
HAL Id: hal-03409588
https://hal.science/hal-03409588v1

Submitted on 29 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Church Synthesis on Register Automata over Linearly
Ordered Data Domains

Léo Exibard, Emmanuel Filiot, Ayrat Khalimov

To cite this version:
Léo Exibard, Emmanuel Filiot, Ayrat Khalimov. Church Synthesis on Register Automata
over Linearly Ordered Data Domains. STACS 2021, Mar 2021, Saarbrücken, Germany.
�10.4230/LIPIcs.STACS.2021.54�. �hal-03409588�

https://hal.science/hal-03409588v1
https://hal.archives-ouvertes.fr

Church Synthesis on Register Automata over
Linearly Ordered Data Domains
Léo Exibard
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
Université libre de Bruxelles, Belgium

Emmanuel Filiot
Université libre de Bruxelles, Belgium

Ayrat Khalimov
Université libre de Bruxelles, Belgium

Abstract
Register automata are finite automata equipped with a finite set of registers in which they can
store data, i.e. elements from an unbounded or infinite alphabet. They provide a simple formalism
to specify the behaviour of reactive systems operating over data ω-words. We study the synthesis
problem for specifications given as register automata over a linearly ordered data domain (e.g.
(N,≤) or (Q,≤)), which allow for comparison of data with regards to the linear order. To that end,
we extend the classical Church synthesis game to infinite alphabets: two players, Adam and Eve,
alternately play some data, and Eve wins whenever their interaction complies with the specification,
which is a language of ω-words over ordered data. Such games are however undecidable, even
when the specification is recognised by a deterministic register automaton. This is in contrast
with the equality case, where the problem is only undecidable for nondeterministic and universal
specifications.

Thus, we study one-sided Church games, where Eve instead operates over a finite alphabet, while
Adam still manipulates data. We show they are determined, and deciding the existence of a winning
strategy is in ExpTime, both for Q and N. This follows from a study of constraint sequences, which
abstract the behaviour of register automata, and allow us to reduce Church games to ω-regular
games. Lastly, we apply these results to the transducer synthesis problem for input-driven register
automata, where each output data is restricted to be the content of some register, and show that if
there exists an implementation, then there exists one which is a register transducer.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Automata over infinite objects; Theory of computation → Transducers

Keywords and phrases Synthesis, Church Game, Register Automata, Transducers, Ordered Data
Words

Digital Object Identifier 10.4230/LIPIcs...

Funding This work was supported by the Fonds de la Recherche Scientifique - FNRS under Grant
n°F.4510.9. Emmanuel Filiot is research associate of the Fonds de la Recherche Scientifique - FNRS.

© Léo Exibard, Emmanuel Filiot, Ayrat Khalimov;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

00
4.

12
14

1v
5

 [
cs

.F
L

]
 6

 O
ct

 2
02

1

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Church Synthesis on Register Automata over Linearly Ordered Data Domains

1 Introduction
Synthesis is the problem of automatically constructing a system from a behavioral specification.
It was first proposed by Church as a game problem: two players, Adam in the role of the
environment and Eve in the role of the system, alternately pick the values from alphabets I
and O. Adam starts with i0 ∈ I, Eve responds with o0 ∈ O, ad infinitum. Their interaction
results in the infinite outcome i0o0i1o1... ∈ (I · O)ω. The winner is decided by a winning
condition, represented as a language S ⊆ (I · O)ω called specification: if the outcome of
Adam and Eve’s interaction belongs to S, the play is won by Eve, otherwise by Adam. Eve
wins the game if she has a strategy λE : I+ → O to pick values, depending on what has been
played so far, allowing her to win against any Adam strategy. Similarly, Adam wins the game
if he has a strategy λA : O∗ → I to win against any Eve strategy. In the original Church
problem, the alphabets I and O are finite, and specifications are ω-regular languages. The
seminal papers [12, 34] connected Church games to zero-sum games on finite graphs. They
also showed that Church games enjoy the property of determinacy: every game is either won
by Eve or otherwise by Adam, and finite-memoriness: if Eve wins the game then she can
win using a finite-memory strategy which can be executed by e.g. Mealy machines.

The synthesis and Church games were extensively studied in many settings, for example,
quantitative, distributed, non-competitive, yet Adam and Eve usually interact via finite
alphabets. But real-life systems often operate values from a large to infinite data domain.
Examples include data-independent programs [40, 24, 31], software with integer parame-
ters [10], communication protocols with message parameters [15], and more [9, 38, 14]. To
address this challenge, recent works looked at synthesis where infinite-alphabet specifications
are described by register automata and systems (corresponding to Eve strategies in Church
games) by register transducers [16, 26, 27, 17].

Register automata extend finite-state automata to infinite alphabets D by introducing a
finite number of registers [25]. In each step, the automaton reads a data from D, compares
it with the values held in its registers, depending on this comparison it decides to store the
data into some of the registers, and then moves to a successor state. This way it builds a
sequence of configurations (pairs of state and register values) representing its run on reading
a word from Dω: it is accepted if the visited states satisfy a certain condition, e.g. parity.
Transducers are similar except that in each step they also output the content of one register.

Previous synthesis works [16, 26, 27, 17] focused on register automata and transducers
operating in the domain (D,=) equipped with equality tests only. Related works [21, 30]
on synthesis of data systems and which do not rely on register automata are also limited to
equality tests or do not allow for data comparison. Thus, we cannot synthesise systems that
output the largest value seen so far, grant a resource to a process with the lowest id, or raise
an alert when a heart sensor reads values forming a dangerous curve. These tasks require ≤.

We study Church games where Adam and Eve have infinite alphabet (D,≤), namely the
dense domain (Q,≤) or the nondense domain (N,≤), and specifications are given as register
automata. Already in the case of infinite alphabets (D,=), finding a winner is undecidable
when specifications are given as nondeterministic or universal register automata [16, 17],
so the works either restricted Eve strategies to register transducers with an a-priori fixed
number of registers or considered specifications given as deterministic automata. The case
of (N,≤) is even harder. Here, Church games are undecidable already for specifications
given as deterministic register automata, because they can simulate two-counter machines
(Theorem 10). For example, to simulate an increment of a counter, whose value is currently
kept in a register c, the automaton asks Adam to provide a data d above the value ν(c) of
the counter, saves it into a register cnew, and asks Eve to provide the value between ν(c)

L. Exibard, E. Filiot, A. Khalimov XX:3

Figure 1 Eve wins this
game in N but loses in Q. 1 2 3 4 5 6

Eve
wins

>/↓rM a, b rl <∗< rM/↓rl

a b

rl <∗< rM

elseelse a, b

and ν(cnew). If Eve can do this, then Adam cheated and Eve wins, otherwise the game
continues. Adam wins if eventually the halting state is reached. However, this proof breaks
in the asymmetric setting, where Adam provides data but Eve picks labels from a finite
alphabet only. We now give an example to better illustrate the one-sided setting.

Example. Figure 1 illustrates a game arena where Adam’s states are squares and Eve’s states
are circles. Eve’s objective is to reach the top, while Adam tries to avoid it. There are two
registers, rM and rl, and Eve’s finite alphabet is {a, b}. The test > (true) means that the
comparison of the input data with the register values is not important, the test rl < ∗ < rM
means that the data should be between the values of registers rl and rM , and the test ‘else’
means the opposite. The writing ↓ r means that the data is stored into the register r. At
first, Adam provides some data dM , serving as an upper bound stored in rM . Register rl,
initially 0, holds the last data dl played by Adam. Consider state 3: if Adam provides a data
outside of the interval]dl, dM [, he loses; if it is strictly between dl and dM , it is stored into
register rl and the game proceeds to state 4. There, Eve can either respond with label b and
move to state 5, or with a to state 3. In state 5, Adam wins if he can provide a data strictly
between dl and dM , otherwise he loses. Eve wins this game in N: for example, she could
always respond with label a, looping in states 3–4. After a finite number of steps, Adam is
forced to provide a data ≥ dM , losing the game. An alternative Eve winning strategy, that
does depend on Adam data, is to loop in 3–4 until dM − dl = 1 (hence she has to memorise
the first Adam value dM), then move to state 5, where Adam will lose. In the dense domain
Q, however, the game is won by Adam, because he can always provide a value within]dl, dM [
for any dl < dM , so the game either loops in 3–4 forever or reaches state 6. y

Despite being asymmetric, one-sided Church games are quite expressive. For example,
they enable synthesis of runtime data monitors that monitor the input data stream and raise
a Boolean flag when a critical trend happens, like oscillations above a certain amplitude.
Another example: they allow for synthesis of register transducers which can output data
present in one of the registers of the specification automaton (also studied in [17]). Register-
transducer synthesis serves as our main motivation for studying Church games.

The key idea used to solve problems about register automata is to forget the precise values
of input data and registers, and track instead the constraints (also called types) describing
the relations between them. In our example, all registers start in 0 so the initial constraint is
r1
l = r1

M , where ri abstracts the value of register r at step i. Then, if Adam provides a data
above the value of rl, the constraint becomes r2

l < r2
M in state 2. Otherwise, if Adam had

provided a data equal to the value in rl, the constraint would be r2
l = r2

M . In this way the
constraints evolve during the play, forming an infinite sequence. Looping in states 3–4 induces
the constraint sequence

(
ril<r

i+1
l <riM = ri+1

M

)
i>2. It forms an infinite chain r3

l < r4
l < ...

bounded by constant r3
M = r4

M = ... from above. In N, as it is a well-founded order, it is
not possible to assign values to the registers at every step to satisfy all constraints, so the
sequence is not satisfiable. Before elaborating on how this information can be used to solve
Church games, we describe our results on satisfiability of constraint sequences. This topic
was inspired by the work [36] which studies, among others, the nonemptiness problem of
constraint automata, whose states and transitions are described by constraints. In particular,
they show [36, Appendix C] that satisfiability of constraint sequences can be checked by
nondeterministic ωB-automata [4]. Nondeterminism however poses a challenge in synthesis,
and it is not known whether games with winning objectives as nondeterministic ωB-automata

XX:4 Church Synthesis on Register Automata over Linearly Ordered Data Domains

are decidable. In contrast, we describe a deterministic max-automaton [7] characterising the
satisfiable constraint sequences in N. As a consequence of [8], games over such automata are
decidable. Then we study constraint sequences whose certain chains are bounded, because
they happen to be useful for solving Church games with register automata. We show how to
assign values to the registers in such a constraint sequence on-the-fly, no matter what the
future beholds, in order to satisfy this constraint sequence.

To solve one-sided Church games with a specification given as a register automaton S
for (N,≤) and (Q,≤), we reduce them to certain finite-arena zero-sum games, which we
call feasibility games. The states and transitions of the game are those of the specification
automaton S. The winning condition requires Eve to satisfy the original objective of S only
on feasible plays, i.e. those that induce satisfiable constraint sequences. In our example, the
play 1 2 (3 4)ω does not satisfy the parity condition, yet it is won by Eve in the feasibility
game since it is not satisfiable in N, and therefore there is no corresponding play in the
Church game. We show that if Eve wins the feasibility game, then she wins the Church
game, using a strategy that simulates the register automaton S and simply picks one of
its transitions. It is also sufficient: if Adam wins the feasibility game then he wins the
Church game. To prove this, we construct, from an Adam strategy winning in the feasibility
game, an Adam data strategy winning in the Church game. This step uses the previously
mentioned result on satisfiability of constraint sequences of a special kind. Overall, our
results on one-sided Church games in (N,≤) and (Q,≤) are:

they are decidable in time exponential in the number of registers of the specification,
they are determined: every game is either won by Eve or by Adam, and
if Eve wins, then she has a winning strategy that can be described by a register transducer
with a finite number of states and which picks transitions in the specification automaton.

Finally, these results allow us to solve the register-transducer synthesis problem from input-
driven output specifications [17] over ordered data.
Related works. [18] studies synthesis from variable automata with arithmetics (we only
have ≤) which are incomparable with register automata; they only consider the dense domain.
The paper [19] studies strategy synthesis but, again, mainly in the dense domain. A similar
one-sided setting was studied in [20] for Church games with a winning condition given by
logical formulas, but only for (D,=). The work on automata with atoms [29] implies our
decidability result for (Q,≤), even in the two-sided setting, but not the complexity result,
and it does not apply to (N,≤). Our setting in N is loosely related to monotonic games [2]:
they both forbid infinite descending behaviours, but the direct conversion is unclear. Games
on infinite arenas induced by pushdown automata [39, 11, 1] or one-counter systems [37, 22]
are orthogonal to our games.
Outline. We start with Section 2 on satisfiability of constraint sequences, which is the main
technical tool, then describe our results on Church games in Section 3 and synthesis in Sect.4.

2 Satisfiability of Constraint Sequences

In this paper, N = {0, 1, . . . }. A data domain D is an infinite countable set of elements
called data, linearly ordered by some order denoted <. We consider two data domains, N
and Q, with their usual order. We also distinguish a special element 0 of D: in Q its choice
is not important, in N it is the expected zero (the minimal element).
Registers and their valuations. Let R be a finite set of elements called registers, intended
to contain data values, i.e. values in D. A register valuation is a mapping ν : R→ D (also
written ν ∈ DR). We write 0R to denote the constant valuation ν0(r) = 0 for all r ∈ R.

L. Exibard, E. Filiot, A. Khalimov XX:5

Figure 2 Visualisation of a constraint sequence.
Individual register values are depicted by black
dots, and dots are connected by black lines when
they talk about the same register. Blue/red/-
green/yellow paths depict chains.

order

time0 1 2 3 4 5 6

r4
r3
r2
r1

Constraint sequences, consistency and satisfiability. Fix a set of registers R (which
can also be thought of as variables), and let R′ = {r′ | r ∈ R} be the set of their primed
versions. Fix a data domain D. In what follows, the symbol ./ denotes one of >, <, or =.
A constraint is a maximal consistent set of atoms of the form t1 ./ t2 where t1, t2 ∈ R ∪R′.
It describes how register values change in one step: their relative order at the beginning
(when t1, t2 ∈ R), at the end (when t1, t2 ∈ R′), and between each other (with t1 ∈ R and
t2 ∈ R′). E.g., C = {r1 < r2, r1 < r′1, r2 > r′2, r

′
1 < r′2} is a constraint over R = {r1, r2},

which is satisfied, for instance, by the two successive valuations νa : {r1 7→ 1, r2 7→ 4} and
νb : {r1 7→ 2, r2 7→ 3}. However, the set {r1 < r2, r1 > r′1, r2 < r′2, r

′
1 > r′2} is not consistent.

Given a constraint C, the writing C|R denotes the subset of its atoms r ./ s for r, s ∈ R,
and C|R′ — the subset of atoms over primed registers. Given a set S of atoms r′ ./ s′ over
r′, s′ ∈ R′, let unprime(S) be the set of atoms derived by replacing every r′ ∈ R′ by r.

A constraint sequence is an infinite sequence of constraints C0C1 . . . (when we use finite
sequences, we explicitly state it). It is consistent if for every i: unprime(Ci|R′) = Ci+1|R,
i.e. the register order at the end of step i equals the register order at the beginning of step
i+ 1. Given a valuation ν ∈ DR, define ν′ ∈ DR′ to be the valuation that maps ν′(r′) = ν(r)
for every r ∈ R. A valuation w ∈ DR∪R′ satisfies a constraint C, written w |= C, if every
atom holds when we replace every r ∈ R ∪R′ by w(r). A constraint sequence is satisfiable if
there exists a sequence of valuations ν0ν1... ∈ (DR)ω such that νi ∪ ν′i+1 |= Ci for all i ≥ 0.
If, additionally, ν0 = 0R, then it is 0-satisfiable. Notice that satisfiability implies consistency.
Examples. Let R={r1, r2, r3, r4}. Let a consistent constraint sequence C0C1 . . . start with{
r1<r2<r3<r4, r4 =r′3, r3 =r′4, r1 =r′1, r1>r

′
2
}{
r2<r1<r4<r3, r4 =r′3, r3 =r′4, r1 =r′1, r2>r

′
1
}

Note that we omit some atoms in C0 and C1 for readability: although they are not maximal
(e.g. C0 does not contain r′2 < r′1 < r′4 < r′3), they can be uniquely completed to maximal
sets. Figure 2 (ignore the colored paths for now) visualises C0C1 plus a bit more constraints.
The black lines represent the evolution of the same register. The constraint C0 describes
the transition from moment 0 to 1, and C1—from 1 to 2. This finite constraint sequence is
satisfiable in Q and in N. For example, the valuations can start with ν0 = {r4 7→ 6, r3 7→
5, r2 7→ 4, r1 7→ 3}. But no valuations starting with ν0(r3) < 5 can satisfy the sequence in
N. Also, the constraint C0 requires all registers in R to differ, hence the sequence is not
0-satisfiable in Q nor in N. Another example is given by the sequence ({r > r′})ω with
R = {r}: it is satisfiable in Q but not in N.
Satisfiability of constraint sequences in Q. The following result is glimpsed in several
places (e.g. in [36, Appendix C]): a constraint sequence is satisfiable in Q iff it is consistent.
This is a consequence of the following property which holds because Q dense: for every
constraint C and ν ∈ QR such that ν |= C|R, there exists ν′∈ QR′ such that ν∪ν′ |= C.
Consistency can be checked by comparing every two consecutive constraints of the sequence.
Thus it is not hard to show that consistent, hence satisfiable, constraint sequences in Q are
recognizable by deterministic parity automata (see Appendix A.1).

I Theorem 1. There is a deterministic parity automaton of size exponential in |R| that
accepts exactly all constraint sequences satisfiable in Q. The same holds for 0-satisfiability.

XX:6 Church Synthesis on Register Automata over Linearly Ordered Data Domains

Satisfiability of constraint sequences in N. Fix R and a constraint sequence C0C1 . . .

over R. A (decreasing) two-way chain is a finite or infinite sequence (r0,m0).0 (r1,m1).1 ... ∈(
(R× N) · {=, >}

)∗,ω satisfying the following (note that m0 can differ from 0).
mi+1 =mi, ormi+1 =mi+1 (time flows forward), ormi+1 = mi−1 (time goes backwards).
If mi+1 = mi then (ri .i ri+1) ∈ Cmi

.
If mi+1 = mi + 1 then (ri .i r′i+1) ∈ Cmi .
If mi+1 = mi − 1 then (ri+1 .i r

′
i) ∈ Cmi−1.

The depth of a chain is the number of >; when it is infinity, the chain is infinitely decreasing.
Figure 2 shows four two-way chains: e.g., the green-colored chain (r4, 2) > (r3, 3) > (r2, 2) >
(r1, 3) > (r2, 3) has depth 4. Similarly, we define one-way chains except that (a) they are
either increasing (then . ∈ {<,=}) or decreasing (. ∈ {>,=}), and (b) time flows forward
(mi+1 = mi + 1) or stays (mi+1 = mi). In Figure 2, the blue chain is one-way decreasing,
the red chain is one-way increasing.

A stable chain is an infinite chain (r0,m).0 (r1,m+ 1).1 (r2,m+ 2).2 ... with all .i being
the equality =; it can also be written as (m, r0r1r2...). Given a stable chain χr = (m, r0r1...)
and a chain χs = (s0, n0) ./0 (s1, n1) ./1 ..., such that ni ≥ m for all plausible i, the chain χr
is non-strictly above χs if for all ni the constraint Cni

contains rni−m > sni
or rni−m = sni

.
A stable chain (m, r0r1...) is maximal if it is non-strictly above all other stable chains starting
after m. In Figure 2, the yellow chain (0, (r4r3)ω) is stable, non-strictly above all other
chains, and maximal. A trespassing chain is a chain that is below a maximal stable chain.

I Lemma 2. A consistent constraint sequence is satisfiable in N iff
(A’) it has no infinite-depth two-way chains; and
(B’) ∃b ∈ N: all trespassing two-way chains have depth ≤ b (i.e. they have bounded depth).

Proof idea. The left-to-right direction is trivial: if A′ is not satisfied, then one needs infinitely
many values below the maximal initial value of a register to satisfy the sequence, which is
impossible in N. Likewise, if B′ is not satisfied, then one also needs infinitely many values
below the value of a maximal stable chain, which is impossible. For the other direction,
we show that if A and B hold, then one can construct a sequence of valuations ν0ν1 . . .

satisfying the constraint sequence, such that for all r ∈ R, νi(r) is the largest depth of a
(decreasing) two-way chain starting in r at moment i. The full proof is in Appendix A.2. J

The previous lemma characterises satisfiability in terms of two-way chains, but our final
goal is recognise it with an automaton. It is hard to design a one-way automaton tracing
two-way chains, so we use a Ramsey argument to lift the previous lemma to one-way chains.

I Lemma 3. A consistent constraint sequence is satisfiable in N iff
(A) it has no infinitely decreasing one-way chains and
(B) the trespassing one-way chains have a bounded depth.

Proof idea. We show that A ∧B implies A′ ∧B′ (the other direction is simple). Consider
¬A′ ⇒ ¬A. From an infinite (decreasing) two-way chain, we can always extract an infinite
decreasing one-way chain, since two-way chains are infinite to the right and not to the left.
Hence, for all moment i, there always exists a moment j > i such that one register of the
chain is smaller at step j than a register of the chain at step i. We also prove that ¬B′ ⇒ ¬B.
Given a sequence of trespassing two-way chains of unbounded depth, we are able to construct
a sequence of one-way chains of unbounded depth. This construction is more difficult than
in the case ¬A′ ⇒ ¬A. Indeed, even though there are by hypothesis deeper and deeper
trespassing two-way chains, they may start at later and later moments in the constraint
sequence and go to the left, and so one cannot just take an arbitrarily deep two-way chain

L. Exibard, E. Filiot, A. Khalimov XX:7

and extract from it an arbitrarily deep one-way chain. However, we show, using a Ramsey
argument, that it is still possible to extract arbitrarily deep one-way chains as the two-way
chains are not completely independent. The full proof is in Appendix A.3. J

The next lemma proved in Appendix A.4 refines the characterisation to 0-satisfiability.

I Lemma 4. A consistent constraint sequence is 0-satisfiable in N iff it satisfies conditions
A ∧ B from Lemma 3, starts in C0 s.t. C0|R = {r= s | r, s ∈ R}, and has no decreasing
one-way chains of depth ≥1 from (r, 0) for any r.

We now state the main result about recognisability of satisfiable constraint sequences
by max-automata [7]. These automata extend standard finite-alphabet automata with a
finite set of counters c1, . . . , cn which can be incremented, reset to 0, or updated by taking
the maximal value of two counters, but they cannot be tested. The acceptance condition is
given as a Boolean combination of conditions “counter ci is bounded along the run”. Such a
condition is satisfied by a run if there exists a bound b ∈ N such that counter xi has value at
most b along the run. By using negation, conditions such as “xi is unbounded along the
run” can also be expressed. Deterministic max-automata are more expressive than ω-regular
automata. For instance, they can express the non-ω-regular set of words w = an1ban2b . . .

such that ni ≤ b for all i ≥ 0, for some b ∈ N that can vary from word to word.

I Theorem 5. For every R, there is a deterministic max-automaton accepting exactly all
constraint sequences satisfiable in N. The number of states is exponential in |R|, and the
number of counters is O(|R|2). The same holds for 0-satisfiability in N.

Proof idea. We design a deterministic max-automaton that checks conditions A and B
of Lemma 3. Condition A, namely the absence of infinitely decreasing one-way chains, is
checked as follows. We construct a nondeterministic Büchi automaton that guesses a chain
and verifies that it is infinitely decreasing (“sees > infinitely often”). Determinising and
complementing gives the sought deterministic parity automaton. Checking condition B (the
absence of trespassing one-way chains of unbounded depth) is more involved. We design
a master automaton that tracks every chain χ that currently exhibits a stable behaviour.
To every such chain χ, the master automaton assigns a tracer automaton whose task is to
ensure the absence of unbounded-depth trespassing chains below χ. For that, it uses 2|R|
counters and requires them to be bounded. The overall acceptance condition ensures that
if the chain χ is stable, then there are no trespassing chains below χ of unbounded depth.
Since the master automaton tracks every such potential chain, we are done. Finally, we take
a product of all these automata, which preserves determinism. (See Appendix A.5.) J

I Remark. [36, Appendix C] shows that satisfiable constraint sequences in N are characterised
by nondeterministic ωB-automata [4], which are strictly more expressive than max-automata.

The next results will come handy for game-related problems.
Lasso-shaped sequences (ω-regularity). An infinite sequence is lasso-shaped (or regular)
if it is of the form w = uvω. Notice that the number of constraints over a finite number of
registers R is finite. Thus, using the standard pumping argument, one can show that in
regular sequences an unbounded chain eventually loops (the proof is in Appendix A.6):

I Lemma 6. For every lasso-shaped consistent constraint sequence, it has trespassing one-way
chains of unbounded depth iff it has trespassing one-way chains of infinite depth.

The above lemma together with Lemma 4 yields the following result:

XX:8 Church Synthesis on Register Automata over Linearly Ordered Data Domains

I Lemma 7. A lasso-shaped consistent constraint sequence is 0-satisfiable iff it has
no infinite-depth decreasing one-way chains,
no trespassing infinite-depth increasing one-way chains,
no decreasing one-way chains of depth ≥ 1 from moment 0, and starts with C0 s.t.
C0|R = {r = s | r, s ∈ R}.

The conditions of this lemma can be checked by an ω-regular automaton (see Appendix A.7):

I Theorem 8. For every R, there is a deterministic parity automaton that accepts a constraint
sequence iff it is consistent and satisfies the three conditions of Lemma 7; its number of states
is exponential in |R| and its number of priorities is polynomial in |R|.

Bounded sequences (data-assignment function). Fix a constraint sequence. Given a
moment i and a register x, a right two-way chain starting in (x, i) (r2w) is a two-way chain
(x, i) . (r1,m1) . (r2,m2) such that mj ≥ i for all plausible j. Note that r2w chains are
two-way, meaning in particular that they can start and end in the same time moment i.

We design a data-assignment function that maps satisfiable constraint sequence prefixes
to register valuations satisfying it. The function assumes that the r2w chains in the prefixes
are bounded. It also assumes every constraint Ci in the sequence satisfies the following: for
all ν ∈ DR, ν′ ∈ DR′ s.t. ν ∪ ν′ |= Ci:

∣∣{r′ ∈ R′ | ∀s ∈ R. ν′(r′) 6= ν(s)}
∣∣ ≤ 1 (assumption

†). Intuitively: at most one new value can appear (but many disappear) during the step
of the constraint (see also Appendix A.8). This assumption is used to simplify the proofs,
yet it is satisfied by all constraint sequences induced by plays in Church games studied in
the next section. A constraint sequence is meaningful if it is consistent, starts in C0 with
C0|R = {r = s | r, s ∈ R}, and has no decreasing chains of depth ≥ 1 starting at moment 0.

I Lemma 9 (data-assignment function). For every b ≥ 0, there exists a data-assignment
function f : (C|R ∪ C+) → NR such that for every finite or infinite meaningful constraint
sequence C0C1C2... satisfying assumption † and whose r2w chains are depth-bounded by b,
the register valuations f(C0|R)f(C0)f(C0C1)... satisfy the constraint sequence.

Proof idea. We define a special kind of xy(m)-chains that help to estimate how many
insertions between the values of x and y at moment m we can expect in future. As it turns
out, without knowing the future, the distance between x and y has to be exponential in the
maximal depth of xy(m)-chains. We describe a data-assignment function that maintains such
exponential distances (the proof is by induction). The function is surprisingly simple: if the
constraint inserts a register x between two registers r and s with already assigned values dr
and ds, then set dx = b dr+ds

2 c; and if the constraint puts a register x above all other registers,
then set dx = dM + 2b where dM the largest value currently held in the registers and b is the
given bound on the depth of r2w chains. Full proof is in Appendix A.9. J

3 Church Synthesis Games

A Church synthesis game is a tuple G = (I,O, S), where I is an input alphabet, O is an output
alphabet, and S ⊆ (I · O)ω is a specification. Two players, Adam (the environment, who
provides inputs) and Eve (the system, who controls outputs), interact. Their strategies are
respectively represented as mappings λA : O∗ → I and λE : I+ → O. Given λA and λE , the
outcome λA‖λE is the infinite sequence i0o0i1o1... such that for all j ≥ 0: ij = λA(o0...oj−1)
and oj = λE(i0...ij). If λA‖λE ∈ S, the outcome is won by Eve, otherwise by Adam. Eve wins
the game if she has a strategy λE such that for every Adam strategy λA, the outcome λA‖λE

L. Exibard, E. Filiot, A. Khalimov XX:9

is won by Eve. Solving a synthesis game amounts to finding whether Eve has a winning
strategy. Synthesis games are parameterised by classes of alphabets and specifications. A
game class is determined if every game in the class is either won by Eve or by Adam.

The class of synthesis games where I and O are finite and where S is an ω-regular
language is known as Church games; they are decidable and determined. They also enjoy
the finite-memoriness property: if Eve wins a game then there is an Eve winning strategy
that can be represented as a finite-state machine.

We study synthesis games where the alphabets I and O are infinite and equipped with a
linear order, and the specifications are described by deterministic register automata.
Register automata. Fix a set of registers R. A test is a maximally consistent set of atoms
of the form ∗ ./ r for r ∈ R and ./ ∈ {=, <,>}. We may represent tests as conjunctions
of atoms instead of sets. The symbol ‘∗’ is used as a placeholder for incoming data. For
example, for R = {r1, r2}, the expression r1 < ∗ is not a test because it is not maximal,
but (r1 < ∗) ∧ (∗ < r2) is a test. We denote TstR the set of all tests and just Tst if R is
clear from the context. A register valuation ν ∈ DR and data d ∈ D satisfy a test tst ∈ Tst,
written (ν, d) |= tst, if all atoms of tst get satisfied when we replace the placeholder ∗ by d

and every register r ∈ R by ν(r). An assignment is a subset asgn ⊆ R. Given an assignment
asgn, a data d ∈ D, and a valuation ν, we define update(ν, d, asgn) to be the valuation ν′ s.t.
∀r ∈ asgn : ν′(r) = d and ∀r 6∈ asgn : ν′(r) = ν(r).

A deterministic register automaton is a tuple S = (Q, q0, R, δ, α) where Q = QA]QE
is a set of states partitioned into Adam and Eve states, the state q0 ∈ QA is initial,
R is a set of registers, δ = δA] δE is a (total and deterministic) transition function
δP : (QP ×Tst→ Asgn×QP ′) for P ∈ {A,E} and the other player P ′, and α : Q→ {1, ..., c}
is a priority function where c is the priority index.

A configuration of A is a pair (q, ν) ∈ Q×DR, describing the state and register content;
the initial configuration is (q0, 0R). A run of S on a word w = d0d1... ∈ Dω is a sequence
of configurations ρ = (q0, ν0)(q1, ν1)... starting in the initial configuration and such that for
every i ≥ 0: by letting tsti be a unique test for which (νi, di) |= tsti, we have δ(qi, tsti) =
(asgni, qi+1) for some asgni and νi+1 = update(νi, di, asgni). Because the transition function
δ is deterministic and total, every word induces a unique run in S. The run ρ is accepting if
the maximal priority visited infinitely often is even. A word is accepted by S if it induces an
accepting run. The language L(S) of S is the set of all words it accepts.
Church games on register automata. If the data domain is (N,≤), Church games are
undecidable. Indeed, if the two players pick data values, it is easy to simulate a two-counter
machine, where one player provides the values of the counters and the other verifies that no
cheating happens on the increments and decrements, using the fact that c′ = c+ 1 whenever
there does not exist d such that c < d < c′ (the formal proof can be found in Appendix B.1).

I Theorem 10. Deciding the existence of a winning strategy for Eve in a Church game
whose specification is a deterministic register automaton over (N,≤) is undecidable.

Church games on one-sided register automata. In light of this undecidability result,
we consider one-sided synthesis games, where Adam provides data but Eve reacts with
labels from a finite alphabet (a similar restriction was studied in [20] for domain (D,=)).
Specifications are now given as a language S ⊆ (D ·Σ)ω. Such games are still quite expressive,
as they enable the synthesis of ‘relaying’ register transducers, which can only output data
that is present in the specification automaton; we elaborate on this in Section 4.

A one-sided register automaton S = (Σ, Q, q0, R, δ, α) is a register automaton that
additionally has a finite alphabet Σ of Eve labels, and its transition function δ = δA] δE now

XX:10 Church Synthesis on Register Automata over Linearly Ordered Data Domains

has δE : QE × Σ→ QA while δA : QA × Tst→ Asgn×QE stays as before. Runs on words
in (D · Σ)ω are defined as before except that register valuations are updated only in Adam
states. We omit the formal definitions. Figure 1 shows an example of a one-sided automaton.
For instance, it rejects the words 3a1b2(ΣD)ω and accepts the words 3a1a2b(DΣ)ω.

I Theorem 11. For every Church game G on a one-sided automaton S over N or Q:
1. Deciding if Eve wins G is doable in time polynomial in |Q| and exponential in c and |R|.
2. The game is either won by Eve or otherwise by Adam.

The proof of the theorem relies on the notion of action words. An action word is a
sequence (tst0, asgn0)(tst1, asgn1)... from (Tst × Asgn)∗,ω. An action word is D-feasible if
there exists a sequence ν0d0ν1d1 . . . of register valuations νi and data di over D such that
ν0 = 0R and for all plausible i: νi+1 = update(νi, di, asgni) and (νi, di) |= tsti. We first
outline the proof structure and then provide the details.

Proof structure. We reduce the Church game G to a finite-arena game Gf called feasibility
game. The states and transitions in Gf are those of S, and a play is winning if it either
satisfies the parity condition of S or if the corresponding action word is not feasible.

In Q, feasibility of action words can be checked by a deterministic parity automaton
(Theorem 1). We then show that Eve wins the Church game G iff she wins the finite-arena
game Gf . The direction⇐ is easy, because Eve winning strategy λfE in Gf , which picks finite
labels in Σ depending on the history of transitions of S, can be used to construct Eve winning
strategy λE : Q+ → Σ in G by simulating the automaton S. To prove the other direction,
we assume that Adam has a winning strategy λfA in Gf , which picks tests depending on
the history of transitions of S, then construct an Adam data strategy λA : Σ∗ → Q that
concretises these tests into data values. This data instantiation is easy because Q is dense.

The case of N is treated similarly. However, checking feasibility of action words now
requires a deterministic max-automaton (see page 7). From [8], we can deduce that games
with a winning objective given as deterministic max-automata are decidable, yet the algorithm
is involved, its complexity is high and does not yield finite-memory strategies that rely on
picking transitions in S. Moreover, their determinacy is unknown. (For the same reasons we
cannot rely on [6].) Therefore, we define quasi-feasible words, an ω-regular subset of feasible
words sufficient for our purpose, and correspondingly define an ω-regular game Gregf by
strengthening the winning condition of Gf . We then show that the Church game G and the
finite-arena game Gregf are equi-realisable. The hard direction is again to prove that if Eve
wins in G, then she wins in Gregf . As for Q, assuming that Adam wins in Gregf with strategy
λfA, we construct Adam data strategy λA : Σ∗ → N, relying on the finite-memoriness of the
strategy λfA and on the data-assignment function for constraint sequences from Lemma 9. J

I Remark 12. From the reduction of Church games to (quasi-)feasibility games, we get that
if Eve wins a Church game G, then she has a winning strategy that simulates the run of the
automaton S and simply picks its transitions. In this sense, Eve’s strategy is ‘finite-memory’
as it can be expressed by a register automaton with outputs with a finite number of states.

Games on finite arenas. A two-player zero-sum finite-arena game (or just finite-arena
game) is a tuple G = (V∀, V∃, v0, E,W) where V∀ and V∃ are disjoint finite sets of vertices
controlled by Adam and Eve, v0 ∈ V∀ is initial, E ⊆ (V∀ × V∃) ∪ (V∃ × V∀) is a turn-based
transition relation, and W ⊆ (V∀ ∪ V∃)ω is a winning objective. An Eve strategy is a mapping
λ : (V∀ ·V∃)+ → V∀ such that (v∃, λ(v0...v∃)) ∈ E for all paths v0...v∃ of G starting in v0 and
ending in v∃ ∈ V∃. Adam strategies are defined similarly, by inverting the roles of ∃ and ∀.

L. Exibard, E. Filiot, A. Khalimov XX:11

A play is a sequence of vertices starting in v0 and satisfying the edge relation E. It is won
by Eve if it belongs to W (otherwise it is won by Adam). An infinite play π = v0v1 . . . is
compatible with an Eve strategy λ when for all i ≥ 0 s.t. vi ∈ V∃: vi+1 = λ(v0 . . . vi). An Eve
strategy is winning if all infinite plays compatible with it are winning.

It is well-known that parity games can be solved in nc [23] (see also [13]), with n the size
of the game and c the priority index.
Feasibility games. For the rest of this section, fix a one-sided register automaton S =
(Σ, Q, q0, R, δ, α). With its Church game, we associate the following feasibility game, which
is a finite-arena game Gf = (V∀, V∃, v0, E,Wf). Essentially, it memorises the transitions
taken by the automaton S during the play of Adam and Eve. It has V∀ = {q0} ∪ (Σ×QA),
V∃ = Tst× Asgn×QE , v0 = q0, E = E0 ∪ E∀ ∪ E∃ where:

E0 =
{(
v0, (tst, asgn, u0)

)
| δ(v0, tst) = (asgn, u0)

}
,

E∀ =
{(

(σ, v), (tst, asgn, u)
)
| δ(v, tst) = (asgn, u)

}
, and

E∃ =
{(

(tst, asgn, u), (σ, v)
)
| δ(u, σ) = v

}
.

Let FeasibleD(R) denote the set of action words over R feasible in D. We let:
Wf =

{
v0(tst0, asgn0, u0)(σ0, v1) . . . | (tst0asgn0) . . . ∈ FeasibleD(R)⇒ v0u0v1u1 . . . |= α

}
Later we will show that Eve wins the Church game G iff she wins the feasibility game Gf .
Action words and constraint sequences. A constraint C (cf Section 2) relates the values
of the registers between the current moment and the next moment. A state constraint relates
registers in the current moment only: it contains atoms over non-primed registers, so it has
no atoms over primed registers. Note that both C|R and unprime(C|R′) are state constraints.

Every action word naturally induces a unique constraint sequence. For instance, for
registers R = {r, s}, an action word starting with ({r < ∗, s < ∗}, {s}) (test whether the
current data d is above the values of r and s, store it in s) induces a constraint sequence
starting with {r = s, r = r′, s < s′, r′ < s′} (the atom r = s is due to all registers being
equal initially). This is formalised in the next lemma, which is notation-heavy but says a
simple thing: given an action word, we can construct, on the fly, a constraint sequence that
is 0-satisfiable iff the action word is feasible. For technical reasons, we need a new register rd
to remember the last Adam data. The proof is direct and can be found in Appendix B.2.

I Lemma 13. Let R be a set of registers, Rd = R] {rd}, and D ∈ {N,Q}. There exists a
mapping constr : Π×Tst×Asgn→ C from state constraints Π over Rd and tests-assignments
over R to constraints C over Rd, such that for all action words a0a1a2... ∈ (Tst × Asgn)ω,
a0a1a2... is feasible iff C0C1C2... is 0-satisfiable, where ∀i≥0: Ci = constr(πi, ai), πi+1 =
unprime(Ci|R′

d
), π0 = {r=s | r, s ∈ Rd}.

Expressing the winning condition of Gf by deterministic automata. By converting
an action word to a constraint sequence and then testing its satisfiability, we can test
whether the action word is feasible. This allows us to express the winning condition Wf as a
deterministic parity automaton for D = Q and as a deterministic max-automaton for D = N.
As a consequence of Theorem 1 (resp. 5), we get (see full proof in Appendix B.3):

I Lemma 14. Wf is definable by a deterministic parity automaton if D = Q and a deter-
ministic max-automaton if D = N. Moreover, these automata are polynomial in |Q| and
exponential in |R|, and for D = Q, the index of the priority function is linear in c.

Solving synthesis games on (Q,≤)

We outline the proof of Theorem 11 for (Q,≤); the full proof can be found in Appendix B.4.

XX:12 Church Synthesis on Register Automata over Linearly Ordered Data Domains

The main goal is to show that Eve wins G iff she wins Gf . The direction ⇐ is easy: Eve
has less information in Gf , as she only has access to the tests satisfied by the input data,
so she is stronger in G. Conversely, assume by contraposition that Eve does not win Gf .
As ω-regular games are determined, Adam has a winning strategy λfA in Gf . It induces a
strategy λA for Adam in G: when the test is an equality, pick the corresponding data, and
when it is of the form r < ∗ < r′, take some rational number strictly in the interval. Then,
each play consistent with this strategy in G corresponds to a unique run in S, which is also a
play in Gf . As λfA is winning, such run is accepting, so λA is winning: Eve does not win G.

Since the feasibility game Gf is of size polynomial in |Q| and exponential in |R|, and has
a number of priorities linear in c, we obtain item 1 of the theorem. Item 2 (determinacy) and
Remark 12 are then a consequence of the finite-memory determinacy of ω-regular games.

Solving synthesis games on (N,≤)

We now outline the proof of Theorem 11 for (N,≤); the full proof is in Appendix B.5.
Using ω-regular game Gregf instead of Gf . Wf is not ω-regular, and the known results
over deterministic max-automata do not suffice to obtain determinacy nor finite-memoriness,
which will both prove useful for the transducer synthesis problem (cf Section 4).

We thus define an ω-regular subset W reg
f ⊆ Wf which is equi-realisable to Wf . Let

QFeasibleN(R) be the set of quasi-feasible action words over R, defined as the set of words a
such that its induced constraint sequence (through the mapping constr of Lemma 13) starts
with C0, has no infinite-depth decreasing one-way chain nor trespassing increasing one-way
chain, and no decreasing one-way chain of depth ≥ 1 from moment 0. We then let:
W reg
f =

{
v0(tst0, asgn0, u0)(σ0, v1) . . . | (tst0, asgn0) . . . ∈ QFeasibleN(R)⇒ v0u0v1u1 . . . |= α

}
.

From Theorem 8, we can build a deterministic parity automaton with a number of states
exponential in |R| and polynomial in |Q| and a priority index polynomial in c recognising
W reg
f . Let Gregf be the finite-arena game with the same arena as Gf , with winning condition

W reg
f . We now show that the Church game G reduces to Gregf (full proof in Appendix B.5).

I Proposition 15. Eve has a winning strategy in G iff she has a winning strategy in Gregf .

Proof idea. If Eve has a winning strategy in Gregf , then, since FeasibleN(R) ⊆ QFeasibleN(R),
we have that W reg

f ⊆Wf , so it is also winning in Gf . Now, the argument for Q applies again
for N: as Eve has more information in G, if she wins in Gf , she wins in G.

The converse implication is harder; we show it by contraposition. Assume Eve does
not have a winning strategy in Gregf . As ω-regular games are finite-memory determined,
Adam has a finite-memory winning strategy λfA in Gregf . It is not clear a priori that such
strategy can be instantiated to a winning data strategy in G. However, we show that for
finite-memory strategies, the depth of right two-way chains is uniformly bounded, which by
Lemma 9 allows us to instantiate the tests with concrete data:

I Lemma 16. There is a number b ≥ 0 that bounds the depths of all r2w chains coming
from λfA: for all constraint sequences resulting from playing with λfA, for all x ∈ R, for all
i ≥ 0, we have that for all r2wch from (x, i), depth(r2wch) ≤ b.

Proof idea of the lemma. Fix a moment i and a register x. After the moment i, only a
bounded number of values can be inserted below the value of register x at moment i. Similarly,
if we fix two registers at moment i, there can only be a bounded number of insertions between
the values of x and y at moment i. Indeed, by finite-memoriness of Adam strategy, once the
number of such insertions is larger than the memory of Adam, Eve can repeat her actions

L. Exibard, E. Filiot, A. Khalimov XX:13

to force an infinite number of such insertions, leading to a play with an unfeasible action
sequence and hence won by Eve. This intuition is captured by r2w chains defined in Section 2.

We prove the lemma by contradiction, by constructing a play consistent with λfA which
induces an unsatisfiable constraint sequence and therefore is losing for Adam. Assume that
the constraint sequences induced by the plays with λfA have unbounded-depth 2w chains.
By Ramsey argument from Lemma 2, the constraint sequences have unbounded-depth 1w
chains. Along those chains, as λfA is finite-memory, there is a repeating configuration with
same constraints and states, and where the chain decrements or increments at least once
and goes through the same registers. Thus, we can define a strategy λfE of Eve which loops
there forever. This induces an infinite chain. If it is decreasing, the corresponding play is not
feasible, and is thus losing for Adam. If it is increasing, recall that this chain is actually a
part of a r2w chain. By gluing them together, we get a r2w chain of infinite depth, which is
not feasible either (recall that r2w chains start and end at the same point of time), so it is
again losing for Adam. In both cases, this contradicts the assumption that λfA is winning. J

Now, thanks to this uniform bound b and Lemma 9, we can construct λNA from λfA by trans-
lating the currently played action-word prefix (tst0, asgn0)...(tstm, asgnm) into a constraint-
sequence prefix and applying the data-assignment function to it. By construction, for each
play in G consistent with λNA, the corresponding run in S is a play consistent with λfA in
Gregf . As λfA is winning, such run is not accepting, i.e. the play is winning for Adam in G.
Therefore, λNA is a winning Adam’s strategy in G, meaning that Eve loses G. J

Since Gregf is of size polynomial in |Q| and exponential in |R|, Theorem 11 follows.

4 Application to Transducer Synthesis

We now apply the above results to the transducer synthesis problem for specifications defined
by input-driven register automata [17], i.e. two-sided automata where the output data is
restricted to be the content of some register. Formal definitions of input-driven register
automata and of register transducers are omitted as they are straightforward generalisations
to the ordered case. Given a register automaton specification S, the transducer synthesis
problem asks whether there exists a register transducer T such that L(T) ⊆ L(S). A
priori, T and S can have different sets of registers, but we show that it suffices to consider
implementations that are subautomata of S, a result reminiscent of [17, Proposition 5].
Definitions and full proof of the theorem can be found in Appendix B.6.

I Theorem 17. For specifications defined by deterministic input-driven output register
automata over data domains Q and N, the register transducer synthesis problem can be solved
in time polynomial in |Q| and exponential in c and |R|.

Proof idea. The transducer synthesis problem reduces to solving a one-sided Church game
G. Indeed, output registers can be treated as finite labels, up to remembering equality
constraints between registers in the states (this is exponential in |R|, but the exponentials do
not stack). Moreover, we know by Proposition 15 that G itself reduces to Gregf . If Eve wins
Gregf , she has a finite-memory winning strategy, which corresponds to a register transducer
implementation of S which behaves like a subautomaton of S. J

5 Conclusion

In this paper, our main result states that 1-sided Church games for specifications given as
deterministic register automata over (N,≤) are decidable, in ExpTime. Moreover, we show

XX:14 Church Synthesis on Register Automata over Linearly Ordered Data Domains

that those games are determined. 1-sided Church games are motivated by register transducer
synthesis, and the above result provides an ExpTime algorithm for this problem. As a future
direction, it seems important to consider more expressive specification languages. Indeed,
deterministic register automata are known to be strictly less expressive than nondeterministic
or universal register automata. Such extensions are known to yield undecidability when used
as specification formalisms in 1-sided Church games, already in the case of data equality
only [17]. In [17, 28], a parameterized version of 1-sided Church games is shown to be
decidable for universal register automata specifications. The parameter is a positive integer
k and the goal is to decide whether there exists a strategy which can be implemented as a
transducer with k registers. We plan to extend this result to linear orders. Universal register
automata, thanks to their universal transitions, are better suited to specify properties of
reactive systems. As an example, they can easily model properties such as “every request of
client i is eventually granted”, for every client id i ∈ N. Such properties are not expressible
by deterministic nor nondeterministic register automata. On the data part, while equality
tests are sufficient for such properties, having a linear order could allow us to express more
complex but natural properties, e.g. involving priorities between clients.

An important future direction is to consider logical formalisms instead of automata to
describe specifications in a more declarative and high-level manner. Data-word first-order
logics [5, 35] have been studied with respect to the satisfiability problem but when used
as specification languages for synthesis, only few results are known. For slightly different
contexts, see for example [3] for parameterized synthesis and [20] for games with temporal
specifications and data.

L. Exibard, E. Filiot, A. Khalimov XX:15

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Piotr Hofman, Richard Mayr, K. Narayan

Kumar, and Patrick Totzke. Infinite-state energy games. In Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014, pages 7:1–7:10, 2014.

2 Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Deciding monotonic games. In
International Workshop on Computer Science Logic, pages 1–14. Springer, 2003.

3 Béatrice Bérard, Benedikt Bollig, Mathieu Lehaut, and Nathalie Sznajder. Parameterized
synthesis for fragments of first-order logic over data words. In FOSSACS, volume 12077 of
Lecture Notes in Computer Science, pages 97–118. Springer, 2020.

4 M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. In Proc. 21st IEEE Symp. on Logic
in Computer Science, pages 285–296, 2006.

5 M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-variable logic on
words with data. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 7–16, 2006.

6 Mikołaj Bojańczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki,
editors, Computer Science Logic, pages 41–55, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

7 Mikołaj Bojańczyk. Weak MSO with the unbounding quantifier. Theory of Computing Systems,
48(3):554–576, 2011.

8 Mikołaj Bojańczyk. Weak MSO+U with path quantifiers over infinite trees. In Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part II, pages 38–49, 2014.

9 A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting systems with data. In
FCT, pages 1–22, 2007.

10 A. Bouajjani, P. Habermehl, and R R. Mayr. Automatic verification of recursive procedures
with one integer parameter. Theoretical Computer Science, 295:85–106, 2003.

11 A.-J. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness and
regular conditions. In Proc. 23rd Conf. on Foundations of Software Technology and Theoretical
Computer Science, volume 2914 of Lecture Notes in Computer Science, pages 88–99. Springer,
2003.

12 J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state strategies. Trans.
AMS, 138:295–311, 1969.

13 C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in
quasipolynomial time. In Proc. 49th ACM Symp. on Theory of Computing, pages 252–263,
2017.

14 S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-
Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

15 G. Delzanno, A. Sangnier, and R. Traverso. Parameterized verification of broadcast networks
of register automata. In P. A. Abdulla and I. Potapov, editors, Reachability Problems, pages
109–121, Berlin, Heidelberg, 2013. Springer.

16 R. Ehlers, S. Seshia, and H. Kress-Gazit. Synthesis with identifiers. In Proc. 15th Int. Conf.
on Verification, Model Checking, and Abstract Interpretation, volume 8318 of Lecture Notes in
Computer Science, pages 415–433. Springer, 2014.

17 L. Exibard, E. Filiot, and P-A. Reynier. Synthesis of data word transducers. In Proc. 30th
Int. Conf. on Concurrency Theory, 2019.

18 Rachel Faran and Orna Kupferman. On synthesis of specifications with arithmetic. In
Alexander Chatzigeorgiou, Riccardo Dondi, Herodotos Herodotou, Christos Kapoutsis, Yannis
Manolopoulos, George A. Papadopoulos, and Florian Sikora, editors, SOFSEM 2020: The-
ory and Practice of Computer Science, pages 161–173, Cham, 2020. Springer International
Publishing.

XX:16 Church Synthesis on Register Automata over Linearly Ordered Data Domains

19 Azadeh Farzan and Zachary Kincaid. Strategy synthesis for linear arithmetic games. Proceedings
of the ACM on Programming Languages, 2(POPL):1–30, 2017.

20 Diego Figueira, Anirban Majumdar, and M. Praveen. Playing with repetitions in data
words using energy games. Log. Methods Comput. Sci., 16(3), 2020. URL: https://lmcs.
episciences.org/6614.

21 B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito. Temporal stream logic: Synthesis
beyond the bools. In Proc. 31st Int. Conf. on Computer Aided Verification, 2019.

22 Stefan Göller, Richard Mayr, and Anthony Widjaja To. On the computational complexity of
verifying one-counter processes. In Proceedings of the 24th Annual IEEE Symposium on Logic
in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 235–244,
2009.

23 E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to
Current Research, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

24 R. Hojati, D.L. Dill, and R.K. Brayton. Verifying linear temporal properties of data insen-
sitive controllers using finite instantiations. In Hardware Description Languages and their
Applications, pages 60–73. Springer, 1997.

25 M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science,
134(2):329–363, 1994.

26 A. Khalimov, B. Maderbacher, and R. Bloem. Bounded synthesis of register transducers.
In 16th Int. Symp. on Automated Technology for Verification and Analysis, volume 11138 of
Lecture Notes in Computer Science, pages 494–510. Springer, 2018.

27 Ayrat Khalimov and Orna Kupferman. Register-bounded synthesis. In 30th International
Conference on Concurrency Theory (CONCUR 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

28 Ayrat Khalimov and Orna Kupferman. Register-bounded synthesis. In Wan Fokkink and Rob
van Glabbeek, editors, 30th International Conference on Concurrency Theory, CONCUR 2019,
August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 25:1–25:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/
LIPIcs.CONCUR.2019.25.

29 Bartek Klin and Mateusz Łełyk. Scalar and Vectorial mu-calculus with Atoms. Logical Methods
in Computer Science, Volume 15, Issue 4, Oct 2019. URL: https://lmcs.epicsciences.org/
5877, doi:10.23638/LMCS-15(4:5)2019.

30 Paul Krogmeier, Umang Mathur, Adithya Murali, P. Madhusudan, and Mahesh Viswanathan.
Decidable synthesis of programs with uninterpreted functions. In Shuvendu K. Lahiri and
Chao Wang, editors, Computer Aided Verification, pages 634–657, Cham, 2020. Springer
International Publishing.

31 R. Lazić and D. Nowak. A unifying approach to data-independence. In Proc. 11th Int. Conf.
on Concurrency Theory, pages 581–596. Springer Berlin Heidelberg, 2000.

32 M.L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1 edition, 1967.
33 N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity

automata. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 255–264. IEEE
press, 2006.

34 M.O. Rabin. Automata on infinite objects and Church’s problem. Amer. Mathematical Society,
1972.

35 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. Log.
Methods Comput. Sci., 8(1), 2012.

36 Luc Segoufin and Szymon Torunczyk. Automata-based verification over linearly ordered
data domains. In 28th International Symposium on Theoretical Aspects of Computer Science
(STACS 2011). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

37 Olivier Serre. Parity games played on transition graphs of one-counter processes. In Foundations
of Software Science and Computation Structures, 9th International Conference, FOSSACS

https://lmcs.episciences.org/6614
https://lmcs.episciences.org/6614
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://lmcs.epicsciences.org/5877
https://lmcs.epicsciences.org/5877
https://doi.org/10.23638/LMCS-15(4:5)2019

L. Exibard, E. Filiot, A. Khalimov XX:17

2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25-31, 2006, Proceedings, pages 337–351, 2006.

38 V. Vianu. Automatic verification of database-driven systems: a new frontier. In ICDT ’09,
pages 1–13, 2009.

39 I. Walukiewicz. Model checking CTL properties of pushdown systems. In Proc. 20th Conf.
on Foundations of Software Technology and Theoretical Computer Science, volume 1974 of
Lecture Notes in Computer Science, pages 127–138. Springer, 2000.

40 P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In
Proc. 13th ACM Symp. on Principles of Programming Languages, pages 184–192, 1986.

XX:18 Church Synthesis on Register Automata over Linearly Ordered Data Domains

A Proofs of Section 2

A.1 Proof of Theorem 1
To establish the result formally, we first show the following lemma.

I Lemma 18. Let R be a set of registers and D = Q. A constraint sequence C0C1 . . . is
satisfiable iff it is consistent. It is 0-satisfiable iff it is consistent and C0|R = {r1 = r2 |
r1, r2 ∈ R}.

Proof. Direction ⇒ is simple for both claims, so we only prove direction ⇐.
Consider the first claim, direction ⇐. Assume the sequence is consistent. We construct

ν0ν1 · · · ∈ (QR)ω such that νi ∪ ν′i+1 |= Ci for all i. The construction proceeds step-by-step
and relies on the following fact (†): for every constraint C and ν ∈ QR such that ν |= C|R,
there exists ν′ ∈ QR′ such that ν ∪ ν′ |= C. Then define ν0, ν1 . . . as follows: start with an
arbitrary ν0 satisfying ν0 |= C0|R. Given νi |= Ci|R, let νi+1 be any valuation in QR that
satisfies νi ∪ ν′i+1 |= Ci (it exists by (†)). Since νi+1 |= Ci|R′ , and unprime(Ci|R′) = Ci+1|R
by consistency, we have νi+1 |= Ci+1|R, and we can apply the argument again.

We are left to prove the fact (†). The constraint C completely specifies the order on
R ∪R′, while ν fixes the values for R, and ν |= C|R. Hence we can uniquely order registers
R′ and the values {ν(r) | r ∈ R} of R on the Q-line. Since Q is dense, it is always possible
to choose the values for R′ that respect this order; we leave out the details.

Consider the second claim, direction ⇐. Since C0C1 . . . is consistent, then by the first
claim, it is satisfiable, hence it has a witnessing valuation ν0ν1 The constraint C0 requires
all registers in R to start with the same value, so define d = ν0(r) for arbitrary r ∈ R. Let
ν′0ν
′
1 . . . be the valuations decreased by d: ν′i(r) = νi(r)− d for every r ∈ R and i ≥ 0. The

new valuations satisfy the constraint sequence because the constraints in Q are invariant
under the shift (follows from the fact: if r1 < r2 holds for some ν ∈ DR, then it holds
for any ν − d where d ∈ D). The equality ν′0 = 0R means that the constraint sequence is
0-satisfiable. J

We now prove Theorem 1.

Proof of Theorem 1. We describe the parity automaton. Its alphabet consists of all con-
straints. By Lemma 18, for satisfiability, it suffices to construct the automaton that checks
consistency, namely that every two adjacent constraints C1C2 in the input word satisfy the
condition unprime(C1|R′) = C2|R. The construction is straightforward; we only sketch it.
The automaton memorises the atoms C1|R′ of the last constraint C1 into its state, and on
reading the next constraint C2 the automaton checks that unprime(C1|R′) = C2|R. If this
holds, the automaton transits into the state that remembers C2|R′ ; if the check fails, the
automaton goes into the rejecting sink state. And so on. The number of states is exponential
in |R|, the parity index is 1. The automaton for checking 0-satisfiability additionally checks
that C0|R = {r = s | r, s ∈ R}. J

A.2 Proof of Lemma 2
Proof. Direction ⇒. Suppose a constraint sequence C0C1... is satisfiable by some valuations
ν0ν1.... Assume ¬A′: there is an infinite decreasing two-way chain χ = (r0,m0)(r1,m1).... Let
νm0(r0) = d? be the data value at the start of the chain. Each decrease (ri,mi) > (ri+1,mi+1)
in the chain χ requires the data to decrease as well: νi(ri) > νi+1(ri+1). Hence there must
be an infinite number of data values between d? and 0, which is impossible in N. Hence A′

L. Exibard, E. Filiot, A. Khalimov XX:19

order

timei i+1

ra

rb
r′

Figure 3 Proving the direction ¬A′ ⇒ ¬A in Lemma 3. The two-way chain is in black, the
constructed one-way chain is in blue.

must hold. Now assume ¬B′: there is a sequence of two-way trespassing chains of unbounded
depth. By definition of trespassing, the constraint sequence has a maximal stable chain.
Let d? be the value of the registers in the maximal stable chain. All trespassing chains
lay non-strictly below the maximal stable chain, therefore the values of their registers are
bounded by d?. Hence the depths of such chains are bounded by d?, contradicting the
assumption ¬B′, so B′ holds.

Direction ⇐. Given a consistent constraint sequence C0C1... satisfying A′ and B′, we
construct a sequence of register valuations ν0ν1... such that νi∪ν′i+1 |= Ci for all i ≥ 0 (recall
that ν′ = {r′ 7→ ν(r) | r ∈ R}). For a register r and moment i ∈ N, let d(r, i) be the largest
depth of two-way chains from (r, i); the depth d(r, i) can be 0 but not ∞, by assumption A′.
Then, for every r ∈ R and i ∈ N, set νi(r) = d(r, i).

We now prove that for all i, the satisfaction νi ∪ ν′i+1 |= Ci holds, i.e. all atoms of Ci are
satisfied. Pick an arbitrary atom t1 ./ t2 of Ci, where t1, t2 ∈ R ∪R′. Define mt1 = i+ 1 if
t1 is a primed register, else mt1 = i; similarly define mt2 . There are two cases.

t1 ./ t2 is t1 = t2. Then the deepest chains from (t1,mt1) and (t2,mt2) have the same
depth, d(t1,mt1) = d(t2,mt2), and hence νi ∪ ν′i+1 satisfies the atom.
t1 ./ t2 is t1 > t2. Then, any chain (t2,mt2)... from (t2,mt2) can be prefixed by (t1,mt1)
to create the deeper chain (t1,mt1) > (t2,mt2).... Hence d(t1,mt1) > d(t2,mt2), therefore
νi ∪ ν′i+1 satisfies the atom.

This concludes the proof. J

A.3 Proof of Lemma 3
Proof. We show that the conditions A ∧ B hold iff the conditions A′ ∧ B′ from Lemma 2
hold. The directions ¬A⇒ ¬A′ and ¬B ⇒ ¬B′ follow from the definitions of chains.

Direction ¬A′ ⇒ ¬A. Given an infinite two-way chain χ = (ra, i) . . . , we construct
an infinite descending one-way chain χ′. The construction is illustrated in Figure 3. Our
one-way chain χ′ starts in (ra, i). The area on the left from i-timeline contains i · |R| points,
but χ has an infinite depth hence at some point it must go to the right from i. Let rb be
the smallest register visited at moment i by χ; we first assume that rb is different from
ra (the other case is later). Let χ go (rb, i) . (r′, i + 1). We append this to χ′ and get
χ′ = (ra, i) > (rb, i) . (r′, i+ 1). If ra and rb were actually the same, so the chain χ moved
(ra, i) . (r′, i+ 1), then we would append only (ra, i) . (r′, i+ 1). By repeating the argument
from the point (r′, i+ 1), we construct the infinite descending one-way chain χ′. Hence ¬A
holds.

Direction ¬B′ ⇒ ¬B. Given a sequence of trespassing two-way chains of unbounded

XX:20 Church Synthesis on Register Automata over Linearly Ordered Data Domains

order

time

1
2

3
4

5
6

7
8

(a) A given two-chain (w/o stuttering)

order

time

1
2

3
4

5
6

7
8

(d) Constructed increasing one-chain
order

time

(b) Clique: shown the edges for the top 5
points only. Try completing the rest.

order

time

1
2

3
4

5
6

7
8

(c) Monochromatic subclique with ele-
ments 1, 2, 5, 8

Figure 4 Proving the direction ¬B′ ⇒ ¬B in Lemma 3

depth, we need to create a sequence of trespassing one-way chains of unbounded depth. We
extract a witnessing one-way chain of a required depth from a sufficiently deep two-way
chain. To this end, we represent the two-way chain as a clique with colored edges, and whose
one-colored subcliques represent all one-way chains. We then use the Ramsey theorem that
says a monochromatic subclique of a required size always exists if a clique is large enough.
From the monochromatic subclique we extract the sought one-way chain.

The Ramsey theorem is about clique graphs with colored edges. For the number n ∈ N
of vertices, let Kn denote the clique graph and EKn

— its edges, and let color : EKn
→

{1, . . . ,#c} be the edge-coloring function, where #c is the number of edge colors in the clique.
A clique is monochromatic if all its edges have the same color (#c = 1). The Ramsey theorem
says:

Fix the number #c of edge colors. (∀n)(∃l)(∀color : EKl
→ {1, . . . ,#c}): there exists

a monochromatic subclique of Kl with n vertices. The number l is called Ramsey
number for (#c, n).

I.e., for any given n, there is a sufficiently large size l such that any colored clique of this
size contains a monochromatic subclique of size n. We will only use #c = 3.

Given a sequence of two-way chains of unbounded depth, we show how to build a sequence
of one-way chains of unbounded depth. Suppose we want to build a one-way chain of depth
n, and let l be Ramsey number for (3, n). Because the two-way chains from the sequence
have unbounded depth, there is a two-way chain χ of depth l. From it we construct the
following colored clique (the construction is illustrated in Figure 4).

Remove stuttering elements from χ: whenever (ri,mi) = (ri+1,mi+1) appears in χ,
remove (ri+1,mi+1). We repeat this until no stuttering elements appear. Let χ> =
(r1,m1) > · · · > (rl,ml) be the resulting sequence; it is strictly decreasing, and contains l
pairs (the same as the depth of the original χ). Note the following property (†): for every

L. Exibard, E. Filiot, A. Khalimov XX:21

not necessarily adjacent (ri,mi) > (rj ,mj), there is a one-way chain (ri,mi) . . . (rj ,mj);
it is decreasing if mi < mj , and increasing otherwise; its depth is at least 1.
The elements (r,m) of χ> serve as the vertices of the colored clique. The edge-coloring
function is: for every (ra,ma) > (rb,mb) in χ>, let color

(
(ra,ma), (rb,mb)

)
be ↗ if

ma < mb, ↘ if ma > mb, ↓ if ma = mb. Figure 4b gives an example.
By applying the Ramsey theorem, we get a monochromatic subclique of size n with vertices
V ⊆ {(r1,m1), . . . , (rl,ml)}. Its color cannot be ↓ when n > |R|, because a time line has
maximum |R| points. Suppose the subclique color is ↗ (the case of ↘ is similar). We build
the increasing sequence χ? = (r?1 ,m?

1) < · · · < (r?n,m?
n), where m?

i < m?
i+1 and (r?i ,m?

i) ∈ V ,
for every plausible i. The sequence χ? may not satisfy the definition of one-way chains,
because the removal of stuttering elements that performed at the beginning can cause time
jumps mi+1 > mi + 1. But it is easy—relying on the property (†)—to construct the one-way
chain χ?? of depth n from χ? by inserting the necessary elements between (ri,mi) and
(ri+1,mi+1). Finally, when the subclique has color ↘, the resulting chain is decreasing.

Thus, for every given n, we constructed either a decreasing or increasing trespassing
one-way chain of depth n—in other words, a sequence of such chains of unbounded depth.
Hence ¬B holds, which concludes the proof of direction ¬B′ ⇒ ¬B. J

A.4 Proof of Lemma 4
Proof. Direction ⇒. The first two items follow from the definition of satisfiability and
Lemma 3. Consider the last item: suppose there is such a chain. Then, at the moment when
the chain strictly decreases and goes to some register s, the register s would need to have a
value below 0, which is impossible in N.

Direction ⇐. Since the conditions A ∧B hold, the sequence is satisfiable, hence it also
satisfies the conditions A′ ∧B′ from Lemma 2. In the proof of Lemma 2, we showed that in
this case the following valuations ν0ν1... satisfy the sequence: for every r ∈ R and moment
i ∈ N, set νi(r) (the value of r at moment i) to the largest depth of the two-way chains
starting in (r, i). We construct ν0ν1... as above, and get a witness of satisfaction of our
constraint sequence. But note that at moment 0, ν0 = 0R, by the last item. Hence the
constraint sequence is 0-satisfiable. J

A.5 Proof of Theorem 5
Proof. We describe a max-automaton A that accepts a constraint sequence iff it is consistent
and has no infinitely decreasing 1w chains and no trespassing 1w chains of unbounded depth.
By Lemma 3, such a sequence is satisfiable.

The automaton has three components A = Ac ∧A¬∞ ∧A¬u.
Ac The parity automaton Ac checks consistency, i.e. that ∀i : unprime(Ci|R′) = (Ci+1)|R.
A¬∞ The parity automaton A¬∞ ensures there are no infinitely decreasing 1w chains. First,
we construct its negation, an automaton that accepts a constraint sequence iff it has such a
chain. Intuitively, the automaton guesses such a chain and then verifies that the guess is
correct. It loops in the initial state q0 until it nondeterministically decides that now is the
starting moment of the chain and guesses the first register r0 of the chain, and transits into
the next state while memorising r0. When the automaton is in a state with r and reads a
constraint C, it guesses the next register rn, verifies that (r′n > r) ∈ C or (r′n = r) ∈ C, and
transits into the state that remembers rn. The Büchi acceptance condition ensures that the
automaton leaves the initial state and transits from some r to some rn with (r′n > r) ∈ C
infinitely often. Determinising and complementing this automaton gives A¬∞.

XX:22 Church Synthesis on Register Automata over Linearly Ordered Data Domains

Figure 5 Example of levels: start levels are {r1, r2} and
{r3}, end levels are {r3}, {r2}, and {r1}. The start level
{r1, r2} morphs into end level {r3}, the start level {r3}
disappears, and two new end levels appear, {r1} and {r2}.
The constraint is {r1 = r2 = r′

3 > r′
2 > r3 > r′

1}.

A¬u Before describing A¬u, we define ‘levels’. Fix a constraint C. A level l ⊆ R describes
an equivalence class of registers wrt. C|R or wrt. unprime(C|R′). Thus, in the constraint C
we distinguish two sets of levels: at the beginning of the step, called start levels, and at the
end of the step, called end levels. A start level l ⊆ R disappears when C contains no atoms
of the form r = s′ for r ∈ l and s ∈ R. An end level l ⊆ R is new if C contains no atoms
of the form r = s′ where r ∈ R and s ∈ l. A start level l morphs into an end level l′ if C
contains an atom r = s′ for some r ∈ l and s ∈ l′. Figure 5 illustrates the definitions. Notice
that there can be at most |R| start and |R| end levels. We now describe A¬u.

The max-automaton A¬u ensures there are no unbounded-depth trespassing 1w chains.
It relies on the team of |R| chain tracers Tr = {tr1, ..., tr|R|}. Each tracer tr is equipped
with a counter idletr and a set Cntr of 2|R| of counters. The tracers are controlled by the
master automaton via four commands idle, start, move, reset. We first describe the
master automaton and then the tracers.
Master. States of A¬u are of the form (getTr , ~q), where the mapping getTr maps levels to
tracers (a tracer will track chains below a level), ~q = (q1, ..., q|R|) are the states of individual
tracers. Initially there is only one start level R (since all registers are equivalent), so we define
getTr = {R 7→ tr1}. Suppose the automaton is in state (getTr , ~q) and reads a constraint
C. Let L be the start levels of C and L′ be its end levels. We define the successor state
(getTr ′, ~q ′) and operations on the counters using the following procedure.

To every tracer tr that does not currently track a level, i.e. tr ∈ Tr \ getTr(L), the master
commands idle (which causes the tracer to increment idletr).
For every start level l ∈ L that morphs into l′ ∈ L′: let tr = getTr(l), then

the master sends move to tr, which causes the tracer tr to update its counters Cntr
and move into a successor state q′tr (to handle move, the tracer needs a register serving
as an upper bound, so the master also passes an arbitrary register from l);
we set getTr ′(l′) = getTr(l), thus the tracer continues to track it.

For every start level l ∈ L that disappears: let tr = getTr(l), then
the master sends reset to tr, which causes the reset of the counters in Cntr and the
increment of idletr.

For every new end level l′ ∈ L′:
we take an arbitrary tr that is not yet mapped by getTr ′ and map getTr ′(l′) = tr;
the master sends start to tr.

The construction will ensure that every stable chain is tracked by a single tracer and its counter
idle is bounded; and vice versa, if a tracer has its counter idle bounded, it tracks a stable chain.
The acceptance of A¬u is the formula

∧
tr∈Tr

(
idletr is bounded →

∧
c∈Cntr

c is bounded
)
.

Tracers. We now describe the tracer component. Its goal is to trace the depths of trespassing
chains. When the counters of a tracer are bounded, the depths of the chains it tracks are
also bounded. The tracer consists of two components, B% and B1, which track decreasing
and increasing chains. We only describe B%.

The component B% has a set Cn ∪ {idle} of |R| + 1 counters. A state of B% is either
the initial state q0 or a partial mapping getCn : R ⇀ Cn. Intuitively, in each state, for

L. Exibard, E. Filiot, A. Khalimov XX:23

each getCn-mapped register r, the value of the counter getCn(r) reflects the depth of the
deepest trespassing decreasing 1w chain that ends in r. We maintain this property of getCn
during the transition of B% on reading a constraint C, using operations of max-automata
on counters and register-order information from C. The transition also uses the register rM
passed by the master automaton, and assumes that the level of rM does not disappear in the
current constraint. The component B% does the following:

If the master’s command is idle, then increment the counter idle and stay in q0.
If the master’s command is reset, reset all counters in Cn, increment the counter idle,
and go into state q0.
If the master’s command is start, move from state q0 into the state with the empty
mapping getCn.

Otherwise, the master’s command is move. Let rM be the register passed by the master, and
C the constraint. The component performs the operations on its counters and updates the
mapping getCn as follows.

Release counters. For every r: if r < rM and r′ > rM , then the component resets the
counter getCn(r) and removes r from the mapping getCn.
Allocate counters. For every r: if r ≥ rM and r′ < rM , then pick a counter c ∈
Cn \ getCn(R) and map getCn(r) = c.
Update counters. Fix an arbitrary register r such that r′ < rM . Let Rtre>r′ = {ro | ro <
rM ∧ ro > r′} be the registers larger than the updated r. If Rtre>r′ is not empty, let
getCn(Rtre>r′) be the set of their counters. Let r= be a register s.t. r= = r′ (may not exist).
The component does the following operation on the counter getCn(r):
reset when Rtre>r′ is empty and r= does not exist: the condition means that no
decreasing trespassing chain can be extended into r′;
copy(getCn(r=)) when Rtre>r′ is empty and r= exists: only the chains ending in r= can
be extended into r′, and since r= = r′, the deepest chain keeps its depth;
max

(
getCn(Rtre>r′)

)
+ 1 when Rtre>r′ is not empty and r= does not exist: the chains

from registers in Rtre>r′ can be extended into r′, and since r′ is lower than any register
in Rtre>r′ , their depths increase. The new value of counter getCn(r) reflects the deepest
chain.
max

(
max(getCn(Rtre>r′)) + 1, getCn(r=)

)
when Rtre>r′ is not empty and r= exists: some

chains from registers in Rtre>r′ can be decremented into r′, and there is also a chain
from r= that can be extended into r′ without its depth changed. The updated value
of the counter getCn(r) reflects the deepest resulting chain.

The number of states of B% is no more than |R||R|+ 1, and the number of counters is |R|+ 1.
The number of counters in B% and B1 is 2|R|+ 1. Since we use |R| number of tracers, the
total number of counters becomes |R|(2|R| + 1), which is in O(|R|2). This concludes the
description of the tracers and of the automaton A¬u.

Finally, for the case of 0-satisfiability, the automaton A also needs to satisfy the additional
conditions stated in Lemma 4, namely that the constraint sequence starts with C0 s.t.
C0|R = {r = s | r, s ∈ R} and that there are no decreasing one-way chains from moment 0 of
depth ≥1. These constructions are simple and omitted. J

A.6 Proof of Lemma 6
Proof. Direction⇐ is trivial, so consider direction⇒. Fix a lasso-shaped constraint sequence
C0 . . . Ck−1(Ck . . . Ck+l)ω having trespassing chains of unbounded depth. Since these chains
have unbounded depth, they pass through Ck more and more often. At moments when

XX:24 Church Synthesis on Register Automata over Linearly Ordered Data Domains

the current constraint is Ck, each such chain is in one of the finitely-many registers. Hence
there is a chain, say increasing, that on two separate occasions of reading the constraint Ck
goes through the same register r, and the chain suffix from the first pass through r until
the second pass has at least one <. Then we create an increasing chain of infinite depth by
repeating this suffix forever. J

A.7 Proof of Theorem 8
Proof. We first construct a nondeterministic parity automaton A accepting the complement
of the sought language, namely, it accepts a constraint sequence iff it satisfies one of following:
(i) it is not consistent, (ii) it has a decreasing one-way chain of infinite depth, (iii) it has a
trespassing increasing one-way chain of infinite depth, or (iv) there is a decreasing one-way
chain of depth ≥ 1 from position 0 or C0|R is not equal to {r=s | r, s ∈ R}.

For condition (i), the automaton, by using nondeterminism, guesses a position i such
that Ci|R′ 6= Ci+1|R, which can be checked, again, by guessing some atom which is in Ci|R′
but not in Ci+1|R, or conversely some atom not in Ci|R′ but in Ci+1|R. This requires only a
polynomial number O(|R|2) of states and a constant number of priorities. We now explain
how to check condition (iii), as conditions (ii) and (iv) can be checked using similar ideas.
For condition (iii), the automaton needs to guess a position i and a first register of the
stable chain, below which there will be an infinite increasing chain, also starting from the
position i. Starting from the position i, the automaton guesses a next register t of the stable
chain and checks that (s = t′) ∈ C belongs to the currently read constraint C, where s is a
current register representing the stable chain. We now explain how the automaton ensures
the existence of a sought increasing chain. It successively guesses a sequence of registers
ri, ri+1, . . . and checks that Cj contains either rj < r′j+1 or rj = r′j+1 and contains rj < s

for all j ≥ i, and checks that infinitely often we see the strict <. This needs only poly(|R|)
many states and a constant number of priorities. Thus, the nondeterministic automaton B
has in total poly(|R|) many states and O(1) many priorities.

We now determinise A (see e.g. [33]), which results in a deterministic automaton with
exp(|R|) states and poly(|R|) priorities, and complement it (no blow up). This gives us the
sought automaton. J

A.8 Definition of the assumption †
In the main text of the paper, we have defined assumption † as follows:

Every constraint Ci of a given sequence C0C1... satisfies the following:
for every ν ∈ DR, ν′ ∈ DR′ s.t. ν ∪ ν′ |= Ci, we have |{r′ ∈ R′ | ∀s ∈ R. ν′(r′) 6= ν(s)}| ≤ 1.

We now give an alternative definition. Recall that a constraint describes a set of totally
ordered equivalence classes of registers from R ∪ R′. The figure on the right describes
a constraint that can be defined by the ordered equivalence classes {r4, r

′
4} < {r′2} <

{r3, r
′
3} < {r1, r2, r

′
1}. It shows two columns of dots, at moment m and m + 1, where

a dot describes a set of registers equivalent in that moment. The vertical levels of the
dots respect the constraint: if a dot at moment m is on a higher/lower/equal level than a
dot at moment m+ 1, then the constraint requires the registers of the second dot to have
higher/lower/equal values than the registers of the first dot. A dot on a new level appears
in the second column, i.e. there were no dots on that level at moment m, if and only if the
constraint contains an equivalence class consisting solely of R′-registers. A level that was
present in the first column disappears from the second column if and only if the constraint
contains an equivalence class consisting solely of R-registers. Then the assumption † is:

L. Exibard, E. Filiot, A. Khalimov XX:25

B Assumption (†). In a constraint at most one new level can appear in the second column.

A.9 Proof of Lemma 9
xy(m)-connecting chains and the exponential nature of register valuations

Fix an arbitrary 0-satisfiable constraint sequence C0C1... whose r2w chains are depth-bounded
by b. Consider a moment m and two registers x and y such that (x > y) ∈ Cm.

We would like to construct witnessing valuations ν0ν1... using the current history only, e.g.
a register valuation νm at moment m given only the prefix C0...Cm−1. Note that the prefix
C0...Cm−1 also defines the ordered partition of registers at moment m, since Cm−1 is defined
over R ∪R′. Let us see how much space we might need between νm(x) and νm(y), relying
on the fact that the depths of r2w chains are bounded by b. Consider r2w chains that
start at moment i ≤ m and end in (x,m) (shown in blue), so it is defined within time
moments {i, ...,m}, and l2w chains starting in (y,m) and ending at moment j ∈ {i, ...,m}
(shown in pink), defined within time moments {j, ...,m}. Among such chains, pick one
r2w and one l2w chains of depths α and β that maximise the sum α + β. After seeing
C0C1...Cm−1, we do not know how the constraint sequence will evolve in future, but by
boundedness of r2w chains, any r2w chain starting in (x,m) and ending in (y,m) (defined
within time moments ≥ m) will have a depth d ≤ b−α−β (otherwise, we could add prefix
α and postfix β to it and construct an r2w chain of depth larger than b). We conclude
that νm(x)− νm(y) ≥ b− α− β, since the number of values in between two registers should
be greater or equal than the longest 2w chain connecting them. To simplify the upcoming
arguments, we introduce xy(m)-connecting chains which consist of α and β parts and directly
connect x to y.

An xy(m)-connecting chain is any r2w chain of the form (a, i).. . . (x,m) > (y,m).. . ..(b, j):
it starts in (a, i) and ends in (b, j), where i ≤ j ≤ m and a, b ∈ R, and it directly connects x
to y at moment m. Note that it is located solely within moments {i, ...,m}. Continuing the
previous example, the xy(m)-connecting chain starts with α, directly connects (x,m) > (y,m),
and ends with β; its depth is α+ β + 1 (we have “+1” no matter how many registers are
between x and y, since x and y are connected directly).

With this new notion, the requirement νm(x)−νm(y) ≥ b−α−β becomes νm(x)−νm(y) ≥
b− dxy + 1, where dxy is the largest depth of xy(m)-connecting chains.

However, since we do not know how the constraint sequence evolves after C0...Cm−1,
we might need even more space between the registers at moment m. Consider an example
on the right, with R = {r0, r1, r2} and the bound b = 3 on the depth of r2w chains.

Suppose at moment 1, after seeing the constraint C0, which is {r′1, r′2} > {r0, r1, r2, r
′
0},

the valuation is ν1 = {r0 7→ 0; r1, r2 7→ 3}. It satisfies ν1(r2)− ν1(r0) ≥ b− dr2r0 + 1
(indeed, b = 3 and dr2r0 = 1 at this moment); similarly for ν(r1)− ν(r0).
Let the constraint C1 be {r1, r2, r

′
2} > {r′1} > {r0, r

′
0}. What value ν2(r1) should

register r1 have at moment 2? Note that the assignment should work no matter what
C2 will be in future. Since the constraint C1 places r1 between r0 and r2 at moment
2, we can only assign ν2(r1) = 2 or ν2(r1) = 1. If we choose 2, then the constraint C2
having {r2, r

′
2} > {r′1} > {r1} > {r0, r

′
0} (the red dot in the figure) shows that there is

not enough space between r2 and r1 at moment 2 (ν2(r2) = 3 and ν2(r1) = 2). Similarly
for ν2(r1) = 1: the constraint C2 having {r2, r

′
2} > {r1} > {r′1} > {r0, r

′
0} (the blue dot

in the figure) kills any possibilities for a correct assignment.
Thus, at moment 2, the register r1 should be equally distanced from r0 and r2, i.e. ν2(r2) ≈
ν2(r0)+ν2(r2)

2 , since its evolution can go either way, towards r2 or towards r0. This hints at

XX:26 Church Synthesis on Register Automata over Linearly Ordered Data Domains

the exponential nature 2(...) of distances between the registers. This if formalised in the next
lemma showing that any data-assignment function that places two registers x and y at any
moment m closer than 2b−dxy is doomed.

I Lemma 19 (tightness). Fix b ≥ 3, registers R of |R| ≥ 3, a meaningful constraint sequence
prefix C0...Cm−1 where m ≥ 1 and whose r2w chains are depth-bounded by b, two registers
x, y ∈ R s.t. (x′ > y′) ∈ Cm−1, and a data-assignment function f : (C|R ∪ C+) → NR.
Let νm = f(C0...Cm−1) and dxy be the maximal depth of xy(m)-connecting chains. If
νm(x) − νm(y) < 2b−dxy , then there exists a continuation CmCm+1... such that the whole
sequence C0C1... is meaningful and its r2w chains are depth-bounded by b (hence 0-satisfiable),
yet f cannot satisfy it.

Proof. We use the idea from the previous example. The constraints CmCm+1... are:
1. If at moment m there are registers different from x and y, we add the step that makes

them equal to x (or to y): this does not affect the depth of xy-connecting chains at
moments m and m + 1; also, the maximal depths of r2w chains defined at moments
{0, ...,m} and {0, ...,m+ 1} stay the same. Therefore, below we assume that at moment
m every register is equal to x or to y.

2. If b − dxy = 0, we are done: νm(x) − νm(y) < 2b−dxy gives νm(x) ≤ νm(y) but Cm−1
requires νm(x) > νm(y). The future constraints then simply keep the registers constant.
Otherwise, when b− dxy > 0, we proceed as follows.

3. To ensure consistency of constraints, Cm contains all atoms over R that are implied by
atoms over R′ of Cm−1.

4. Cm contains x = x′ and y = y′.
5. Cm places a register z between x and y: x′ > z′ > y′.

This gives d′xz = d′zy = dxy + 1 ≤ b, where dxy is the largest depth of connecting chains
for xy(m), d′xz— for xz(m+1), and d′zy— for zy(m+1). Since νm+1(x)− νm+1(y) < 2b−dxy ,
either νm+1(x) − νm+1(z) < 2b−d′xz or νm+1(z) − νm+1(y) < 2b−d′zy ; this is the key
observation. If the first case holds, we have the original setting νm+1(x)−νm+1(z) < 2b−d′xz

but at moment m+ 1 and with registers x and z; for the second case — with registers z
and y. Hence we repeat the whole procedure, again and again, until reaching the depth
b, which gives the sought conclusion in item (2).

Finally, it is easy to prove that the whole constraint sequence C0C1... is 0-satisfiable, e.g.
by showing that it satisfies the conditions of Lemma 4. Moreover, it is meaningful, and all
r2w chains of C0C1... are depth-bounded by b because: (a) in the initial moment m, all r2w
chains are depth-bounded by b; and (b) the procedure deepens only xy-connecting chains
and only until the depth b, whereas other r2w chains existing at moments {0, ...,m} keep
their depths unchanged (or at moments {0, ...,m+ 1}, if we executed item 1). J

Proof of Lemma 9 under additional assumption

Tightness by Lemma 19 tells us that if a data-assignment function exists, it should separate
the register values by at least 2b−dxy . Such separation is sufficient as will be shown below.
We first describe a data-assignment function, then prove an invariant about it, and finally
conclude with the proof of Lemma 9. For simplicity, we assume that the constraints contain
a special register always holding the value 0; later we lift this assumption.
Data-assignment function. The function f : (C|R ∪C+)→ NR is constructed inductively
on the length of C0...Cm−1 as follows.

Initially, f(C0|R) = ν0 where ν0(r) = 0 for all r ∈ R (recall that C0 has r = s, ∀r, s ∈ R).

L. Exibard, E. Filiot, A. Khalimov XX:27

Suppose at moment m, the register valuation is νm = f(C0|RC0...Cm−1). Let Cm be the
next constraint, then the register valuation νm+1 = f(C0|RC0...Cm) is:
1. If a register x at moment m+ 1 lays above all registers at moment m, i.e. (x′ > r) ∈ Cm

for every register r, then set νm+1(x) = νm(r) + 2b, where r is one of the largest registers
at moment m. In terms of register games, this case happens when the test contains the
atom ∗ > r.

2. If a register x at moment m + 1 lays between two adjacent registers a > b at moment
m, then νm+1(x) = bνm(a)+νm(b)

2 c. In terms of register games, this means that the test
contains a > ∗ > b.

3. If a register x at momentm+1 equals a register r at previous momentm, so (r = x′) ∈ Cm,
then νm+1(x) = νm(r). In register games, this case corresponds to a test containing the
atom ∗ = r for some register r.

Since we cannot insert a value below the register holding value 0, these cases are sufficient.

B Claim (invariant). The data-assignment function satisfies the following invariant:
∀m ∈ N. ∀x, y ∈ R s.t. (x > y) ∈ Cm : νm(x)− νm(y) ≥ 2b−dxy ,

where dxy is the largest depth of xy(m)-connecting chains and b is the bound on r2w chains.

Proof of invariant. The invariant holds initially since (r1 = r2) ∈ C0 for all r1, r2 ∈ R.
Assuming it holds at step m, we show that it at m+ 1. Fix two arbitrary registers x, y ∈ R
such that (x′ > y′) ∈ Cm; we will prove that νm+1(x)− νm+1(y) ≥ 2b−dxy , where dxy is the
largest depth of xy(m+1)-connecting chains. There are four cases depending on whether the
levels of x and y at moment m+ 1 are present at moment m or not.
Case 1: both present. The levels of x and y at m+ 1 also exist at moment m. Let a, b
be registers s.t. (a > b) ∈ Cm laying at moment m on the same levels as x and y at moment
m + 1. By data-assignment function (item 3), νm(a) = νm+1(x) and νm(b) = νm+1(y).
Note that the number of levels between x-y and between a-b may differ. This is shown on
the right picture. Consider the depths of connecting chains for ab(m) and xy(m+1): Since
every ab(m)-connecting chain can be extended to xy(m+1)-connecting chain of the same
depth as shown on the figure, we have dab ≤ dxy1, and hence 2b−dab ≥ 2b−dxy . Using the
inductive hypothesis, we conclude νm+1(x)− νm+1(y) = νm(a)− νm(b) ≥ 2b−dab ≥ 2b−dxy .
Case 2: x is new top. The register x lays on the top level of both moments m and
m+ 1, and y lays on a level that was also present at moment m. This corresponds to item
1. Let (b = y′) ∈ Cm and a lays on the largest level at moment m (a and b may coincide).
Thus, νm+1(x) = νm(a) + 2b. This is shown on the right picture. The invariant holds for
x, y because νm+1(x) = νm(a) + 2b and νm(a) ≥ νm(b) = νm+1(y).
Case 3: x is middle new, y was present. The situation is shown on the left picture.
The register x at moment m+ 1 lays on a new level that is between the levels of a and b
at moment m, so νm+1(x) = bνm(a)+νm(b)

2 c. The register y at moment m+1 lays on a level
that was also present at momentm, witnessed by register c. Formally, Cm contains a > x′ >

b for a and b adjacent at moment m, c = y′, and x′ > y′. Note that c and b may coincide.
Then, νm+1(x) − νm+1(y) = bνm(a)+νm(b)

2 c − νm(c) = bνm(a)−νm(c)
2 + νm(b)−νm(c)

2 c ≥
bνm(a)−νm(c)

2 c + bνm(b)−νm(c)
2 c ≥ b2b−dac−1c + b2b−dbc−1c ≥ 2b−dac−1 + b2b−dbc−1c; the

latter holds because dac < b while dbc ≤ b. We need to prove that the last sum is
greater or equal to 2b−dxy . The picture shows how the green xy(m+1)-connecting chain

1 A stronger result holds, namely dab = dxy, but it is not needed here.

XX:28 Church Synthesis on Register Automata over Linearly Ordered Data Domains

can be constructed from the pink ac(m)-connecting chain, hence dxy ≥ dac + 1, so we get
2b−dac−1 ≥ 2b−dxy . Hence, νm+1(x)− νm+1(y) ≥ 2b−dac−1 + b2b−dbc−1c ≥ 2b−dxy .

Case 4: x was present, y is middle new. The case is similar to the previous one, but
we prove it for completeness. The constraint Cm contains a = x′, x′ > y′, b > y′ > c,
where b and c are adjacent (a and b might be the same). Then, νm+1(x) − νm+1(y) =
νm(a)− bνm(b)+νm(c)

2 c ≥ bνm(a)−νm(b)
2 + νm(a)−νm(c)

2 c ≥ bνm(a)−νm(b)
2 c+ bνm(a)−νm(c)

2 c ≥
b2b−dab−1c+b2b−dac−1c ≥ b2b−dab−1c+2b−dac−1, and since dac+1 ≤ dxy, we get νm+1(x)−
νm+1(y) ≥ b2b−dab−1c+ 2b−dac−1 ≥ 2b−dxy . J

Proof of Lemma 9. It is sufficient to show that for every atom (r ./ s) or (r ./ s′) of Cm,
where r, s ∈ R and ./ ∈ {<,>,=}, the expressions νm(r) ./ νm(s) or νm(r) ./ νm+1(s) hold,
respectively. Depending on r ./ s, there are the following cases.

If Cm contains (r = s) or (r = s′) for r, s ∈ R, then item (3) implies resp. νm(r) = νm(s)
or νm(r) = νm+1(s).
If (r > s) ∈ Cm, then νm(r) > νm(s) by the invariant.
Let (r > s′) ∈ Cm and the level of s at moment m+ 1 be present at moment m, i.e. there
is a register t such that (t = s′) ∈ Cm. Since νm(t) = νm+1(s) by item (3) and since
νm(r) > νm(t) by (r > t = s′) ∈ Cm, we get νm(r) > νm+1(s). Similarly for the case
(r < s′) ∈ Cm where s lays on a level also present at moment m.
Let (r < s′) ∈ Cm and s lays on the highest level among all levels at moments m and
m+ 1. Then νm(r) < νm+1(s) because νm+1(s) ≥ νm(r) + 2b by item (1).
Finally, there are two cases left: (r > s′) ∈ Cm or (r < s′) ∈ Cm, where s lays on a newly
created level at moment m+1, and there are higher levels at moment m. This corresponds
to item (2). Let (a > b) ∈ Cm be two adjacent registers at moment m between which the
register s is inserted at moment m+ 1, so (a > s′ > b) ∈ Cm. Let dab be the maximal
depth of ab(m)-connecting chains; fix one such chain. We change it by going through s at
moment m+1, i.e. substitute the part (a,m) > (b,m) by (a,m) > (s,m+1) > (b,m): the
depth of the resulting chain is dab + 1 and it is ≤ b by boundedness of r2w chains. Hence
dab ≤ b − 1, so νm(a) − νm(b) ≥ 2, implying νm(a) > bνm(a)+νm(b)

2 c > νm(b). When
(r > s′) ∈ Cm we get νm+1(r) ≥ νm(a), and when (r < s′) ∈ Cm we get νm+1(r) ≤ νm(b),
therefore we are done.

Finally, the function always assigns nonnegative numbers, from N, so we are done. J

Lifting the assumption about 0

In this section we will lift the assumption about a register always holding 0.

Conversion function. Given a meaningful constraint sequence C0C1... over R without a
special register holding 0, we will construct, on-the-fly, a meaningful sequence C̃0C̃1... that
has such a register; call the register r0 6∈ R and let R0 = R ∪ {r0}. Intuitively, we will add
atoms r = r0 only if they follow from what is already known and otherwise add atoms r > r0.

Initially, in addition to the atoms of C0, we require r = r0 for every r ∈ R (recall that
the original C0 contains r1 = r2 for all r1, r2 ∈ R). This gives an incomplete constraint C̃0
over R0 ∪R′0: it does not yet have atoms of the form r ./ r′0, r0 ./ r

′, r′0 ./ r′, where r ∈ R0.
At moment m ≥ 0, given a constraint C̃m|R0 over R0 (without primed registers R′0) and

a constraint Cm over R ∪R′ (without register r0), we construct C̃m over R0 ∪R′0 as follows:
C̃m contains all atoms of Cm.
(r0 = r′0) ∈ C̃m.

L. Exibard, E. Filiot, A. Khalimov XX:29

For every r ∈ R: if r′ = r0 is implied by the current atoms of C̃m, then we add it,
otherwise we add r′ > r0.
Notice that the atom r′ < r0 is never implied by C̃m, as we show now. Suppose the
contrary. Then, since Cm does not talk about r0 nor r′0, there should be s ∈ R such that
(s = r0) ∈ C̃m|R0 and (r′ < s) ∈ Cm. Because (s = r0) ∈ C̃m|R0 happens iff there is a 1w
chain (r1, 0) = (r2, 1) = ... = (s,m) of zero depth2, we can construct the 1w decreasing
chain (r1, 0) = (r2, 1) = ... = (s,m) > (r,m+ 1) of depth 1, which implies that C0C1... is
not 0-consistent. Hence our assumption is wrong and (r′ < r0) ∈ C̃m is not possible.
Finally, to make C̃m maximal, we add all atoms implied by C̃m but not present there.

Using this construction, we can easily define c0nv : C+ → C̃ and map a given meaningful
constraint sequence C0C1... to C̃0C̃1... with a dedicated register holding 0. Notice that the
constructed sequence is also meaningful, because we never add inconsistent atoms and never
add an atom r′ < r0 (see the third item). Finally, in the constructed sequence the depths of
r2w chains can increase by at most 1, due to the register r0: it can deepen-by-one a finite
chain, unless the chain is already ending in a register holding 0. Hence we got the following
lemma.

I Lemma 20. For every meaningful constraint sequence C0C1..., the sequence C̃0C̃1...

constructed with c0nv is also meaningful. Moreover, the maximal depth of r2w chains cannot
increase by more than 1.

Finally, we lift the assumption about a special register. Using c0nv, we translate a given
meaningful constraint sequence prefix C0...Cm into C̃0...C̃m that contains a register always
holding 0. Now we can apply the data-assignment function as described before. By definition
of c0nv, the original constraint Ci ⊂ C̃i for every i ≥ 0, so the resulting valuation satisfies
the original constraints as well. This concludes the proof of Lemma 9.

B Proofs of Section 3

B.1 Proof of Theorem 10
Proof idea. We reduce the problem from the halting problem of 2-counter machines, which
is undecidable [32]. We define a specification with 4 registers r1, r2, z and t. r1 and r2 each
store the value of one counter; z stores 0 to conduct zero tests and t is used as a buffer. We
now describe how to increment c1 (cf Figure 6a); the case of c2 and of decrementing are
similar. Eve suggests a value d > r1, which is stored in t. Then, Adam can check that the
increment was done correctly: Eve cheated if and only if he can provide a data d′ such that
r1 < d′ < d. If he cannot, d is stored in r1, thus updating the value of the counter. The
acceptance condition is then a reachability one, asking that a halting instruction is eventually
met. Now, if M halts, then its run is easily simulated by a strategy of Eve. Conversely, if M
does not halt, then no halting instruction is reachable by simulating M correctly, and Adam
is able to check that Eve does not cheat during its simulation. J

I Remark 21. As a matter of fact, if M halts, then its run is finite and the values of the
counters are bounded by some B, so Eve’s strategy can even be modelled using a transducer
with B registers, which simulates the run by providing the values of the counters along the
run. This shows that the transducer synthesis problem from specifications defined by register

2 The proof of this claim is omitted.

XX:30 Church Synthesis on Register Automata over Linearly Ordered Data Domains

k k + 1

∗ > r1, ↓ t
r1 <

∗ <
t

∗ = t, ↓ r1

∗ ≤ r1 ∨ ∗ > t

(a) Gadget for the 2CM instruction c1++. k is
the instruction number, stored in the state of
the automaton. (resp.) is a sink rejecting
(resp. accepting) state. ∨ is a shortcut for two
distinct transitions.

k

k′

k′′

∗ = r1 ∧
∗ = z

∗ = r1 ∧ ∗ > z

>

>

(b) Gadget for the 2CM instruction
ifz(c1,k’,k”).

Figure 6 Simulating increment (the gadget for decrementing is similar) and ifzero tests.

automata (without the input-driven restriction) is undecidable (cf Appendix B.6 for the
formal definitions of those objects).

Proof. We reduce from the halting problem of deterministic 2-counter machines, which is
undecidable [32]. Among multiple formalisations of counter machines, we pick the following
one: a 2-counter machine has two counters which contain integers, initially valued 0. It
is composed of a finite set of instructions M = (I1, . . . , Im), each instruction being of the
form incj ,decj , ifzj(k′, k′′) for j = 1, 2 and k′, k′′ ∈ {1, . . . ,m}, or halt. The semantics are
defined as follows: a configuration of M is a triple (k, c1, c2), where 1 ≤ k ≤ m and c1, c2 ∈ N.
The transition relation (which is actually a function, as M is deterministic) is then, from a
configuration (k, c1, c2):

If Ik = inc1, then the machine increments c1 and jumps to the next instruction Iik+1:
(k, c1, c2)→ (k + 1, c1 + 1, c2). Similarly for inc2.
If Ik = dec1 and c1 > 0, then (k, c1, c2) → (k + 1, c1 − 1, c2). If c1 = 0, then the
computation fails and there is no successor configuration. Similarly for dec2.
If Ik = ifz1(k′, k′′), then M jumps to k′ or k′′ according to a zero-test on c1: if c1 = 0,
then (k, c1, c2)→ (k′, c1, c2), otherwise (k, c1, c2)→ (k′′, c1, c2). Similarly for ifz2.

A run of the machine is then a finite or infinite sequence of successive configurations, starting
at (1, 0, 0). We say thatM halts whenever it admits a finite run which ends in a configuration
(k, c1, c2) such that Ik = halt.

Let M = (I1, . . . , Im) be a 2-counter machine. We associate to it the following DRA
specification: S has states Q = {0, . . . ,m+ 1} × {i, o, y, n} ∪ { , }, and has four registers
r1, r2, t, z. i and o respectively denote input and output states, while y and n are used
to remember whether an ifz test evaluated to true or false. The initial state is (0, i), and
acceptance is defined by a reachability condition with F = { }, and is a sink rejecting
state. Its transitions are as follows:

Initially, there is a transition (0, i) >−→ (1, o) so that the implementation can start the
simulation.
Then, for each k ∈ {1, . . . ,m}:

If Ik = incj for j = 1, 2, then we add the gadget of Figure 6a, i.e. output transition
(k, o) ∗>r1,↓t−−−−−→ (k, i) and input transitions (k, i) r1<∗<t−−−−−→ , (k, i) ∗=t,↓r1−−−−−→ (k + 1, o) and
(k, i) ∗≤r1−−−→ , (k, i) ∗>t−−→ .
The case Ik = decj for j = 1, 2 is similar: we add output transition (k, o) ∗<r1,↓t−−−−−→ (k, i)
and input transitions (k, i) t<∗<r1−−−−−→ , (k, i) ∗=t,↓r1−−−−−→ (k + 1, o) and (k, i) ∗≥r1−−−→ ,
(k, i) ∗<t−−→ . Note that in our definition, if cj = 0, then the instruction decj should be

L. Exibard, E. Filiot, A. Khalimov XX:31

blocking, i.e. the computation should fail, which is consistent with the fact that in
that case, the implementation cannot provide d < r1.
If Ik = ifzj(k′, k′′), then we add the gadget of Figure 6b, i.e. output transitions
(k, o) ∗=r1∧∗=z−−−−−−−→ (k, y), (k, o) ∗=r1∧∗>z−−−−−−−→ (k, n) and input transitions (k, y) >−→ (k′, o)
and (k, n) >−→ (k′′, o).
If Ik = halt, we add a transition (k, o) >−→ .

Now, assume that M admits an accepting run ρ = (k1, c
1
1, c

1
2) → · · · → (kn, cn1 , cn2), where

n ∈ N, k1 = 1, c1
1 = c1

2 = 0 and Ikn = halt. We can then define a strategy λE of Eve in G,
which ignores its input and outputs w = cj0

0 . . . c
jn−1
n−1 0ω, where for 1 ≤ l < n, jl is the index

of the counter modified or tested at step l (i.e. jl = 1, 2 is such that Ikl
= incjl

,decjl
of

ifzjl
(k′, k′′)). Let us show that λE is indeed a winning strategy: let u ∈ Nω be a word input

by Adam. We show by induction on l that in S the partial run over (u⊗ w)[: l] is either in
state or S is in configuration (kl, τl), where τl(r1) = c1

l and τl(r2) = c2
l . Initially, S is in

configuration (1, τ0
R), so the invariant holds. Now, assume it holds up to step l. If S is in ,

the invariant holds at step l + 1 as is a sink state. Otherwise, necessarily l < n, S is in
configuration (kl, τl) and there are four cases:

Ikl
= incj . By definition, j = jl. We treat the case j = 1, the other case is similar. Then,

Eve outputs c1
l = c1

l−1 + 1, which is such that c1
l > τl(r1). Then, there does not exist d

such that τl(r1) < d < τl(t) since τl(r1) = c1
l−1 and τl(t) = c1

l−1 + 1, so the transition to
 cannot be taken. Now, either u[: l + 1] = τl(t) = c1

l−1 + 1, in which case S evolves to
configuration (kl+1, c

1
l+1, c

2
l+1), or u[: l + 1] 6= τl(t) and S goes to ; in both cases the

invariant holds.
The case of Ikl

= decj is similar. Let us just mention that the computation does not
block at this step, otherwise ρ is not a run of M , so the transition d < rj can indeed be
taken.
Ikl

= ifzj(k′, k′′). Again, j = jl, and we treat the case j = 1. Eve outputs c1
l ; there are

two cases. If cl1 = 0, the transition ∗ = r1 ∧ ∗ = z is taken, since at every step, τl(z) = 0
(this register is never modified). If cl1 6= 0, then transition ∗ = r1 ∧ ∗ > z is taken. In
both cases, whatever the input, S then evolves to (kl+1, τl+1) (where τl+1 = τl) and the
invariant holds.
Finally, if Ikl

= halt, then whatever the output, S transitions to .
As a consequence, is eventually reached whatever the input, which means that for all
u ∈ Nω, u⊗ I(u) ∈ S, i.e. Eve indeed wins G.

Conversely, assume that Eve has a winning strategy λE in G. Let ρ be the maximal
run of M (i.e. either ρ ends in a configuration with no successor, or it is infinite). It is
unique since M is deterministic. Let n = ‖ρ‖, with the convention that n =∞ if ρ is infinite.
Let us build by induction an input word u such that for all l < n, λE(u)[l] = cjl

l and the
configuration reached by S over (u⊗ I(u))[: l] is (kl, τl). Initially, let u[0] = 0. As the initial
test is >, S anyway evolves to state (1, o), with τ(r1) = τ(r2) = 0.

Now, assume we built such input u up to l. There are again four cases:
Ikl

= incj . Then Eve provides some output data do > τl(rj). Assume do > τl(rj) + 1.
Then, Eve loses because on reading input data di = τl(rj) + 1, S goes to state , which is
a sink rejecting state. So, necessarily, do = τl(rj) + 1 = cjl

l , and S evolves to configuration
(kl+1, τl+1).
The case Ikl

= decj is similar. Necessarily, clj > 0, otherwise Eve cannot provide any
output data and is thus losing. Thus, the computation does not block here.
Ikl

= ifzj(k′, k′′). The output transitions of the gadget constrains Eve to output do =
τl(rj) = cjl

l , and S evolves to configuration (kl+1, τl+1).

XX:32 Church Synthesis on Register Automata over Linearly Ordered Data Domains

Ikl
= halt. Then, it means that n <∞ and l = n, so the invariant vacuously holds.

Now, ρ cannot be infinite, otherwise u ⊗ λE(u) is not accepted by S because is never
reached. It moreover cannot block on some decj instruction. Thus, a halt instruction is
eventually reached, which means that ρ is a halting run of M : M halts. J

B.2 Proof of Lemma 13
Given π, tst, asgn, we define the mapping constr : (π, tst, asgn) 7→ C as follows. (The
definition is as expected, but we should be careful about handling of rd, it is the last item.)

The constraint C includes all atoms of the state constraint π (that relates the registers
at the beginning of the step).
Recall that neither tst nor asgn talk about rd. For readability, we shorten (t1 ./ t2) ∈ C
to simply t1 ./ t2, (∗ ./ r) ∈ tst to ∗ ./ r, and a ≤ b means (a < b) ∨ (a = b).
We define the order at the end of the step as follows. For every two different r, s ∈ R:
r′ = s′ iff (r = s) ∧ r, s 6∈ asgn or r ∈ asgn ∧ (∗ = s) or r, s ∈ asgn;
r′ < s′ iff (r < s) ∧ r, s 6∈ asgn or (∗ < s) ∧ r ∈ asgn ∧ s 6∈ asgn;
r′ = r′d iff (r = ∗) or r ∈ asgn;
r′ ./ r′d iff (r ./ ∗) ∧ r 6∈ asgn, for ./∈ {<,>};

So far we have defined the order of the registers at the beginning and the end of the step.
Now we relate the values between these two moments. For every r ∈ R:
r = r′ iff r 6∈ asgn or r ∈ asgn ∧ (∗ = r);
r ./ r′ iff r ∈ asgn ∧ (r ./ ∗), for ./∈ {<,>};

Finally, we relate the values of rd between the moments. There are two cases.
The value of rd crosses another register: ∃r ∈ R : (rd < r) ∧ (∗ ≥ r). Then (r′d > rd).
Similarly for the opposite direction: if ∃r ∈ R : (rd > r) ∧ (∗ ≤ r) then (r′d < rd).
Otherwise, the value of rd does not cross any register boundary. Then r′d = rd.

Using the mapping constr, every action word a = (tst0asgn0)(tst1asgn1) . . . is uniquely
mapped to the constraint sequence C0C1 . . . as follows: C0 = constr(π0, tst0, asgn0), set
π1 = unprime(C0|R′

d
), then C1 = constr(π1, tst1, asgn1), and so on.

We now prove that an action word is feasible iff the constructed constraint sequence is
0-satisfiable. This follows from the definitions of feasibility and 0-satisfiability, and from the
following simple property of feasible action words. Every feasible action word has a witness
ν0d0ν1d1 · · · ∈ (DR ·D)ω such that: if some tst is repeated twice and no assignment is done,
then the value d stays the same. This property is needed due to the last item in the definition
of constr where we set r′d = rd.

B.3 Proof of Lemma 14
First, we show that the set FeasibleD(R) is definable by a deterministic parity or max-
automaton for Q and N, respectively. The lemma then follows from the facts that parity
automata and max-automata are closed under Boolean operations, and deterministic max-
automata can express all ω-regular languages [7].

We describe a deterministic (parity or max) automaton A′ accepting all feasible action
words. Let A the deterministic (parity or max) automaton accepting all 0-satisfiable constraint
sequences (see Theorems 1 or 5). Our automaton A′ in its state (q, π) tracks the state q of
A and the state constraint π. The initial state of A′ is (q0, π0), where q0 is initial for A and
π0 = {r = s | r, s ∈ Rd}. From a state (q, π), on reading (tst, asgn), the automaton creates
the constraint C = constr(π, tst, asgn) (by Lemma 13), simulates A on reading C, which gives
q′, and updates π′ = unprime(C|R′

d
); thus, A′ transits into (q′, π′). The acceptance is defined

L. Exibard, E. Filiot, A. Khalimov XX:33

by the acceptance of A. It is easy to see that the automaton A′ accepts an action word iff
it is feasible. State constraints can be represented as functions π : R ×R→ {<,>,=}, so
overall the size of A′ is 2poly(|R|). As a consequence, Wf is recognised by the product of S
and the complement of A′, which is an automaton of size O(|Q| 2poly(|R|)).

B.4 Proof of Theorem 11 for (Q,≤)
We extend the proof idea of Theorem 11 for (Q,≤) sketched on page 11. The theorem
essentially follows from the two propositions below:

I Proposition 22. If Eve wins Gf , then she wins G.

Proof. Let λfE : (V∀V∃)+ → V∀ be a winning Eve strategy in Gf . We construct a winning Eve
strategy λE : Tst+ → Σ in G as follows3. Fix an arbitrary sequence tst0...tstk; we are going to
define λ(tst0...tstk). First, for all 0 ≤ i ≤ k − 1, we inductively define v0, u0, v1, u1, . . . , vk ∈
(QA ∪QE), asgn0, ..., asgnk, and σ1, . . . , σk ∈ Σ:

The state v0 is initial for the register automaton G.
For all 0 ≤ i ≤ k, define ui ∈ QE and asgni to be such that (asgni, ui) = δ(vi, tsti),
σi+1 = λfE

(
v0(tst0, asgn0, u0)(σ1, v1) . . . (tsti, asgni, ui)

)
, and vi+1 = δ(ui, σi).

We then set λE(tst0...tstk) = σk+1. We now show that the constructed Eve strategy λE is win-
ning in G. Consider a Adam data strategy λQA, and let (v0, ν0)(u0, ν1)(v1, ν1)(u1, ν2)... be an
infinite run in G on reading the outcome λQA‖λE ; it is enough to show that v0u0v1u1... satisfies
the parity condition. Let d0d1... be the sequence of data produced by Adam during the play,
let σ0σ1... be the labels produced by Eve strategy λE , and let a = (tst0, asgn0)(tst1, asgn1)...
be the tests and assignments performed by the automaton during the run. It is easy to see
that the sequence v0(tst0, asgn0, u0)(σ0, v1)(tst1, asgn1, u1)... constitutes a play in Gf , and it
is compatible with λfE . Also, the action word a is feasible (which is witnessed by ν0d0ν1d1...).
Therefore, since λfE is winning, the sequence v0u0v1u1... satisfies the parity condition. J

I Proposition 23. If Adam wins Gf , then Adam wins G.

Proof. Given an Adam winning strategy λfA : V∀(V∀V∃)∗ → V∃, we construct the winning
Adam data strategy λQA in G step-by-step as follows. Suppose we are in the middle of
a play: d0...dk−1 has been played by Adam λQA and σ0...σk−1 has been played by Eve;
both sequences are empty initially. We want to know the value dk for λQA(σ0...σk−1). Let
(v0, ν0)(u0, ν1)(v1, ν1)(u1, ν2)...(vk, νk) be the current run prefix of the register automaton
G (initially (v0, ν0)). Let v0(tst0, asgn0, u0)(σ0, v1)(tst1, asgn1, u1)(σ1, v2)...(σk−1, vk) be the
corresponding play prefix of Gf (initially v0). We assume that this play prefix adheres to
λfA (this holds initially). We now consult λfA: let (tstk, asgnk, uk) = λfA(σk−1, vk). Using tstk
and νk, we construct dk as follows.

If tstk contains ∗ = r for some r ∈ R, we set dk = νk(r).
If tstk is of the form r < ∗ for all r ∈ R, then set dk = max(νk) + 1, i.e. take the largest
value held in the registers plus 1.
Similarly, if tstk is of the form ∗ < r for all r ∈ R, then set dk = min(νk)− 1.

3 What we really need is a winning Eve strategy of the form λQE : D+ → Σ. The strategy λE : Tst+ → Σ
that we construct encodes λQE as follows: it has the same set R of registers as the automaton G, and
performs the same assignment actions as the automaton. Then, on seeing a new data, it compares the
data with the register values, which induces a test, and passes this test to λE .

XX:34 Church Synthesis on Register Automata over Linearly Ordered Data Domains

Otherwise, for every r ∈ R, the test tstk has either r < ∗ or ∗ < r. We now pick two
registers r, s such that the test contains r < ∗ and ∗ < s and no register holds a value
between νk(r) and νk(s). Then we set dk = νk(r)+νk(s)

2 .
Then, dk satisfies tstk, i.e. (νk, dk) |= tstk. Finally, define νk+1 = update(νk, dk, asgnk). Thus,
the next configuration of the run in the register automaton is (uk, νk+1). In Gf , the play is
extended by (tstk, asgnk, uk); notice that the resulting extended play again adheres to the
winning Adam strategy λfA. Therefore, starting from the empty sequences of Adam data
choices and Eve label choices, step-by-step we construct the values for λQA. The resulting
outcome in the Church game G induces a rejecting run in the register automaton because
Adam wins the corresponding play in Gf . J

Now, we are ready to prove Theorem 11:

Proof. First, we show that Eve wins G iff she wins Gf . Direction ⇐ follows from Proposi-
tion 22. Direction ⇒ is proven by contraposition relying on the determinacy of ω-regular
games and Proposition 23. Since the feasibility game Gf is of size polynomial in |Q| and
exponential in |R|, and has a number of priorities polynomial in c, it can be solved in
O((poly(|Q|)2poly(|R|))poly(c)) and we are done with the first item of the theorem. The deter-
minacy is proven similarly using the claims above and the determinacy of ω-regular games.
Finally, Remark 12 on finite-memoriness follows from the proof of claim (1), where we have
built the strategy λE : Tst+ → Σ, and from the finite-memoriness of ω-regular games. J

B.5 Data strategy for Adam (proof of Proposition 15, direction ⇒)
I Lemma 24 (data strategy). Let G be a Church game. If Adam wins Gregf , then he wins G.

This seemingly easy lemma is not trivial. Despite Adam having in Gregf a winning strategy
λfA : V∀(V∃V∀)∗ → V∃, which can also be expressed in the form λA : Σ∗ → Tst, it is not clear
how to instantiate it to a data strategy λNA : Σ∗ → N. For instance, if the strategy λA in
Gregf dictates Adam to pick the test ∗ > r, which data should λNA pick: ν(r) + 1, ν(r) + 2,
more? For different Eves different values may be needed. We will show how to construct λNA
from a given λA that beats any Eve. The steps are the following:

In Section 2, we defined so-called r2w chains: they track how many values have been
inserted between two registers so far. We show that if Adam wins the register game, there
must be an upper bound b on the number of such insertions (because N is not dense).
Furthermore, in that section, we have studied constraint sequences whose r2w chains
are bounded. We described, for any given bound b, a data-assignment function that
on-the-fly assigns data values to the registers that satisfy the constraints. ‘On-the-fly’
means that the function reads the constraint sequence and at any given moment relies
only on the history of constraints and data values, but does not see the future.
Thus, we can construct λNA from λfA by translating the currently played action-word
prefix (tst0, asgn0)...(tstm, asgnm) into a constraint-sequence prefix and applying the
data-assignment function to it.

Boundedness of right two-way chains induced by Adam

Suppose Adam wins Gregf using a finite-memory strategy λfA : V∀(V∃V∀)∗ → V∃ (equiv.,
λfA : Σ∗ → Tst). The plays consistent with λfA satisfy the following important property. Fix
a moment i and a register x. Then: after the moment i, only a bounded number of values

L. Exibard, E. Filiot, A. Khalimov XX:35

can be inserted below the value of register x at moment i. Similarly, if we fix two registers
at moment i, there can only be a bounded number of insertions between the values of x and
y at moment i. This holds because, by finiteness of Adam strategy, once the number of such
insertions is larger than the memory of Adam, Eve can repeat her actions to force an infinite
number of such insertions, leading to a play with an unfeasible action sequence and hence
won by Eve. This intuition is caught by r2w chains defined in Section 2. We now re-state
and prove Lemma 16:

(Lemma 16) Fix an arbitrary finite-memory Adam strategy λfA winning in Gregf . There
is a number b ≥ 0 that bounds the depths of all r2w chains coming from λfA:

∀constraint sequences resulting from playing with λA.
∀x ∈ R.∀i ≥ 0.∀r2wch from (x, i) : depth(r2wch) ≤ b.

Proof. Recall that with every play in Gregf we can associate the action word and the constraint
sequence C0C1... (the latter is constructed by constr from Lemma 13).

We prove the lemma by contradiction, by constructing a play with λfA which induces an
unsatisfiable constraint sequence and therefore is losing for Adam.

Suppose the lemma does not hold for some finite-memory winning Adam strategy λfA.
Then the set of constraint sequences induced by the plays with λfA has unbounded-depth 2w
chains. Apply the Ramsey argument from Lemma 2 to this set of constraint sequences: the
set induces unbounded-depth 1w chains. The set of these 1w chains contains at least one of
the two: unbounded-depth 1w chains that are (i) increasing, (ii) decreasing.

Consider the first case, the other one is similar. The number of registers R, constraints
over R, and states in λfA is finite (since λfA is finite-memory), but these 1w increasing chains
have unbounded depth (and hence length). Therefore there exist a 1w increasing chain χ
and moments m and n such that Cm = Cn, the chain χ goes through the same register r in
m and n, and Adam strategy λfA is in the same state q in both moments. Moreover, as the
chain has unbounded depth, we can assume that the chain segment σ from m to n has at
least one strict increase, so its depth > 0. Note that Adam cannot distinguish the moments
m and n, so if Eve repeats her actions between m and n, Adam will respond in the same way.
Hence the constraints from m to n will be repeated too, and the chain segment σ will be
extended to σ · σ. By making Eve repeat her actions from m to n forever, we can construct
a play consistent with λfA that has a constraint sequence with an infinite increasing 1w chain
χ′. The chain eventually repeats the segment σ forever, and since the depth of σ is nonzero,
the chain has infinite depth. But we cannot derive a contradiction yet by proclaiming that
the play π is losing by Adam, because having an infinite increasing 1w chain, per se, does
not make the constraint sequence unsatisfiable. We need one more step.

Recall that the 1w chain χ, from which we started in the previous paragraph, was
constructed using the Ramsey argument from some r2w chain. As a consequence, χ consists
solely of the elements of the original r2w chain. Note that in r2w chains the starting element
is one of the largest elements (by definition, 2w chains are decreasing). Therefore, all elements
of the 1w chain χ are also nonstrictly smaller than (x, i), where (x, i) is the starting element
of the r2w chain; the same holds for the elements of the infinite 1w increasing chain χ′. But
this requires an infinite number of values between νi(x) and 0, which is impossible in N, so
our constructed constraint sequence is unsatisfiable. Hence the constructed play π with λfA is
losing for Adam, which contradicts the assumption of winning λfA, concluding the proof. J

XX:36 Church Synthesis on Register Automata over Linearly Ordered Data Domains

Proof of Lemma 24 (Adam data strategy)

The lemma essentially follows from Lemmas 13, 16, and 9.

Proof of Lemma 24. Fix an Adam strategy λfA : V∀(V∃V∀)∗ → V∃ (equiv., λA : Σ∗ → Tst)
winning in Gregf . From λfA, we construct λNA : Σ∗ → N step-by-step as follows.

Suppose we are in the middle of a play: d0...dk−1 has been played by Adam λNA
and σ0...σk−1 by Eve; both sequences are empty initially. We want to know the value
dk for λNA(σ0...σk−1). Let (v0, ν0)(u0, ν1)(v1, ν1)(u1, ν2)...(vk, νk) be the current play pre-
fix of the register game (initially (v0, ν0)). We construct the corresponding play prefix
v0(tst0, asgn0, u0)(σ0, v1)(tst1, asgn1, u1)(σ1, v2)...(σk−1, vk) of Gf (initially v0). We assume
that this play prefix adheres to λfA (this holds initially). Let (tstk, asgnk, uk) = λfA(σk−1, vk)
be the next vertex chosen by Adam in Gf .

Let C0...Ck−1 be the constraint sequence built from (tst0, asgn0)...(tstk, asgnk) by the
mapping constr of Lemma 13. Recall that all Ci are over registers R ∪ {rd}, where rd is a
fresh register whose role is to store the last Adam data value. By Lemma 16, the strategy
λA induces constraint sequences over R ∪ {rd} whose r2w chains are depth-bounded by b.
Hence we can apply the data-assignment function from the proof of Lemma 9 (page 26).
This gives νk+1 and in particular the value for rd at moment k + 1, which is the last Adam
value, so we set dk = νk+1(rd). The specification automaton evolves into the configuration
(uk, νk+1), whereas Gf evolves into (tstk, asgnk, uk). Thus, the extended play adheres to the
winning Adam strategy λfA. Therefore, starting from empty sequences of Adam and Eve
actions, step-by-step we construct the values for λNA. Since the strategy λNA adheres to λfA, it
is winning in G. J

B.6 Definitions and Proofs of Section 4
Input-driven register automata

An input-driven deterministic register automaton is a two-sided register automaton whose
output data are required to be the content of some registers. Formally, it is a tuple
S = (Q, q0, R, δ, α) where Q = QA]QE , q0 ∈ QA and the transition function is

δ : (QA × Tst→ Asgn×QE) ∪ (QE × Tst= → Asgn∅ ×QA),
where Tst= consists of tests which contain at least one atom of the form ∗ = r for some r ∈ R,
i.e. the output data must be equal to some specification register, and Asgn∅ = {∅} meaning
that output data output is never assigned to anything (this is without loss of generality,
given that the output data has to be equal to the content of some register).

Register transducers

A register transducer (RT) is a tuple T = (Q, q0, R, δ), where Q is a set of states and
q0 ∈ Q is initial, R is a finite set of registers. The transition function δ is a (total) function
δ : Q× Tst→ Asgn×R×Q.

The semantics of T are provided by the associated register automaton AT . It has states
Q′ = QA]QE , where QA and QE are two disjoint copies of Q, it has initial state q0 and
set of registers R. Its transition function is defined as qi

tst,asgn−−−−→
AT

qo
r=,∅−−−→
AT

q′
i
if and only if

q
tst|asgn,r−−−−−→

T
q′, where q tst|asgn,r−−−−−→

T
q′ stands for δ(q, tst) = (asgn, r, q′) (similarly for AT). The

priority function is simply α : q 7→ 2, i.e. all states are accepting. Then, T recognises the
(total) function fT : di0di1 · · · 7→ do0 d

o
1 . . . such that di0do0 di1do1 · · · ∈ L(AT). It exists since all

L. Exibard, E. Filiot, A. Khalimov XX:37

states are accepting and is unique since the output transitions are determined by the input
ones, and only contain equality tests so the corresponding output data is unique.

Proof of Theorem 17

With an input-driven register automaton specification S, we associate a one-sided register
automaton S′ by treating output registers as finite labels, and then reduce the synthesis
problem to deciding the existence of a winning strategy for Eve in the corresponding Church
game.

Let S = (Q, q0, R, δ, α) be a specification. We define S′ = (Tst=, Q, q0, R, δ
′, α) (note that

the finite output alphabet is Tst=). First, up to remembering equality relations between
registers, we can assume that from an output state, all outgoing transitions are takeable,
independently of the register configuration, i.e. that from a reachable output configuration
(qE , τ), for all transitions t = qE

tst=,∅−−−−→ q′A, there exists d such that qE
d−→
t
q′A. This however

induces a blowup of Q exponential in |R|.
The transition function is δ′A = δA, and δ′E(qE , tst) = q′A if and only if δE(qE , tst) =

(∅, q′A). Overall, the size of S′ is exponential in |R| (because of the assumption we made on
output transitions) and polynomial in |Q|.

Now, we need to show that S admits a register transducer implementation if and only if
Eve has a winning strategy in the Church game G associated with S′.

First, assume that there exists a register transducer T which realises S. From T , we
define a strategy λT in G, which simulates T and S in parallel. Given an history di0 . . . d

i
n, let

don be the data output by T . As S is deterministic, there exists a unique run over the history
di0d

o
0 . . . d

i
nd

o
n; let t = qE

tst=,∅−−−−→ q′A be the transition taken by S on reading don. Then, define
λT (di0 . . . din) = tst=. Now, for a play in G consistent with λT , consider the associated run
in S′. As T is an implementation and the sequence of transitions is feasible (as witnessed
by the data given as input), such run is necessarily accepting, so λT is indeed a winning
strategy in G.

Conversely, assume that Eve has a winning strategy in G. By Proposition 15, she has a
winning strategy in Gf . We can assume such strategy to be a finite-memory strategy with
memoryM , initial memorym0 and update function µ : M×V∃ →M . λE : M → Tst=. Then,
consider T = (Q×M, (q0,m0), R, δ′). We define δ′ as follows: assume the transducer is in state
(q,m). Then, the transducer receives input satisfying some test tst. In S, it corresponds to
some input transition δ(q, tst) = (asgn, q′). The memory is updated to µ(m, (tst, asgn)) = m′,
and λE(m′) = tst=. Let r be such that tst= ⇒ r= (such r necessarily exists by definition of
Tst=). Then, we let δ((q,m), tst) = (asgn, r, (q′,m′)). Now, let w = di0d

i
1 . . . be an input data

word, and T (w) = do0 d
o
1 By construction, the run of S over w ⊗ T (w) = di0d

o
0 d

i
1d

o
1 . . .

corresponds to a play consistent with λE , so it is accepting (since it is feasible, as witnessed
by w ⊗ T (w)). As a consequence, w ⊗ T (w) ∈ L(S), which means that T is indeed a register
transducer implementation of S.

Overall, we reduced the transducer synthesis problem of S to solving a Church game over
S′, whose size is polynomial in |Q| and exponential in |R|. By Theorem 11, this yields an
algorithm polynomial in |Q| and exponential in c and |R| (the exponentials do not stack).

I Remark 25. For data domain (Q,≤), the synthesis problem for specifications defined by
two-sided register automata is also decidable, if the target implementation is any program,
as the Church game again reduces to a parity game: checking feasibility is still doable using
a parity automaton. However, in general, register transducers might not suffice; e.g. the
environment can ask the system to produce an infinite sequence of data in increasing order.

XX:38 Church Synthesis on Register Automata over Linearly Ordered Data Domains

Yet, it can be shown that implementations can be restricted to simple programs, which
can be modelled by register transducers which have the additional ability to pick a data
between two others, e.g. by computing d1 + d2

2 , and to pick a data above all others, e.g.
by multiplying by 2. This limited computational power suffice to translate a finite-memory
strategy in the feasibility game to an implementation.

	1 Introduction
	2 Satisfiability of Constraint Sequences
	3 Church Synthesis Games
	4 Application to Transducer Synthesis
	5 Conclusion
	A Proofs of Section 2
	A.1 Proof of Theorem 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3
	A.4 Proof of Lemma 4
	A.5 Proof of Theorem 5
	A.6 Proof of Lemma 6
	A.7 Proof of Theorem 8
	A.8 Definition of the assumption
	A.9 Proof of Lemma 9

	B Proofs of Section 3
	B.1 Proof of Theorem 10
	B.2 Proof of Lemma 13
	B.3 Proof of Lemma 14
	B.4 Proof of Theorem 11 for (Q,)
	B.5 Data strategy for Adam (proof of Proposition 15, direction =>)
	B.6 Definitions and Proofs of Section 4

