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Abstract

Gas sensors lack repeatability over time. They are affected by drift, the result of changes at the sensor level and in
the environment. A solution is to design software methods that compensate for the drift. Existing methods are often
based on calibration samples acquired at the start of each new measurement session. However, finding a good reference
compound is a difficult task and generating calibration samples is time-consuming. We propose a model-based correction
method which does not require any calibration sample over time, operating ‘blindly’. In this study, we focus on the drift
affecting electronic noses. To this end, we built a real data set acquired over 9 months in real-life conditions. By using
the proposed method, we show that the drift is partly compensated, thus increasing the reliability of the electronic nose.
Besides, we also show that the algorithm can easily adapt if the target compounds are not all sampled during every
session.

Keywords: drift, correction method, gas sensors, electronic nose, calibrant-free

1. Introduction

Drift is the result of several changes occurring at the
sensor level and in the environment. These changes af-
fect the repeatability of gas sensors over time (Holmberg
et al., 1997). In other words, the response of these sensors
towards a compound can change from one measurement
session to another.

The causes of drift in gas phase are numerous and de-
pend on the sensing and transduction mechanisms. Sev-
eral authors have already detailed these causes and we
refer the reader to these references for a complete intro-
duction (Holmberg and Artursson, 2004; Hierlemann and
Gutierrez-Osuna, 2008). To name a few examples, drift
can be caused by variations in temperature and humidity
between two sessions, by sensor poisoning, by sensor age-
ing, by memory effects, by changes in the sample matrix,
etc... It is interesting to note that some components (e.g.
temperature, humidity, memory effects, ...) of the drift
can be avoided when the experiments are carried out in a
controlled environment (see for instance the study of Ver-
gara et al. (2012)). However, in the field, all these sources
can co-occur, so their effects may not be separable. Con-
sequently, all these causes are often treated as a single
process.

In this article, we are interested in a particular type
of instruments based on gas sensor arrays, namely elec-
tronic noses (eNoses). The technology is broadly inspired
by mammalian olfaction (Persaud and Dodd, 1982) and
is mainly based on a cross-sensitive chemical sensor array
(Albert et al., 2000). An eNose aims at detecting, identify-
ing and quantifying a broad variety of volatile compounds.
In practice, this instrument is used in combination with

pattern recognition algorithms for the identification part.
Concretely, any application often starts by carrying out
several measurements with the targeted compounds. We
call this first measurement session ‘Session 1’. Each gas
sensor generates a time series reflecting the interaction be-
tween the sensor and the compound. This time series can
be directly used for further analysis or identification (Skov
and Bro, 2005) but a more common practice is to extract
one or two features. One measurement leads then to a vec-
tor (by considering all the gas sensors) which is assumed
to be characteristic of the compound and which is called a
‘signature’. After Session 1, the database of signatures is
used to train a classifier which will then predict the iden-
tity of future samples.

eNoses are a good example to illustrate the issue of
drift. Despite abundant proofs of concept in academic lab-
oratories, eNoses are not a widespread technology used in
everyday life conditions yet (Marco, 2014; Boeker, 2014).
According to some authors in the community, drift can
be considered as one of the main factors explaining the
small number of practical applications of these instruments
(Padilla et al., 2010). In the presence of drift between Ses-
sion 1 and another session, say ‘Session 2’, the signatures of
a given compound will be different. A direct consequence
is that the classifier will not generalize from Session 1 to
Session 2. In other words, it will confuse one compound
for another, rendering the instrument useless.

A ‘naive’ solution would be to briefly retrain the clas-
sifier before using it for Session 2. Obviously, this solu-
tion is not desirable at all since each experiment is time-
consuming. Therefore, the solution adopted in the liter-
ature is generally to design methods that compensate for
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Figure 1: Simplified representation of the different scenarios that we proposed to classify the different state-of-the-art methods. Symbols and
class contours stand for the session index. Colored points correspond to labelled samples while white points correspond to unlabelled samples.
Left figure: calibration samples are measured during each session (Calibrant Scenario), here A is the calibrant. Middle figure: the training
set includes several measurement sessions over time, and we assume that it contains drift information (Multi-Session Scenario). Right figure:
the training set includes only Session 1 and there is no other labelled samples (Blind Scenario).

the drift. All these methods assume what we call the Fun-
damental Hypothesis: that all the individual drifts of each
targeted compound must be related in some way (in the
simplest case, equal). In other words, if each compound
drifts along a random direction that is different for each
targeted compound, then there is nothing one can do and
all methods will fail.

Over the past two decades, many different correction
methods have been put forward in the literature. These
methods differ on the amount of information that is as-
sumed to be available.

A classical approach is to assume the existence of cal-
ibration samples of one or several reference compounds
during each measurement session. The drift of the refer-
ence compounds must be related in some way to the drift
of the targeted compounds (Haugen et al., 2000). The cal-
ibration samples are then used to estimate the drift direc-
tions. We call this scenario: Calibrant Scenario (CS).
In this article, we discuss ‘Principal Component Analysis
- Component Correction’ (PCA-CC) from Artursson et al.
(2000), which is one of the most popular methods in the
field (Marco and Gutierrez-Galvez, 2012).

However, acquiring new samples before each new mea-
surement session is time-consuming. In addition, finding
reference compounds is not an easy task and requires a
lot of upstream work (Kalivas et al., 2009), which must
be repeated anytime an application with new target com-
pounds is designed. Consequently, two other approaches
have been considered in the field to relax the assumption
that calibration samples are available.

The first one assumes that the drift has been captured
by training data. In a classification task, a training set
is always required and can be acquired during a single
measurement session. Here, one assumes that the train-
ing set has been acquired across multiple sessions over
time. If a long enough time has elapsed between sessions,

then the training set must contain drift information. So
this group of methods extracts the drift directions directly
from the training set and assumes that these directions
will no longer evolve for subsequent sessions. We call this
scenario: Multi-Session Scenario (MSS). Hereafter, we
discuss ‘Orthogonal Signal Correction’ (OSC) from Padilla
et al. (2010) and ‘Common Principal Component Analy-
sis - Component Correction’ (CPCA-CC) from Ziyatdinov
et al. (2010).

The second class of methods assume that the only la-
belled data available comes from the training set, specif-
ically a single measurement session (in which drift is not
present). In fact, MSS can be attractive since it does not
require any reference compound but it requires a long ex-
perimental time. For instance, the results of OSC (Padilla
et al., 2010) were obtained with data acquired over 15 days
(the number of measurement sessions is not detailed). For
the results of CPCA-CC, the authors used at least one
month of recordings (Ziyatdinov et al., 2010). This long
experimental time has some limitations, so that other au-
thors try another more appealing approach: they simply
assume that there is no labelled data for estimating the
drift. So the directions of the drift between two different
sessions must be estimated ‘blindly’. We call this scenario:
Blind Scenario (BS). The methods dealing with the BS
often rely on a preliminary classification step. The classi-
fication step identifies the samples and helps therefore to
estimate the drift directions. Further in this article, we
discuss the method of Di Carlo and Falasconi (2012).

We refer the reader to Marco and Gutierrez-Galvez
(2012) or Rudnitskaya (2018) for a more exhaustive review
of existing methods, which include for instance transfer
learning approaches (Nikzad-Langerodi et al., 2020).

The three scenarios clearly differ in difficulty, since we
do not have the same level of information about the data
from one scenario to another. By increasing order of dif-
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ficulty and by decreasing order of experimental cost, we
can rank the scenarios as: Calibrant, Multi-Session and
Blind. A simplified representation of the three scenarios
is reported in Figure 1. The Blind Scenario is the least
restrictive in practice but is also the least explored in the
literature.

In this article, we propose a new correction method for
the Blind Scenario based on a drift model: each class drifts
along a common direction weighted by a coefficient de-
pending on the class. This method is called ‘Expectation-
Maximisation Component Correction’ (EMC2). In the
next section, we develop the theory and the proposed al-
gorithm. We also present a way to initialise EMC2. The
method is first tested on a simulated data set and then
on a real data set that we built. This data set has been
generated over 9 months, through 15 different sessions and
shows a clear drift. The ultimate goal of this paper is to
be able to correctly classify sessions 2 to 15 using only
Session 1 for the training of the classifier (and without
knowing any labels in sessions 2 to 15).

2. Theory

We assume that we have acquired N1 samples (in total)
of R different compounds during Session 1, all labelled.
During Session 2, Q ≤ R compounds among the R tar-
get compounds are acquired and the N2 samples are unla-
belled. The instrument boards P chemical sensors.

A scalar is noted a, a vector a and a matrix A.

2.1. Drift model

Let g(x̃|r, t, cr(t)) be the probability density of the sig-
nature x̃ ∈ RP of the compound r, measured at time t,
at concentration cr(t). In this article we are interested
in compounds classification, so variations in concentration
could cause problems for identification. If a classifier learns
to differentiate A from B in a given range of concentra-
tion, it is unlikely that it will generalize out of the range
since the signatures will not be the same (they depend
on the concentration). The signature is often normalised
to remove or reduce variations due to changes in concen-
tration. In this article, we normalise each signature by
dividing by its L2-norm. We assume that x̃ has been nor-
malised and we note x the concentration-free version of x̃.
We note f(x|r, t) the probability density of the normalised
signature x, and we define as class r all the normalised sig-
natures of the compound r.

Under the Fundamental Hypothesis, the drift of all
compounds is assumed to be related. Here, we assume
that the distribution of each compound r is simply shifted
by a common vector d(t) ∈ RP weighted by a coefficient
αr(t) ∈ R (depending on the compound). Mathemati-
cally, it means that there exists a density f0(.|r) such
that f(x|r, t) = f0(x + αr(t)d(t)|r). We assume that
d(t = 0) = 0, which means that the training set (Session
1) defines the starting position.
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Figure 2: The drift model that we assume. Each class is translated
along a common direction weighted by a coefficient depending on the
class.

We can define the following drift model for a point x(t)
at time t:

x(t) ∼ f0(x+ αr(t)d(t)|r) (1)

Finally, we assume that the drift is a slow-varying process,
which is a commonly used assumption (Hierlemann and
Gutierrez-Osuna, 2008). This means that for a short time
window ∆t, we have d(t+∆t) ≈ d(t) and α(t+∆t) ≈ α(t).
So, if Session 2 starts at t = T2 and lasts only for few
hours, we assume that each distribution r has been shifted
by αr(T2)d(T2). In other words, noting x1 a sample from
Session 1 (training session) and x2 a sample from Session
2 (testing session):

x2 ∼ f0(x1 + αr(T2)d(T2)|r) (2)

A simplified representation of the drift model is reported
in Figure 2.

In the case where Session 2 lasts longer than a few
hours, it is possible that the slow-varying assumption will
be violated. However, a straightforward solution is to di-
vide Session 2 into smaller sessions (overlapping or not).

We can notice that the proposed model could be im-
proved by taking into account that L2-normalized signa-
tures belong to the unit P -sphere. In this case, the transfer
caused by the drift could be more properly modeled as a
circular shift. Here, we implicitly assume that all the sig-
natures are close enough together in the high dimension
space to suppose that they belong (approximately) to an
Euclidean space of dimension P − 1 (the tangent hyper-
plane).

The goal of the next section is to estimate the R coeffi-
cients αr(T2) and the direction d(T2) ∈ RP , which charac-
terize the drift between Session 1 and Session 2. This task
would have been trivial if the labels ℓ(T2) ∈ RN2 of Session
2 were known, but they need also to be estimated during
the compensation process (since the weight αr depends on
the compound). This estimation of the labels makes the
task more challenging.
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To lighten the notation, we remove the time index T2

of Session 2. So, αr(T2) is noted αr, d(T2) is noted d,
etc...

2.2. Expectation-Maximisation Component Correction

Before going into details, we need an additional as-
sumption: a necessary condition for identifiability. A model
is said to be identifiable if the parameters of the model can
be theoretically estimated uniquely. In our case, the model
assumes that each class is shifted along a common direc-
tion whose amplitude depends on the class. If there is a
single class during Session 2, then we can estimate R differ-
ent translations moving the class in Session 2 to each class
in Session 1, thus correcting the drift. However, which one
of the R translations is the true one? It would be difficult
to answer this question1. This is a matter of identifiabil-
ity, and to be able to correctly estimate the parameters,
we assume that we are not in this particular case: in Ses-
sion 2, we have sampled at least two different (unknown)
classes, so 2 ≤ Q ≤ R.

Expectation-Maximisation (EM) algorithm is an iter-
ative method for finding maximum-likelihood solutions of
statistical models that have “latent variables” (Dempster
et al., 1977; Bishop, 2006). Latent variables are variables
that cannot be directly observed. In our case, the latent
variables are the labels ℓ ∈ RN2 of the data X ∈ RN2×P

of Session 2 and the parameters are the drift direction
d ∈ RP and the weights α ∈ RR. The main difficulty is
that we cannot estimate ℓ without the knowledge of d and
α, and we cannot estimate d and α without the knowl-
edge of ℓ. To solve this issue, an EM iteration proceeds
in two steps: the Expectation step and the Maximisation
step. The Expectation step will estimate the latent vari-
ables by considering that the parameters are known and
the Maximisation step will do the reverse. These two steps
are then alternated until convergence.

To derive the algorithm, we assume that each com-
pound r is drawn from a Gaussian distribution N (µr,Sr),
with µr ∈ RP the class centroid and Sr ∈ RP×P the class
covariance matrix. µr and Sr are estimated from the data
X1 ∈ RN1×P of Session 1. We define as πr (π the corre-
sponding vector of size R) the probability that a sample
of Session 2 belongs to the class r.

During the Expectation step, d, α and π have been al-
ready estimated so we can estimate the a posteriori prob-
ability that a sample xn ∈ RP of Session 2 belongs to class
r:

p(ℓn = r|xn,d,α,π) =
πrN (xn,µr + αrd,Sr)

R∑
k=1

πkN (xn,µk + αkd,Sk)

(3)

Equation (3) is classical in EM algorithms for mixture
estimation and the reader is referred to Bishop (2006) for
details.

1We could use the second order moments assuming that they are
different for each class, but this could be easily violated in practice.

Algorithm 1: Expectation-Maximisation Component Correc-
tion (EMC2)

Data: X1 ∈ RN1×P , ℓ1 ∈ RN1 ,X ∈ RN2×P

Initialise d̂
(0)

, α̂(0), π̂(0)

while d̂
(i)

unchanged do
// Expectation step
∀n ∈ J1, N2K, ∀r ∈ J1, RK,

ρ̂(i+1)
nr =

π̂(i)
r N (xn,µr + α̂(i)

r d̂
(i)

,Sr)∑
k

π̂
(i)
k N (xn,µk + α̂

(i)
k d̂

(i)
,Sk)

// Maximisation step

∀r ∈ J1, RK, π̂(i+1)
r =

∑
n ρ̂(i+1)

nr

N2

d̂
(i+1)

= Λ
−1

∑
n,k

ρ̂
(i+1)
nk α̂

(i)
k S

−1
k (xn − µk)

with Λ =
∑
k

(α̂
(i)
k )

2
S

−1
k

∑
n

ρ̂
(i+1)
nk

d̂
(i+1)

= d̂(i+1)

∥d̂(i+1)∥2

∀r ∈ J1, RK,
if π̂(i+1)

r ≥ 1
N2

then

α̂(i+1)
r =

∑
n

ρ̂
(i+1)
nr d̂

(i+1)T
S

−1
r (xn − µr)

d̂
(i+1)T

S
−1
r d̂

(i+1)
∑
n

ρ̂
(i+1)
nr

else

end

end
// Drift correction

∀n ∈ J1, N2K, ℓ̂n = argmaxr p(ℓn = r|xn, d̂, α̂, π̂)

∀n ∈ J1, N2K, xn,cor = xn − α̂ℓ̂n
d̂

ρnr = p(ℓn = r|xn,d,α,π)

During the Maximisation step, we estimate each pa-
rameter by maximising the likelihood. The likelihood is
the probability of observing X given the parameters d, α
and π. For the estimation, we simply write the derivatives
with respect to each parameter and set them to zero. The
derivations are given in the Appendix. There is an obvious
indetermination in our model: a scale ambiguity between
α and d. To remove this ambiguity, we simply normalise
d after its estimation.

After convergence (typically, less than 20 iterations),
we have estimated the parameters d, α and π. The drift
of each class r is assumed to be along d but the amplitude
αr of this shift depends on the class. Consequently, we
need to estimate the label ℓn of the sample xn to correct
its drift. To that end, we take the class which maximises
the a posteriori probability:

ℓ̂n = argmax
r

p(ℓn = r|xn, d̂, α̂, π̂) (4)

Once we have estimated the label ℓn of the sample xn, we
can, optionally, correct it:

xn,cor = xn − α̂ℓ̂n
d̂ (5)

It is interesting to note that our EM-based algorithm re-
moves one component from xn which is α̂ℓ̂n

d̂. It is rem-
iniscent of some methods from the literature called Com-
ponent Correction (e.g. PCA-CC from Artursson et al.
(2000)). Therefore we call this method: Expectation-
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Figure 3: Graphical representation of the initialisation procedure for EMC2 (A = 4, R = 3). We first select random directions from the
centroids of X1 to some random samples of X. Then, for each candidate direction, we orthogonalise X1 and X against the direction. In
the subspace, we classify X⊥ with a k-NN trained on X1,⊥. Finally we compute a score w as the trace of the within-class covariance matrix
(Eq. (6)) in the subspace taking both sessions. Bad directions are assumed to have a greater value w. Here, d2 is a better initial direction
than d1. Numbers (e.g. ➀) stand for the order of the different steps of the initialisation procedure.

Algorithm 2: Heuristic for initialising EMC2

Data: X1 ∈ RN1×P , ℓ1 ∈ RN1 ,X ∈ RN2×P

Input: A ∈ N, k ∈ N
Compute the centroids µr(X1) from X1

Select randomly A samples XA ∈ RA×P in X
Compute all the B = A × R possible directions with unit-norm
between each sample in XA and each centroid µr(X1)

for i in 1 : B do

X1,⊥ = X1(IP − did
T
i )

X⊥ = X(IP − did
T
i )

ℓi = k-NN(X1,⊥, ℓ1,X⊥, k)

Merge X1,⊥ and X⊥ as X̌⊥, ℓ1 and ℓi as ℓ̌

Compute the score wi with (X̌⊥, ℓ̌) as the trace of Eq. (6)
end
I = argmini wi

ℓ = ℓI , d(0) = dI ,

α(0)
r = (µr(X) − µr(X1))

Td(0), π(0)
r =

#{ℓI=r}
N

Maximisation Component Correction, abbreviated EMC2.
The algorithm is reported in Algorithm 1.

2.3. Initialisation

The results of EM algorithms depend strongly on the
starting point (McLachlan and Krishnan, 2007). Poor ini-

tial parameters d̂
(0)

, α̂(0), π̂(0) will likely lead to a bad local
maximum and as a result to a poor drift correction. There-
fore, we propose a heuristic to correctly initialise EMC2.

The main idea is that a simple orthogonalisation against
d will superimpose X1 and X (Boulet and Roger, 2012)
and information about d must be contained in some pair-
wise directions between some samples in X1 (here, we use
the centroids µr(X1) since we know the labels ℓ1) and
some samples in X.

We start by selecting random directions going from
each centroid µr(X1) of X1 to A random samples of X
(integer A is fixed beforehand). For each random direc-
tion, we project X and X1 in the subspace orthogonal to
the candidate direction. These versions of X and X1 are
called X⊥ and X1,⊥. A good direction would then super-

impose X⊥ and X1,⊥, meaning that we would have only
R different clusters. A bad direction would likely create
additional clusters in the subspace. To check if X⊥ and
X1,⊥ are superimposed or not, a good figure of merit is the
within-class covariance matrix. Note X̌⊥ the combination
of the two datasets X⊥ and X1,⊥:

Sw =

R∑
r=1

∑
n∈r

(x̌n,⊥ − µr(X̌⊥))(x̌n,⊥ − µr(X̌⊥))
T (6)

with µr(X̌⊥) the centroid of the class r in the orthogonal
subspace, computed from X̌⊥.

Sw evaluates how far from each other the samples be-
longing to a same class are. The greater the within-class
covariance is, the more spread-out the classes are. To have
only a single number, we take w = Tr(Sw). The lower w
is, the better X⊥ and X1,⊥ are superimposed.

However, the within-class covariance matrix needs la-
bels and we do not have any label for X⊥ (the Session 2
projected in the orthogonal subspace). Therefore, the final
step is a classification step. For that, we simply apply a k-
NN in the orthogonal subspace of the candidate direction
to estimate the labels ℓ of X⊥ based on (X1,⊥, ℓ1). The
initialisation procedure is described in Algorithm 2 and a
graphical representation is reported in Figure 3.

As a remark, we assume here that there actually is a
significant drift in the data. If there is no drift, applying a
drift correction may lead to worse results (this is true for
every method of drift correction). In our case, the initial-
ization will lead to a random direction and this random
direction can unfortunately be correlated with a discrimi-
native direction. The risk is then that two clusters may be
merged together after correction. To overcome this issue,
a drift detection method needs to be developed to decide
to apply or not a drift correction method.
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2.4. Code availability

R code for Algorithms 1 and 2 as well as the other
methods used in this paper are available at: https://

github.com/mahopie/eNoseDrift.git. Simulation code
is also provided.

3. Data sets

3.1. Artificial data set

For the generation of the artificial data set, we reuse
and complicate the simulation settings proposed by Di Carlo
et al. (2011).

A simulation starts with the generation of a training
setX1 ∈ RN1×P with no drift and with R = 6 compounds,
N1 = 60 and P = 4. Each class is Gaussian with parame-

ters µr ∼ N (0P ,
β2

2P IP ) and Sr = IP . Then, we generate
data with drift according to the model in Equation (1)
and only Q ≤ R compounds are simulated (for the same
training set, we test from Q = R to Q = 2).

Our model only implies that the drift is additive, slow-
varying and along a direction d(t) independent of the com-
pound (only the weight factor is). So, d(t) is not con-
strained to be constant or linear over time, and can be
rather complex. To introduce a non-linearity in the drift
over time, we simulate the direction d(t) with an arbitrary
non-linear function: d(t) = t

hd0+
t
h sin( t

hd0), sin is applied
component-wise, d0 ∼ U(0, 1) is a random direction (nor-
malised) and h is a hyperparameter (h = 30). The weights
αr ∼ U(0.5, 3) are also random and the class probabilities
πr are set to 1

Q . So, ∀r ∈ J1, QK, ∀t ∈ J0, tmaxK:

xr(t) ∼ N (µr + αr
t

h
(d0 + sin(

t

h
d0)), IP ) (7)

tmax is the duration of the experiment and is set to 251.
The simulations are random so the generated classes

could be hardly separable. In this case, we may not evalu-
ate only the drift correction but also the initial discrimina-
tion between classes. To prevent this issue from occuring,
we discard simulations for which any pairwise distance be-
tween centroids is lower than β

2 (Di Carlo et al., 2011).
The simulations (starting from the generation of Session
1) are repeated 100 times.

3.2. Real data set

A part of the data set presented in this paper has been
already introduced in Maho et al. (2019).

Electronic nose. The optoelectronic nose used in this
study is the commercial version of the one described in
Brenet et al. (2018). The instrument is provided by the
company Aryballe. More details about the working prin-
ciple of the instrument are given in Brenet et al. (2018) or
in Maho et al. (2020). In this article, the instrument uses
26 different chemical sensors which are replicated 2 or 3
times on the surface, leading to an array of 63 gas sensors.
This electronic nose is rather new compared to other ex-
isting eNoses (e.g. metal-oxide based sensors) but it has
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Figure 4: Top: robotic setup. Bottom: response of the instrument
after one lap. Each peak corresponds to the passage of the robot
over a gas source.

already shown noteworthy results in laboratory conditions
for the discrimination of compounds with similar molecu-
lar structures (down to only one carbon atom different in
Brenet et al. (2018) and even enantiomers in Maho et al.
(2020)).

Experimental setup. We built a robotic setup to
study drift in realistic conditions. Three VOC sources of
pure compounds (Geranyl acetate, Citral and β-Pinene)
are disseminated in an open environment. This environ-
ment is scanned by a robot which carries the eNose. By
following a predefined path, the robot goes over the VOC
sources and the eNose detects them. The path is repeated
multiple times to obtain a substantial data set at each
measurement session. The setup and the response (after
the baseline subtraction) of the instrument after one lap
are reported in Figure 4. Temperature and humidity are
not controlled during the experiments (temperature vari-
ations belong to [20.4°C, 34.5°C] and humidity variations
to [14.2%, 40.3%]) and compounds concentration is neither
controlled, nor measured.

To have a better idea of the experiments, we encourage
the reader to watch the video in footnote2. In this video,
a larger setup is used but the idea remains the same.

Data set. The responses of the gas sensors look like
peaks due to the very short time injection (∼ 1 sec). Each
peak corresponds to one experiment with one of the 3 com-

2Link to the explanatory video: https://drive.google.com/file/

d/1AddmCYFwQcHtG1aTksn8zyC-0e7CDzbU/view
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Date Ni R T (°C) RH (%) SVM (%)

1 06-07-2018 110 3 NA NA 98 ± 1
2 14-09-2018 112 3 NA NA 94 ± 2
3 21-09-2018 93 3 [31.6, 34.5] [27.0, 36.0] 90 ± 1
4 04-10-2018 165 3 [25.1, 29.6] [30.1, 39.0] 93 ± 1
5 16-10-2018 71 3 [28.0, 28.9] [34.6, 37.5] 92 ± 3
6 09-11-2018 142 3 [23.3, 28.2] [31.4, 37.5] 81 ± 1
7 23-11-2018 132 12 [20.4, 27.6] [26.6, 40.0] 89 ± 1
8 04-12-2018 148 3 [23.5, 27.1] [34.7, 40.3] 91 ± 1
9 14-12-2018 173 3 [24.4, 27.8] [18.6, 23.7] 91 ± 1
10 20-12-2018 161 12 [26.2, 27.5] [24.1, 29.3] 76 ± 1
11 09-01-2019 75 12 [25.1, 27.5] [20.3, 24.7] 71 ± 3
12 11-01-2019 71 3 [25.6, 27.3] [14.2, 16] 89 ± 2
13 06-02-2019 164 3 [24.2, 27.5] [17.2, 21.3] 91 ± 1
14 13-02-2019 73 12 [24.4, 27.0] [17.6, 23.3] 87 ± 1
15 21-03-2019 256 3 [24.4, 27.2] [18.1, 22.7] 94 ± 0

9 months 1934 [20.4, 34.5] [14.2, 40.3] [71, 98]

Table 1: Information about the data sets studied in this section.
NA values are due to the absence of the sensors at the recording
date. R column corresponds to the number of compounds used in
the experiment, if R = 12 then we extract from the session the 3
target compounds. RH stands for Relative Humidity. SVM column
corresponds to the cross-validated classification rate (repeated 10
times) when we train and test on the same session (mean ± standard
deviation).

pounds. A segmentation procedure is applied to extract
these peaks and is detailed in another paper (see Maho
et al. (2021)). Note that the resulting time series are un-
commonly short, compared to the standard for e-Noses,
where measurements typically take a few minutes. Each
peak is integrated for each chemical sensor. Therefore,
each peak gives a signature x̃. The replicas are averaged to
reduce dimensionality, so P = 26 and x̃ ∈ R26. A session
usually lasts for few hours so some compounds run out at
the end of the experiment and injected concentration de-
creases. To get rid of the variations in concentration, we
normalise each signature individually by dividing it by its
ℓ2-norm. The normalised signature is noted x.

One lap gives one signature for each one of the R = 3
compounds, so after a certain number of laps we have a
data matrix X ∈ RN×P . X corresponds to only one mea-
surement session lasting for few hours. Since we perform
several measurement sessions over time, we note Xi ∈
RNi×P the data acquired during Session i.

In total, we have acquired 15 different sessions over 9
months, corresponding to a total of ∼2000 samples. The
measurement sessions differ on several experimental pa-
rameters: the amount of liquid solution left in the gas
sources, the environmental conditions (temperature, hu-
midity), the running order, the robot speed and the num-
ber of laps. Some of these experimental parameters and
the recording dates are reported in Table 1.

To add another difficulty, all the sessions have not been
generated with the same setup. Most of the sessions have
been generated with a setup containing only the 3 target
compounds (see Figure 4). However, some of the sessions
have been generated with a similar, but larger, setup con-
taining 12 different compounds in 24 different cups, in-
cluding the studied compounds2. For these sessions, we

extracted from the data the 3 compounds of interest. In
Table 1, the column R indicates the number of compounds
actually present in the session.

In Table 1, we also report some classification results
(SVM column). They correspond to the ability of the
eNose to tell the 3 compounds apart when the training
and the testing are performed in the same session: this
corresponds to the ‘naive’ solution explained in Introduc-
tion and we call them intra-session scores. They have been
obtained after a dimensionality reduction with PCA using
5 components and after a 5-fold cross validation using a lin-
ear SVM. Even if the overall performance of the eNose on
these 3 compounds is rather stable over time, we can note
that some scores can be lower than the score obtained dur-
ing Session 1. This can be an effect of the change in some
experimental parameters (temperature, humidity, amount
of liquid, presence of other compounds in the room, etc...).
If one wants to use only Session 1 to predict the future ses-
sions, we will see in Section 4.2 that a drift between the
sessions appeared.

The data set is available upon request.

4. Results and discussion

4.1. Artificial data set

In Figure 5a (left), we present a random realization
of the performed simulations. In order to cope with the
non-linearity that we introduced, we segment X as a se-
ries of non-overlapping windows of size ∆t = 9. For one
simulation, it corresponds to a total of 28 time windows.
Each time window is considered as a measurement session
of 9 × Q samples (Session i) which needs to be drift cor-
rected. We recall that Q, the number of compounds in
Session i, varies from 2 to R = 6.

We compare the proposed method to 2 other methods:
PCA-CC from Artursson et al. (2000) working under the
Calibrant Scenario and the method of Di Carlo and Falas-
coni (2012) working under the Blind Scenario. The meth-
ods considering the Multi-Session Scenario are not used
here since the first sessions will not contain enough infor-
mation about the future directions (d(t) is rather com-
plex).

For PCA-CC, the calibration samples are accumulated
over time (for Session i we use the calibration samples
from Sessions 1 → i) and the number of components to
remove is set to the minimal number of components re-
quired to explain at least 80% of the variance of Xcal (the
matrix containing the calibration samples). For the classi-
fication, the corrected samples are classified with a linear
SVM learnt from Session 1. Compound 1 is used as the
reference.

EMC2 and Di Carlo’s method are applied session-by-
session. These two algorithms return automatically labels.
For Di Carlo’s methods we use linear SVM and Maha-
lanobis distance (see Di Carlo and Falasconi (2012)). We
initialise EMC2 by using Algorithm 2. In Figure 5a (right),
we report the result using EMC2 for a random realization.
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In Figure 5b, we report the classification results. The
column labelled “Raw” corresponds to the results with no
drift correction.

EMC2 clearly outperforms PCA-CC while the latter re-
quires much more information (calibration samples). We
notice that both methods are stable regarding the num-
ber of compounds present Q, whatever the performance.
Parameter Q mostly influences the variance of the classifi-
cation rate: the lower Q is, the more a misclassification is
influencing the score. The performance of PCA-CC is sur-
prisingly quite poor. We explain that by the small number
of chemical sensors that we simulated (P = 4) in addition
to the complexity of the drift. Even if Artursson et al.
(2000) claimed that PCA-CC can compensate for a non-
linear drift by removing more and more components, we
noticed that this method tends to remove discriminative
directions. In fact, due to the small number of chemical
sensors simulated here, it is more likely that the Principal
directions of Xcal (the matrix containing the calibration
samples) carry information about class discrimination. To
support this remark, we made other simulations with the
same settings, but we increased the dimension P of the
space to 6. In this case, the average score of PCA-CC
reached 82 % (averaged over Q, not reported in Figure
5b).

EMC2 also outperforms the method of Di Carlo et al.
It is interesting to note that the performance of the method
of Di Carlo et al. is influenced by Q: the lower Q, the bet-
ter. We explain that by the fact that their method makes
use of the correction factor of Session i as initialisation for
Session i + 1. So, this method will tend to accumulate
errors and errors will likely increase with Q. In fact, the
classification rate tends to considerably decrease over time
(starting from 100% for Session 2 to 70% for Session 28).
EMC2 does not suffer from this drawback since each ses-
sion (or time window) is treated separately. So, if a session

is badly corrected, it will not influence the next session.

4.2. Real data set

We recall that each signature x ∈ R26 is obtained af-
ter averaging the replicas and after normalising it by its
ℓ2-norm. To reduce dimensionality, we use PCA and we
project the data of each Session i onto the 5 first Principal
directions of the data of Session 1 (and only Session 1). In
other words, we use only the knowledge of Session 1 to re-
duce the number of dimensions. For PCA-CC, CPCA-CC
and OSC, the correction is applied before reducing dimen-
sionality (it leads to better results). For EMC2 and Di
Carlo’s method, we first reduce dimensionality since some
matrices of dimension P×P need to be estimated from the
data (covariance matrices for EMC2 and correction factors
for Di Carlo’s method).

Results for Q = 3. In Figure 6a (left), we report the
projection of the entire data set onto the 2 first Principal
directions of the data from Session 1. From this repre-
sentation, the drift between Session 1 and the subsequent
sessions is clear. If we try to predict Sessions 2 to 15 by
training on Session 1 then the score reaches the chance
level (33%) after Session 3 (purple line in Figure 6b).

To evaluate the correction methods, we train a linear
SVM using only the data from Session 1 and we predict
the corrected data from Sessions 2 to 15 (after dimension-
ality reduction down to 5). EMC2 and Di Carlo’s method
directly return the labels ℓi of Session i so we use them
for computing the scores. However, we can also use any
other classifier after correcting the data using EMC2. For
all methods, we remove only one component for the com-
parison to be fair.

For the methods working under the Multi-Session Sce-
nario, we use only the two first sessions. In fact, this pa-
rameter can greatly influence the results and is particularly
difficult to tune. In practice, we cannot know early how

−10

−5

0

5

10

−10 0 10

Chemical sensor 1

Ch
em

ic
al

 s
en

so
r 

2

−10

−5

0

5

−10 −5 0

Chemical sensor 1

Raw data Corrected data

57%
98%

● ● ● ●●● ●Compound 1 2 3 4 5 6 Session 1 Session i

●
●

●
●
●●
●
●
●
●

●●●● ●
●

●
●●

●

●●●
●●●● ●● ●

●

●
●
●●●●●●
●

● ●
● ●●● ●

●●
●

●●
●
●●
●●
●● ●

●

●
●
●
●●
●

●

●
●

●●●● ●
●

●
●●

●

●●●
●●●● ●● ●

●

●
●
●●●
●
●●●

● ●
● ●●● ●

●●
●

●
●
●
●
●

●●
●● ●

session 28

session 19

Q Raw PCA-CC Di Carlo EMC2

et al.

6 64±10 62±16 80±15 98±2
5 65±13 60±18 85±12 98±2
4 65±15 61±21 89±14 97±2
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Figure 5: (a) A random realization (Q = 3). We highlighted by ellipses samples from Session 19, and by squares samples from Session 28
(only for classes 2 & 3, but the same applies to class 1). The indicated scores correspond to classification rates by training on Session 1 (the
ten first points). Left figure corresponds to raw data (without any correction) and right figure corresponds to data corrected using EMC2.
(b) Classification results (%) ± standard deviation, over the 100 simulations. Raw column corresponds to the data with no drift correction.
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Figure 6: (a) Left figure corresponds to the uncorrected data: circles stand for Session 1 and squares for Sessions 2 to 15. All the sessions are
projected onto the 2 first Principal directions (PCA) of the data from Session 1. Right figure corresponds to the data after applying EMC2

session-by-session. (b) Classification rates over time for all the methods considered in this paper. Intra is when we train and test on Session
i. Raw method corresponds to the uncorrected data (training on Session 1 and testing on Session i).

Method Scenario Score (%)

PCA-CC CS 82.1
EMC2 BS 69.5
CPCA-CC MSS 62.8
OSC MSS 59.8
Raw - 39.9
Di Carlo BS 39

Intra-session - 87.9

Table 2: Ranked averaged scores over sessions. Intra-session method
is when we train and test on Session i (5-fold cross-validation pro-
cedure). Raw method corresponds to the uncorrected data (training
on Session 1 and testing on Session i).

many sessions we will need to correctly evaluate the drift
directions. So we apply here the principle: the least, the
better.

In Figure 6a (right), we report a projection of corrected
data using EMC2. In Figure 6b, we report the classifica-
tion results over time (or over sessions) for all the methods
considered in this paper. These results (excluding Session
1) are summarized in Table 2.

Clearly, the method using calibration samples (PCA-
CC) outperforms the others. We observed that the accu-
mulation of the calibration samples over time (for process-
ing Session i, we take all the calibration samples from Ses-
sions 1 to i) helps the method to find better directions for
the drift. If we no longer accumulate the samples but use
only the calibration samples from Sessions 1 and i, then
the averaged score goes down to 70% and becomes equiv-
alent to the one obtained by our method (not reported in
Table 2). The accumulation will help if the direction is
stable over time but can also decrease the performance in

case of a direction change (which is hard to predict in prac-
tice). In addition, the results that we reported in Table 2
for PCA-CC depend greatly on the choice of the reference
compound. We chose Citral because it leads to the best
results. However, in practice, we do not know the labels
of the subsequent sessions so it is quite hard to tell which
compound will be the best reference in the end. In fact,
if we take β-Pinene as reference, then the average score
goes down to 63% (not reported in Table 2). These two
remarks reveal that this kind of methods depends strongly
on experimental decisions which are hard to make.

Methods working under the Blind Scenario do not suf-
fer from these decisions which influence the overall perfor-
mance. However, they can be less robust. Table 2 shows
that the proposed method, EMC2, performs fairly well
without requiring any labels from the subsequent sessions.
It performs even better than the Multi-Session based meth-
ods. The results validate both the proposed algorithm
and its heuristic for initialisation. In Figure 7a, we report
the drift directions of each compound individually (colored
arrows) and the common direction estimated with EMC2

(black arrow). We can note that the assumption according
to which each class drifts along a common direction seems
appropriate. In Figure 7b, we report the class weights αr

(dashed: ground-truth, solid: EMC2 estimation). We ob-
serve that the factors are different for each class and vary
over time, as expected by the proposed model. It is note-
worthy that the estimation of the weights of β-pinene by
EMC2 fits perfectly with the groundtruth. However, the
algorithm performs less well for the weights of Citral and
Geranyl acetate. This may be due to the overlap between
the two clusters which leads to some misclassifications in
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Figure 7: Validation of the drift model. (a) Drift directions over sessions of each compound individually (colored arrows) and the common
direction estimated by EMC2. Directions are represented along the 2 first Principal directions, and from Session 1 to Session i. (b) True class
weights (dashed lines) over time and estimated weights using EMC2 (solid lines).

our correction procedure. In fact, we observed that most of
the misclassifications comes from the Citral cluster which
is confused by the classifier with Geranyl acetate. These
errors then result in an underestimation of the weights.

The poor performance of CPCA-CC and OSC can be
attributed to the small number of training sessions that
we have used. The 2 first sessions may not contain enough
drift information about the subsequent sessions. In this
case, performance can be increased by considering more
sessions but it is again a matter of experimental decisions.
This remark highlights their main drawback: in practice,
nobody knows how many training sessions are required for
the future.

The last method used, namely Di Carlo’s method, has
the same performance than the Raw method, the method
which does not apply any correction. In fact, this method
fails to adapt when the data shows a rather ‘discontinu-
ous’ drift (in comparison to the ‘continuous’ impression of
the simulated drift in Figure 5a left). In other words, this
method fails when a significant drift is observed between
two different sessions. This method would likely perform
better if sessions had been closer together in time. How-
ever, the timing of the sessions is often not controlled in
the field and methods have to cope with large changes.

Results for Q = 2. In practice, a training set with
the R target compounds will be generated during Session
1. However, it is not realistic to expect that the R com-
pounds will be measured every time. It is more realistic to
expect only Q < R compounds. The identity of these Q
compounds is obviously unknown, which makes the task
of drift correction even more tricky for the methods under
the Blind Scenario.

In our data set, all the sessions measure the same num-
ber R = 3 of compounds. However, we can artificially re-
move from the subsequent sessions one compound out of
the R compounds, leading to Q = 2 compounds. Only
the first session (and the 2 first sessions for methods con-

Method Scenario Compound out Mean

Citral Geranyl β-Pinene

PCA-CC CS 81 92 75 82
EMC2 BS 92 57 70 73
OSC MSS 78 59 34 57
CPCA-CC MSS 72 59 28 53
Di Carlo BS 56 47 47 50
Raw - 54 55 6 39

Intra-session - 90 99 91 93

Table 3: Average scores over sessions when one compound is removed
from the subsequent sessions. Results are ranked according to the
global average (over sessions and compound out).

sidering the MSS) keeps R = 3 compounds for the train-
ing. Drift correction methods are then applied according
to the same pipelines. For methods requiring calibration
samples, one compound out of the Q = 2 compounds is
randomly selected as the calibrant for all the sessions. For
selecting which compound is removed from all the testing
sessions, the solution is simple: in separated experiments,
each one of the R = 3 compounds is selected in turn.

Table 3 reports the classification results, averaged over
sessions (excluding Session 1). The ranking is more or less
unchanged compared to Table 2. The method considering
the CS still outperforms the others. However, when Q = 2,
50% of the information is known by this group of methods
(information from calibration samples), so the significance
of their performance must be moderated. More surpris-
ingly, the proposed method EMC2 performs fairly well,
meaning that the method is able to adapt to a class disap-
pearance during Sessions 2 to 15. Concerning the meth-
ods CPCA-CC and OSC, their global performance is poor
which is mainly due to the data set where β-Pinene is re-
moved. In fact, most of the good classifications of these
methods come from this cluster, and by removing it, we
remove the good classifications.
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5. Conclusion

In this paper, we proposed a correction method to com-
pensate for the drift affecting gas sensor arrays. In the lit-
erature, most drift-correction methods to assume the Cal-
ibrant Scenario or the Multi-Session Scenario. However,
we saw that their results depend on experimental deci-
sions which are hard to make in practice: which reference
compound to take? Do we keep the calibration samples of
the previous sessions? How many training sessions do we
need for correctly estimating the drift?

As an alternative, the methods working under the Blind
Scenario are free of these considerations. By using only the
labels available during the first measurement session, they
are by far the least restrictive in practice. This contribu-
tion proposed a new correction technique for this group of
methods which has been little explored in the literature.
It is based on a drift model and has been validated on ar-
tificial and real data sets. The method can easily adapt
to abrupt changes in the drift direction which could oc-
cur over time and does not require that all the classes are
sampled during each new measurement session (i.e. some
classes may be absent in some sessions).

However, drift is still an open issue and various per-
spectives of this work can be explored by further stud-
ies. First, our method has compensated only partly for
the drift so there is still some margin for improving the
results. Second, we studied here the drift correction for
compounds classification. Another main task is the quan-
tification of the volatile compounds. It is still unclear what
would give the correction for this task. Finally, a possible
goal by using gas sensor arrays is to use one instrument
to generate a data base for training a classifier, and then
generalize to other instruments deployed in the field. In
this case, another drift will appear, an inter-instrument
drift (see for instance the study of Fonollosa et al. (2016)).
In fact, the manufacturing process of gas sensors is rarely
perfectly reproducible. This means that a classifier which
learns from one instrument may not directly generalize to
another instrument. In this article, we focused only on the
intra-instrument drift. The solution proposed may gener-
alize to inter-instrument drift.

Appendix

By assuming independent and identically distributed
samples, the likelihood is defined as:

L(d,α,π|X) =

N2∏
n=1

p(xn|d,α,π) (8)

We usually prefer to work with the log-likelihood H:

H(d,α,π|X) =

N2∑
n=1

ln(

R∑
k=1

πkN (xn,µk + αkd,Sk)) (9)

We note N (k) = N (xn,µk + αkd,Sk) and ρnk = p(ℓn =
k|xn,d,α,π).

① Estimation of d.

∂H
∂d

=

N2∑
n=1

R∑
k=1

π̂kN (k)∑R
i=1 π̂iN (i)︸ ︷︷ ︸

ρnk

×

∂

∂d
(−1

2
(xn − µk − α̂kd)

TS−1
k (xn − µk − α̂kd))︸ ︷︷ ︸

α̂kS
−1
k (xn−µk)−α̂2

kS
−1
k d

So, ∂H
∂d = 0 if and only if

d̂ = Λ−1
∑
n,k

ρnkα̂kS
−1
k (xn − µk) (10)

with Λ =
∑
k

α̂2
kS

−1
k

∑
n

ρnk

② Estimation of α.

∂H
∂αk

=

N2∑
n=1

π̂kN (k)∑R
i=1 π̂iN (i)︸ ︷︷ ︸

ρnk

×

∂

∂αk
(−1

2
(xn − µk − αkd̂)

TS−1
k (xn − µk − αkd̂))︸ ︷︷ ︸

d̂
T
S−1

k (xn−µk)−αkd̂
T
S−1d̂

So, ∂H
∂αk

= 0 if and only if∑
n

ρnkαkd̂
T
S−1

k d̂ =
∑
n

ρnkd̂
T
S−1

k (xn − µk)

If
∑
n

ρnk ̸= 0 then,

∀k ∈ J1, RK, α̂k =

∑
n

ρnkd̂
T
S−1

k (xn − µk)

d̂
T
S−1

k d̂
∑
n

ρnk
(11)

③ Estimation of π. Since vector π contains probabil-
ities,

∑R
k=1 πk = 1. To incorporate this constraint in the

optimisation, we build the Lagrangian Γ(π, λ):

Γ(π, λ) = H(d,α,π|X) + λ(

R∑
k=1

πk − 1)

∂Γ

∂πk
=

N2∑
n=1

N (k)∑R
i=1 πiN (i)

+ λ (12)

So, ∂Γ
∂πk

= 0 if and only if

N2∑
n=1

N (k)∑R
i=1 πiN (i)

+ λ = 0

×πk⇐⇒
N2∑
n=1

πk
N (k)∑R

i=1 πiN (i)
+ πkλ = 0

Sum
over k⇐⇒

N2∑
n=1

R∑
k=1

πk
N (k)∑R

i=1 πiN (i)
+

R∑
k=1

πkλ = 0

⇐⇒ λ = −N2
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To conclude, inject λ = −N2 in Equation (12) and multi-
ply both sides by πk:

∀k ∈ J1, RK, π̂k =

∑
n ρnk
N2

(13)

Equation (13) is classical in EM algorithms for mixture
estimation (see Bishop (2006)) while Equations (10) and
(11) are derived from the model that we proposed.
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