Zoltan Csati
email: zoltan-c@keemail.me

Jean-François Witz

Vincent Magnier

Ahmed El Bartali

Nathalie Limodin

Denis Najjar

CristalX: Facilitating simulations for experimentally obtained grain-based microstructures

Keywords: meshing, microstructure, segmentation

Polycrystalline microstructures occur in nature and also arise in industrial processes. Performing finite element computations on such microstructures is relevant in multiple engineering fields. The present paper describes a highly automated, possibly human-assisted, approach to create high-quality finite element meshes for polycrystalline microstructures. The input is an image, showing grains to be identified. First, the individual grains are obtained by performing several image segmentation techniques. The program allows analyzing the relevant properties of a grain, such as its diameter. The segmented image is then turned to a CAD geometry. Different parametrizations of this geometry lead to different grain smoothness. The advantage of our approach is that existing, robust meshing software can be used to create a high-quality mesh on the grain assembly in a completely automatic way. The developed methodology is illustrated on a real-world example.

Introduction

Grain-based microstructures occur in nature (e.g. crystalline rocks) and 2 also play a role in industrial processes such as forging [START_REF] Baudoin | Numerical investigation of fatigue strength of grain size gradient materials under heterogeneous stress states in a notched specimen[END_REF] or developing cer-3 mets [START_REF] Xiong | N)-based cermets containing uniformly dispersed ultrafine rimless grains: Effect of VC additions on the microstructure and mechanical properties[END_REF]. The effect of the grain size and shape, and the distribution of the 4 constituents at the micro scale determines the behaviour of the material at 5 the macro scale1 [START_REF] Sabbarese | Development of radon transport model in different types of dwellings to assess indoor activity concentration[END_REF]. It is therefore of interest to characterize the microstruc-6 ture. One way to do it is to synthetically generate many of them with some 7 relevant characteristics drawn from statistical distributions and use statis-8 tical methods to compute the average response to given loading conditions 9 [START_REF] Fu | Statistical characterization and reconstruction of heterogeneous microstructures using deep neural network, Comput[END_REF]. The advantage of computational microstructure generation is that one 10 can perform computational experiments by changing the parameters. When 11 a new material is under development, it is highly useful to virtually ex-12 periment with the microstructure without having to produce samples and 13 conduct real experiments on them. It is also a faster and cheaper method 14 than having to perform time-consuming and often costly measurements. For 15 grain generation, see the recent paper [START_REF] Hart | Generation of statistically representative microstructures with direct grain geometry control[END_REF]. The open-source tool Neper [START_REF] Quey | Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing[END_REF] 16 also has a module for generating polycrystalline microstructures. This ap-17 proach works well when the microstructure can be properly captured by the 18 statistical parameters. However, when this is not the case or if a specific real 19 microstructure is of interest, measurements are necessary. The outcomes of 20 measurements are images in which the grains are to be identified. This is a 21 task for image segmentation.

22

In order to locate objects and boundaries, image segmentation methods 23 partition an image into regions such that a distinct label is associated to [START_REF] Soille | Morphological Image Analysis: Principles and Applications[END_REF] The quality of the mesh influences both the interpolation error and the 82 conditioning of the discretized problem [START_REF] Shewchuk | What is a Good Linear Element? -Interpolation, Conditioning, and Quality Measures[END_REF]. In case of nonlinear problems 83 (e.g. contact, large deformation elasticity, plasticity), a high quality mesh is 84 crucial to obtain an accurate solution, or even to have a convergent solu-85 tion at a given load increment. While generating adaptive meshes directly 86 based on an image is an ongoing research effort, image-based methods usu-87 ally concentrate on creating meshes on the grains. However, in many cases 88 interesting phenomena, such as strain localization, happen along the grain 89 boundaries (interfaces). It is therefore useful to be able to extract the in-90 terfaces and control the mesh generation e.g. by constructing graded meshes 91 near the interfaces. Mesh refinement is also necessary to conduct convergence 92 studies. Another problem we faced was mesh repairing. Since the mesh qual-93 ity obtained by OOF2 was not good enough, we considered improving the 94 mesh with third-party tools. However, the new mesh obtained by those tools 95 does not respect the original microstructure, which can be detrimental for 96 small grains consisting of only a few cells. What is more, the new mesh has 97 no information about which cell belongs to which grain, which information 98 is necessary if different material properties are associated to the different 99 grains. The challenges above lead us to represent the grains as an exact 100 geometry, rather than an assembly of cells, which is an inherently discrete 101 approach. We note that after extracting the interfaces, non-conforming (and 102 possibly block-structured) meshes could be used, as in X-FEM. That choice 103 eases the mesh generation but at the same time requires specialized solvers code bloat, and increases the cognitive load of the user. Instead, the 143 emphasis is on creating a stable minimum core library that can be eas- We rely on the scientific Python stack: NumPy [START_REF] Van Der Walt | The NumPy Array: A Structure for Efficient Numerical Computation[END_REF] for array manip-148 ulations, SciPy [START_REF] Virtanen | SciPy 1.0: fundamental algorithms for scientific computing in Python[END_REF] for interpolation and some other computations, 149 Matplotlib [START_REF] Hunter | Matplotlib: A 2D Graphics Environment[END_REF] for visualization and scikit-image [START_REF] Van Der Walt | scikit-image: image processing in Python[END_REF] for image pro-150 cessing. This ensures interoperability with other scientific codes and 151 that our software is hopefully bug-free. proach is to create a workflow that we found to give satisfying results, but 172 also expose relevant parameters to the user so that the procedure can be 173 fine-tuned for custom images. This workflow is detailed below. For the rest 174 of this paper, the term grain will not only be used in the physical sense but 175 it will also refer to the various representations of a grain (some connected 176 pixels of an image, vertices of a polygon, planar surface bounded by splines).

177 Its usage will be apparent from the context. The steps above will be exemplified in Section 3. Unfortunately, the minimum cycle basis is not unique [START_REF] Vismara | Union of all the Minimum Cycle Bases of a Graph[END_REF]. Therefore, 269 it is not guaranteed that such a cycle will correspond to a grain. An Another strategy is to make the mask hollow. This choice discards 309 the close neighbors, thereby protecting against slender grain insertions 310 (cf. columns 3-4 in Tables 12). One can conclude from this example 311 that (i) the best strategy is configuration-dependent and (ii) it is easy 312 to switch among the strategies, or implement new ones, by modifying 313 the mask. So instead of constructing complex and costly methods to Table 1: Neighborhood definitions with range n = 1 and their assessment for the configuration depicted in Fig. 1. 2: Neighborhood definitions with range n = 2 and their assessment for the configuration depicted in Fig. 1.

Connectivity von

To find the branches that bound a grain, the branch-grain connec- and therefore the mesh will be refined or coarsened based on the bound-348 ary vertices of the grains, and not on other, more adequate, criteria.

349

Furthermore, the resulting mesh is unnecessarily dense. As a partial 350 solution, the Douglas-Peucker algorithm could be used to simplify the 351 branches before forming the polygon. However, the order of simplifica-352 tion we want to achieve depends on a characteristic length, which will 353 make the process tedious to use in practice.

354

A better solution is to use CAD tools to control the geometry.

355

(a) Create B-spline passing through points (cad.fit spline)

356

NURBS-Python is an easy-to-use pure Python package for spline 357 manipulation, with no dependency on top of the standard library 358 [START_REF] Bingol | NURBS-Python: An open-source object-oriented NURBS modeling framework in Python[END_REF]. Its approximation capabilities would be sufficient for our task 359 but, as far as we know, creating a surface bounded by splines is 360 not possible with it. Also, at the time of writing, it cannot export 361 spline surfaces to a lossless CAD format, such as STEP. Therefore,

362
we rely on PythonOCC [START_REF] Paviot | PythonOCC -Python package for 3D CAD/BIM/PLM/CAM[END_REF], which is a Python wrapper around 363 the mature and free Open CASCADE Technology (OCCT). The 364 user can set different parameters to control the approximation.

365

These parameters are the minimum and maximum degree of the 366 spline, its continuity and a tolerance. The tolerance instructs

367

OCCT to construct the spline such that the distance from any 368 data point to the spline is smaller than the prescribed tolerance.

369

As the tolerance tends to zero, one obtains a spline interpolant. The mesh is scaled to define the computational domain based on phys-478 ical units instead of pixel units. We expect that CristalX will be helpful for material scientists who want to

104

 and custom preconditioners. Therefore, in this paper, traditional conforming 105 mesh generation is applied, which has the advantage that robust open-source or proprietary software can be utilized for that purpose.107The paper is structured as follows. Section 2 is the main part of the arti-108 cle, containing the reusable components of our program. Section 2.1 describes 109 the philosophy behind the design choices. These were the most relevant re-110 quirements we targeted from the very beginning, and we stuck to them as the 111 project evolved. Sections 2.2-2.3 detail the two main ingredients of obtaining 112 a geometrical representation of a microstructure. These two steps comprise 113 the core of our software. Additional capabilities of the program are described 114 in Section 2.4. Section 2 ends with the means of contributing to this project 115 (Section 2.5). After having discussed the fundamentals of the program in 116 Section 2, its usage is demonstrated in Section 3 by a practical example our 117 group is currently working on. That section shows how to use the available 118 building blocks and provides additional Python modules for extending the 119 core in order to meet the demands. The impact of our software on the ma-120 terial science community is highlighted in Section 4. Some perspectives for 121 future extension are given in Section 5.

122 2 .

 2 Software description 123 Our project, called CristalX, is written in pure Python 2 , a widely-used 124 free and open-source general purpose language with a rich scientific ecosystem 125 [16]. The source code of the software is available on https://github.com/ 126 CsatiZoltan/CristalX under the LGPL-3.0 license. Its documentation is 127 hosted on https://cristalx.readthedocs.io/ and includes a detailed API 128 reference as well as examples. The software was tested to work with Python 129 3.6 under Ubuntu 18.04 and Windows 8.1. All the required dependencies 130 are installed by the conda package manager so that the installation into 131 a separate environment is automatic. Additionally, the code is accessible 132 through Binder, in which case no installation is needed at all.

133 2 . 1 .

 21 Design choices 134 This software is not a black-box library such as BLAS, neither is a GUI-135 based application intended for end-users. It is rather an easy-to-use and 136 extensible set of Python codes that provide the basic functionalities that sci-137 entists can extend based on their needs. The software was built by adhering 138 to the following rules:

139 1 .2

 1 Driven by actual needs 140 Only implement features that are currently used. Adding extra fea-141 tures requires more testing, possibly more dependencies and therefore 142 Whenever we write Python, we mean the CPython implementation.

144

 ily extended according to users' demands. Consequently, application 145 code is separated from the core modules.

146 2 .

 2 Build on well-established packages 147

152 3 .

 3 Minimize the dependencies 153 Rapid prototyping is essential in scientific code development and Python 154 is an excellent choice to satisfy this requirement. At the same time, 155 relying on fast libraries ensures that the computations are reasonably 156 fast. The libraries mentioned in the previous point are easy to install, 157 often already pre-installed in certain Python distributions.

158 4 .

 4 High-quality documentation 159 Future contributors will benefit from the rich documentation. Python 160 doctests are extensively used, serving both as test cases and as examples 161 of usage. The docstrings conform to the numpydoc style guide.

163

 Image segmentation is performed on the image of the microstructure.164The segmentation results in a so-called labeled image, an image having the 165 same size as the input image. Distinct positive integers, called labels, are 166 associated to groups of pixels in the labeled image and each pixel belongs to 167 one and only one such group. The image segmentation is successful if the 168 pixel groups correspond to grains in the original image. Depending on the 169 microstructure and on the image quality (noise, etc.), image segmentation 170 can be very challenging and cannot be fully automated in general. Our ap-171

178

 The workflow provided by the segmentation module is the following (func-179 tions or class methods are typed in monospace font).

180 1 .

 1 Filtering (segmentation.Segmentation.filter image) 181 To remove unwanted artifacts on the image, noise removal is necessary 182 6 as a preprocessing step. Since the interfaces are important for us, we 183 use median filtering for smoothing as it preserves the contours.

184 2 . 3 .

 23 Superpixel segmentation (segmentation.Segmentation.initial segmentation) 185 In many practical cases, the interfaces do not appear clearly separated 186 from the grains on the image. Therefore, simple thresholding methods 187 are not successful in those cases. Instead, the Quick Shift [21] method 188 is used, which is a superpixel segmentation algorithm. 189 Decrease the number of superpixels (segmentation.Segmentation.merge -190 clusters) 191 As the superpixel segmentation in the previous step results in an over-192 segmented image, the region adjacency graph is constructed and used 193 to merge some of the neighboring superpixels based on their similarity 194with respect to mean color[START_REF] Tremeau | Regions adjacency graph applied to color image segmentation[END_REF].

195 4 .

 4 Find the grain boundaries (segmentation.Segmentation.find grain -196 boundaries) 197 A binary image is returned with true values indicating the boundaries 198 among the labelled regions.

199 5 .

 5 Construct the skeleton (segmentation.Segmentation.create skeleton) 200 Use thinning on the grain boundary to obtain a single-pixel wide skele-201 ton. If the automatic segmentation carried out so far is not good 202 enough, the user can manually edit the grain boundaries as a graph 203 in ImagePy [23]. The combination of the automatic segmentation with 204 human supervision is a powerful way to achieve good results in a rela-205 tively short amount of time. 206 6. Watershed segmentation (segmentation.Segmentation.watershed -207 segmentation) 208 Given the -possibly manually modified -skeleton, we want to obtain 209 the regions (grains) they define. We use the watershed segmentation 210 for that purpose. The Euclidean distance transform is computed on the 211 skeleton to determine the catchment basins. It gives how far a point is 212 from the closest skeleton pixel. The local minima of the negative of this 213 distance function could be used as markers for the watershed segmen-214 tation. However, that results in an oversegmented image because each 215 minimum acts as a catchment basin. Therefore, the markers are set to 216 be the extended minima of the negative distance function, where the 217 extended minimum is the regional minimum of the h-minima transfor-218 mation (see Chapter 6 in [24]). The extended minima thus define the 219 mask required for the marker-based watershed segmentation.

 220

221Remark 1 .

 1 The image segmentation part of our software is useful by itself; 222 for scientists who only work with images, without the need for subsequent 223 meshing.

224 2 . 3 .

 23 Geometry reconstruction 225 As explained in Section 1, to produce a high-quality mesh, we represent 226 the grains as geometrical objects. For the proper representation of the geom-227 etry, the grains must form a tessellation of the domain. That is, there must 228 be no gap or overlapping among them. It implies that an interface (common 229 boundary between two grains) corresponds to the very same object whether 230 we consider it as part of the first or the second neighboring grain. There-231 fore, the interfaces need to be identified first and then the grains must be 232 constructed as surfaces bounded by the interfaces. The steps to obtain a 233 geometrical description of the labeled image is now detailed.

234 1 .

 1 Build the skeleton of the segmented image (cad.build skeleton) 235 The interfaces form the skeleton of the segmented (labeled) image and 236 have a single-pixel width. Built-in functions of scikit-image are used to 237 obtain the skeleton of the segmented image. First, the labeled image 238 is surrounded by an artificial pixel region. Creating this extra region 239 defines boundary interfaces for the boundary grains, making it possible 240 to apply the same algorithms whether a grain lies along the boundary 241 of the region or it is inside. The connectivity graph gives how the 242 skeleton pixels are connected. For this purpose, the Python package 243 skan is used [25]. skan stores the pixel connectivity in a sparse matrix, 244 and provides for each skeleton pixel the number of neighboring skeleton 245 pixels (degree). The degree allows classifying the skeleton pixels into 246 various categories. If the degree is one, a particular skeleton pixel 247 connects to only one other skeleton pixel, hence it is called an end 248 point. Usually most skeleton pixels are internal, having degree two. If 249 the degree is three or more, it is called a junction. As skan correctly 250 states, branches can emerge between two junctions, an end point and 251 a junction, between two end points, and can even indicate an isolated 252 cycle that consists of degree two skeleton pixels only. However, in our 253 case, it is easy to realize that only branches with junction-to-junction 254 connections can form grain boundaries. Hence, we will use the term 255 branch in this restricted sense for the rest.

256 2 .

 2 Determine the grains bounded by the set of branches (cad.skeleton2regions) 257 This problem could possibly be solved by a graph theoretic approach. 258 Consider a graph in which the vertices are the branch end points and the 259 edges are the branches. Properly selected cycles in this graph would 260 give the branches that bound the grains. While this method is ele-261 gant and abstract, hence efficient and robust third-party graph libraries 262 could be used, it comes with several drawbacks. First, enumerating all 263 the elementary cycles in a graph has a prohibitive time complexity [26]. 264 Second, most of the elementary cycles do not enclose individual grains 265 (e.g. a cycle could correspond to the union of two grains), hence a selec-266 tion must be performed to filter out the non-physical cycles. Another 267 technique could be to determine the minimum cycle basis for the graph.

 268

270

 additional difficulty arises when a small grain is located between two 271 larger grains, resulting in a double edge in the corresponding graph.272Many graph algorithms work under the premise that the graph con-273 tains no loops and multiple edges.

274PFigure 1 :

 1 Figure 1: Skeleton pixel P and its neighborhood

 308

314

 detect the neighbors, parametrizable heuristic algorithms are provided 315 in the software. We accept that perfect results are nearly impossible 316 to achieve for arbitrary labeled images, therefore we allow the user to 317 choose the algorithm that fits the best for a given image. The hollow 318 neighborhood strategy with n = 2 proved to be the winning choice for 319 the microstructure investigated in Section 3, resulting in a topologically 320 admissible geometry and leaving only one tiny grain unidentified. 321 Connectivity von Neumann Moore von Neumann, hollow Moore,

322

 tivities determined above are inverted. The cad.skeleton2regions 323 function can be perceived as an intermediate step between a skeleton 324 network and completely geometrical representation of the grains. That 325 is, it keeps the key topological information required to create a fully ge-326 ometrical description, but it also contains the coordinates of the grain 327 boundaries. The outputs of this function can be used to build different 328 grain representations (e.g. polygonal or spline surface).

329 3 .

 3 Find oriented grain boundaries (cad.branches2boundary) 330 The previous part of the reconstruction algorithm determined which 331 branches bound a grain. In order to obtain a surface representation of 332 a grain, the boundary must be oriented and hence the branches must 333 be connected in the appropriate order. The cad.branches2boundary 334 function uses a simple brute-force method to interlace the branches 335 based on their common junctions. Both clockwise and counter-clockwise 336 orientations are supported. By the end of this step, we obtain a fully 337 geometrical description because each grain is now given by a series of 338 points along its boundary.

339 4 .

 4 Represent each grain as a planar surface 340 Two representations are provided by the software. The simpler one 341 considers the points on the boundary of a grain as vertices of a poly-342 gon. This straightforward method, implemented in cad.region as -343 polygon, has the disadvantage that the generated mesh on the polygon 344 will not be adaptable, i.e the mesh cannot be controlled. Depending on 345 the resolution of the labeled image, the polygon can consist of hundreds 346 of vertices. A mesh generator respects the tiny edges of the polygon 347

425 6 . 7 .

 67 based on the intermediate geometry representation (Fig.4b). The low-465 quality cells generated by OOF2 hampers the convergence of Abaqus 466 solvers in several loading steps. Notice the finer mesh in the vicinity of 467 the grain boundaries in Fig.4b. This mesh adaptivity will be important 468 in computations as large deformation is expected to happen along the 469 grain boundaries. We note that the colors are associated randomly to 470 the grains, this is why they do not match in Fig.2band in Fig.4a, 471 though they depict the same microstructure.472 Loading the mesh from a .med file (med.py)473The mesh is exported from Salome as a MED file. Using the med module 474 of CristalX, the triangular mesh cells for each grain and the boundary 475 nodes are extracted as NumPy arrays.476 Mesh manipulation utilities (geometry.py) 477

479 8 .

 8 Abaqus input file (abaqus.py) 480 The material parameters, the boundary conditions and the mesh is 481 written to a text file that the finite element program Abaqus can inter-482 pret.

483 9 .

 9 Projection between a Cartesian grid and an unstructured mesh (dic.py) 484 The experimentally obtained displacement field, obtained by the digital 485 image correlation (DIC) technique, is available known on a Cartesian 486 grid. To compare the field values with the numerical data (available at 487 the nodes of the mesh), scattered interpolation is implemented.488(a) Microstructure (source: [33]) (b) Segmented microstructure

Figure 2 :

 2 Figure 2: Close-up of a tensile specimen and its image segmentation

 (a) Skeleton by a fully automatic workflow (b) Skeleton with manual modifications

Figure 3 :

 3 Figure 3: Skeleton of the image after the initial Quick Shift segmentation

(a)

 a Mesh by OOF (b) Mesh with our geometry-based workflow

Figure 4 :

 4 Figure 4: Generated mesh on the segmented image

 502

Figure 5 :

 5 Figure5: The image on the left shows a part of the segmented microstructure, in which the colors correspond to the grains. Each segmented region is then transformed to an explicitly given geometry, the boundaries of which are parametrized by B-splines (center). This kind of description of the geometry makes it possible to generate high quality meshes (right).

503 5 .

 5 characterize grain-based microstructures or intend to perform finite element 504 computations on high-quality meshes. Finally, we mention that although 505 CristalX was developed for microstructural analysis in mind, other appli-506 cations in which a geometrical representation of a tessellation is needed can 507 benefit from the method described here. 508 Conclusions and future work 509 We argued how a direct geometrical representation of grains results in a 510 better mesh quality, necessary for applications involving nonlinearities. Our 511 contribution is twofold. First, an image segmentation workflow is tailored for 512 the identification of granular microstructures. Second, the segmented image 513 is turned to a CAD geometry format with customizable smoothness. These 514 two core modules were used as a foundation to develop other modules that 515 allow us to solve a relevant industrial problem. The building blocks of our 516 software are general enough so that they can serve as a point of departure 517 for other areas, in which grain-like shapes tessellate a domain.

 518

Table

		Neumann	Moore	von Neumann, hollow Moore, hollow
	Mask				
	Grain pixel		Occurrence within the mask	
		3	8	3	7
		7	8	3	2
		0	2	0	2
		3	7	2	5
	Neighbours	-/ -	-	-	-
	Correct	no/no	no	no	yes

 MEDCoupling tool provides C++ and Python APIs for inter-

	386	2.4. Additional features
	387	The software contains convenience functions and classes. Currently, the
	388	following Python modules are the most relevant ones:
	389	• geometry
	390	Implements computational geometry algorithms, with the emphasis be-
	391	ing on minimalism and not on feature-richness. The TriMesh class is
	392	a representation of an unstructured mesh with triangular cells. Hun-
	393	dreds of thousands of cells can be handled efficiently, which is often
	394	sufficient for 2D problems. The Polygon class is an abstraction for
	395	simple, possibly concave, polygons. Since it has member functions for
	396	computing the area, the centroid and the diameter of polygons, this
	397	class proves to be useful when analyzing grains that are approximated
	398	as polygons. Polygons also naturally arise when grains are discretized
	399	to an assembly of cells.
	400	• med
	401	The MED data model is used by Salome as an exchange format to
	402	encompass various simulation codes in a framework [30]. It is an ex-
	403	tended version of HDF5, supporting parallel meshes and fields. Sa-
	lome's 404
	405	acting with meshes and fields. Although MEDCoupling is powerful,
	406	its Python API is available only from the Salome kernel. Moreover,
	407	it may lack certain mesh processing functionalities a user might need.
	408	Since meshes consisting of cells of the same type (e.g. triangles) can
	409	be represented as homogeneous and contiguous arrays, converting the
	410	mesh from MED to NumPy arrays seems a reasonable choice. This is
	411	what our med module does: it provides a thin wrapper around MED-
	372 412 373 413 374 375	Coupling to extract the mesh and the defined groups (cell and vertex for every branch. groups) from the MED file and convert them to NumPy arrays. This (c) Represent each grain as a spline surface (cad.region as splinegon) For every grain, the splines forming its boundary are combined way, the user who deals with numerical modeling can implement their
	376	into a closed contour. Then a planar surface is created, bounded
	377	by this contour.
	378 418	5. Export the geometry (cad.regions2step)
	379 419 380 420 381 421 382 422 383 384	It is important that the surface of each grain is given in a lossless format, work on it without having to have Salome installed and without any e.g. in STEP (STandardized Exchange of Product) and not as a mesh knowledge on the MEDCoupling API. representation. The cad.regions2step function builds a compound • utils surface from the individual grain surfaces, which is then written to a Depends only on the standard library and NumPy, and contains utility STEP file by cad.write step file. The exported STEP file is used as an input to a mesh generator, such as Salome [30], Netgen [31] or functions that do not fit to other categories.
	385	Gmsh [32].

370 (b) Approximate each branch with a B-spline (cad.branches2splines) 371 The spline approximation done by cad.fit spline is performed 414 mesh processing algorithms based on NumPy arrays, which is fast and 415 straightforward. Furthermore, the person who performs the CAD op-416 erations and has Salome installed, can use our med module to export 417 the mesh to NumPy arrays so that the numerical analyst can directly 423 For other helper functions, e.g. the ones enabling profiling the code, see the 424 source code and its documentation.

For the sake of brevity, we do not make a distinction between micro scale and meso scale in this paper. The terms micro scale and macro scale are used to accentuate the difference in the scale in which phenomena are investigated. The notion micro scale will be used for the scale where the grain shapes can be identified.

link to code/repository used for this code version https:/dependencies Linux/Windows; requirements provided in the environment.yml file in the repository Link to developer documentation https://cristalx.readthedocs.io/ Support email for questions zoltan-c@

New ideas, bug reports and critiques on the code and on the documen- CristalX was built around the following application. We are interested in 432 how the size gradient of grains, and the material they are made up of influence 433 the resistance of train wheels and axles to fatigue loading. Compared to [START_REF] Baudoin | Numerical investigation of fatigue strength of grain size gradient materials under heterogeneous stress states in a notched specimen[END_REF], 434 we take into account the effect of each individual grain in the microstructure.

435

A high-level overview to tackle this problem is drafted below. The code is 436 available as a Jupyter notebook in the repository, while the physical problem 437 and the numerical solution scheme will be detailed in another article. We will consider the microstructure in Fig. 2a available in the thesis 440 [START_REF] Baudoin | Caractérisation et identification de propriétés de matériaux métalliques à gradients de microstructure[END_REF]. To make the segmentation easier, the central part is cropped. 3a) and with manual editing (Fig. 3b). So 447 the segmented image in Fig. 2b is based on the skeleton in Fig. 3a.

448

At first glance, the identified grains in Fig. 2b do not correspond to 449 the actual grains we can see in Fig. 2a. In fact, there are more seg-450 mented regions than grains in reality. However, the contours of the 451 "real" grains are well identified. This is relevant from the point of view 452 of the invested time because the extraneous regions can be easily and 453 quickly merged afterwards, while the manual grain boundary detection 454 would take a lot of time. Thanks to the CAD geometry, excellent mesh quality is achieved by 462 the Netgen mesh generator [START_REF] Schöberl | NETGEN an advancing front 2D/3D-mesh generator based on abstract rules[END_REF] without any user intervention. Figure 4 463 compares the mesh obtained by OOF2 (Fig. 4a) with the one that is 464 els when identifying the branch-grain connectivities (cf. Section 2.3). The 520 growing collection of such heuristics would typically be application-driven.

521

When an existing strategy fails, one searches for another one and save that 522 prevailing strategy for further use.