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Abstract

The attenuation power of an acoustic liner is optimized by inviscid flow simulations
that model the presence of the liner with a time-domain impedance boundary condition
(TDIBC). Two test cases are considered: a one-dimensional impedance tube and a two-
dimensional grazing incidence tube. The impact of the liner on the pressure field is tuned
through various TDIBC parameters imposed at the boundary where the liner surface is
located. Automatic differentiation of the simulation code yields the gradients of the time-
integrated pressure perturbations with respect to the TDIBC parameters. The gradients
are subsequently used in an iterative process that minimizes the perturbations at a given
location. In both test cases considered, TDIBC parameters are found which are more
effective at attenuating perturbation frequencies other than those the initial TDIBC is
designed to cancel. Finally, a sensitivity analysis reveals the importance of the choice of
the initial TDIBC parameters for finding optimized settings. Our results pave the way
to a wider application of the presented procedure in more complex problems with bulk
flow motion and larger perturbation amplitudes.

Keywords: gradient-based multi-parameter optimisation, automatic differentiation,
time-domain impedance boundary condition, acoustic liner.

1. Introduction

Optimizing liners in order to improve their attenuation capacity is the subject of
much experimental and theoretical work. One strategy that receives significant attention
is that of segmented liners. In early numerical studies, Baumeister[1] analyzed a number
of axially segmented liner configurations for liners in a rectangular duct without any5

mean flow, and concluded that their use fails to offer sufficient advantage over a uni-
form liner except in low-frequency, single-mode applications. More recently, Law et al.[2]
reach similar conclusions. By choosing more elaborate liner arrangement combinations
which scatter sound towards different modes that are then attenuated by a subsequent
stage of liners, Gerhold et al.[3] report acoustic performance improvements. Following a10
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rather theoretical approach, Campos et al.[4] consider wave convection within a uniform
axial flow, where a circumferentially non-uniform but axially uniform wall impedance
distribution allows them to speed up axial decay of the slowest decaying wave modes by
tuning the circumferential impedance distribution. A different approach found in studies
by Nark et al.[5, 6] consists of setting a cost function based on in-duct attenuation, and15

finding its maximum value on a tiled reactance-resistance grid. The process is repeated
at several frequencies, and a close-in step on the attenuation maximum is carried out
using a finer reactance-resistance grid. The numerous noise propagation calculations
induced by this space-sampling approach can be alleviated when using an optimization
package external to the flow solver, as done in the more recent studies[7, 8]. It is worth20

noting that these studies rely on the Ffowcs-Williams and Hawkings analogy for the
sound propagation computations. Özkaya et al.[9, 10, 11] opt for a rather different com-
putational approach, which deserves mention since it is a direct precursor to our study.
They solve the steady flow equations using a commercial computational fluid dynamics
(CFD) software, and the obtained mean velocity and pressure fields are given as exter-25

nal input to the computational aeroacoustics (CAA) solver based on the time-dependent
linear Euler equations (LEE). The acoustic liner within the CAA framework is modelled
according to a 5-parameter extended Helmholtz resonator (EHR), and derivatives of a
cost function based on acoustic wave propagation over a time interval are obtained by
automatic differentiation (AD) of the CAA solver. Finally, following a gradient descent30

algorithm, an optimal set of liner parameters can be found.
The study presented here contrasts with previous work on liner optimization in that

a fully non-linear and unsteady Euler/Navier-Stokes solver is used without decoupling
the flow from the noise computations. Our approach is based on the direct solution of
the governing equations without resorting to acoustic analogies. Hence, AD is used on35

the flow solver. What is similar to the work of Özkaya et al.[9, 10, 11] is that derivatives
of a cost function with respect to the acoustic liner parameters are computed, with the
cost function to be minimized being defined over a time interval. Unlike Özkaya et
al.[9, 10, 11], the flow solver is unsteady, relies on a high-order spatial discretization, and
the liner is not modelled on the basis of the EHR model. Instead, the oscillo-diffusive40

representation[12] of the reflection operator at the liner surface is used to model the liner
through a time-domain impedance boundary condition[13] (TDIBC). As a counterpoint,
it must be stated that the problems treated with the present approach are – at this
stage – much simpler in terms of geometric complexity than those treated by Özkaya et
al.[9, 10, 11].45

It is important to note that the cases analyzed in this study are chosen so as to place
the tools that have been developed in a validation and proof-of-concept environment. The
problems that are solved involve small pressure perturbations in the absence of bulk flow,
and hence LEE should suffice to obtain the acoustic field. But the methods employed –
gradient-descent optimization through AD of a non-linear viscous solver – are indifferent50

to the physical problem considered. It follows that acoustic propagation cases where the
LEE assumptions break down are still within reach of our approach. Such flow problems
are left for future work, and the present study intends to describe the computational
procedure and assess its performance in controlled scenarios where it is expected that
improved liner properties can be obtained.55

The computational tools will be described first in Section 2, followed by the test
cases in Section 3. Results will be outlined in Section 4 and discussed in Section 5,
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before conclusions are brought forward in Section 6.

2. Computational Tools

2.1. Numerical flow solver60

The flow solver used in the present study is called JAGUAR[14, 15], which is jointly
owned and developed by CERFACS1 and ONERA. This CFD code uses a spectral dif-
ference scheme[16, 17, 18, 19, 20] for the spatial discretization, which belongs to the
family of finite element methods. It solves the strong form of the governing equations
for a compressible flow. The method allows for an arbitrarily high order of accuracy
even on unstructured meshes, and is suited to both compressible or incompressible flow
computations. In practice, the scheme reconstructs a polynomial solution of the con-
servative variables U = (ρ, ρu, ρv, ρe)� inside each element with density ρ, streamwise
(herein x-coordinate) velocity u, wall-normal (herein y-coordinate) velocity v and specific
internal energy e. The polynomial order p determines the overall scheme’s accuracy and
computational effectiveness. Throughout this study, p = 4, which results in a fifth-order
accurate spectral difference scheme. Furthermore, the time integration follows an opti-
mized low-dissipation low-dispersion fourth order 6-step Runge-Kutta scheme inspired
from Berland et al.[21]. Finally, all results presented in the following sections are car-
ried out in inviscid (Euler flow) mode in one or two dimensions, so that the governing
equations in generalized coordinates (ξ,η) are given by:

1
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+

∂
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J
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+
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�
= 0, (1)

where J is the mesh local Jacobian and the convective fluxes of U in physical space are
called (Ec, Fc). We call p the static pressure such that the fluxes read as:

Ec = (ρu, ρu2 + p, ρvu, (ρe+ p)u)� (2a)

Fc = (ρv, ρuv, ρv2 + p, (ρe+ p)v)� (2b)

Choosing to set JAGUAR to its inviscid rather than its viscous mode is justified
on the basis of the test cases considered which lack bulk flow motion. However, the
procedure of automatically differentiating JAGUAR is indifferent to the code being set
to viscous or inviscid mode, so that a broader set of flow problems can be considered in
the future.65

2.2. Time-domain impedance boundary conditions

In order to capture the effect of the acoustic liner on the flow field, a TDIBC is used
as developed in Fiévet et al.[13]. It consists of three separate components detailed below
as a bulleted list2:

1European Center for Research and Advanced Training in Scientific Computation
2For clarity, all complex numbers are written with a tilde, while exclusively real-valued ones are not.
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• An impedance law z̃(s), which characterizes the acoustic properties of the coating
in Laplace-space (s = jω, where j is the complex unit number and ω the angular
frequency). For practical reasons, we work with the reflection coefficient B̃ defined
in Laplace space as:

B̃(s) =
z̃ − ρc

z + ρc
(3)

where c is the speed of sound. Importantly, the modulus of B̃ is always inferior or70

equal to unity, which offers interesting stability properties to a B̃-based TDIBC as
opposed to a z̃-based one, as shown by Monteghetti et al.[22].

• A discretized representation of B̃, referred to as β̃. This representation consists
in a delayed multi-pole approximation[12] which models a single-degree of freedom
acoustic liner – the kind used throughout the present study. It is defined as follows:

�β(s) = β∞ +

Ns�

n=1

�r1,n
s− �sn

+

Nν�

k=1

µ1,k

s+ νk
+ e−sτ

�
Ns�

n=1

�r2,n
s− �sn

+

Nν�

k=1

µ2,k

s+ νk

�
. (4)

β̃ depends on a parameter vector q that includes the bulk reflectivity β∞, a time
delay τ related to the depth of the liner cavities, the oscillatory weights �r1,n and
�r2,n, the oscillatory poles �sn, the diffusive weights µ1,k and µ2,k, and the diffusive75

poles νk. The more poles are used, the more broadband-accurate the representation
can become.

• A semi-discrete formulation of this impedance condition in the time-domain to
couple itself with the internal flow solver. In JAGUAR, the TDIBC is implemented
in characteristic form using a time-domain scattering operator B. This amounts
to evaluating the amplitude of the incoming characteristic at the boundary as a
function of the outgoing characteristic according to:

∂tp+ (ρc)∂tu.n = B[∂tp− (ρc)∂tu.n] =
ˆ̃
β � [∂tp− (ρc)∂tu.n], (5)

where u.n is the velocity normal to the boundary and
ˆ̃
β is the inverse Laplace

transform of β̃. The operator B is evaluated by transforming the convolution
product into a sum of (Ns+Nν) auxiliary variables, i.e. one per acoustic pole, each80

solution of an ordinary differential equation[22] defined by the parameters inside
vector q.

A thorough presentation of the TDIBC development is given in Monteghetti et al.[22], and
the reader is referred to Fiévet et al.[13] for a detailed explanation of its implementation
within a spectral difference flow solver. With regards to the present study, the important85

point is that the TDIBC is an explicit function of a finite set of both real and complex
parameters contained inside q.

2.3. Automatic differentiation

Gradient-based methods play an important role in the process of seeking those con-
ditions that modify the solution of a physical problem towards a specific goal, either90

for optimization or control purposes. Computing the necessary gradients (also referred
4



to as sensitivities) is a task that can be automated by automatic differentiation (AD)
tools. In short, AD augments a given “primal” code that initially computes outputs Yi

from inputs Xj into a “differentiated” code that additionally computes some derivatives
dYi/dXj requested by the user. AD provides two main modes, the tangent/direct/for-95

ward mode and the adjoint/reverse/backward mode. If i and j are the indices along the
output and input spaces, respectively, bound so that 1 ≤ i ≤ m and 1 ≤ j ≤ n, then the
tangent mode is most efficient when n � m while the adjoint mode is the only realistic
option for m � n.

Over the years, the AD community has produced a number of tools to generate differ-100

entiated code based on different strategies, chiefly operator overloading (OO) and source
transformation (ST). Perhaps the most important point to bear in mind when choosing
an AD tool is the programming language in which the primal code is written. JAGUAR
is written following features from the Fortran 90 standard onward, which narrows down
our choice of an AD tool towards an effective and well established ST-based open-source105

software: TAPENADE[23]. In a previous study[24], the compatibility between TAPE-
NADE and JAGUAR was verified and the performance of the differentiated code in both
tangent and adjoint modes was assessed for gradient computations. In particular, it
was shown that the computational cost of the adjoint-differentiated code was above 15
times that of the primal code, while for the tangent-differentiated code the same factor110

was reduced to 1.7. Both numbers refer to the cost of running JAGUAR in explicit
time-integration mode to compute one sensitivity. The conclusion from those numbers
is that the adjoint-mode differentiation begins to pay off when more than 15 sensitivities
are required in a single code execution. Since the flow problems that are solved further
down involve computing gradients in 14-dimensional space at most, the (vector) tangent115

mode is chosen. For ease of implementation, the serial version of JAGUAR is chosen for
differentiation over the parallel version.

3. Problem Setup

In the present section, the two considered test cases are described and the common
optimization procedure is explained. Both test cases are computed assuming inviscid120

flow, time-integrated using a constant time step size, and spatially-discretized with a
fifth-order approximation (p = 4).

3.1. Wave packet in a 1D impedance tube

A one-dimensional problem representing a tube of length L = 1.8 m is considered,
open at x = 0 and closed with a TDIBC at x = L. A sketch is provided in Fig. 1.125

The pressure in the tube is at its ambient value pa = 101325 Pa. At t = 0, a pressure
wave packet enters the tube at x = 0, travelling at the speed of sound c = 344.37 m/s
towards x = L. The properties of the wave packet are illustrated in Fig. 2 and detailed
in its caption. It is emphasized that the input pressure perturbations are broadband
throughout the present study. The spatial discretization relies on Nx = 60 grid points,130

resulting in a constant grid spacing of Δx = 3.051× 10−2 m and a Nyquist frequency of
c/(2Δx) = 5643 Hz. As can be seen in Fig. 2(b), the amplitude spectrum of the input
wave packet shows no energy well before reaching the Nyquist frequency.

A probe at x = 0.3 m records the pressure fluctuations p� with respect to pa ob-
served in Fig. 3. The pressure fluctuations induced by the input wave packet are those135
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Figure 1: Sketch of the 1D impedance tube test case. The inlet packet of pressure fluctuations travels
towards positive x at the sound speed c (top). At x = L = 1.8 m, a TDIBC is located which interacts
with the incident wave packet, reflecting it back towards the inlet (bottom).
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Figure 2: (a) Time series of the pressure perturbation of the incident wave packet signal and (a) its
corresponding single-sided amplitude spectrum. The input wave packet for a chosen frequency f is

given by p� = A sin (2πf (t− 3/f)) exp
�
−σ2f (t− 3/f)2

�
. For all cases considered in the present study,

A = 1 Pa, σ2 = 400. The two figures above were based on f = 1000 Hz, but input wave packets with
f = 1500 Hz and f = 2000 Hz are also employed in this study.

recorded during the interval between t = 0 and t1 = 8× 10−3 s. The second wave packet
recorded by the probe during t1 ≤ t ≤ t2 corresponds to the pressure waves reflected by
the TDIBC while they travel back towards x = 0. The simulation ends at t2, reached
by setting a constant time step Δt = 7 × 10−7 s and running for 25000 time steps. It
is worth emphasizing that the ability to resolve accurately pressure perturbations of the140

order of 1 Pa with respect to ambient pressure, as done in the present study, illustrates
the suitability of the high-order code JAGUAR at tackling acoustic propagation prob-
lems.
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Figure 3: Pressure perturbations p� measured about the ambient value pa = 101325 Pa at the probe
location x = 0.3 m. The oscillations for t < t1 are due to the incident wave packet characterized in
Fig. 2 travelling from the inlet at x = 0 towards the TDIBC wall at x = 1.8 m. The interval between
t1 and t2 is chosen to study the properties of the pressure perturbations reflected by the TDIBC back
towards the inlet.

3.2. Wave packet grazing over an acoustic liner145

The second test case is inspired on the grazing incidence tube (GIT) experiment of
Jones et al.[25]. In that experiment, a three-dimensional tube with square cross-section
is used to collect reference data for validation of acoustic propagation codes.
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Figure 4: Sketch of the grazing incidence tube (GIT) test case. L = 812 mm, H = 50 mm. The right
running pressure waves are damped under the effect of the TDIBC on the lower wall.

In the present study, the domain is discretized with a two-dimensional mesh. A sketch
of the setup for this test case is provided in Fig. 4. As can be seen in that figure, the150

presence of an acoustic liner at the bottom wall is modelled with a TDIBC that interacts
with the input right-running pressure waves. A regular grid with constant Δy = 4.5 mm
and Δx = 4.2 mm was chosen, leading to a Nyquist frequency of 37875 Hz. The same
grid is used in a previous study[13], where a harmonic plane pressure wave at 2000 Hz is
input at the inlet of the domain. In the present study, a Gaussian plane wave packet is155

used with properties as those displayed in Fig. 2, but with a peak amplitude spectrum
centered at 1500 Hz instead of 1000 Hz as that shown in Fig. 2(b). The transient evolution
of the pressure fluctuations in the domain can be seen on the sequence in Fig. 12. All
computations for this test case are carried out with a constant time step of 2 × 10−6 s
for 5005 time steps.160
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3.3. Optimization process

In both test cases previsouly described, JAGUAR imposes a TDIBC at a boundary
by relying on a vector q of values for the coefficients of the ODR of the reflection operator
found in Eq. (4). The initial inputs of q, which are displayed in the left-hand column of
Table 1 as qref , have been chosen to match the acoustic properties of the ceramic tubular165

liner (CT57) found in Jones et al.[25] by methods outlined in the work of Monteghetti[22].
When comparing Eq. (4) and Table 1, it can be observed that the sums in Eq. (4) are
limited to Nν = 0 and Ns = 4, reducing the number of input parameters controlling the
TDIBC to 14 – the dimension of q.

For better compatibility with the automatic differentiation step, JAGUAR has to be
mildly modified so that a top-level subroutine explicitly takes the 14 control parameters
of vector q as input, computes the flow solution by integrating the Euler equations in
time, and then returns a scalar cost function as output. The cost function is defined as
follows:

J(q) =

� t2

t1

[p�(q, t)− p�tar(t)]
2
dt, (6)

where p�tar(t) is the target perturbation pressure signal, while p�(q, t) is the perturbation170

pressure signal obtained with input q. Both pressure signals are measured at a fixed
location. For the 1D impedance tube, x = 0.3 m is chosen, while for the 2D GIT case
the probe location is on the wall opposite to the TDIBC and between the streamwise
position of the TDIBC end and the outlet: x = 70 cm and y = 5 cm – see Fig. 4. In
general, optimizing the pressure fluctuations at a single point may lead to generating175

locally a pressure node. However, that possibility is ruled out in the flow-less test cases
considered due to the fact that the outlet is perfectly non-reflecting, so that no standing
waves are created after the plane waves employed as input have passed by.

The limits of the time integral in Eq. (6) are chosen so as to contain the temporal
window during which the wave packet goes through the probe location. For the 1D180

impedance tube, t1 and t2 are as displayed in Fig. 3. In the GIT experiment, t1 = 1.5 ms
and t2 = 10 ms.

While p�tar(t) can in general be a function of time, we choose it to remain fixed so
that p�tar(t ≥ t1) = p�ref (t = t1). The choice is entirely driven by our goal to reduce
the pressure perturbations damped by the TDIBC. In the optimization procedure that185

follows, the goal is to find the set of input parameters qopt that brings p�(q, t) closest
to p�tar, in other words qopt should minimize J . Since we aim to minimize the pressure
perturbations, the chosen p�tar appears to be an ideal target. Of course one has no
guarantee that it is realizable, yet exploring how close one may come to it is of great
interest.190

Once JAGUAR contains the top-level subroutine where the dependence between the
input vector q and the scalar output J(q) has become explicit, the subroutine can be
automatically differentiated with TAPENADE using vector tangent mode. The differen-
tiated top-level subroutine not only outputs the scalar J(q), but also a vector dJ which
contains the sensitivities of J with respect to each element in q. A validation of the195

sensitivities obtained with AD is performed for the 1D impedance tube by comparing
them against finite-difference (FD) approximations. Both estimates of the same sensitiv-
ities are displayed in Table 2 and are found to agree reasonably well. The FD estimates
are obtained by successive additional runs of JAGUAR (in its non-differentiated form)
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parameter qref qopt qopt2
β∞ 5.000000000000000e-01 6.834083466134500e-01 5.000000000000000e-01
τ 4.799390000000000e-04 4.799390000000000e-04 4.799390000000000e-04

Re(s̃1) -3.816516000000000e+03 -3.816516030588480e+03 -4.087437807160580e+03
Im(s̃1) 4.734560000000000e+03 4.734559986268240e+03 4.432722825189820e+03
Re(r̃1,1) -7.194232000000000e+02 -7.194231530395811e+02 -1.356788077181370e+03
Im(r̃1,1) -5.447907000000000e+02 -5.447906901955140e+02 -2.630733085844980e+02
Re(r̃1,2) -7.179701000000000e+03 -7.179700991236490e+03 -7.531526389212660e+03
Im(r̃1,2) -7.336684000000000e+03 -7.336684005827590e+03 -7.152990431244080e+03
Re(s̃2) -2.765741000000000e+04 -2.765740999408590e+04 -2.751836204100200e+04
Im(s̃2) 2.000290000000000e+04 2.000290001185000e+04 2.010326888065210e+04
Re(r̃2,1) 1.625807000000000e+03 1.625806932942120e+03 -2.426548543034030e+02
Im(r̃2,1) 9.996580000000000e+01 9.996580359397110e+01 -3.098869458748290e+02
Re(r̃2,2) 1.614688000000000e+04 1.614687998865900e+04 1.592326890748080e+04
Im(r̃2,2) 1.930627000000000e+04 1.930627000791980e+04 1.949584657918380e+04

Table 1: Input quantities parametrizing the TDIBC properties for the case where Nν = 0 and Ns = 4 in
Eq. (4). The missing poles and their corresponding weights are the complex conjugate of already-given
poles and weights: s̃3 = s̃1, s̃4 = s̃2, r̃1,3 = r̃1,1, r̃1,4 = r̃1,2, r̃2,3 = r̃2,1, r̃2,4 = r̃2,2. The left-hand
column displays the values found in Monteghetti[22] to match the experimentally-measured reactance
properties in Jones[25]. The middle column contains the values after optimization in the 1D impedance
tube when all elements of q can be changed except for τ , while the right-hand column is obtained by
keeping both τ and β∞ constant.

while changing one element of q at a time. Each element of q is increased by multiplying200

it times (1 + 10−5). The agreement between FD and AD is sufficient to validate the
differentiation procedure, yet perceptible differences are to be expected since FDs suffer
from truncation error while AD estimates do not. In terms of CPU time, FD requires
14 additional code executions to compute 14 derivatives. The differentiated version of
Jaguar was found to require the equivalent of 11.6 additional code executions to provide205

all 14 sensitivities – 1 code execution takes approximately 56 s on a desktop computer.
So not only is the AD more accurate at computing sensitivities, it is also faster – two
distinct advantages when it comes to converging towards a minimum through gradient
descent algorithms.

The AD-obtained sensitivities are embedded into the following steepest descent loop:

qn+1(m) = qn(m)− λ [dJ(m)]
n
, (7)

where m is the index of the element within vectors q and dJ , while n is the iteration num-210

ber. The parameter λ is a fixed “small” number, chosen based on the rate of convergence
for each test case.

The values obtained during updates of q in Eq. (7) need to be checked at every
iteration so that they comply with the following conditions:

• the real part of the oscillatory poles s̃1→4 has to remain negative215

• the modulus |�β(s)| has to remain below or equal to unity for all explored frequencies.
In practice, we checked all frequencies between zero and 5650 Hz.

The upper bound of the frequencies checked is chosen based on the Nyquist frequency
being 5643 Hz for the 1D impedance tube, and the fact that the amplitude spectrum
of the input pressure perturbations is as shown in Fig. 2(b) – negligible energy is found220

9



sensitivity FD AD
dJ/dβ∞ -8.88437693e-03 -8.80614433e-03
dJ/dτ -9.99960533e-01 -9.99961225e-01

dJ/d [Re(s̃1)] 9.96196468e-07 9.87109824e-07
dJ/d [Im(s̃1)] 2.05150921e-07 2.03161660e-07
dJ/d [Re(s̃2)] -2.27573528e-06 -2.25552551e-06
dJ/d [Im(s̃2)] 1.51055213e-08 1.50151825e-08
dJ/d [Re(r̃1,1)] -4.26433793e-07 -4.22653964e-07
dJ/d [Im(r̃1,1)] 2.88853903e-07 2.86285441e-07
dJ/d [Re(r̃1,2)] -2.30235872e-07 -2.28195227e-07
dJ/d [Im(r̃1,2)] -4.60166429e-07 -4.56093751e-07
dJ/d [Re(r̃2,1)] 2.31226156e-06 2.29169554e-06
dJ/d [Im(r̃2,1)] -3.56872780e-07 -3.53197415e-07
dJ/d [Re(r̃2,2)] 4.03100470e-07 3.99515228e-07
dJ/d [Im(r̃2,2)] -2.82792546e-07 -2.80287251e-07

Table 2: Sensitivities of J computed at q = qref through finite differences (FD) and automatic differen-
tiation.

above 3000 Hz. The same frequency check is used in the 2D GIT case since similar input
wave packets were used – with f = 1500 Hz instead of 1000 Hz as in Fig. 2(b).

4. Results

The results obtained during the optimization under different conditions are presented
next, listing simply the findings. A discussion of the results including their interpretation225

is delayed until Section 5.

4.1. 1D impedance tube

The first problem to be tested by means of the optimization procedure outlined in
subection 3.3 is the 1D impedance tube. The descent algorithm in 14-dimensional space
following Eq. (7) converges very quickly towards a trivial solution that relies on increasing230

τ . Such a tendency towards attenuating the energy of the reflected pressure perturbations
at x = L by lengthening the delay in the TDIBC response τ is clear from Table 2, where
dJ/dτ is found to be orders of magnitude larger than the other sensitivities. However, it
corresponds to an unphysical solution consisting of an infinite-depth liner. Indeed, the
delay τ describes the back-and-forth time of an acoustic wave travelling at the speed of235

sound inside the porous material. Hence τ must remain small enough to ensure that the
coating remains thin enough for practical reasons, and so it is decided to exclude τ from
the tunable parameters thereby removing it from the optimization procedure. That is
the reason why qref (2) = qopt(2) in Table 1.

With constant τ but all other elements in q left free to vary, the optimization loop240

always stops around J(q)/J(qref ) = 0.5. Loop termination is triggered by the |�β(s)| ≤ 1
constraint being violated at zero frequency. Fig. 5(a) displays that within 7 iterations,
the steepest descent algorithm with λ = 10 can lead to a reflected wave packet that has
half the energy of that in the reference case. Smaller values of λ marginally decrease the
final J , and the reflected p�(qopt, t) found with λ = 1 (leading to J(qopt)/J(qref ) = .473)245

is shown in Fig. 5(b) along with p�ref and p�tar. The impedance and reflection properties of
the TDIBC based on qref and qopt are shown in Fig. 6, along with the data from Jones et
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Figure 5: Optimization at constant τ . (a) Convergence of J(q) towards a minimum value during the
gradient descent optimization. For all three values of λ, the optimization algorithm is stopped due to
the condition |�β(s)| ≤ 1 being violated at zero frequency after {7, 71, 708} iterations for λ = {10, 1, 0.1},
respectively. (b) Reflected pressure perturbations: reference (q = qref ), optimized (found with λ = 1,
q = qopt from Table 1) and target p�tar .

al.[25] that has been digitized from Fig. 11 in Monteghetti[22]. Clearly, the optimization
process has modified the reactance properties of the TDIBC. Yet looking carefully at the
differences between qref and qopt in Table 1, it appears that the optimization at constant τ250

has essentially increased β∞ and left the other elements of qref unchanged in comparison.
Partly because of this, partly because dJ/dβ∞ is several orders of magnitude larger than
the other sensitivities in Table 2, we explore how the optimization proceeds when we
apply the further contraint of keeping β∞ constant – on top of keeping τ constant.

The result of the optimized q for constant τ and β∞ is qopt2, and it is displayed in255

Table 1. Clearly, the elements of q other than β∞ and τ have now significantly changed.
J(qopt2)/J(qref ) is decreased down to 0.55% as opposed to J(qopt)/J(qref ) = 47.3%,
proving that major improvements during the optimization can be gained by constraining
β∞ to remain constant. The decrease in J as the steepest descent algorithm proceeds
can be seen in Fig. 7(a), and the optimized reflected perturbation pressure is shown in260

Fig. 7(b). The impedance and reflection properties based on qopt2 are shown in Fig. 6.
The optimization process used so far is carried out for an input wave packet with an

amplitude spectrum centered around 1000 Hz. The optimized parameters in the TDIBC
in Table 1 should correspond to an improved tubular ceramic liner that is tuned for the
perturbation spectrum considered in Fig. 2. Two other broadband input spectra are265

considered next for the pressure perturbations, with f = 1500 Hz and f = 2000 Hz – see
the caption of Fig. 2 for the exact dependence of p� on f . The input and the reflected
perturbations at the probe location of the 1D impedance tube are shown in Fig. 8 for
the three frequencies considered. The optimization procedure is applied to each input
frequency, yielding the convergence properties displayed in Fig. 9. It can be observed270

that the optimization is able to proceed further for the two lower frequencies than for
the highest one. The frequency-dependent optimized TDIBC settings, qopt3, are shown
in Table 3, and the corresponding impedance and reflection properties are gathered in
Fig. 10. Finally, the original and optimized reflected perturbations are displayed in
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Figure 6: (a) Argument and (b) modulus of the reflection coefficient �β(s) based on qref , qopt and qopt2
in Table 1. (c) Real and (d) imaginary part of the impedance �z(s) based on qref , qopt and qopt2.

�z = (1 + �β)/(1− �β).

Fig. 11. It should be noted that in the case of the frequency-dependent optimization275

leading to qopt3, the target pressure perturbation p�tar is chosen to be the temporal mean
of p�ref between t1 and t2, as opposed to a constant value of p�ref (t1). That is the reason
why the qopt3 values on the left-hand column of Table 3 do not match those in the right-
hand column of Table 1, and why p�tar coincides with p�ref at the beginning in Figs. 5(b)
and 7(b), but not in Fig. 11. One can see from Fig. 11 that p�tar is somewhere in between280

p�ref at the beginning and end of the displayed time window.
It is perhaps the appropriate point to illustrate that a pressure drift takes place,

whereby the pressure in the tube decreases after the perturbations have gone past the
probe location. The drift is most apparent at the highest input perturbation frequency,
as can be seen in Fig. 11. This minor pressure drift is a well-known consequence of using285

a characteristic boundary condition which only balances out the perturbation field. A
typical example is that of a non-reflecting boundary condition (B = 0) which will perfectly
cancel-out the entering pressure wave but will not enforce any mean pressure value. That
is, the computational domain receives no pressure feedback from the outside and the
mean pressure field is free to depart from its initial state. This is typically addressed290

by adding a linear relaxation term as in Poinsot and Lele[26], at the expense of causing
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Figure 7: Optimization at constant τ and β∞. (a) Convergence of J(q) towards a minimum value
during the gradient descent optimization. For λ = 108, J(q)/J(qref ) reaches 0.55% before the descent
algorithm starts oscillating. We take qopt2 to be q recovered after 128 iterations. (b) Reflected pressure
perturbations (reference and optimized), and target perturbation level p�tar .

mild acoustic reflections as the boundary stiffness increases. Adding a linear relaxation
term would modify the boundary’s acoustic impedance profile, the accuracy of which
is of paramount importance to the present study. Therefore, a minor pressure drift –
amounting to one-millionth of the bulk pressure – is deemed acceptable.295

4.2. 2D GIT flow

The setup described in subsection 3.2 is considered next. At the probe location
(x = 70 cm and y = 5 cm in Fig. 4), the pressure perturbations are measured and used
for the optimization procedure that seeks to bring them closest to a target level p�tar.
The initial parameters determining the TDIBC behavior are those in qref of Table 1.300

With these initial values, the plane wave packet can be seen in Fig. 12 propagating from
the inlet towards the outlet as it is modified by the TDIBC. The pressure perturbations
measured at the probe location with qref are shown in Fig. 14(b) in red, where the
amplitude of the perturbations has noticeably decreased from the initial 1 Pa value at
the inlet. We note, in passing, the effect of the pressure drift discussed at the end of305

subsection 4.1, which is also visible in Fig. 14(b).
The attenuation effect of the acoustic liner is most visible in Fig. 15, where the

streamwise decrease in the sound pressure levels (SPL) measured along the wall opposite
to the TDIBC is plotted. The initial TDIBC parameters in qref correspond to the
ceramic tubular liner (CT57) used in Jones et al.[25], and leads to a SPL decrease of310

9 dB under the present conditions: an input plane wave packet with frequency centered
around f = 1500 Hz – see Fig. 2. The choice of this input frequency is justified in
Section 5. The optimization procedure followed is identical to that described in the
previous section, with constant τ and β∞. The cost function in Eq. (6) is computed
between t1 = 1.5 ms and t2 = 10 ms, and p�tar is taken as constant and equal to the mean315

of p�ref during that time interval – see Fig. 14(b).
The minimization of the cost function proceeds as shown in Fig. 14(a). After less than

30 iterations, the cost function goes below 10% of its original value. The spatio-temporal
13
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Figure 8: Pressure perturbations p� measured about the ambient value pa = 101325 Pa at the probe
location x = 0.3 m in the 1D impedance tube. Dashed lines correspond to the right-running wave packet
coming from the inlet, while the solid portion corresponds to the perturbations reflected by the TDIBC
operating with parameters set at qref – see Table 1.
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Figure 9: Convergence of J(q) towards a minimum value during the gradient descent optimization at
three different input wave packet frequencies – and hence three different J(qref ). In all cases, λ = 100.

For f = 2000 Hz, the optimization ended soon due to the |�β(s)| ≤ 1 constraint being violated at 0 Hz.
This is not the case for the other two frequencies, where computations are terminated manually after
vanishing returns upon further iterations.

evolution of the plane wave packet obtained by using the optimized TDIBC parameters
qopt,GIT of Table 4 is displayed in Fig. 13. The perturbations at the probe location320

and the sound pressure levels across the duct with the optimized TDIBC can be seen in
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parameter qopt3(1000Hz) qopt3(1500Hz) qopt3(2000Hz)
β∞ 5.000000000000000e-01 5.000000000000000e-01 5.000000000000000e-01
τ 4.799390000000000e-04 4.799390000000000e-04 4.799390000000000e-04

Re(s̃1) -4.562252024629700e+03 -5.697035342928950e+03 -3.696840776282980e+03
Im(s̃1) 4.462793765578890e+03 7.198059365358520e+03 5.166508778739820e+03
Re(r̃1,1) -1.607524129467480e+03 -1.377331848071610e+03 -8.004080700521901e+02
Im(r̃1,1) -7.838523253411610e+02 -1.435002923804180e+03 -1.782905962817980e+03
Re(r̃1,2) -7.860958562553280e+03 -9.893382513453120e+03 -8.113779825793600e+03
Im(r̃1,2) -7.016324898782670e+03 -6.255377262186440e+03 -6.915350511607390e+03
Re(s̃2) -2.748396141909810e+04 -2.713188490491970e+04 -2.748569820098920e+04
Im(s̃2) 2.008293608242250e+04 2.119014362978530e+04 2.050292728980090e+04
Re(r̃2,1) -5.031302487269340e+02 4.899832222108420e+02 4.300162080508390e+02
Im(r̃2,1) -9.811594026017590e+02 -1.638361313973580e+03 -9.032522398700570e+02
Re(r̃2,2) 1.586704986608620e+04 1.351801354536430e+04 1.510898802168430e+04
Im(r̃2,2) 1.953610189966890e+04 2.063895931045980e+04 1.985977048145190e+04

Table 3: qopt3 found by optimizing at constant τ and β∞ for frequency-dependent p�tar .
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Figure 10: (a) Argument and (b) modulus of the reflection coefficient �β(s) based on qref and qopt3 for the

three analysed frequencies f . (c) Real and (d) imaginary part of the impedance �z(s). �z = (1+ �β)/(1− �β).

Figs. 14(b) and 15, respectively. Finally, the reactance properties of the optimized liner
are displayed in Fig. 16.
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Figure 11: Reflected pressure perturbations (reference and optimized), and target pressure level p�tar .
(a) f = 1000 Hz, (b) f = 1500 Hz, (c), f = 2000 Hz.

5. Discussion

Before embarking on the discussion, it is convenient to note that a liner with fully325

absorptive power for perturbations of a single frequency f exhibits an impedance z̃ such
that Re (z̃) = 1 and Im (z̃) = 0 at frequency f . That concept proves useful when
interpreting the changes induced by the optimization process on the impedance properties
of the acoustic liner.

The results for the 1D impedance tube are discussed first. It is clear that the op-330

timization process is able to proceed further after setting the bulk reflectivity β∞ to
a constant, yet it is interesting to observe how the acoustic properties of the TDIBC
change when going from qref to qopt in Table 1 by having acted almost exclusively on
β∞. Fig. 6(b) shows that the frequency of the reflection peaks and troughs has not been
altered, which is consistent with the poles of qopt remaining almost unchanged from those335

of qref . However, the trough around 1 kHz has become shallower with the increase in
β∞. The benefits of increasing β∞ are less visible on the impedance data in Fig. 6, but a
zoom into the curves in Fig. 6(c) close to 1 kHz (not shown) reveals that qopt brings the
resistance closer to unity (from below) than qref does, while the frequency of the zero
crossing towards 1 kHz in the reactance curves in Fig. 6(d) remains virtually unchanged.340
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Figure 12: Plane wave packet evolution in the GIT test case, travelling at the speed of sound c =
344.37 m/s towards the right. The TDIBC is located at the bottom wall, between 20.3 cm ≤ x ≤ 60.9 cm
– see Fig. 4. Simulation results obtained with the TDIBC parameters before optimization – qref shown
in Table 1.

Figure 13: Same as Fig. 12, but simulation results obtained with optimized parameters qopt,GIT with
the reactance properties of Fig. 16.

Setting β∞ to a constant allows the optimization to act on the oscillatory poles
and their corresponding weights, leading to qopt2 in Table 1. The resulting parameters
drastically improve the absorption properties of the TDIBC. Fig. 6(b) shows that the
reflection trough around 1 kHz can be brought down to almost zero, consistent with a
resistance closest to unity around that frequency in Fig. 6(c). The range of frequencies345
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Figure 14: (a) Convergence of J(q) towards a minimum value during the gradient descent optimization.
For λ = 100, J(q)/J(qref ) reaches 6.9% while for λ = 1000, J(q)/J(qref ) reaches 8%. In both cases,

the optimization is terminated due to the |�β(s)| ≤ 1 condition being violated at 0Hz. (b) Pressure
fluctuations (reference and optimized) at the probe location (x = 70cm, y = 5cm) for the 2D GIT case,
and target pressure level p�tar .
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Figure 15: Sound pressure levels measured along the top wall (see Fig. 4) for the input plane wave packet
centred around 1500Hz. The TDIBC is located at the bottom wall, between 20.3cm ≤ x ≤ 60.9cm.

over which the reactance remains close to zero has been widened significantly with qopt2,
as observed from Fig. 6(d). Comparing p�ref with p�opt2 in Fig. 7(b) gives perhaps the
most eloquent demonstration of the level of optimization that can be achieved when
leaving τ and β∞ constant for this input frequency centered around 1000 Hz. Keeping
the optimization strategy unchanged, different input frequencies are analyzed next.350

Fig. 9 shows that similar levels of optimization can be achieved with input wave
packets that have amplitude spectra centred around 1000 Hz as well as 1500 Hz, yet for
the 2000 Hz case the ability to optimize is severely hindered in comparison. The reason
for this – at first surprising – behavior can be found in the constant value of τ . In the
lossless limit, a tubular liner can be modelled as a quarter-wavelength resonator with
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parameter qref qopt,GIT

β∞ 5.000000000000000e-01 5.000000000000000e-01
τ 4.799390000000000e-04 4.799390000000000e-04

Re(s1) -3.816516000000000e+03 -3.734504125380820e+03
Im(s1) 4.734560000000000e+03 4.912197498313930e+03
Re(�r1,1) -7.194232000000000e+02 -9.424292884778670e+01
Im(�r1,1) -5.447907000000000e+02 -1.864202983923320e+03
Re(�r1,2) -7.179701000000000e+03 -7.491023052287460e+03
Im(�r1,2) -7.336684000000000e+03 -7.238922694116080e+03
Re(s2) -2.765741000000000e+04 -2.742454898337370e+04
Im(s2) 2.000290000000000e+04 2.025959879248170e+04
Re(�r2,1) 1.625807000000000e+03 -1.477206909709660e+02
Im(�r2,1) 9.996580000000000e+01 -3.484418558326350e+02
Re(�r2,2) 1.614688000000000e+04 1.577729950072360e+04
Im(�r2,2) 1.930627000000000e+04 1.959434095246440e+04

Table 4: qopt,GIT is found by optimizing at constant τ and β∞ in the 2D GIT case. Input plane wave
packet centered around 1500Hz. Found with λ = 100 after 32 iterations.
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Figure 16: (a) Argument and (b) modulus of the reflection coefficient �β(s) based on qref and qopt,GIT .

(c) Real and (d) imaginary part of the impedance �z(s). �z = (1 + �β)/(1− �β).

resonant frequencies given by[27]

fn =
(2n+ 1)c

4l
(8)
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where l is the cavity length. Since l and τ are related through l = cτ/2, the first two
resonant frequencies obtained with the fixed τ = 4.79939 × 10−4 s should be around
1042 Hz and 3124 Hz, which is consistent with the first two minima observed in the
|β̃| figures based on qref . The antiresonant frequency for this liner is located halfway
in between the two absorption sweet points, i.e. close to 2000 Hz. It could therefore355

be anticipated that without changing the cavity length – and hence τ –, a drop in the
optimization capacity should be observed when the frequencies to be attenuated are
centred around 2000 Hz compared to 1000 Hz or 1500 Hz. A possible solution to this
problem consists in shifting fn towards higher values by lowering l through τ .

The 2D GIT flow is tackled in better conditions after the lessons learnt from the360

1D impedance tube: 1) optimization at constant τ and β∞ is most effective, and 2)
frequencies close to 2000 Hz have limited optimization potential at the chosen τ . The
CT57 liner is known to have an effectiveness at cancelling plane monochromatic waves
which varies significantly with frequency. For a plane monochromatic wave of frequency
1000 Hz, Jones et al.[25] report SPL drops of about 60 dB in the GIT experiment. At365

1500 Hz, their data show a much deteriorated SPL drop of about 10 dB. An attempt
is made here to find an alternative set of TDIBC parameters that improves upon the
performance of the original liner, for frequencies where it is reasonable to expect that its
effectiveness can be improved. For all these reasons, an input plane wave packet with
amplitude spectrum centered around 1500 Hz is chosen: sufficiently far from the 1000 Hz370

optimum yet below the 2000 Hz limitations. From Fig. 14(a), it can be concluded that
the optimization is able to proceed reasonably far, down to 6.9% of the initial value of
the cost function. Although values below 1% are not reached as in the 1D impedance
tube – see Fig. 9, it has to be emphasized that here all of the pressure perturbations
do not come in contact with the TDIBC, which is only present on one of the two walls.375

Nevertheless, Fig. 15 illustrates that the original liner decreases the outlet sound pressure
level by 9 dB compared to the inlet, and the optimized liner decreases them a further
12 dB. The impedance and reflection properties in Fig. 16 display once again the effect
of the optimization. The reflection minimum in Fig. 16(b) has clearly been lowered and
brought closer to the 1500 Hz range of frequencies.380

The location of the probe at which the perturbations are minimized will necessarily
have an effect on the resulting set of optimized TDIBC parameters. But the freedom to
choose the probe location also allows one to be able to target more selectively where the
perturbations ought to be minimized. Another possibility would be, of course, to embed
into the cost function a pressure – or sound intensity – that is integrated throughout385

the outlet. It is only a matter of choice which does not imply any difficulty from an
implementation point of view, since automatic differentiation can cope with any cost
function definition as long as its expression can be differentiated.

The results shown so far are sufficient to illustrate that the optimization process
can lead to different sets of optimized TDIBC parameters, even when starting from390

identical initial parameters qref and keeping the input signal spectra unchanged. This
can be seen by comparing, for instance, qopt3 at 1500 Hz in Table 3 with qopt,GIT in
Table 4 – which is also obtained with the same input amplitude spectrum. Different flow
conditions lead to different TDIBC optima, that is not surprising. What one may want
to further assess, however, is how different two optima will be when all that is changed395

is the initial set of TDIBC parameters. That is assessed in Fig. 17. The different data
have been obtained by changing each element of qref – except for β∞ and τ – through
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multiplication by (1+θ), where θ is chosen from a uniform random distribution spanning
the range −|qref (m)|R ≤ θ ≤ |qref (m)|R. For R = 0.1 and R = 0.2, the convergence
towards a minimum is plotted in Fig. 17. It appears that changing the initial set of values400

of qref by up to 10% of their original value marginally modifies the optimum state, while
the same test but with changes of up to 20% leads to an entirely different optimum. The
conclusion drawn is that the initial qref has a significant impact on the minimum that is
found at the end of the optimization procedure, so that a poor choice of the initial qref
cannot, in general, be compensated by the optimization approach brought forward here.405

In the present study, the initial set of conditions is guided by the CT57 liner, which is
already a fairly effective design that places the optimization procedure not too far away
from optimum. In the work by Özkaya et al.[11], a first-stage, low-fidelity optimization
is applied before the gradient descent algorithm, which is similar to placing the multi-
parameter space reasonably close to optimal values before diving in the search for an410

optimum point.
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Figure 17: Convergence of J(q) towards a minimum value during the gradient descent optimization, with
f = 1000Hz and λ = 100 in all cases. Two convergence curves are obtained by perturbing each element
of qref by a random factor of up to ±0.1 (or ±0.2) of its value.

6. Conclusions

Numerical simulations are carried out using JAGUAR, a flow solver that features
the possibility to apply a TDIBC[13]. The parameters that control the behavior of the
TDIBC are based on the oscillo-diffusive representation (ODR) of the acoustic reflection415

operator[12, 22], with values chosen to reproduce accurately the properties of the ceramic
tubular liner CT57[25]. The TDIBC parameters are modified in order to optimize the
behavior of the TDIBC at dampening pressure perturbations with different broadband
frequency contents. The optimization follows a gradient descent algorithm, where the
gradients of the cost function with respect to the ODR parameters has been obtained by420

means of the automatic differentiation compatibility of JAGUAR[24].
A 1D impedance tube test case is considered first, which reveals that optimizing the

TDIBC at constant bulk reflectivity β∞ and time delay τ proves most effective - as
opposed to letting these two parameters vary. Radically improved dampening properties
compared to the original TDIBC are obtained following this strategy. The effectiveness425
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of the optimization is found to be limited when the input perturbations come close to
the anti-resonant frequency of the tubular liner modelled by the TDIBC. An obvious
workaround to this limitation is to carry out the optimization by keeping τ constant
yet fixed to a smaller value. Finally, a 2D test case of the GIT is chosen to study a
more realistic flow configuration, where the liner is known to be operating at off-design430

conditions. The optimization succeeds at adapting the set of TDIBC parameters to
recover an improved absorptive performance.

Throughout the present work, the optimization is applied to quantities appearing
in the ODR of the acoustic liner’s reflection operator. For liners characterized by few
and simple geometric quantities, there are mathematical models that can approximate435

the corresponding ODR coefficients describing the reflection or impedance properties.
The converse is not as trivial, since not all impedance properties can be realized using
a geometry-based mathematical model. As a consequence, it is not guaranteed that the
optimized parameters found in the present work can be generated with a modified CT
liner. Since the bulk reflectivity and the tube length are fixed, the remaining free param-440

eter that can change the CT liner impedance is the tube diameter alone. That will not
suffice to select the values of the 12 parameters left to adjust within the parameter vector
q. Additional geometric parameters would be needed in the mathematical model, which
would for instance involve tubes of more complex cross-section. As a result, improve-
ments to the present approach include using the geometry-based mathematical model445

inside the flow solver, with routines that translate the geometrical parameters directly
into ODR coefficients. In this manner, the optimization could be carried out based on
updates of the input geometric parameters rather than on the ODR coefficients, thus
limiting the optimization space to the realm of readily obtainable acoustic liners.
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