
HAL Id: hal-03409334
https://hal.science/hal-03409334v1

Submitted on 9 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CristalX: Facilitating simulations for experimentally
obtained grain-based microstructures

Zoltan Csati, Jean-Francois Witz, Vincent Magnier, Ahmed El Bartali,
Nathalie Limodin, Denis Najjar

To cite this version:
Zoltan Csati, Jean-Francois Witz, Vincent Magnier, Ahmed El Bartali, Nathalie Limodin, et al..
CristalX: Facilitating simulations for experimentally obtained grain-based microstructures. SoftwareX,
2021, 14, pp.100669. �10.1016/j.softx.2021.100669�. �hal-03409334�

https://hal.science/hal-03409334v1
https://hal.archives-ouvertes.fr


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

© 2021 pub
https://www

Version of Record: https://www.sciencedirect.com/science/article/pii/S2352711021000145
Manuscript_6f6328f3e2388733ecce6096642383aa
CristalX: Facilitating simulations for experimentally

obtained grain-based microstructures

Zoltan Csatia,∗, Jean-François Witza, Vincent Magniera, Ahmed El Bartalia,
Nathalie Limodina, Denis Najjara

aUniv. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de Mécanique,
Multiphysique, Multi-échelle, Lille, F-59000, France

Abstract

Polycrystalline microstructures occur in nature and also arise in industrial
processes. Performing finite element computations on such microstructures is
relevant in multiple engineering fields. The present paper describes a highly
automated, possibly human-assisted, approach to create high-quality finite
element meshes for polycrystalline microstructures. The input is an image,
showing grains to be identified. First, the individual grains are obtained by
performing several image segmentation techniques. The program allows ana-
lyzing the relevant properties of a grain, such as its diameter. The segmented
image is then turned to a CAD geometry. Different parametrizations of this
geometry lead to different grain smoothness. The advantage of our approach
is that existing, robust meshing software can be used to create a high-quality
mesh on the grain assembly in a completely automatic way. The developed
methodology is illustrated on a real-world example.

Key words: meshing, microstructure, segmentation

∗Corresponding author
Email address: zoltan-c@keemail.me (Zoltan Csati)

Preprint submitted to SoftwareX January 31, 2021
lished by Elsevier. This manuscript is made available under the Elsevier user license
.elsevier.com/open-access/userlicense/1.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2352711021000145


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Current code version 1.0.1
Permanent link to code/repository used for this code
version

https://github.com/CsatiZoltan/CristalX

Legal Code License LGPL-3.0
Code versioning system used git
Software code languages, tools, and services used Python ≥ 3.6; Binder; Read the Docs; Better Code

Hub
Compilation requirements, operating environments &
dependencies

Linux/Windows; requirements provided in the
environment.yml file in the repository

Link to developer documentation https://cristalx.readthedocs.io/

Support email for questions zoltan-c@keemail.me

Code metadata

1. Introduction1

Grain-based microstructures occur in nature (e.g. crystalline rocks) and2

also play a role in industrial processes such as forging [1] or developing cer-3

mets [2]. The effect of the grain size and shape, and the distribution of the4

constituents at the micro scale determines the behaviour of the material at5

the macro scale1 [3]. It is therefore of interest to characterize the microstruc-6

ture. One way to do it is to synthetically generate many of them with some7

relevant characteristics drawn from statistical distributions and use statis-8

tical methods to compute the average response to given loading conditions9

[4]. The advantage of computational microstructure generation is that one10

can perform computational experiments by changing the parameters. When11

a new material is under development, it is highly useful to virtually ex-12

periment with the microstructure without having to produce samples and13

conduct real experiments on them. It is also a faster and cheaper method14

than having to perform time-consuming and often costly measurements. For15

grain generation, see the recent paper [5]. The open-source tool Neper [6]16

also has a module for generating polycrystalline microstructures. This ap-17

proach works well when the microstructure can be properly captured by the18

statistical parameters. However, when this is not the case or if a specific real19

microstructure is of interest, measurements are necessary. The outcomes of20

measurements are images in which the grains are to be identified. This is a21

task for image segmentation.22

In order to locate objects and boundaries, image segmentation methods23

partition an image into regions such that a distinct label is associated to24

1For the sake of brevity, we do not make a distinction between micro scale and meso
scale in this paper. The terms micro scale and macro scale are used to accentuate the
difference in the scale in which phenomena are investigated. The notion micro scale will
be used for the scale where the grain shapes can be identified.

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
each region (pixel group). Superpixels are groups of pixels that belong to-25

gether based on color, spatial distance or other properties [7]. Superpixel26

segmentation subdivides an image into superpixels on which other image27

processing algorithms can operate efficiently. For a comparison of superpixel28

segmentation methods, see [8]. As superpixels over-segment the image, other29

segmentation techniques are necessary to obtain a properly segmented im-30

age, in which the individual grains can be distinguished. One such method is31

the watershed segmentation. Watershed segmentation is a common use case32

of the watershed transformation, also simply called watershed. Introduced33

in [9], the term watershed was coined after the geological definition, i.e. the34

set of barriers that separate the catchment basins of a topographic surface.35

A grayscale image can be viewed as a topographic surface where the pixel36

intensities correspond to hills and valleys. Intuitively, the surface is flooded37

starting from the valleys (local minima) with different colors of water. When38

two different colors would merge, a barrier is inserted. The process contin-39

ues until the whole surface is under water. Since [9] many other definitions40

of the watershed were put forward and several algorithms were proposed to41

compute them. When directly applied on a grayscale image, the result of the42

watershed segmentation is an oversegmented image due to the noises that act43

as local minima. The success of the watershed segmentation depends on how44

well the catchment basins are identified, which are the locations where the45

flooding starts. The so-called marker-based watershed segmentation meth-46

ods rely on markers (computed automatically or given by the user), i.e. the47

location of the catchment basins, as inputs.48

Homogenization methods provide the theoretical background on the tran-49

sition from the micro scale to the macro scale. In the presence of complex50

microstructural features or complicated physics, the so-called computational51

homogenization is prevalent [10]. In computational homogenization, the gov-52

erning equations are often solved by the finite element method (FEM), which53

requires a mesh on the domain. Image-based approaches directly create a54

mesh on an image, without the need for an intermediate geometry construc-55

tion step. Most methods work on an already segmented image. The simplest56

approach is to allocate one mesh cell for each pixel (or voxel in 3D). This57

not only results in prohibitively large meshes but also inaccuracies in the58

subsequent simulation due to the jagged surface approximation. Therefore,59

unstructured meshes are often preferred, in which the image features are60

taken into account when generating the mesh. The software OOF2 [11] has61

several built-in local mesh modification algorithms to create a mesh on a seg-62

mented image. That approach was extended for tetrahedral meshing in 3D63

in OOF3D [12]. On the other hand, [13] came up with a penalty method that64

does not even require a segmented image. Additionally, the meshed image65

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
can be perceived as a lower-resolution representation of the original image.66

Hence, their method is not only suitable for meshing an image but can also67

serve as an initial segmentation, similarly to the superpixel segmentation al-68

gorithms. In this category, we mention Neper [6], a tool for generating and69

meshing polycrystals, modeled as a Voronoi tessellation. The strategies above70

are usually complex because the unstructured mesh must satisfy two criteria71

at the same time. It must consist of good quality cells and the cells should72

be as homogeneous as possible, i.e. a cell should ideally belong to a single73

labeled region. The X-FEM coupled with the level set method circumvents74

this requirement [14]. Here, the level set is constructed on the high-resolution75

image. However, a simple structured or block-structured mesh can be cre-76

ated independently of the boundaries of the segmented image. This way, the77

boundaries cut the mesh cells and the level set values are projected onto the78

mesh. By coupling the X-FEM with the level set method, the quality of the79

function approximation (determined by the mesh density) is decoupled from80

the resolution of the geometry (determined by the number of pixels/voxels).81

The quality of the mesh influences both the interpolation error and the82

conditioning of the discretized problem [15]. In case of nonlinear problems83

(e.g. contact, large deformation elasticity, plasticity), a high quality mesh is84

crucial to obtain an accurate solution, or even to have a convergent solu-85

tion at a given load increment. While generating adaptive meshes directly86

based on an image is an ongoing research effort, image-based methods usu-87

ally concentrate on creating meshes on the grains. However, in many cases88

interesting phenomena, such as strain localization, happen along the grain89

boundaries (interfaces). It is therefore useful to be able to extract the in-90

terfaces and control the mesh generation e.g. by constructing graded meshes91

near the interfaces. Mesh refinement is also necessary to conduct convergence92

studies. Another problem we faced was mesh repairing. Since the mesh qual-93

ity obtained by OOF2 was not good enough, we considered improving the94

mesh with third-party tools. However, the new mesh obtained by those tools95

does not respect the original microstructure, which can be detrimental for96

small grains consisting of only a few cells. What is more, the new mesh has97

no information about which cell belongs to which grain, which information98

is necessary if different material properties are associated to the different99

grains. The challenges above lead us to represent the grains as an exact100

geometry, rather than an assembly of cells, which is an inherently discrete101

approach. We note that after extracting the interfaces, non-conforming (and102

possibly block-structured) meshes could be used, as in X-FEM. That choice103

eases the mesh generation but at the same time requires specialized solvers104

and custom preconditioners. Therefore, in this paper, traditional conforming105

mesh generation is applied, which has the advantage that robust open-source106

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
or proprietary software can be utilized for that purpose.107

The paper is structured as follows. Section 2 is the main part of the arti-108

cle, containing the reusable components of our program. Section 2.1 describes109

the philosophy behind the design choices. These were the most relevant re-110

quirements we targeted from the very beginning, and we stuck to them as the111

project evolved. Sections 2.2–2.3 detail the two main ingredients of obtaining112

a geometrical representation of a microstructure. These two steps comprise113

the core of our software. Additional capabilities of the program are described114

in Section 2.4. Section 2 ends with the means of contributing to this project115

(Section 2.5). After having discussed the fundamentals of the program in116

Section 2, its usage is demonstrated in Section 3 by a practical example our117

group is currently working on. That section shows how to use the available118

building blocks and provides additional Python modules for extending the119

core in order to meet the demands. The impact of our software on the ma-120

terial science community is highlighted in Section 4. Some perspectives for121

future extension are given in Section 5.122

2. Software description123

Our project, called CristalX, is written in pure Python2, a widely-used124

free and open-source general purpose language with a rich scientific ecosystem125

[16]. The source code of the software is available on https://github.com/126

CsatiZoltan/CristalX under the LGPL-3.0 license. Its documentation is127

hosted on https://cristalx.readthedocs.io/ and includes a detailed API128

reference as well as examples. The software was tested to work with Python129

3.6 under Ubuntu 18.04 and Windows 8.1. All the required dependencies130

are installed by the conda package manager so that the installation into131

a separate environment is automatic. Additionally, the code is accessible132

through Binder, in which case no installation is needed at all.133

2.1. Design choices134

This software is not a black-box library such as BLAS, neither is a GUI-135

based application intended for end-users. It is rather an easy-to-use and136

extensible set of Python codes that provide the basic functionalities that sci-137

entists can extend based on their needs. The software was built by adhering138

to the following rules:139

1. Driven by actual needs140

Only implement features that are currently used. Adding extra fea-141

tures requires more testing, possibly more dependencies and therefore142

2Whenever we write Python, we mean the CPython implementation.

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
code bloat, and increases the cognitive load of the user. Instead, the143

emphasis is on creating a stable minimum core library that can be eas-144

ily extended according to users’ demands. Consequently, application145

code is separated from the core modules.146

2. Build on well-established packages147

We rely on the scientific Python stack: NumPy [17] for array manip-148

ulations, SciPy [18] for interpolation and some other computations,149

Matplotlib [19] for visualization and scikit-image [20] for image pro-150

cessing. This ensures interoperability with other scientific codes and151

that our software is hopefully bug-free.152

3. Minimize the dependencies153

Rapid prototyping is essential in scientific code development and Python154

is an excellent choice to satisfy this requirement. At the same time,155

relying on fast libraries ensures that the computations are reasonably156

fast. The libraries mentioned in the previous point are easy to install,157

often already pre-installed in certain Python distributions.158

4. High-quality documentation159

Future contributors will benefit from the rich documentation. Python160

doctests are extensively used, serving both as test cases and as examples161

of usage. The docstrings conform to the numpydoc style guide.162

2.2. Segmentation163

Image segmentation is performed on the image of the microstructure.164

The segmentation results in a so-called labeled image, an image having the165

same size as the input image. Distinct positive integers, called labels, are166

associated to groups of pixels in the labeled image and each pixel belongs to167

one and only one such group. The image segmentation is successful if the168

pixel groups correspond to grains in the original image. Depending on the169

microstructure and on the image quality (noise, etc.), image segmentation170

can be very challenging and cannot be fully automated in general. Our ap-171

proach is to create a workflow that we found to give satisfying results, but172

also expose relevant parameters to the user so that the procedure can be173

fine-tuned for custom images. This workflow is detailed below. For the rest174

of this paper, the term grain will not only be used in the physical sense but175

it will also refer to the various representations of a grain (some connected176

pixels of an image, vertices of a polygon, planar surface bounded by splines).177

Its usage will be apparent from the context.178

The workflow provided by the segmentation module is the following (func-179

tions or class methods are typed in monospace font).180

1. Filtering (segmentation.Segmentation.filter image)181

To remove unwanted artifacts on the image, noise removal is necessary182

6



)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
as a preprocessing step. Since the interfaces are important for us, we183

use median filtering for smoothing as it preserves the contours.184

2. Superpixel segmentation (segmentation.Segmentation.initial segmentation185

In many practical cases, the interfaces do not appear clearly separated186

from the grains on the image. Therefore, simple thresholding methods187

are not successful in those cases. Instead, the Quick Shift [21] method188

is used, which is a superpixel segmentation algorithm.189

3. Decrease the number of superpixels (segmentation.Segmentation.merge -190

clusters)191

As the superpixel segmentation in the previous step results in an over-192

segmented image, the region adjacency graph is constructed and used193

to merge some of the neighboring superpixels based on their similarity194

with respect to mean color [22].195

4. Find the grain boundaries (segmentation.Segmentation.find grain -196

boundaries)197

A binary image is returned with true values indicating the boundaries198

among the labelled regions.199

5. Construct the skeleton (segmentation.Segmentation.create skeleton)200

Use thinning on the grain boundary to obtain a single-pixel wide skele-201

ton. If the automatic segmentation carried out so far is not good202

enough, the user can manually edit the grain boundaries as a graph203

in ImagePy [23]. The combination of the automatic segmentation with204

human supervision is a powerful way to achieve good results in a rela-205

tively short amount of time.206

6. Watershed segmentation (segmentation.Segmentation.watershed -207

segmentation)208

Given the – possibly manually modified – skeleton, we want to obtain209

the regions (grains) they define. We use the watershed segmentation210

for that purpose. The Euclidean distance transform is computed on the211

skeleton to determine the catchment basins. It gives how far a point is212

from the closest skeleton pixel. The local minima of the negative of this213

distance function could be used as markers for the watershed segmen-214

tation. However, that results in an oversegmented image because each215

minimum acts as a catchment basin. Therefore, the markers are set to216

be the extended minima of the negative distance function, where the217

extended minimum is the regional minimum of the h-minima transfor-218

mation (see Chapter 6 in [24]). The extended minima thus define the219

mask required for the marker-based watershed segmentation.220

The steps above will be exemplified in Section 3.221

Remark 1. The image segmentation part of our software is useful by itself;222

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
for scientists who only work with images, without the need for subsequent223

meshing.224

2.3. Geometry reconstruction225

As explained in Section 1, to produce a high-quality mesh, we represent226

the grains as geometrical objects. For the proper representation of the geom-227

etry, the grains must form a tessellation of the domain. That is, there must228

be no gap or overlapping among them. It implies that an interface (common229

boundary between two grains) corresponds to the very same object whether230

we consider it as part of the first or the second neighboring grain. There-231

fore, the interfaces need to be identified first and then the grains must be232

constructed as surfaces bounded by the interfaces. The steps to obtain a233

geometrical description of the labeled image is now detailed.234

1. Build the skeleton of the segmented image (cad.build skeleton)235

The interfaces form the skeleton of the segmented (labeled) image and236

have a single-pixel width. Built-in functions of scikit-image are used to237

obtain the skeleton of the segmented image. First, the labeled image238

is surrounded by an artificial pixel region. Creating this extra region239

defines boundary interfaces for the boundary grains, making it possible240

to apply the same algorithms whether a grain lies along the boundary241

of the region or it is inside. The connectivity graph gives how the242

skeleton pixels are connected. For this purpose, the Python package243

skan is used [25]. skan stores the pixel connectivity in a sparse matrix,244

and provides for each skeleton pixel the number of neighboring skeleton245

pixels (degree). The degree allows classifying the skeleton pixels into246

various categories. If the degree is one, a particular skeleton pixel247

connects to only one other skeleton pixel, hence it is called an end248

point. Usually most skeleton pixels are internal, having degree two. If249

the degree is three or more, it is called a junction. As skan correctly250

states, branches can emerge between two junctions, an end point and251

a junction, between two end points, and can even indicate an isolated252

cycle that consists of degree two skeleton pixels only. However, in our253

case, it is easy to realize that only branches with junction-to-junction254

connections can form grain boundaries. Hence, we will use the term255

branch in this restricted sense for the rest.256

2. Determine the grains bounded by the set of branches (cad.skeleton2regions)257

This problem could possibly be solved by a graph theoretic approach.258

Consider a graph in which the vertices are the branch end points and the259

edges are the branches. Properly selected cycles in this graph would260

give the branches that bound the grains. While this method is ele-261

gant and abstract, hence efficient and robust third-party graph libraries262

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
could be used, it comes with several drawbacks. First, enumerating all263

the elementary cycles in a graph has a prohibitive time complexity [26].264

Second, most of the elementary cycles do not enclose individual grains265

(e.g. a cycle could correspond to the union of two grains), hence a selec-266

tion must be performed to filter out the non-physical cycles. Another267

technique could be to determine the minimum cycle basis for the graph.268

Unfortunately, the minimum cycle basis is not unique [27]. Therefore,269

it is not guaranteed that such a cycle will correspond to a grain. An270

additional difficulty arises when a small grain is located between two271

larger grains, resulting in a double edge in the corresponding graph.272

Many graph algorithms work under the premise that the graph con-273

tains no loops and multiple edges.274

To alleviate this, an alternative solution is proposed, in which we use275

the information available in the segmented image. Specifically, we su-276

perimpose the skeletonized binary image on the labeled image and de-277

tect the labels around a given skeleton pixel. Performing this neighbor278

search on the skeleton pixels of a branch, and choosing the two most279

common labels, provides the neighboring grains to a branch.280

What remains to be specified is what is considered as neighborhood of281

a skeleton pixel. Figure 1 shows a branch in boldface with a chosen282

skeleton pixel P on it, and the surroundings when superimposed on the283

corresponding labeled image. The labeled regions are distinguished by284

distinct colors. This configuration is taken from an actual microstruc-285

ture we are working with and will be used as an example to demonstrate286

the effect of choosing various neighborhood definitions.287

P

Figure 1: Skeleton pixel P and its neighborhood

Instead of creating two branches that separate the yellow region from288

the green and the green from the blue, skan creates only a single branch.289

From the full labeled image, of which a part is shown in Fig 1, a human290

observer can easily decide that the yellow and the blue regions must be291

the two neighbors of the branch. Nevertheless, the automated identifi-292

cation of the “correct” neighbors, relying on local information only, is293

not straightforward. Tables 1–2 collect the different strategies we im-294

plemented. Based on the two most common pixels in the neighborhood295

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
of P , the algorithm identifies the neighboring regions (grains). The296

tables report whether the identification is correct. A natural choice297

is to consider the immediate neighbors of P , let it be 4-connectivity298

(von Neumann) or 8-connectivity (Moore), see the first two columns of299

Tab. 1. However, there are situations, as shown in Fig. 1, when a slender300

part of another grain (pixels in green) gets inserted between two grains301

that actually neighbor an interface. To mitigate this issue, generalized302

von Neumann and Moore neighborhoods can be considered, in which303

the neighbor search is extended for a larger range n, thereby decreasing304

the effect of the immediate neighbors. In this example, n = 2 is not305

sufficient to obtain the desired neighbors (see the first two columns of306

Tab. 2). Although n = 3 solves the problem in this example, setting307

n too large introduces another issue: small grains remain unidentified.308

Another strategy is to make the mask hollow. This choice discards309

the close neighbors, thereby protecting against slender grain insertions310

(cf. columns 3–4 in Tables 1–2). One can conclude from this example311

that (i) the best strategy is configuration-dependent and (ii) it is easy312

to switch among the strategies, or implement new ones, by modifying313

the mask. So instead of constructing complex and costly methods to314

detect the neighbors, parametrizable heuristic algorithms are provided315

in the software. We accept that perfect results are nearly impossible316

to achieve for arbitrary labeled images, therefore we allow the user to317

choose the algorithm that fits the best for a given image. The hollow318

neighborhood strategy with n = 2 proved to be the winning choice for319

the microstructure investigated in Section 3, resulting in a topologically320

admissible geometry and leaving only one tiny grain unidentified.321

Connectivity von Neumann Moore von Neumann, hollow Moore, hollow

Mask

Grain pixel Occurrence within the mask
0 1 0 1
4 6 3 5
0 0 0 0
1 2 1 2

Neighbors - - - -
Correct no no no no

Table 1: Neighborhood definitions with range n = 1 and their assessment for the configu-
ration depicted in Fig. 1.

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Connectivity von Neumann Moore von Neumann, hollow Moore, hollow

Mask

Grain pixel Occurrence within the mask
3 8 3 7
7 8 3 2
0 2 0 2
3 7 2 5

Neighbours - / - - - -
Correct no/no no no yes

Table 2: Neighborhood definitions with range n = 2 and their assessment for the configu-
ration depicted in Fig. 1.

To find the branches that bound a grain, the branch–grain connec-322

tivities determined above are inverted. The cad.skeleton2regions323

function can be perceived as an intermediate step between a skeleton324

network and completely geometrical representation of the grains. That325

is, it keeps the key topological information required to create a fully ge-326

ometrical description, but it also contains the coordinates of the grain327

boundaries. The outputs of this function can be used to build different328

grain representations (e.g. polygonal or spline surface).329

3. Find oriented grain boundaries (cad.branches2boundary)330

The previous part of the reconstruction algorithm determined which331

branches bound a grain. In order to obtain a surface representation of332

a grain, the boundary must be oriented and hence the branches must333

be connected in the appropriate order. The cad.branches2boundary334

function uses a simple brute-force method to interlace the branches335

based on their common junctions. Both clockwise and counter-clockwise336

orientations are supported. By the end of this step, we obtain a fully337

geometrical description because each grain is now given by a series of338

points along its boundary.339

4. Represent each grain as a planar surface340

Two representations are provided by the software. The simpler one341

considers the points on the boundary of a grain as vertices of a poly-342

gon. This straightforward method, implemented in cad.region as -343

polygon, has the disadvantage that the generated mesh on the polygon344

will not be adaptable, i.e the mesh cannot be controlled. Depending on345

11



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
the resolution of the labeled image, the polygon can consist of hundreds346

of vertices. A mesh generator respects the tiny edges of the polygon347

and therefore the mesh will be refined or coarsened based on the bound-348

ary vertices of the grains, and not on other, more adequate, criteria.349

Furthermore, the resulting mesh is unnecessarily dense. As a partial350

solution, the Douglas-Peucker algorithm could be used to simplify the351

branches before forming the polygon. However, the order of simplifica-352

tion we want to achieve depends on a characteristic length, which will353

make the process tedious to use in practice.354

A better solution is to use CAD tools to control the geometry.355

(a) Create B-spline passing through points (cad.fit spline)356

NURBS-Python is an easy-to-use pure Python package for spline357

manipulation, with no dependency on top of the standard library358

[28]. Its approximation capabilities would be sufficient for our task359

but, as far as we know, creating a surface bounded by splines is360

not possible with it. Also, at the time of writing, it cannot export361

spline surfaces to a lossless CAD format, such as STEP. Therefore,362

we rely on PythonOCC [29], which is a Python wrapper around363

the mature and free Open CASCADE Technology (OCCT ). The364

user can set different parameters to control the approximation.365

These parameters are the minimum and maximum degree of the366

spline, its continuity and a tolerance. The tolerance instructs367

OCCT to construct the spline such that the distance from any368

data point to the spline is smaller than the prescribed tolerance.369

As the tolerance tends to zero, one obtains a spline interpolant.370

(b) Approximate each branch with a B-spline (cad.branches2splines)371

The spline approximation done by cad.fit spline is performed372

for every branch.373

(c) Represent each grain as a spline surface (cad.region as splinegon)374

For every grain, the splines forming its boundary are combined375

into a closed contour. Then a planar surface is created, bounded376

by this contour.377

5. Export the geometry (cad.regions2step)378

It is important that the surface of each grain is given in a lossless format,379

e.g. in STEP (STandardized Exchange of Product) and not as a mesh380

representation. The cad.regions2step function builds a compound381

surface from the individual grain surfaces, which is then written to a382

STEP file by cad.write step file. The exported STEP file is used383

as an input to a mesh generator, such as Salome [30], Netgen [31] or384

Gmsh [32].385

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
2.4. Additional features386

The software contains convenience functions and classes. Currently, the387

following Python modules are the most relevant ones:388

• geometry389

Implements computational geometry algorithms, with the emphasis be-390

ing on minimalism and not on feature-richness. The TriMesh class is391

a representation of an unstructured mesh with triangular cells. Hun-392

dreds of thousands of cells can be handled efficiently, which is often393

sufficient for 2D problems. The Polygon class is an abstraction for394

simple, possibly concave, polygons. Since it has member functions for395

computing the area, the centroid and the diameter of polygons, this396

class proves to be useful when analyzing grains that are approximated397

as polygons. Polygons also naturally arise when grains are discretized398

to an assembly of cells.399

• med400

The MED data model is used by Salome as an exchange format to401

encompass various simulation codes in a framework [30]. It is an ex-402

tended version of HDF5, supporting parallel meshes and fields. Sa-403

lome’s MEDCoupling tool provides C++ and Python APIs for inter-404

acting with meshes and fields. Although MEDCoupling is powerful,405

its Python API is available only from the Salome kernel. Moreover,406

it may lack certain mesh processing functionalities a user might need.407

Since meshes consisting of cells of the same type (e.g. triangles) can408

be represented as homogeneous and contiguous arrays, converting the409

mesh from MED to NumPy arrays seems a reasonable choice. This is410

what our med module does: it provides a thin wrapper around MED-411

Coupling to extract the mesh and the defined groups (cell and vertex412

groups) from the MED file and convert them to NumPy arrays. This413

way, the user who deals with numerical modeling can implement their414

mesh processing algorithms based on NumPy arrays, which is fast and415

straightforward. Furthermore, the person who performs the CAD op-416

erations and has Salome installed, can use our med module to export417

the mesh to NumPy arrays so that the numerical analyst can directly418

work on it without having to have Salome installed and without any419

knowledge on the MEDCoupling API.420

• utils421

Depends only on the standard library and NumPy, and contains utility422

functions that do not fit to other categories.423

For other helper functions, e.g. the ones enabling profiling the code, see the424

source code and its documentation.425

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
2.5. Collaboration426

New ideas, bug reports and critiques on the code and on the documen-427

tation are welcome, and they are tackled on the GitHub issue tracker of the428

project. The contributing.md file contains the details on how to submit429

proposals.430

3. An illustrative example431

CristalX was built around the following application. We are interested in432

how the size gradient of grains, and the material they are made up of influence433

the resistance of train wheels and axles to fatigue loading. Compared to [1],434

we take into account the effect of each individual grain in the microstructure.435

A high-level overview to tackle this problem is drafted below. The code is436

available as a Jupyter notebook in the repository, while the physical problem437

and the numerical solution scheme will be detailed in another article.438

1. Input: microstructure as a photo439

We will consider the microstructure in Fig. 2a available in the thesis440

[33]. To make the segmentation easier, the central part is cropped.441

2. Identify the individual grains (segmentation.py)442

After performing the steps described in Section 2.2, we arrive at the443

segmented image shown in Fig. 2b. For better results, we could have444

used ImagePy, but for the purpose of presentation we stayed with the445

automatic workflow. Nevertheless, Fig. 3 compares the skeleton ob-446

tained automatically (Fig. 3a) and with manual editing (Fig. 3b). So447

the segmented image in Fig. 2b is based on the skeleton in Fig. 3a.448

At first glance, the identified grains in Fig. 2b do not correspond to449

the actual grains we can see in Fig. 2a. In fact, there are more seg-450

mented regions than grains in reality. However, the contours of the451

“real” grains are well identified. This is relevant from the point of view452

of the invested time because the extraneous regions can be easily and453

quickly merged afterwards, while the manual grain boundary detection454

would take a lot of time.455

3. Obtain planar B-spline surfaces for the grains (cad.py)456

With the algorithms in Section 2.3, all but a very tiny grain (consisting457

of a few pixels only) could be identified. The missing grain acts as a458

hole in the domain.459

4. Manual reparation of the CAD geometry in Salome for filling the hole460

5. Mesh generation461

Thanks to the CAD geometry, excellent mesh quality is achieved by462

the Netgen mesh generator [31] without any user intervention. Figure 4463

compares the mesh obtained by OOF2 (Fig. 4a) with the one that is464

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
based on the intermediate geometry representation (Fig. 4b). The low-465

quality cells generated by OOF2 hampers the convergence of Abaqus466

solvers in several loading steps. Notice the finer mesh in the vicinity of467

the grain boundaries in Fig. 4b. This mesh adaptivity will be important468

in computations as large deformation is expected to happen along the469

grain boundaries. We note that the colors are associated randomly to470

the grains, this is why they do not match in Fig. 2b and in Fig. 4a,471

though they depict the same microstructure.472

6. Loading the mesh from a .med file (med.py)473

The mesh is exported from Salome as a MED file. Using the med module474

of CristalX, the triangular mesh cells for each grain and the boundary475

nodes are extracted as NumPy arrays.476

7. Mesh manipulation utilities (geometry.py)477

The mesh is scaled to define the computational domain based on phys-478

ical units instead of pixel units.479

8. Abaqus input file (abaqus.py)480

The material parameters, the boundary conditions and the mesh is481

written to a text file that the finite element program Abaqus can inter-482

pret.483

9. Projection between a Cartesian grid and an unstructured mesh (dic.py)484

The experimentally obtained displacement field, obtained by the digital485

image correlation (DIC) technique, is available known on a Cartesian486

grid. To compare the field values with the numerical data (available at487

the nodes of the mesh), scattered interpolation is implemented.488

(a) Microstructure (source: [33]) (b) Segmented microstructure

Figure 2: Close-up of a tensile specimen and its image segmentation

15



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
(a) Skeleton by a fully automatic workflow (b) Skeleton with manual modifications

Figure 3: Skeleton of the image after the initial Quick Shift segmentation

(a) Mesh by OOF (b) Mesh with our geometry-based workflow

Figure 4: Generated mesh on the segmented image

4. Impact489

Our tool is flexible because it consists of loosely coupled modules for the490

typical steps of microstructure identification and handling. Therefore, these491

components can be developed independently by researchers, depending on492

their needs. The detailed documentation, the contribution guidelines, and493

the fact that we exclusively rely on open-source tools promote collabora-494

tion. Indeed, we are interested in incorporating research ideas from external495

contributors to CristalX. Our geometry reconstruction algorithms do not496

assume polygonal grains. Convex, concave, non-simply connected domains497

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
can all be identified successfully as Fig. 5 demonstrates. While microstruc-498

ture generator tools have the freedom to restrict their attention to relatively499

simple grain shapes, real microstructures often consist of very complex grains500

(as the one in Fig. 5). Hence, for experimentally obtained microstructures,501

our algorithms are crucial.502

Figure 5: The image on the left shows a part of the segmented microstructure, in which
the colors correspond to the grains. Each segmented region is then transformed to an
explicitly given geometry, the boundaries of which are parametrized by B-splines (center).
This kind of description of the geometry makes it possible to generate high quality meshes
(right).

We expect that CristalX will be helpful for material scientists who want to503

characterize grain-based microstructures or intend to perform finite element504

computations on high-quality meshes. Finally, we mention that although505

CristalX was developed for microstructural analysis in mind, other appli-506

cations in which a geometrical representation of a tessellation is needed can507

benefit from the method described here.508

5. Conclusions and future work509

We argued how a direct geometrical representation of grains results in a510

better mesh quality, necessary for applications involving nonlinearities. Our511

contribution is twofold. First, an image segmentation workflow is tailored for512

the identification of granular microstructures. Second, the segmented image513

is turned to a CAD geometry format with customizable smoothness. These514

two core modules were used as a foundation to develop other modules that515

allow us to solve a relevant industrial problem. The building blocks of our516

software are general enough so that they can serve as a point of departure517

for other areas, in which grain-like shapes tessellate a domain.518

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
A collection of heuristics could be built to search for neighboring pix-519

els when identifying the branch–grain connectivities (cf. Section 2.3). The520

growing collection of such heuristics would typically be application-driven.521

When an existing strategy fails, one searches for another one and save that522

prevailing strategy for further use.523

It would be reasonable to support a less strict image segmentation work-524

flow by allowing the user to select among different initial segmentation meth-525

ods, not just the Quick Shift segmentation.526

The current version of the software is 1.0.1.527

Conflict of interest528

No conflict of interest exists: We wish to confirm that there are no known529

conflicts of interest associated with this publication and there has been no530

significant financial support for this work that could have influenced its out-531

come.532

Acknowledgments533

The support of Xiaolong Yan, one of the creators of ImagePy, is ac-534

knowledged for giving advice on image segmentation and in particular for535

his help with ImagePy. We also thank Pierre Baudoin for providing us the536

microstructure we used to illustrate the workflow in this paper.537

This work has been carried out within the CNRS SWIT’lab joint laboratory538

(LaMcube CNRS 9013, LAMIH CNRS 8201, MG Valdunes company and539

CNRS) and has also been supported by the ELSAT2020 research project.540

SWIT’lab and ELSAT2020 are co-financed by the European Union with the541

European Regional Development Fund, the French state and the Hauts-de-542

France Region Council.543

References

[1] P. Baudoin, V. Magnier, A. E. Bartali, J.-F. Witz, P. Dufrenoy, F. De-
milly, É. Charkaluk, Numerical investigation of fatigue strength of
grain size gradient materials under heterogeneous stress states in a
notched specimen, Int. J. Fatigue 87 (2016) 132–142. doi:10.1016/

j.ijfatigue.2016.01.022.

[2] H. Xiong, S. Chu, P. Lei, Z. Li, K. Zhou, Ti(C,N)-based cermets contain-
ing uniformly dispersed ultrafine rimless grains: Effect of VC additions
on the microstructure and mechanical properties, Ceram. Int. 46 (12)
(2020) 19904–19911. doi:10.1016/j.ceramint.2020.05.055.

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
[3] C. Sabbarese, F. Ambrosino, A. D'Onofrio, Development of radon
transport model in different types of dwellings to assess indoor ac-
tivity concentration, J. Environ. Radioact. 227 (2021) 106501. doi:

10.1016/j.jenvrad.2020.106501.

[4] J. Fu, S. Cui, S. Cen, C. Li, Statistical characterization and reconstruc-
tion of heterogeneous microstructures using deep neural network, Com-
put. Methods Appl. Mech. Engrg. 373 (2021) 113516. doi:10.1016/j.
cma.2020.113516.

[5] K. A. Hart, J. J. Rimoli, Generation of statistically representative mi-
crostructures with direct grain geometry control, Comput. Methods
Appl. Mech. Eng. 370 (Oct. 2020). doi:10.1016/j.cma.2020.113242.

[6] R. Quey, P. R. Dawson, F. Barbe, Large-scale 3D random polycrys-
tals for the finite element method: Generation, meshing and remesh-
ing, Comput. Methods Appl. Mech. Eng. 200 (17-20) (2011) 1729–1745.
doi:10.1016/j.cma.2011.01.002.

[7] Ren, Malik, Learning a classification model for segmentation, in: Pro-
ceedings Ninth IEEE International Conference on Computer Vision,
IEEE, 2003. doi:10.1109/iccv.2003.1238308.

[8] D. Stutz, A. Hermans, B. Leibe, Superpixels: An evaluation of the state-
of-the-art, Comput. Vision Image Understanding 166 (2018) 1–27. doi:
10.1016/j.cviu.2017.03.007.

[9] S. Beucher, C. Lantuejoul, Use of watersheds in contour detection,
in: International Workshop on image processing: Real-time Edge and
Motion detection/estimation, Rennes, France, 1979.
URL http://www.cmm.mines-paristech.fr/~beucher/publi/

watershed.pdf

[10] M. G. D. Geers, V. G. Kouznetsova, W. A. M. Brekelmans, Multi-
scale computational homogenization: Trends and challenges, J. Comput.
Appl. Math. 234 (7) (2010) 2175–2182. doi:10.1016/j.cam.2009.08.
077.

[11] A. C. E. Reid, S. A. Langer, R. C. Lua, V. R. Coffman, S.-I. Haan,
R. E. Garćıa, Image-based finite element mesh construction for material
microstructures, Comput. Mater. Sci. 43 (4) (2008) 989–999. doi:10.

1016/j.commatsci.2008.02.016.

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
[12] V. R. Coffman, A. C. E. Reid, S. A. Langer, G. Dogan, OOF3D: An
image-based finite element solver for materials science, Math. Comput.
Simulation 82 (12) (2012) 2951–2961. doi:10.1016/j.matcom.2012.

03.003.

[13] O. Goksel, S. E. Salcudean, Image-Based Variational Meshing, IEEE
Transactions on Medical Imaging 30 (1) (2011) 11–21. doi:10.1109/

tmi.2010.2055884.

[14] G. Legrain, P. Cartraud, I. Perreard, N. Moës, An X-FEM and level
set computational approach for image-based modelling: Application to
homogenization, Internat. J. Numer. Methods Engrg. 86 (7) (2010) 915–
934. doi:10.1002/nme.3085.

[15] J. R. Shewchuk, What is a Good Linear Element? - Interpolation, Con-
ditioning, and Quality Measures (2002).
URL https://people.eecs.berkeley.edu/~jrs/papers/elemj.pdf

[16] T. E. Oliphant, Python for Scientific Computing, Computing in Science
& Engineering 9 (3) (2007) 10–20. doi:10.1109/mcse.2007.58.

[17] S. van der Walt, S. C. Colbert, G. Varoquaux, The NumPy Array: A
Structure for Efficient Numerical Computation, Computing in Science
& Engineering 13 (2) (2011) 22–30. doi:10.1109/mcse.2011.37.

[18] P. Virtanen, , R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0: fundamental algo-
rithms for scientific computing in Python, Nat. Methods 17 (3) (2020)
261–272. doi:10.1038/s41592-019-0686-2.

[19] J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in
Science & Engineering 9 (3) (2007) 90–95. doi:10.1109/mcse.2007.55.

[20] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D.
Warner, N. Yager, E. Gouillart, T. Yu, scikit-image: image processing
in Python, PeerJ 2 (e453) (Jun. 2014). doi:10.7717/peerj.453.

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
[21] A. Vedaldi, S. Soatto, Quick Shift and Kernel Methods for Mode Seek-
ing, in: Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2008, pp. 705–718. doi:10.1007/978-3-540-88693-8_52.

[22] A. Tremeau, P. Colantoni, Regions adjacency graph applied to color im-
age segmentation, IEEE Transactions on Image Processing 9 (4) (2000)
735–744. doi:10.1109/83.841950.

[23] A. Wang, X. Yan, Z. Wei, ImagePy: an open-source, Python-based
and platform-independent software package for bioimage analysis, Bioin-
formatics 34 (18) (2018) 3238–3240. doi:10.1093/bioinformatics/

bty313.

[24] P. Soille, Morphological Image Analysis: Principles and Applications,
Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-662-05088-0.

[25] J. Nunez-Iglesias, A. J. Blanch, O. Looker, M. W. Dixon, L. Tilley, A
new Python library to analyse skeleton images confirms malaria parasite
remodelling of the red blood cell membrane skeleton, PeerJ 6 (2018)
e4312. doi:10.7717/peerj.4312.

[26] D. B. Johnson, Finding All the Elementary Circuits of a Directed
Graph, SIAM Journal on Computing 4 (1) (1975) 77–84. doi:10.1137/
0204007.

[27] P. Vismara, Union of all the Minimum Cycle Bases of a Graph, The
Electronic Journal of Combinatorics 4 (1) (Jan. 1997). doi:10.37236/

1294.

[28] O. R. Bingol, A. Krishnamurthy, NURBS-Python: An open-source
object-oriented NURBS modeling framework in Python, SoftwareX 9
(2019) 85–94. doi:10.1016/j.softx.2018.12.005.

[29] T. Paviot, PythonOCC – Python package for 3D
CAD/BIM/PLM/CAM, https://github.com/tpaviot/pythonocc-
core, accessed January 31, 2021(Aug. 2014).
URL https://github.com/tpaviot/pythonocc-core

[30] A. Ribes, C. Caremoli, Salome platform component model for numeri-
cal simulation, in: 31st Annual International Computer Software and
Applications Conference - Vol. 2 - (COMPSAC 2007), IEEE, 2007.
doi:10.1109/compsac.2007.185.

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
[31] J. Schöberl, NETGEN an advancing front 2D/3D-mesh generator based
on abstract rules, Computing and Visualization in Science 1 (1) (1997)
41–52. doi:10.1007/s007910050004.

[32] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities, Int. J. Numer. Methods
Eng. 79 (11) (2009) 1309–1331. doi:10.1002/nme.2579.

[33] P. Baudoin, Caractérisation et identification de propriétés de matériaux
métalliques à gradients de microstructure, phdthesis, Université de Lille
I (2015).

22




