains free and the zona 75 

pellucida is replaced by a glycoprotein capsule that plays an important role in the 76 

cessation of embryo movement at 16-17 days of pregnancy [13]. Implantation begins 77 

at 35–40 days after ovulation, and therefore an important part of embryo 78 

organogenesis begins before its implantation.  79 
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Implantation is characterized by the co-existence of endometrial cups, an invasive 80 

trophoblast, stemming from the embryo’s chorionic girdle, that will remain active until 81 

the 4th month of pregnancy, and the non-invasive allantochorion that will enable 82 

foeto-maternal exchanges until term. On Day 36 post-ovulation, binucleated cells 83 

from the chorionic girdle start invading the maternal endometrium to become the 84 

endometrial cups (Figure 1). Mature cups appear as grey structures with a 85 

depressed surface on the endometrium. A single layer of apparently normal 86 

trophoblast cells persists beneath the girdle, ensuring continuity of the chorion [14]. 87 

Their lifespan is 60-100 days, throughout which increasing numbers of leukocytes 88 

accumulate in the surrounding endometrial stroma, invade and appear to destroy the 89 

cups cells until, eventually, they are sloughed from the surface of the endometrium 90 

[14]. 91 

 92 

2.1. Gene expression in endometrial cups  93 

In the past 10 years, insight into mechanisms involved in the development of the 94 

equine conceptus at the time of implantation and on the aetiology of late embryo 95 

losses has been gained, largely due to recent contributions relying on New 96 

Generation Sequencing (NGS) [15–18].  97 

Many genes expressed by the endometrial cups are shared with the chorionic girdle 98 

but there is also a clear effect of the endometrial environment. On Day 45, shortly 99 

after implantation, immune cells (Tregs, CD4+ and CD8+ T cells) [15] and also NK 100 

cells are present in the microenvironment of the endometrial cups [19]. The high 101 

level of MHC Class I expression observed in the chorionic girdle decreases after the 102 

endometrial cups are established and increases again around the time of their death 103 

[20], believed to be due to programmed cell-death or lymphocyte mediated 104 

destruction.  105 
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The expression of the equine chromosome 24 miRNA cluster (C24MC), an ortholog 106 

of the human C14MC, reported to be involved in embryo and foetoplacental 107 

development [21], was explored by the group of Barry Ball, with the contribution of 108 

Shavahn Loux [22]. In the mare’s serum, four miRNAs were enriched in mares at 109 

Day 25 of gestation compared to non-pregnant controls. Of these, four (eca-miR-110 

409-3p, eca-miR-379-5p, eca-miR-1247-3p and eca-miR-134-5p) were significantly 111 

upregulated in the serum of Day 45 mares, compared to non-pregnant controls and 112 

three (eca-miR-127-5p, eca-miR-370-3p, and eca-miR-412-3p) were significantly 113 

upregulated in the serum of Day 45 mares, compared to 4 months pregnant mares 114 

[23], with a similar expression profile in chorioallantois [24]. Some of these could 115 

thus be used for pregnancy check when ultrasound diagnosis is not possible. Gene 116 

Ontology (GO) analysis indicated that these miRNAs are involved in the 117 

development of the nervous system and that of other organ development, in cell-cell 118 

signalling and Wnt signalling pathway. The expression of C24MC miRNAs was 119 

shown to decline gradually throughout gestation [23,25]. 120 

 121 

2.2. Endocrine secretion by endometrial cups 122 

Endometrial cups are very active and very unique in terms of endocrine secretion.  123 

Equine Chorionic Gonadotropin (eCG), previously known as Pregnant Mare Serum 124 

Gonadotropin (PMSG), selectively binds to LH receptors in equids whereas it has a 125 

dual FSH and LH activity in other domestic mammalian species. Only in humans 126 

(hCG) and in the bottlenose dolphin [26] have other Chorionic Gonadotropins (CG) 127 

been described [27,28]. In vivo, the main effect of the human CG (hCG) in pregnant 128 

women is the regulation of steroidogenesis whereas the equine eCG is involved in 129 

the formation of secondary corpora lutea during gestation. In addition, their assay in 130 

different biological fluids is used for the diagnosis of pregnancy and also for the 131 

detection of foetoplacental abnormalities during pregnancy.  132 

 133 
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Because of their biological activity, both these glycoproteins have been and are still 134 

used in reproductive control programs in domestic animals and in assisted 135 

reproduction programs in humans and horses [29–31]. The horse eCG has been 136 

intensively used in the ruminant and pig industry as a FSH analogue, but its use is 137 

declining especially due to the ethical conditions associated with its collection from 138 

the blood of pregnant mares. In horses, hCG extracted from pregnant women’s 139 

urine, is still widely use to induce ovulation in mares, although the use of GnRH 140 

analogues and recombinant equine gonadotropins [32] is increasing, especially since 141 

the latter do not induce the production of antibodies that decrease their activity.  142 

One interesting aspect for comparative placentology is the observation that invasive 143 

chorionic girdle cells and non-invasive binucleated cells from endometrial cups 144 

secrete pregnancy specific glycoproteins (PSGs) from the carcinoembryonic antigen-145 

related cell adhesion molecules (CEACAM) gene family, similar to what is observed 146 

in haemochorial placentas from primates and rodents. Functional assays indicate 147 

that PSGs may control activity of T-cells located at the borders of endometrial cups 148 

and perhaps on peripheral T-cells [33].  149 

 150 

3. The allantochorion in health and disease    151 

3.1. Allantochorion structure 152 

The allantochorion is the definitive form of the equine placenta, resulting from the 153 

fusion of chorion and allantoic vascularisation [11,34,35]. Present from 40 days post 154 

ovulation, it is categorised as a diffuse, epitheliochorial placenta with microvillous 155 

structures ([6,36] for review). Its development is contemporary to the regression of 156 

the yolk sack (totally regressed by 56-75 days) and the transition from a vitelline to a 157 

chorioallantoic placenta. During this early stage, proteomic studies indicate that there 158 

is probably a crosstalk between the yolk sack and the chorioallantoic placenta for the 159 

transport of molecules to the foetus [34,37].  Once the yolk sack has regressed, it is 160 

the sole provider of nutrient exchange between the mare and the foetus, through 161 

both haemotrophic and histotrophic exchanges, representing roughly 90 and 10% of 162 

exchanges, respectively.  163 

Although the allantochorion structure is mature by 120-150 days of gestation, the 164 

main exchange structure, i.e., the microvillosity, increases in size throughout 165 

gestation [38].  166 
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Nevertheless, the 3D observation of the placenta using 3D-microtomography, micro 167 

CT-scan or light sheet imaging may yield further insight into both structure and 168 

function [40,41]. For example, vascular branching, transepithelial channels, pericytes 169 

can be visualized and analysed at different stages of gestation or in response to 170 

environment. An example of 4D imaging of the equine term placenta, zooming from 171 

above the microcotyledonary structure down to the allantois, is provided in Figure 2 172 

and Supplementary data 1. Figure 2 also presents electron microscopic images of 173 

microcotyledons demonstrating the presence of ciliae at the surface of the 174 

trophoblast in term placenta, probably involved in increasing trophoblastic exchange 175 

surface and fœto-maternal exchanges, as also shown by others [34,38].  176 

 177 

3.2. Transplacental transfer 178 

The placenta is involved in nutrient transfers such as glucose, amino acid and fatty 179 

acid transport, as well as ion exchange [42]. Many glucose transporters (SLC2A1-3, 180 

2A5, 2A8, 2A10, 5A1 and 5A11) are expressed in the trophoblast as early as day 14, 181 

with the SLC2A1 protein (GLUT1) located on the apical membrane of the 182 

trophectoderm [43]. Subsequently, SLC2A1 is expressed only in the basolateral 183 

membrane of the haemotrophic trophoblast, uterine epithelial cells, and in the 184 

membranes of foetal capillaries. It is absent from the histotrophic trophoblast. The 185 

GLUT3 transporter is expressed in the apical membrane (opposite the endometrial 186 

epithelium) of haemotrophic trophoblast cells [44]. In addition, the equine placenta is 187 

more permeable to glucose than bovine and ovine placentas but less so than the 188 

human placenta [45]. Foetal metabolism is indeed highly dependent on glucose from 189 

mid to late gestation [46]. Calcium transport via 9kDa calcium binding protein (9CBP) 190 

is performed from the uterine glands through the histotrophic trophoblast [44]. 191 

Haemotrophic and histotrophic trophoblasts may therefore have different roles in 192 

placental nutrient transport.  193 

The placenta also has metabolic functions, for the provision of its own energy but 194 

also to synthesize additional nutrients for the foetus. It is able to produce lactate and 195 

fructose from maternal glucose [47] but also to use amino acids [48] and lipids 196 

[49,50] as metabolic substrates. Lactate, fructose and amino acids do not appear to 197 

be predominantly utilized by utero-placental tissues during mid- and late-gestation in 198 

horses [47]. The equine placenta is also permeable to fatty acids, used as an energy 199 

source, especially at the end of gestation [47].  200 
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 201 

3.3. Steroid secretion  202 

The equine placenta is involved in the synthesis of steroid hormones and 203 

polypeptide hormones such as eCG and growth factors. In most species, 204 

progesterone is necessary to maintain pregnancy, either being secreted by the 205 

corpus luteum (CL) during the whole duration of pregnancy, or with a placental relay 206 

([51] for review). In the horse, current knowledge on placental steroid secretion has 207 

been reviewed [52,53].  208 

The CL of the mare is able to produce and secrete progesterone until Day 180-200 209 

of gestation but thereafter, progesterone is undetectable in maternal blood [54]. 210 

Nevertheless, plasma concentrations of allantochorion-derived progesterone 211 

metabolites increase progressively from 70 days so that the luteo- placental shift in 212 

progestagen synthesis occurs around 110 days of pregnancy ([52] for review).  213 

Overall plasma progestagen concentrations remain stable until about three weeks 214 

before birth, when they rise rapidly to reach a peak around 3 days before foaling and 215 

fall abruptly [55–57]. Among those progestagens, the progesterone metabolite 5-α 216 

dihydroprogesterone (DHP) could be the active compound ensuring myometrial 217 

quiescence based on its competitive binding to the equine progesterone receptor 218 

[58,59], although it was not able to prevent oxytocin-induced myometrial contractions 219 

in vitro [60]. Effects may be mediated by its own metabolite, allopregnanolone, which 220 

is an agonist of gamma-aminobutyric acid A receptors that has been shown to 221 

induce myometrial relaxation in human [61] and rat [62]. Indeed, the rapid reduction 222 

in maternal plasma progestagens before foaling has been related to the decline in 223 

the allantochorion expression of the SRD5A1 and AKR1C23 genes, that encode 224 

respectively for the 5α-reductase and 20-α-hydroxysteroid dehydrogenase enzymes 225 

and are involved in progestagen synthesis [63].  226 

In order to prevent abortion or premature delivery, mares are often treated with the 227 

progesterone analogue altrenogest, which succesfully maintains pregnancy without 228 

preventing parturition to occur [64,65]. Although initial works indicated that 229 

altrenogest treatment might be deleterious for proper foetal maturation [66], 230 

subsequent work showed that foetal maturation was normal [67] and validated the 231 

use of altrenogest, although some doubts remain about its effects on the immune 232 

response of the mare [68].  233 
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Another remarkable characteristic of the mare is the high plasma concentrations of 234 

estrogens, in particular estrone sulfate, related to the production of precursors 235 

(DHEA and pregnenolone) by the hyperplastic foetal gonads [69–71], that are 236 

metabolized within the allantochorion as estrone, and subsequently sulfated in the 237 

endometrium [53,72,73]. Indeed, the presence of the CYP19A1 transcript as well as 238 

aromatase activity have been recently described in the allantochorion [74]. The role 239 

of these estrogens, that decline at the end of gestation [75] together with the 240 

regression and degeneration of the foetal gonad interstitial cells [71], is still unknown. 241 

Although gonadectomy did not prevent mares to go to term, maternal estrone sulfate 242 

dropped and foals were dysmature [76,77], indicating that the foetal gonad may be 243 

playing a role in promoting foetal maturation prior to term.  244 

  245 

3.4. Gene expression in the allantochorion 246 

Interestingly, the expression of only 29.1% of placental genes was found to change 247 

significantly with gestation age, whereas the expression of 47.4% of the endometrial 248 

genes changed during the same period. Mid-gestation (4-6 months) appeared to 249 

foster stable gene expression, changes in gene expression were observed at 10 250 

months and leading to subsequent very distinct patterns of gene expression at 11 251 

months, indicating that analyses of term placenta are very distinct from earlier 252 

gestational periods. The ten most abundant genes expressed in the allantochorion 253 

were related to endocrinology (i.e., relaxin, aromatase), immune response (i.e., 254 

serpin family A member 14,  serine protease inhibitor, secretory leukocyte peptidase 255 

inhibitor, lipocalin 2) and transport (GM2 ganglioside activator, lipocalin 2, serpin 256 

family A member 14, uteroferrin; acid-resistant phosphatase 5, fatty acid binding 257 

protein 1) [78]. 258 
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Overlapping genes (when two genes are located on the opposite genomic strands 259 

within the same locus, also known as sense-antisense gene pairs [79]), have been 260 

described in the equine allantochorion but their physiological relevance remains to 261 

be determined [80]. Imprinted genes, with allele-specific transcription, are particularly 262 

involved in foeto-placental development [81,82]. The number of imprinted genes is 263 

estimated to range to around 100 in mice and 50 in humans [83]. In the horse, 254 264 

potentially imprinted genes (129 maternally and 125 paternally imprinted) were 265 

reported in the equine placenta, 23 originating from overlapping loci [84]. The 266 

parental conflict theory states that paternally inherited alleles increase foetal growth 267 

at the expense of the mother whereas maternally inherited genes control nutrient 268 

exchanges to optimize offspring fitness [85]. In the horse, maternally expressed 269 

genes seemed to reduce while paternally expressed genes attempted to extend 270 

gestation length [84].    271 

 272 

 273 

3.5. Gene expression in placentitis 274 

The diagnosis of placentitis in mares is currently based on clinical signs (vulval 275 

discharge, premature mammary secretions), transrectal ultrasonography, the 276 

monitoring of plasma progestagen concentrations (see above) and several other 277 

biomarkers (for review, see [86–89]). Placentitis can be associated with abortions 278 

and neonatal death. However, apart from ultrasound examination [87,90] and/or an 279 

abrupt decrease in maternal plasma progestagen concentrations [55,56,91], precise 280 

indications of foetal death are lacking. Thus, early markers of the disease and of 281 

foetal demise are still being explored. Experimentally induced placentitis at 280-300 282 

days of gestation induced the upregulation of 12 small RNAs in the chorioallantois 283 

and 9 in the serum  [24], that could potentially be used as biomarkers. Recently, 284 

increased expression of PLAC8 was reported in the allantochorion of mares with 285 

nocardioform placentitis (an epizootic form of placentitis mostly observed in 286 

Kentucky and leading to abortions, neonatal death and foetal growth retardation), 287 

showing that there is a specific signature for this particular infection [92]. It is not 288 

known if placentitis caused by the ingestion of shedded caterpillar exoskeletons [93], 289 

that is very similar to nocardioform placentitis, is also associated with the same 290 

PLAC8 gene expression patterns.  291 
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Treatments of placentitis, including antibiotics, progesterone receptor agonists 292 

(altrenogest), tocolytics and anti-inflammatory drugs have been reviewed elsewhere 293 

[64,86,94] and are not the object of this review.  294 

295 

4. Foetal programming296 

Birth of a healthy foal is preceded by physiological foetal maturation and proper 297 

synchronisation between mare and foetus. Premature foaling, even by a couple of 298 

days, may threaten the foal’s survival due to immaturity. Indeed, the foetal 299 

adrenocortical secretion of cortisol, that leads to the final maturation of foetal organs, 300 

takes place very late in the horse [5]. In the present journal issue, foetal maturation 301 

as well as the induction of foaling in the mare are reviewed by Abby Fowden and 302 

Christina Nagel and are not developed here.  303 

The concept of the Developmental Origins of Health and Disease (DOHaD) is now 304 

well established and has been demonstrated to be valid in the horse by [95–98]. 305 

Current information about foetal programming in the horse has been recently 306 

reviewed [95,99,100]. So far, in the horse, only a very limited number of 307 

developmental programming studies used NGS methods to evaluate the effect of 308 

maternal environment on placental function [101,102]. This is why most studies 309 

discussed in this part of the review used RT-qPCR to assess the placental gene 310 

expression.   311 

312 

4.1. Critical periods 313 

Adverse effects of maternal environment on foetal and postnatal development have 314 

been shown to differ, depending on the gestational stage at which they were applied 315 

[103]. This implies the existence of critical periods of development that are directly 316 

correlated to the timeline of foetal organ development and maturation.  317 

In the horse, at the time of implantation, the embryo has completed most of its 318 

organogenesis and critical periods of development may be inferred from organ 319 

development and maturation [103]. The differential timing of organ versus placental 320 

development is summarized in Figure 1. So far, information on effects of mare 321 

nutrition at specific times of gestation is scarce. In addition, sexual dimorphism in the 322 

placental and offspring response has been well documented in other species [105]. 323 

So far, to the authors’ knowledge such a dimorphism has not been observed in 324 

Equidae.  325 
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It is also interesting to note that the presence of osteochondrosis, a juvenile 326 

osteochondral lesion affecting from 0% to 64% of foals depending on breeds 327 

[106,107], can be observed in foals as young as 2 days of age. During the last 2/3 of 328 

gestation, the foal epiphyseal cartilage undergoes significant changes in collagen 329 

structure and vascularization and the development of foetal chondrocytes in vitro is 330 

sensitive to hormones such as IGF and insulin [108,109], indicating that the 331 

development of osteochondrosis lesions can begin before birth [110]. 332 

This review, however, covers early and late gestation only as, to our knowledge, 333 

effects of maternal environment during mid-gestation have not been studied in the 334 

horse so far.  335 

 336 

4.2. Effect of size discrepancy between embryo and recipient mare breeds  337 
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Because the equine placenta is diffuse, its size is strongly correlated with the size of 338 

the uterus and therefore the mare [111]. Indeed, placentas of Shire x Shetland cross 339 

foals were lighter for foals born to Shetland mares than for foals born to Shire mares 340 

[112]. Using embryo transfer experiments in pony and Thoroughbred mares, Allen et 341 

al. showed that the placentas and foals of Welsh pony embryos transferred into 342 

Thoroughbred mares were heavier and larger than the placentas and foals of control 343 

ponies but lighter and smaller compared to those of control Thoroughbreds. 344 

Conversely, the placentas and foals of Thoroughbred embryos carried by Welsh 345 

ponies were lighter and smaller than those of control Thoroughbreds [111]. These 346 

results demonstrated the reciprocal influence of foetal genotype and maternal 347 

environment on the macroscopic development of the placenta and foal. Allen and 348 

colleagues also validated the hypothesis of foetal programming of neonatal 349 

carbohydrate homeostasis [113], cardiovascular [114] and adrenal cortical function 350 

[115] in foals. They also confirmed the hypothesis of developmental origins of growth 351 

until the age of 3 years [98], with mare lactation being an additional factor involved in 352 

the programming mechanism. Using the same type experimental protocol, Peugnet 353 

et al. showed that not only growth, but also insulin metabolism and plasma growth 354 

hormones were inversely affected in foals with reduced growth (increased thyroid 355 

hormones, high fasting glycemia, high insulin sensitivity, increased risk of developing 356 

juvenile osteoarticular lesions) and foals with enhanced growth (reduced thyroid 357 

hormones, low fasting glycemia, insulin resistance) were affected until one year and 358 

a half [116,117].  359 

4.3. Foetal programming through maternal nutrition 360 

 361 

Maternal nutrition has been demonstrated to affect foal metabolism, onset of 362 

osteochondrosis and the maturation of reproductive organs. Placental adaptations 363 

through increased vascularization and nutrient transport, as well as modifications of 364 

the maternal metabolism through lipid mobilization and reduced insulin secretion are 365 

sufficient to compensate for moderate maternal undernutrition (70-80% of maternal 366 

requirement) [118–120]. Nevertheless, delayed testicular maturation, reduced insulin 367 

sensitivity and reduced cannon width have been observed in growing foals [121].  368 

Severe undernutrition, however, affects foetal growth despite placental 369 

morphological adaptation [122].  370 
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Similar to moderate undernutrition, epidemiological and experimental studies show 371 

that feeding concentrates to pregnant mares increases the development of 372 

osteochondrosis lesions in growing foals [123,124]. Experimentally, maternal 373 

supplementation with carbohydrate concentrates does not affect foal birth weight 374 

[125]. Placental vascularisation, however, is altered, gene sets related to 375 

inflammation and vascularization are enriched whilst gene sets related to placental 376 

metabolism are downregulated [101]. Moreover, maternal postprandial insulin 377 

response is increased during gestation, implying a potential effect of maternal 378 

metabolism on foal osteoarticular development [124,126].  379 

Maternal obesity, characterized by excess body condition score, decreased insulin 380 

sensitivity and chronic inflammation, was shown to decrease insulin sensitivity and 381 

increase systemic inflammation and incidence of osteochondrosis in foals, although 382 

foal growth was not affected until 18 months of age [127]. In addition, excessive 383 

maternal energy intake only in the third part of pregnancy was recently shown in 384 

newborn foals to alter the pancreatic architecture and the growth and differentiation 385 

of skeletal muscle together with the muscular expression of genes involved in 386 

insulin-signalling [128,129].  387 

Altogether, these data confirm that maternal nutrition may alter the development of 388 

organs essential for athletic performance and, as seen in humans, impair health in 389 

ageing animals through the development of metabolic diseases such as the equine 390 

metabolic syndrome.       391 

 392 

4.3. Foetal programming through other environmental constraints 393 
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Effects of age and parity of mares on gestation and foal health have recently been 394 

reviewed [130]. In general, primiparous mares produce foals of reduced size and 395 

weight compared to multiparous mares. These foals remain smaller until at least one 396 

year of age and lighter until 4 months of age in most studies [131–136]. Robles et al. 397 

showed that this difference was associated with increased plasma triiodothyronine 398 

concentrations at birth in foals born to primiparous mares and decreased placental 399 

histotrophic exchange area. Foals from primiparous mares remained smaller than 400 

foals from multiparous mares until at least 18 months of age and had a delayed 401 

development of the carbohydrate homeostasis regulatory system until 12 months of 402 

age [136]. In addition, prepubertal males had delayed testicular maturation at 12 403 

months [136]. Some of these effects could be possibly reduced using arginine 404 

supplementation in pregnant mares either in early [137] or late pregnancy [138] but 405 

more studies are needed to confirm these observations.  406 

Both youngest and oldest dams were reported to produce lighter and smaller foals at 407 

birth and until 510 days of age [139]. In most studies, however, maternal age is not 408 

controlled for parity, thus inducing important bias. The risk of developing 409 

osteochondrosis lesions is increased in foals born to mares less than 10 years old 410 

and more than 15 years old [140].  411 

Effects of season of birth have also been described on the neonatal development of 412 

horses, with reduced placental weight and postnatal growth in foals born in January 413 

and February (northern hemisphere) compared to foals born later in the season 414 

[141]. Foals born early (January to March) or late (after May) in the season have a 415 

higher risk of developing osteochondrosis lesions [140,142]. These effects may be 416 

also related to nutritional effects as diet may considerably differ between winter and 417 

spring months, possibly affecting foetal programming [143].  418 

In terms of breeding management, the use of artificial reproduction techniques (ART) 419 

is increasing in the equine industry. There are currently concerns about the safety of 420 

the use of these technologies for the long term health of offspring, both in humans 421 

and animals ([31,144–148] for review). So far, information collected from in vitro 422 

produced foals are reassuring [149] but longer follow-up are needed to evaluate 423 

potential effects on sport and reproductive performance.  424 

 425 
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Finally, in horses, laminitis is a metabolic pathology associated with significant 426 

adiposity leading to tilting of the 3rd phalanx and thus lameness. This pathology is 427 

also associated with hypertension and changes in the vascular endothelium. Mares 428 

with laminitis in pregnancy were shown to have a reduced gestation length 429 

associated with decreased foal  and placental weight at birth [150]. In addition, their 430 

placentas had thickened vascular wall, as well as increased fibrosis in the 431 

microcotyledons [150]. 432 

 433 

5. The role of women scientists in understanding the equine foetal  434 

Women scientists have largely been involved in the building up of knowledge on 435 

equine foeto-placental development. Virginia Osborne was a a pioneer: as professor 436 

in anatomy at the university of Sydney at a time when women veterinarians 437 

specialised in horses were very few, she was the first to point our that breeding 438 

management of mares could play a role in pregnancy loss [9]. In terms of 439 

physiological events around implantation, morphological and hormonal events taking 440 

place in early pregnancy have been thoroughly reviewed by the late Twink Allen with 441 

his late colleague Francesca Stewart [6] and subsequently with Sandra Wilsher [11]. 442 

In addition, gene expression in the chorionic girdle, at the origin of the endometrial 443 

cups, has been characterized by the group of Doug Antczack and more recently 444 

Amanda de Mestre [15–18]. 445 

Further on into pregnancy, the ultrastructural organisation of the placental 446 

microcotyledons has been very thoroughly described by histology by Carole Samuel 447 

and, subsequently, Sandra Wilsher and Twink Allen and Maria Angelica Miglino’s 448 

group [6,34,36,39]. The unique steroid profiles of the equine pregnant mare have 449 

been the focus of many researchers, out of which the female scientists Marian Silver, 450 

Jenny Ousey, Abby Fowden, Pascale Chavatte-Palmer, Shavahn Loux and Erin 451 

Legacki have been very active in deciphering of the role of progestogens and 452 

glucocorticoids. 453 

More recently, using next generation sequencing tools, placental and endometrial 454 

gene expression from mid to late gestation have been recently explored using RNA 455 

sequencing by the group of Shavahn Loux and Barry Ball [78]. 456 

In terms of placental pathology, many female veterinary scientists (among whom 457 

Michelle Leblanc, Catherine Renaudin, Margo MacPherson, Judy Cawdell-Smith and 458 

Shavahn Loux) are at the origin of the current understanding of placentitis. 459 
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Marian Silver first showed that the foetal adrenocortical secretion of cortisol, that 460 

leads to the final maturation of foetal organs, takes place very late in the horse [5]. 461 

Physiological development of the equine foetus has been studied in depth by Marian 462 

Silver, Abby Fowden and Alison Forhead and the latter recently published a very 463 

thorough review on the subject [104]. Pioneer experiments of the developmental 464 

origins of health and disease in the horse were performed by Twink Allen, Jenny 465 

Ousey, Abby Fowden, the late Josie Coverdale, Pauline Peugnet, Christine Aurich 466 

and the authors of the present article.  467 

 468 

6. Conclusion 469 

The data presented above illustrate the recent advances in the exploration of 470 

placental function in the horse. Access to new generation sequencing (NGS) 471 

provides an immense advantage for understanding the peculiarities of this species 472 

and developing new therapeutic treatments for placental pathologies. Nevertheless, 473 

all sequencing so far has been performed on the whole placenta and only single cell 474 

sequencing will be able to unravel the contribution of respective cell lines.  NGS will 475 

also provide insight into the role of circulating microvesicles and microRNAs during 476 

pregnancy, possibly enabling the development of targeted therapies using exosomes 477 

[151]. Moreover, other avenues need to be explored such as better microscopic 478 

imaging to properly understand cellular interactions within this complex tissue. In 479 

terms of programming, it is urgent to more clearly explore critical periods in relation 480 

to horse management and to better define nutritional guidelines for the pregnant 481 

mares, but also for stallions, as paternal programming has also been demonstrated 482 

in other species [152]. Finally, as artificial reproduction techniques are increasingly 483 

used in horses, their effects on foetoplacental and postnatal development need to be 484 

further explored in a species where animals are bred for athletic performance and 485 

kept until old age. In that context, the horse may also be an interesting model for 486 

humans [31]. 487 

 488 
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Figure 1: Comparative development of placenta and foetus in the equine from 28 504 

days of gestation. Inspired by [11,34,39,153,154].  505 

 506 

Figure 2: Term placental structure from three different imaging methods. A. histology  507 

(transversal section stained with hematoxylin, eosin and saffron).  B. scanning 508 

electron microscopy of microcotyledons (the membrane of haemotrophic 509 

trophoblastic cells, that cover the microcotyledons, is folded into microvilli. This leads 510 

to an increase in surface exchange between maternal and foetal tissues.).  C. Light 511 

sheet microscopy (vessels fluoresce in green and stroma fluoresces in purple).  D. 512 

Diagram of placental structure inspired by [39] 513 

 514 

 515 

 516 
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Fetal age 28 days 36 days 60 days 105 days

Teguments Translucid skin + hoof started Development of dermis vessels Skin thicker and less transparent + hoof apparatus formed Hair on the rostrum

Bones Visible somite and cartilage + ribs in formation Started ossification + visible ribs and sternum with cartilage formation Development of bones

Muscles Mesenchymal tissue Diaphragm development Transition from mesenchyme to muscle

Central Nervous system Spinal cord present + development of encephalic vesicles Formation of the brainstem and the definitive brain

Sensorial organs Weakly pigmented optical vesicles Development of the otic vesicle (hearing) Pigmented retina + eyelids almost closed  + formation of external auricle + 
development of the olfactory epithelium

Present orbit vesicle + tactile 
hairs on the lips

Respiratory system Nasal area delimited + visible long and trachea Formation of system from nasal cavity to trachea

Circulatory system Vascularization of the dermis + heart divided in 2 
chambers

Heart formed

Digestive system Voluminous liver present Visible oral cavity + thoracic esophagus Esophagus and tongue formed + Visible intestinal loops

Urinary system Visible kidneys

Reproductive system Genital tubercule formed Early external reproductive organs Formation of the mammary gland

Appendices Tail development + bud of members Members formed Tail formed 

Amnios

Uterine epithelium

Fetal vessels

36-38 days

45-60 days

100 → 320-360 days
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trophoblasts

invading 
endometrial stroma

Maternal 
leukocytes

Mare uterus
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The definitive form of equine placenta
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