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Statement of Significance

The tight links between plant and soil communities are drivers of biodiversity responses to

environmental change. However, it is unclear how those links vary over biogeographic scales.

Here, we used partial correlation networks to investigate plant-soil linkages along fourteen

elevational gradients in the French Alps. We found tight linkages of plant traits with microbial

activities, the former being driven by climate and the latter by soil properties. Climate did not

affect soil properties directly, but through plant functional traits. Overall, we demonstrate how

soil functioning can be integrated in studies of ecosystem shifts under environmental change

at large spatial scales.
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Abstract

Aim: Plant-soil interactions can be major driving forces of community responses to

environmental changes in terrestrial ecosystems. These interactions can leave signals in

aboveground plant functional traits and belowground microbial activities and these signals

can manifest in observed covariations. However, we know little about how these plant-soil

linkages vary in response to environmental conditions at biogeographic scales for which

experiments are impossible. Here, we investigate patterns of direct and indirect linkages

between plant functional traits, soil microbial activities and environmental conditions in

mountain grasslands along elevational gradients.

Location: The French Alps.

Taxon: Vascular plants and soil microbiota.

Methods: We analysed observational grassland data sampled along 14 elevational gradients

across the entire French Alps (between 1500 and 2800 m of elevation). Using Graphical

Lasso, we inferred a partial correlation network to tease apart direct and indirect plant-soil

linkages without defining the direction of interactions a priori.

Results: We found tight spatial associations of plant traits with microbial activities, climate

driving the former and soil properties the latter. In these plant-soil linkages, the dominance of

specific plant traits was more important than their diversity. We then showed that in sites with

conservative plant traits and reduced organic matter quality, soil microbes invested strongly in

nutrient acquisition.

Main conclusions: By investigating plant-soil linkages along elevational gradients in the

French Alps, we showed that plant functional traits and belowground microbial activity are

tightly linked and how they depend on environmental conditions. Overall, we demonstrated
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how soil functioning can be integrated in studies of ecosystem shifts under environmental

change at large spatial scales.

Keywords: elevational gradient, graphical lasso, ORCHAMP, partial correlation network,

plant functional traits, plant-soil linkages, soil enzymatic activities
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Introduction

Plant-soil interactions are fundamental elements of ecosystem functioning and structure

(Wardle et al., 2004; Bardgett & Wardle, 2010; de Vries et al., 2013; Martinez-Almoyna et al.,

2019). Plants rely on soil microbial communities that drive decomposition of detrital organic

matter and the recycling of nutrients through their extracellular enzymatic activities (Burns &

Dick, 2002; Schimel & Bennet, 2004; Burns et al., 2013). Conversely, the

resource-acquisition strategy of soil microbes depends on the quantity and nutritional quality

of plant litter inputs, and is reflected in the relative investment in extracellular enzymes that

target C-, N- or P-rich compounds (Bowman, Steltzer, Rosenstiel, Cleveland & Meier, 2004;

Bardgett & Wardle, 2010; Fanin, Hättenschwiler & Fromin, 2014; Legay et al., 2014; Piton,

Legay, et al., 2020).

Observed correlations between components of plant communities and soil microbial

communities, called plant-soil linkages in the following, can be the result of plants affecting

soil, of soil affecting plants, or of both processes simultaneously (Fig. 1). Concerning the

effect of plants on soil ecosystem properties, there are two conflicting visions in the literature.

Grime (1998; see also García-Palacios, Shaw, Wall & Hättenschwiler, 2017) proposed that

plant species in a community control ecosystem functions, such as primary production,

resistance and resilience to perturbations and nutrient cycling and storage, proportionally to

their biomass. In other words, the traits of dominant plant species determine ecosystem

properties more strongly than the traits of rare species (“mass-ratio-hypothesis”). On the other

hand, it was suggested that functional diversity affects ecosystem functioning through

complementary use of resources (“diversity-function-hypothesis”; Tilman et al., 1997; Hooper

et al., 2005). For example, diverse plant communities may increase rates of nitrogen (N)

cycling by providing variable litter qualities that can be broken down at different rates, thus
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providing a more consistent supply of organic N (Laughlin, 2011). Since rare species can have

keystone effects and strongly influence pathways of energy and material flows (see also

Violle et al., 2017), the relative abundance of species is not always a good predictor of

ecosystem-level importance of species. These hypotheses have mostly been tested at regional

scales for individual ecosystem processes, and most studies supported the

mass-ratio-hypothesis (Díaz et al., 2007; Grigulis et al., 2013; Lavorel, 2013; García-Palacios

et al., 2017). However, we still lack knowledge about whether functional diversity or traits of

dominant species are of greater importance in plant-soil linkages at biogeographic scales.

Soil functioning also impacts the plant community. On fertile soils with high nutrient

availability, plant communities are often composed of exploitative plants (high leaf nitrogen

content and low leaf dry matter content) and are associated with bacteria-dominated

belowground communities that quickly decompose the easily degradable litter (Wardle et al.,

2004; Quested, Eriksson, Fortunel & Garnier, 2007; Fortunel et al., 2009). On infertile soils

with low nutrient availability, conservative plant communities with slow growth rates are

often linked to fungi-dominated belowground communities with slower cycling rates but with

the ability to decompose more recalcitrant material (Aerts, 1999; Bardgett & Wardle, 2010).

Although these associations are well-known locally, at biogeographic scales it is rarely

studied how the changes in nutrient and energy availability in soils influence the traits of plant

communities along the exploitative to conservative plant spectrum (Piton, Legay, et al., 2020).

Extracellular enzymatic activities (EEAs) of microbial communities are related to both

nutrient availability and microbial growth, acting at the interface between aboveground and

belowground communities. EEAs can be either directed towards nutrient (e.g. N or P) or

energy (i.e. C) acquisition. Ratios of EEAs therefore reflect the equilibria between elemental

composition of microbial biomass and soil organic matter (Sinsabaugh, Hill & Shah, 2009),

and the shift between nutrient and energy flow associated with microbial community
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metabolism. Although EEAs might underlie plant-soil linkages through organic matter

recycling, their relationship with plant traits have rarely been investigated.

On top of plant-soil interactions, environmental conditions, i.e. soil physicochemical

properties and climate, also influence the plant and microbial communities differentially, and

therefore modulate their observed linkages (Bonito et al., 2014; Van der Putten, Bradford,

Brinkman, van de Voorde & Veen, 2016) (Fig. 1). In mountain systems, for instance,

temperature and snow cover determine growing season length, solar radiation that plants are

exposed to, soil moisture regime and soil pH. These environmental conditions might affect

nutrient and energy availability which impacts soil microbial communities, EEAs, plant

community composition, and associated litter quality, and in turn, nutrient availability. In

particular, freezing cycles constitute a physiological stress which alters microbial demand and

allocation of C and nutrients (Freppaz, Williams, Edwards, Scalenghe & Zanini, 2007;

Schimel, Balser & Wallenstein, 2007). However, it is difficult to distinguish between direct

and cascading effects of the environment on plant-soil linkages because of the multitude of

interactions between all components of the system. This is why all components implicated in

the complex system of plant-soil linkages have rarely been studied together in the past (e.g.

Wardle et al., 2004; Kulmatiski, Beard, Stevens & Cobbold, 2008; Delgado-Baquerizo et al.,

2019).

At biogeographic scales, it is almost impossible to uncover and study interactions through

experiments. But plant-soil interactions leave correlative signals in spatial patterns of

aboveground functional traits and belowground activity that we can study with observational

data (de Vries et al., 2012; Delgado-Baquerizo et al., 2018). We know, for instance, that at

large scales aboveground plant properties (e.g. exploitative-conservative spectrum) are drivers

of soil microbial community diversity and composition (de Vries et al., 2012;

Delgado-Baquerizo et al., 2018; Boeddinghaus et al., 2019). However, such studies have
8



focused on abundance weighted trait values and have rarely assessed plant functional

diversity. Moreover, most models used in previous studies to infer patterns in

aboveground-belowground linkages, such as structural equation models, assume causality and

directionality. In particular, microbial community composition was mostly assumed to be the

response variable (de Vries et al., 2012; Delgado-Baquerizo et al., 2018; Boeddinghaus et al.,

2019; but see Martinez-Almoyna et al., 2020). However, aboveground-belowground linkages

result from interactions and feedbacks. From observations alone we can neither determine

how the observed patterns were created nor the most prominent directions of the effects. They

may result from plant traits influencing the soil community through litter quality, or from the

soil community influencing the plant community through nutrient availability, or they may

result from a combination of both. Also, we do not know where abiotic factors come into play

and it is difficult to disentangle direct and indirect effects.

For these reasons, here, we used a graphical model approach to tease apart direct and indirect

influences in plant-soil linkages without defining the direction of interactions a priori. Using

a graphical lasso to infer a partial correlation network, we analyse interdependencies between

aboveground plant functional traits, belowground enzymatic activities and abiotic conditions.

We apply this method to grassland communities sampled along 14 elevational gradients from

a large-scale observatory representative of the entire French Alps (ORCHAMP). Elevational

gradients are associated with drastic abiotic gradients over short distances and are excellent

systems to study ecosystem processes for a multitude of climatic and edaphic conditions, and

to test how ecosystems respond to environmental variation (Sundqvist, Sanders & Wardle,

2013; Martinez-Almoyna et al., 2019). We focus on mountain grasslands because little is

known about large scale patterns in aboveground-belowground linkages in these vulnerable

ecosystems. In the context of unprecedented environmental changes, understanding the

relevance of plant-soil linkages for biogeographic distributions of plant diversity and
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microbial activity, and measuring the effects of single components on overall plant-soil

functioning is of tremendous importance (Hagedorn, Gavazov & Alexander, 2019).

To better characterize plant-soil linkages along climatic and edaphic gradients in the French

Alps, we ask three specific questions:

- (1) How do abiotic and biotic interdependencies between climate, abiotic soil

conditions, and above- and belowground communities vary over biogeographic scales

(focus on between-compartment correlations)?

- (2) Are plant-soil linkages better explained by plant functional diversity or by

dominant trait values?

- (3) Which specific associations exist between extracellular enzyme activities and other

specific variables involved in plant-soil linkages (focus on within-compartment

correlations)?
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Materials and Methods

Study area and the observatory ORCHAMP

ORCHAMP (Spatio-temporal observatory of biodiversity and ecosystem functioning of

mountain socio-ecosystems, Supp. Mat.) is a long-term observation network covering the

French Alps (Fig. 2, Fig. S1). It consists of multiple elevational gradients across the entire

study area. For each gradient, 30 m * 30 m permanent plots were established every ~200 m of

altitude. Plant community relevees (presence/absence and abundances), microbial activities,

climatic conditions and soil properties were measured between 2016 and 2018 (Fig. S2). For

this study, we selected 41 plots in open habitat (including grasslands and few shrublands)

along 14 elevational gradients on different metamorphic and sedimentary bedrock, such as

schist, gneiss and limestone (Fig. 2, complete sampling protocols and descriptions of the plots

available on orchamp.osug.fr).

Biotic plant-soil linkages – Aboveground community

In each plot, we recorded plant species abundances using a pin-point sampling along a 30 m

transect parallel to the slope in the middle of the plot. Two measurements were taken every

20 cm: one measurement 25 cm upslope, the other 25 cm downslope from the transect. All

individuals touching the pole that marked the two measure points per 20 cm increment were

identified and counted. Furthermore, an additional dataset of presence/absences of all species

along the same 30 m transect but of 3 m width was sampled to obtain a value of species

richness representative of the whole plot. All plant species in the subplot were identified by

professional botanists.
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To test the mass-ratio-hypothesis (Grime, 1998), we calculated community-weighted means

(CWMs) of plant traits (Garnier et al., 2004; Lavorel et al., 2008, Eq. 1).

(1) CWM =
𝑖=1

𝑛

∑ (𝑝
𝑖
× 𝑡𝑟𝑎𝑖𝑡

𝑖
)

where pi is the relative abundance of species i in a plot, traiti the trait value of species i and n

the number of species

We calculated the CWMs for the following traits: Leaf nitrogen content (LNC), leaf carbon to

nitrogen ratio (C/N), leaf dry mass per area (LMA), leaf dry matter content (LDMC), plant

height and root depth (RD). These traits were not measured on individuals on the Orchamp

plots but in multiple populations across the whole French Alps to account for intra-specific

variability (Albert, Thuiller, Yoccoz, Soudant, et al., 2010) between 2008 and 2018. More

specifically, at least 20 individuals were measured for traits related to height (vegetative and

reproductive plant height) and 10 for leaf traits (LNC, C/N, LMA and LDMC). The

measurements were carried out according to the protocol developed by Cornelissen et al.

(2003). We used Flora indicativa (Landolt et al., 2010) to complement missing data on

vegetative and reproductive plant height, and to extract data on root depth (RD). Leaf carbon

and nitrogen contents were measured with an elemental analyzer (Flash EA1112; Thermo

Scientific). Mean trait values per species were then calculated.

In the 41 selected Orchamp plots, 484 different plant species were identified in total. On

average, trait data was available for 82 % of all individuals present in a given plot. They were

transformed to approximate a normal distribution: a natural logarithm was applied to LNC

and plant height, LDMC was square-root transformed and LMA, C/N and RD were

log-transformed (basis 10).
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To measure the overall functional diversity of the plot, we calculated three independent

measures: Functional richness (FRic), functional divergence (FDiv) and functional evenness

(FEve) (Villéger, Mason & Mouillot, 2008). FRic represents the multidimensional volume of

traits (trait space) filled by the species present in the community. For a single trait, this is

simply the range of trait values spanned by the species present in the community. FDiv

describes the overall functional divergence between species in the community. Low FDiv

values mean that species within the community have similar combinations of traits, thought to

be indicative of strong environmental filtering (Mouchet, Villéger, Mason & Mouillot, 2010)

but also asymmetric competition (Mayfield & Levine 2010). Conversely, high FDiv values

indicate that species in the community have a wide range of trait values, leading to a high

degree of complementarity and resource use. FEve measures the evenness in the distribution

of abundances in trait space. In other words, whether species’ abundances tend to be more

abundant on one side (low complementarity) or to be evenly distributed in the trait space

indicating a high degree of complementarity or niche partitioning among coexisting species.

We included all six traits presented above to calculate the diversity measures using the R

package "FD" (Laliberté et al., 2014). The traits were standardised (mean µ = 0, standard

deviation σ = 1) before calculating FRic, FDiv and FEve. Since FRic and species richness

were correlated (Villéger et al., 2008; Pearson correlation between FRic and species richness

> 0.98), we used a randomisation process and calculated the standard effect size to remove the

effect of richness (FRic_ses; Supp. Mat., Pearson correlation between FRic_ses and species

richness < 0.5).

The normalized difference vegetation index (NDVI) has been shown to be related to

chlorophyll abundance and leaf area index (Myneni, Hall, Sellers & Marshak, 1995). We used

the mean yearly sum of NDVI greater than 0.2 of the period 2000-2018 (NDVIint) as a proxy

of plant primary productivity. Estimates of the surface spectral reflectance at a resolution of
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250 m were derived from MODIS (Moderate Resolution Imaging Spectroradiometer) bands 1

and 2; MOD09Q1: MODIS/Terra Surface Reflectance 8-Day L3 Global 250 m SIN Grid

V006 satellite MODIS (Terra), available online:

https://lpdaac.usgs.gov/products/mod09q1v006/. The preprocessing of NDVI time series

followed the method described by Choler (2015).

Biotic plant-soil linkages– Belowground community

At 5 m downside of the vegetation transect in each plot, soil samples were taken in three

2 m * 2 m sub-plots. In each subplot, an average of ten soil cores were taken from the top-soil

(0-10 cm depth) and mixed to get around 1 kg of soil.

The collected composite samples were sieved at 5.6 mm, and 40-50 ml per sample were

extracted and frozen at -20 °C for subsequent analysis of microbial activities. The potential

activities of seven different extracellular enzymes involved in carbon (α-Glucosidase (AG),

β-Glucosidase (BG), β-D-cellobiosidase (CB), β-Xylosidase (XYL)), nitrogen (Leucine

aminopeptidase (LAP), N-acteyl-β-Glucosaminidase (NAG)) and phosphorus (Phosphatase

(PHOS)) acquisition, were measured according to an adapted protocol of Bell et al. (2013)

(see Supp. Mat.). The sum of all measured potential enzymatic activities (total EEA) was used

as an overall indicator for the potential of the soil to depolymerize and recycle organic

compounds and is therefore an important component of plant-soil linkages (Piton, Legay, et

al., 2020). Soil microbial community is the primary driver of this potential activity as

microbes produce most of these enzymes. Then, abiotic factors (e.g. temperature) and

processes (e.g. substrate diffusion and enzyme stabilisation in the soil matrix) modulate

potential and realized enzymatic activity in situ (Wallenstein and Weintraub, 2008;

Nannipieri, Trasar-Cepeda & Dick, 2018; Piton, Foulquier, et al., 2020).
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Enzyme activity vectors have recently been shown to quantify simultaneous resource

demands of the belowground community and the belowground community’s relative

investment in C, N and P acquisition (Fanin, Moorhead & Bertrand, 2016; Moorhead,

Sinsabaugh, Hill & Weintraub, 2016; Chen et al., 2018). The proportional activity of enzymes

targeting carbon (AG, BG, CB and XYL) and nitrogen (LAP and NAG) - i.e.

(AG+BG+CB+XYL)/[(AG+BG+CB+XYL)+(LAP+NAG)] - was plotted against C vs. P

acquiring enzymes (PHOS) - i.e. (AG+BG+CB+XYL)/[(AG+BG+CB+XYL)+(PHOS)]. In

general, a relative increase in the activity of enzymes targeting a specific element indicates

that this element is limited in the environment (Olander & Vitousek, 2000). The length of the

vector created by each point in the plot and the origin quantifies therefore relative C vs.

nutrient limitation, with increasing vector length indicating increasing C limitation. The angle

formed by the x-axis and the vector on the other hand quantifies the relative P vs. N limitation

(Supp. Mat., Fig. S3). The three replicates of each plot were averaged, and a natural logarithm

was applied to total EEA.

Abiotic factors modulating plant-soil linkages – Soil physicochemical properties

Soil dry weight was measured by weighing soil samples after drying at 70 °C for 48 h, and

soil organic matter (SOM) was determined by loss on ignition using the previously dried

samples (4 h at 550 °C).

The rest of the composite samples was then dried, sieved at 2 mm and homogenised to obtain

representative subsamples for the following analyses. We measured pH following the ISO

10390:2005 norm using a pH-meter (pH7110, inoLab) in a 1:5 soil/distilled water-solution.

We used an Ultra Centrifugal Mill ZM 200 (Retsch ZM200) to grind part of the dried and

sieved samples below 250 µm. Carbon and nitrogen contents were then determined using an
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elemental analyser (Flash EA1112, Thermo Scientific). The three replicates per plot were

averaged and SOM and C/N log-transformed.

Abiotic factors modulating plant-soil linkages – Climate variables

We characterized climate conditions at each plot using: Mean annual soil temperature (MAT),

mean total annual precipitation (MAP), growing degree days (GDD), freezing degree days

(FDD), climate water stress (CWS) and solar radiation (SR). To do this, we extracted for each

plot meteorological time series of surface conditions from the SAFRAN-Crocus (S2M)

reanalyses that are available at hourly resolution for the time period 1988-2018 (Durand,

Giraud et al., 2009; Durand, Laternser et al., 2009; Vionnet et al., 2012; Vernay et al., 2019).

S2M is a regional-scale reanalysis that takes topographical effects into account. Data are

produced for 23 massifs of the French Alps as a function of elevation in 300 m increments,

slope aspects and angles. The S2M reanalysis has been used for many real-time and

climatological applications in the French mountain areas (e.g. Corona, Morin & Choler, 2018;

Verfaillie et al., 2018; see also Fig. S6). Rainfall and incoming shortwave radiation

(direct+scattered) from the SAFRAN reanalysis were aggregated at a daily time resolution.

The soil temperature values (temperature in the first centimetre of the soil column, variable

TG1 in S2M datasets) were computed by the ISBA-Crocus model fed by meteorological

information from SAFRAN.

Growing degree days correspond to daily average soil temperature sums (using data for the

first centimetre of the soil column) above 0 °C and were calculated based on the assumption

that plant growth is more affected by cumulated heat than by mean temperature (Körner &

Hiltbrunner, 2018). To capture frost intensity and length of frost episodes, FDD was

calculated analogously to GDD (daily average ground temperature sums below 0 °C)
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following Choler (2018). GDD was calculated over the growing season, the onset of which

was defined by four consecutive days without snow and a soil temperature of at least 4 °C in

the simulations, and the offset of which was defined by the first day of the winter season with

snow on at least four consecutive days. FDD was calculated over the whole year. Both

variables were calculated on an annual timescale and then averaged over the whole time

period (1988-2018). We log-transformed absolute values of yearly averaged FDD. We

calculated the climatic variables over a 30-year time period. This was done as a compromise

since plant communities in alpine systems are known to respond to medium-term climatic

conditions rather than annual variations (Körner, 2003). Soil communities might instead be

more affected by shorter climatic conditions but it has been suggested that soil communities

might actually be very tolerant to climatic variations (Thakur & Geisen, 2019; Thakur, 2020;

Thakur et al. 2020).

To quantify water stress and severity of summer drought, we used an approximation of

climate water deficit (CWD). CWD is the difference between potential evapotranspiration and

water availability in the soil (Stephenson 1998) and usually accounts for actual

evapotranspiration and local soil conditions. Since local soil conditions, and especially

available water capacities, are poorly understood in the Alps, we approximated CWD by

calculating climate water stress (CWS): daily CWS corresponds to the difference of daily

potential evapotranspiration (calculated after Vannier & Braud (2012) using the

Penman-Monteith Equation (Allen, Pereira, Raes & Smith, 1998)) and daily precipitation.

Water stress increases as values of CWS increase. In the case of precipitation exceeding

evapotranspiration there is no water limitation in the soil compartment, therefore CWS values

were set to zero (see e.g. Aragão et al. 2007). We calculated CWS sums over the growing

season for each year between 1988 and 2018, and then averaged these sums to characterize

mean water stress and severity of summer drought of the soil compartment.
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We calculated cumulative solar radiations over the growing season, and then averaged the

cumulative values over the whole period 1988 - 2018.

The graphical lasso

Given that plant-soil linkages are by definition bi-directional and some of the potential

relationships between variables are not clearly identified, we used Graphical Lasso (glasso,

Friedman, Hastie & Tibshirani, 2007; Mazumder & Hastie, 2012). Glasso is a type of model

that is able to decipher the partial correlations between all the variables across our 41 plots

without imposing a directional structure, like it would be the case with a structural equation

model. In glasso, the partial correlations between all variables are inferred from the inverse of

the variance-covariance matrix. Similarly to the lasso regression (Least Absolute Shrinkage

and Selection Operator, Tibshirani, 1996), glasso uses a regularization penalty to set all

spurious partial correlations to zero. To do so, partial networks are estimated for different

values of λ (the penalty coefficient). We used the Extended Bayesian Information Criterion to

select the optimal λ, as implemented in the package qgraph (Epskamp, Cramer, Waldorp,

Schmittmann & Borsboom, 2012; see also Ohlmann et al., 2018). The optimal λ depends on

the number of variables and the strength of the partial correlations in the network; different

sets of variables will therefore lead to different λ being selected and different correlations

being considered as spurious. The obtained regularized partial correlation network was then

visualised using Gephi (Bastian, Heymann & Jacomy, 2009). The network consisted of nodes

representing the variables and edges which connect the nodes. Two variables were connected

if they were conditionally dependent on each other, i.e. they were partially correlated given all

other variables in the graph. Reciprocally, two unconnected variables are said to be

conditionally independent (i.e. they cannot causally influence each other, Murphy, 2012).
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Within the glasso, we included several variables representing the different compartments

implicated in plant-soil linkages: Plant community, belowground microbial community,

physicochemical soil properties and climatic conditions (Fig. 1; Table 1). To assess the

importance of a variable within its own group and its importance for other groups, we

extracted the degree of each variable (i.e. number of edges that are incident to a given node).

We calculated two different measures: the probability of a node to form a connection within

its own group (number of realised edges within group/number of possible edges within

group), and the probability of a node to form an edge with a node not belonging to its own

group (number of realised edges across groups/number of possible edges across groups).

Moreover, we analysed the weights of the edges to estimate the strength of a node (i.e. how

important a variable was to the overall plant-soil linkages). The weight of the edges incident

to a node corresponds to the strength of its partial correlations. We calculated the sum of

absolute partial correlations incident to a node within its own group and the sum of absolute

partial correlations incident to a node across groups. The sum of all absolute partial

correlations of a node was divided by the number of realised edges to calculate the mean

strength of partial correlations.

To assess the importance of interactions between groups, we aggregated the results at the

group level, i.e. the probability to form connections as well as the mean partial correlations

were calculated for all variables of one group (plant community, EEA, abiotic soil and

climate) towards all variables of another group.

Variable selection

From the initial pool of variables (Table 1), a pre-selection was made to avoid redundant

information. To select those variables that explained most of the environmental variation
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while being weakly correlated with each other, we used a principal component analysis (PCA)

on plant traits and on climatic variables, respectively. We identified MAT, MAP, SR, plant

height and leaf C/N as variables with little additional information and thus removed them

from further analysis.

The glasso was run two times. First, all variables in Table 1 except those eliminated in the

PCA step were included (Fig. S4). Then, nodes were excluded that were deemed of minor

importance because they were completely unconnected or only connected to other variables in

their own group. The network presented in this paper is the result of this process, and only

includes five plant community variables (the CWMs LDMC, LMA, RD, LNC, and the

canopy variable NDVIint), three abiotic soil variables (C/N, SOM, pH), two climatic variables

(GDD, CWS) and two EEA variables (total EEA, vector angle (P/N)). To test the robustness

of the result, we ran a regression between the partial correlations from the network containing

all variables and the network containing the selection of variables (Fig. S5).
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Results

General linkages between biotic plant-soil components and abiotic factors

The probability to observe linkages (Fig. 3a) between the plant community and abiotic

components was twice as high for climate as for soil (0.40 and 0.20, respectively). The same

pattern was observed for the mean strength of those links (0.44 and 0.26, respectively,

Fig. 3b). Enzymatic activity of the soil microbial community was strongly linked to abiotic

soil variables (probability 0.67 and mean strength 0.42), but not to climate. There was neither

a direct connection between climate and soil properties, nor between the plant community and

the soil microbial community (Fig. 3).

Role of the different facets of the plant community in plant-soil linkages

Neither CWMs nor functional diversity indices were linked to microbial activities (Fig. 4,

Fig. S4). However, functional diversity measures were completely isolated (spnm, FDiv,

FRicses and FEve, Fig. S4) and thus removed from the final graph, whereas CWMs of several

traits showed clear and strong links to the soil C/N ratio which was a focal variable linking the

plant and microbial communities. We observed a partial correlation between RD and soil C/N

of -0.24 and of 0.26 between LMA and soil C/N (Fig. 4). NDVIint and soil C/N were

positively correlated (0.27).

Variables linked to soil enzymatic activities

We observed no direct linkages between plant traits and ratios of enzymatic activities.

However, soil C/N was a focal variable linking plant traits to microbial activity, suggesting

that the interaction between plant traits and enzymatic activities passes by litter quality. Soil
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C/N showed the highest probability to form edges across groups overall (0.44), albeit of

medium strength (0.29, Table 2). Soil C/N showed a strong linkage to the

conservative-exploitative plant continuum. Low soil C/N was associated with low LMA,

which in turn was linked to high LNC, which was linked to low LDMC, thus representing a

trait assemblage of an exploitative strategy with high investment in photosynthetic leaf area.

This spectrum of conservative-exploitative species was indirectly related to soil enzymatic

activities via soil C/N. Conservative species (high LMA) and high soil C/N were associated

with a high vector angle, indicating that sites with conservative species were less nitrogen and

more phosphorus limited than sites with more exploitative species. Conservative species (high

LDMC) were also associated with higher water stress (CWS, 0.21).

In addition to plant functional traits, primary productivity played an important role since

NDVIint was the link between climate variables and soil C/N. It was positively correlated to

GDD (0.7) and negatively to CWS (-0.58), indicating that higher temperatures increased

biomass production but associated water stress limited it. NDVIint and soil C/N were

positively correlated (0.27) suggesting an increased soil C/N in productive sites.

Soil abiotic characteristics were strongly linked to variables of enzymatic activities. SOM and

total EEA showed a strong positive correlation indicating high enzymatic activity in organic

matter rich sites, and pH was negatively correlated to both vector angle and total EEA (-0.31

and -0.38, respectively). This suggests strong phosphorus limitation and increased enzymatic

activity in acidic soils. Vector length was not related to any other variables (Fig. S4),

suggesting that P vs. N limitation is of more importance than carbon vs. nutrient limitation in

alpine open habitats.
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Discussion

Plant soil linkages and environmental gradients

Studying for the first time the spatial interdependencies between plant functional composition

and soil microbial enzymatic activities across grasslands in the French Alps, we found that

plant functional composition was mostly associated with climatic variables, while microbial

enzymatic activities were primarily related to soil properties. Abiotic factors thus dominate

direct biotic linkages in our study system which confirms what has been proposed before: that

abiotic factors are of primary importance in mountain systems (Neuwinger, 1970; Körner,

2003). Our results further revealed that an interdependency between plant traits and soil C/N

links the aboveground community to the belowground community. This is congruent with the

hypothesis that plant traits play a central role in plant-soil linkages through control of litter

quality (Schweitzer et al., 2008; Lau & Lennon, 2011; van der Putten et al., 2013). Moreover,

our results showed that in alpine open habitats effects of climate propagate to the soil

community through plant traits. This is in accordance with previous studies that demonstrated

links between climate and plant traits (Mayor et al., 2017), as well as indirect effects of

climate on the soil community via plant traits (Delgado-Baquerizo et al., 2018).

However, in contrast to previous studies (de Vries et al., 2012; Delagado-Baquerizo et al.,

2018), we neither found a direct link between soil microbial community activity and plant

functional CWMs, nor between soil microbial community activity and climatic variables. This

might be due to the fact that the focus of our study was assessing the functioning of the

microbial community through extracellular enzymatic activity (e.g. recycling of organic

matter) rather than the composition of the microbial community itself. The link between

microbial community composition and function is not necessarily straightforward. Potential

changes in microbial community composition, resulting from changes in plant functional
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traits for example, that could occur here might not have had an impact if there is some level of

functional redundancy in the microbial community for the extracellular enzymatic activities

we measured (Louca et al., 2018). Future studies considering diversity or composition of

microbial communities along with their function could reveal more direct links with plant

traits as observed in de Vries et al. (2012) and Delgado-Baquerizo et al. (2018), and help

understand spatial interdependencies between below- and aboveground communities along

large environmental gradients. An explanation for the missing link between soil microbial and

climatic variables may be the 30-year time period over which the climatic variables were

calculated. This period was chosen because plant communities in alpine systems are known to

respond to medium-term climatic conditions rather than annual variations (Körner, 2003).

While soil communities might instead be more affected by shorter climatic conditions it has

also been suggested that soil communities might actually be very tolerant to climatic

variations (Thakur & Geisen, 2019; Thakur, 2020; Thakur et al. 2020). The choice of the time

period over which climatic variables are calculated is, in a large-scale ecosystem study,

necessarily a compromise between the studied compartments (see also last section of the

discussion).

Role of the different facets of the plant community in plant-soil linkages

Contrasting the mass-ratio-hypothesis (Grime, 1998) with the diversity-function-hypothesis

(Tilman et al., 1997; Hooper et al., 2005), we found that CWMs of plant traits were more

important than diversity metrics, supporting the mass-ratio-hypothesis. CWMs showed clear

and strong linkages to soil C/N, propagating on to microbial activities and SOM content,

indicating a strong effect on organic matter decomposition and the recycling of nutrients

(Garnier et al., 2004; Quested et al., 2007; Fortunel et al., 2009; Grigulis et al., 2013; Lavorel,
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2013). These results are consistent with the growing body of evidence for the

mass-ratio-hypothesis as a central mechanism controlling ecosystem functioning and services

(Lavorel, 2013; Li et al., 2017). They also confirm that it is the linking mechanism between

plants and the functional properties of microbial communities (Grigulis et al., 2013; Piton,

Legay, et al., 2020).

The isolation of functional diversity indices in our analyses may be in part due to the

mountain context of our study. Hooper et al. (2005) suggested that ecosystems might be less

defined by functional diversity in challenging abiotic conditions. They also argued that

species with different response traits to environmental changes are needed under increasing

temporal and spatial variability in order to ensure a stable supply of ecosystem functions.

Furthermore, it has been shown that mass ratio effects better explain individual functions, but

that multifunctionality of ecosystems is more driven by diversity effects (Le

Bagousse-Pinguet et al., 2019). Therefore, considering today’s climate and land-use changes

and biological invasions, even a system where the diversity-function-hypothesis does not play

an important role under current conditions may depend on trait diversity if certain thresholds

are crossed in the future. Thus, although our results confirm the importance of CWMs for

ecosystem functioning (e.g. decomposition and nutrient recycling) their importance for

ecosystem stability still needs further exploration (e.g. Piton, Legay, et al., 2020), especially

in alpine systems where species’ trait values may vary a lot depending on altitude due to high

plasticity (Albert, Thuiller, Yoccoz, Douzet, et al., 2010; Albert, Thuiller, Yoccoz, Soudan, et

al., 2010).

Variables linked to soil enzymatic activities
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It is well understood that plant traits are linked to microbial community composition and

functioning, directly and via plant litter quality (Grigulis et al., 2013; Fanin et al., 2014;

Legay et al., 2014; Martinez-Almoyna et al., 2020). In our study, plant traits associated with

the plant conservative-exploitative continuum (LMA, LNC and LDMC) were indirectly

connected to SOM, as well as soil enzymatic activities, via a central link between plant traits

and soil C/N. This supports at a biogeographic scale the hypothesis that litter quality rather

than quantity plays a central role in microbial functions involved in

aboveground-belowground linkages in grassland ecosystems, as has been shown previously

also for soil microbial community composition and diversity in studies of temperate

grasslands in England and Germany (de Vries et al., 2012; Delgado-Baquerizo et al., 2018).

Interestingly, our partial correlation network is consistent with the expected ecosystem

functioning along a conservative-exploitative continuum (Moore, 1988; Bardgett & Wardle,

2010; Mulder et al., 2013). On the conservative side, reduced organic matter quality (high soil

C/N) associated with conservative plant traits favours SOM accumulation, increasing total

enzymatic activity. High soil C/N was also associated with an increased investment of

microbial communities in P-acquisition relative to N-acquisition, suggesting that conservative

plant traits and high soil C/N are also associated with a high N/P ratio of resources available

for microbes. The link between soil C/N and microbial nutrient acquisition strategies might be

central in the feedback from soil to plants. In infertile soils, microbial communities

immobilize nutrients in their biomass, releasing less nutrients to the soil (Mooshammer et al.,

2014; Zechmeister-Boltenstern et al., 2015). This creates a negative feedback-loop since a

nutrient poor soil will result in a more conservative plant community which will then produce

more recalcitrant litter increasing further SOM accumulation and the nutrient limitation of

microbial communities (Wardle et al., 2004; de Vries & Bargett, 2012).
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Our network also showed soil C/N to be linked with plant community productivity (NDVIint)

and root depth. High plant productivity was associated with a warm growing season, low

water deficit and exploitative plant traits (low LMA). It was also positively associated with

soil C/N, likely explained by higher plant derived C input in the soil with higher productivity.

On the contrary, high root depth associated with high water deficit (stress resistance strategy)

decreased soil C/N, possibly because a higher fraction of the plant derived C was released

deeper into the soil and thus could not be captured in our soil data from the upper horizon.

Our results also suggest stronger microbial phosphorus than nitrogen limitation (high vector

angle) and increased enzymatic activity in acidic soils, in accordance with Piton, Legay, et al.

(2020). In acidic soils (mean pH of our sites was 5.5), leaching of acids towards the bedrock

releases (Fe, Al or Mn) cations. These cations form compounds with bioavailable forms of

phosphorus, such as H2PO4
-, and hence decrease P availability (Wild, 1950; Iqbal, 2012).

Critical aspects and perspectives

Our study gives insights about linkages between plant and microbial soil communities in

alpine habitats at large scales, and we show how abiotic climatic conditions and soil

properties influence these linkages. However, our study is not without flaws. First, there may

be a conflict of scales in our analysis. Plant and microbial soil communities have a very

different temporal turnover, i.e. composition and abundances may change faster in microbial

than in plant communities, and microbial communities may hence respond faster to changes

in environmental conditions (Bardgett and Wardle, 2010; but see Thakur & Geisen, 2019;

Thakur, 2020; Thakur et al. 2020). They may thus be more determined by short-term

fluctuations in abiotic conditions while plant communities may respond more to long-term

changes. This may create a mismatch in temporal scales when analysing both components at
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the same time. For example, we calculated climatic variables like growing degree days (GDD)

over a period that could be considered more of a determinant of the plant community. To

determine whether this temporal mismatch was truly an issue, we compared GDD calculated

over a 30-year time period (as used here), with the GDD calculated over 10 years and over the

year before sampling for all our 41 plots. All correlations were very high, demonstrating that

the differences between plots remain relatively constant whatever the time-scale used to

calculate growing degree days (Fig. S7, S8). We are thus confident that this should not

influence the results and the conclusion of our paper. In addition to a temporal mismatch,

there may also be a spatial one. The quantitative prediction of precipitation in mountainous

areas can be biased because precipitation is a very local phenomenon that changes from one

mountain massif to another (Roe, 2005; Quintana-Segui et al., 2008; Quintana-Segui et al.,

2017). Spatial variability in precipitation may therefore be difficult to capture with climate

models if few observation stations are available (Hofstra, New & McSweeney, 2010).

However, while SAFRAN is known to overestimate the number of precipitation days and

underestimate high precipitation events (Quintana-Segui, Turco, Herrera & Miguez-Macho,

2017), it is very likely that plot differences (i.e. the ranking between the plots) are relatively

robust to these uncertainties and should thus not influence the Graphical lasso estimation.

Second, plant-soil linkages are complex and they may be affected by factors that we did not

include in this study, such as herbivores and soil meso- and macrofauna. Furthermore, we did

not include direct measures of diversity or composition of the microbial community but only

variables related to their activities. Specifically, we did not use environmental DNA

metabarcoding approaches because they do not provide reliable information on the biomass of

different organisms (Taberlet, Bonin, Zinger & Coissac, 2018; Calderón‐Sanou,

Münkemüller, Boyer, Zinger & Thuiller, 2020). It would thus neither have been possible to

calculate ratios of fungal and bacterial biomass, nor would we have had information about
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abundances of oligotrophic and copiotrophic groups. While we showed that functional

diversity of the plant community did not play a role in our study system, we cannot exclude

the possibility that diversity of the microbial community did. In addition, we showed in our

study that litter quality may be a key determinant of microbial functions in alpine grassland

ecosystems. We deduced this from measures of topsoil C/N content which we interpreted as a

proxy of litter quality. In future studies it may hence be of interest to include direct measures

of litter quality.

Third, it is important to note that we quantified EEA in vitro and therefore used measures of

potential enzymatic activity and not in situ activity. It has been argued that in vitro assays may

be a limited proxy for EEA in real conditions since substrate diffusion and abundance, as well

as soil type and temperature are not reflected in vitro assays (Wallenstein and Weintraub,

2008; Bell et al., 2013). However, in situ measurements provide only a snapshot of the

belowground community’s activity and may therefore not adequately represent longer-term

linkages between the plant and the soil microbial communities.

Last, we chose to study plant-soil-linkages with the graphical lasso because it is difficult or

even impossible to uncover interactions through experiments at large scales. More

importantly, we do not know if observed patterns result from the plant community influencing

the soil community, or the other way around, or both influencing each other reciprocally.

Hence, an undirected partial correlations network is a very well-suited method to disentangle

direct and indirect effects between the plant and the soil microbial communities, and to look

at biogeographic patterns. Nevertheless, experimental validation is necessary to determine

causal pathways, which is especially important considering the potential effects of rising

temperatures or changes in precipitation on plant-soil relationships.
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Conclusions

Studying the spatial interdependencies between the plant functional composition, soil

microbial enzymatic activities and abiotic conditions across the French Alps, we found abiotic

drivers to be key elements. Plant traits were more strongly controlled by climate, whereas

enzymatic activities were more associated with soil abiotic properties. The connections

between climate and soil biotic and abiotic properties were only indirect through plant trait

association with soil C/N. At the same time, the links between microbial enzymatic activities

and plant traits through soil C/N highlighted the role of plant-soil interdependencies in

ecosystem responses to abiotic changes. The observed plant-soil linkages are well in

accordance with the conservative-exploitative continuum with soil C/N as an important

player. Our study is one of the first to identify a signal of the conservative-exploitative plant

continuum and microbial nutrient acquisition strategies in patterns of co-distributions of plant

functional traits and microbial activity on a biogeographic scale (the French Alps) in alpine

ecosystems. It thus demonstrates how the soil functioning can be integrated in studies of

ecosystem shifts under environmental change at large spatial scales.
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Tables

Table 1: Overview of variable pool from which a selection was made to use in the graphical

lasso.

Variable Acronym Unit Data source Mean (median)

deviation

Extracellular enzymatic activity

Total EEA Total EEA nmol/(h*g dry

mass)

Orchamp 12677 (12174) ±

Vector length (proportion

Carbon/Nutrients)

EEC/EEN ° Orchamp 0.79 (0.78) ± 0.0

Vector angle (proportion P/N) EEN/EEP - Orchamp 66.1 (65.7) ± 6.0

Physico-chemical soil properties

Soil organic matter SOM % Orchamp 25.1 (23.3) ± 11.

Carbon to nitrogen ratio Soil C/N - Orchamp 14.68 (14.42) ± 2

pH pH - Orchamp 5.45 (5.43) ± 0.8

Vegetation variables

Leaf nitrogen content (CWM) LNC mg/g 21.4 (20.9) ± 3.3

Leaf carbon to nitrogen ratio

(CWM)

C/N - 22.8 (22.4) ± 4.1

Leaf dry mass per area (CWM) LMA mg/mm2 0.068 (0.067) ± 0

Leaf dry matter content (CWM) LDMC mg/g 296 (291) ± 41
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Plant height (CWM) cm 26 (25) ± 11

Root depth (CWM) RD - Landolt et al.

2010

2.02 (2.00) ± 0.4

Species richness spnm Number of species Orchamp 55 (55) ± 13

Standard effect size of functional

richness

FRicses - -0.08 (-0.08) ± 0

Functional evenness FEve - 0.57 (0.57) ± 0.0

Functional divergence FDiv - 0.94 (0.95) ± 0.0

Integrated normalized difference

vegetation index (Proxy for

biomass production)

NDVIint - Terra MODIS

2000-2018

80 (86) ± 38

Climatic variables

Mean annual temperature MAT °C Safran-Crocus

1988-2018

3.10 (2.97) ± 0.7

Mean total annual precipitation MAP mm/year Safran-Crocus

1988-2018

673 (650) ± 223

Growing degree days (growing

season)

GDD °C/year Safran-Crocus

1988-2018

1164 (1087) ± 28

Freezing degree days (whole year) FDD °C/year Safran-Crocus

1988-2018

42 (38) ± 21

Mean climate water stress (growing

season)

CWS mm/year Safran-Crocus

1988-2018

276 (263) ± 46

Mean solar radiation (growing

season)

SR kJ/(m²*year) Safran-Crocus

1988-2018

282823 (280069

40191
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Table 2: Degree analysis of the partial correlations network presented in Fig. 4. "Edges

within" corresponds to the probability to observe partial correlations between a given variable

and other variables that belong to its own group. "Mean strength within" corresponds to the

mean sum of all absolute partial correlations that are realised within the group. "Edges across"

and "Mean strength across" are analogous metrics to the ones cited before concerning partial

correlations across groups. Abbreviations: LNC: leaf nitrogen content, RD: root depth, LMA:

leaf mass per area, LDMC: leaf dry matter content, NDVIint: integrated normalized difference

vegetation index, soil C/N: soil carbon to nitrogen ratio, SOM: soil organic matter content,

GDD: growing degree days, CWS: climate water deficit, total EEA: total enzymatic activity.

Variable Group Edges

within

Mean

strength

within

Edges

across

Mean

strength

across

LNC Vegetation 0.50 0.49 0 0

RD Vegetation 0.25 0.22 0.29 0.26

LMA Vegetation 0.50 0.38 0.14 0.26

LDMC Vegetation 0.25 0.50 0.14 0.21

NDVIint Vegetation 0.50 0.25 0.43 0.52

soil C/N Soil 0.50 0.23 0.44 0.29

SOM Soil 0.50 0.23 0.11 0.57

pH Soil 0 0 0.22 0.35

GDD Climate 1 0.81 0.10 0.70

CWS Climate 1 0.81 0.30 0.36
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Vector angle

(proportion P/N)

Enzymatic

activity

0.00 0.00 0.20 0.36

Total EEA Enzymatic

activity

0.00 0.00 0.20 0.48
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Figures

Figure 1: Linkages between aboveground plant communities and belowground microbial

communities and abiotic factors affecting them. Variables defining the compartments plant

community, soil properties and climate are written next to them: LNC – leaf nitrogen content,

LDMC – leaf dry matter content, LMA – leaf mass per area, SOM – organic matter, C/N –

soil carbon nitrogen ratio. References for the specific linkages are indicated by numbers: 1:

Bowman et al., 2004; 2: de Vries et al., 2012; 3: Freppaz et al., 2007; 4: Grigulis et al., 2013;

5: Legay et al., 2014; 6: Martinez-Almoyna et al., 2020; 7: Mayor et al., 2017; 8: Piton,

Legay, et al., 2020; 9: Quested et al., 2007; 10: Sundqvist, Sanders & Wardle, 2013, and

references therein; 11: van der Putten et al., 2016, and references therein; 12: Wardle et al.,

2004, and references therein.

Figure 2: The ORCHAMP observatory network in the French Alps (with years of sampling)

and measurements that were taken on the plots of the individual elevational gradients.

Figure 3: Probability of observing links between compartments (a) and mean strength of links

between compartments (b).

Figure 4: Graph of a partial correlations network in alpine communities, including plant

community weighted means, soil microbial enzymatic activities, climatic variables and

physico-chemical soil properties. Positive partial correlations are represented by dotted edges,

negative ones by continuous ones. The weight of the edges (thickness) corresponds to the

absolute strength of their partial correlations. Abbreviations: RD: root depth, LMA: leaf mass

per area, LNC: leaf nitrogen content, LDMC: leaf dry matter content, NDVIint: integrated

normalized difference vegetation index, GDD: growing degree days, CWS: climate water
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deficit, soil C/N: soil carbon to nitrogen ratio, SOM: soil organic matter content, total EEA:

total enzymatic activity.
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Data Availability Statement: Most of the raw data used in the manuscript are directly

available on the ORCHAMP website (https://orchamp.osug.fr/home). Should the manuscript

be accepted, the data supporting the results will be archived on Dryad and the data DOI will

be included at the end of the article.
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