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Abstract

We study the problem of the identification of m arms with largest means under a
fixed error rate δ (fixed-confidence Top-m identification), for misspecified linear
bandit models. This problem is motivated by practical applications, especially
in medicine and recommendation systems, where linear models are popular due
to their simplicity and the existence of efficient algorithms, but in which data
inevitably deviates from linearity. In this work, we first derive a tractable lower
bound on the sample complexity of any δ-correct algorithm for the general Top-m
identification problem. We show that knowing the scale of the deviation from
linearity is necessary to exploit the structure of the problem. We then describe the
first algorithm for this setting, which is both practical and adapts to the amount
of misspecification. We derive an upper bound to its sample complexity which
confirms this adaptivity and that matches the lower bound when δ → 0. Finally, we
evaluate our algorithm on both synthetic and real-world data, showing competitive
performance with respect to existing baselines.

1 Introduction

The multi-armed bandit (MAB) is a popular framework to model sequential decision making problems.
At each round t > 0, a learner chooses an arm kt among a finite set of K ∈ N possible options,
and it receives a random reward Xkt

t ∈ R drawn from a distribution νkt with unknown mean µkt .
Among the many problem settings studied in this context, we focus on pure exploration, where the
learner aims at maximizing the information gain for answering a given query about the arms [5]. In
particular, we are interested in finding a subset of m ≥ 1 arms with largest expected reward, which is
known as the Top-m identification problem [22]. This generalizes the widely-studied best-arm (i.e.,
Top-1) identification problem [16]. This problem has several important applications, including online
recommendation and drug repurposing [31, 35]. Two objectives are typically studied. On the one
hand, in the fixed-budget setting [2], the learner is given a finite amount of samples and must return
a subset of m best arms while minimizing the probability of error in identification. On the other
hand, in the fixed-confidence setting [16], the learner aims at minimizing the sample complexity for
returning a subset of m best arms with a fixed maximum error rate δ ∈ (0, 1), defined as the number
of samples collected before the algorithm stops. This paper focuses on the latter.
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In practice, information about the arms is typically available (e.g., the characteristics of an item in a
recommendation system, or the influence of a drug on protein production in a clinical application).
This side information influence the expected rewards of the arms, thus adding structure (i.e., prior
knowledge) to the problem. This is in contrast to the classic unstructured MAB setting, where
the learner has no prior knowledge about the arms. Due to their simplicity and flexibility, linear
models have become the most popular to represent this structure. Formally, in the linear bandit
setting [3], the mean reward µk of each arm k ∈ [K] := {1, 2, . . . ,K} is assumed to be an inner
product between known d-dimensional arm features φk ∈ Rd and an unknown parameter θ ∈ Rd.
This model has led to many provably-efficient algorithms for both best-arm [38, 42, 17, 43, 13] and
Top-m identification [24, 35]. Unfortunately, the strong guarantees provided by these algorithms
hold only when the expected rewards are perfectly linear in the given features, a property that is often
violated in real-world applications. In fact, when using linear models with real data, one inevitably
faces the problem of misspecification, i.e., the situation in which the data deviates from linearity.

A misspecified linear bandit model is often described as a linear bandit model with an additive term to
encode deviation from linearity. Formally, the expected reward µk = φ>k θ + ηk of each arm k ∈ [K]
can be decomposed into its linear part φ>k θ and its misspecification ηk ∈ R. Note the flexibility
of this model: for ‖η‖ = 0, where η = [η1, η2, . . . , ηK ]>, the problem is perfectly linear and thus
highly structured, as the mean rewards of different arms are related through the common parameter
θ; whereas when the misspecification vector η is large in all components, the problem reduces to
an unstructured one, since knowing the linear part alone provides almost no information about the
expected rewards. Learning in this setting thus requires adapting to the scale of misspecification,
typically under the assumption that some information about the latter is known (e.g., an upper bound
ε to ‖η‖). Due to its importance, this problem has recently gained increasing attention in the bandit
community for regret minimization [20, 29, 18, 33, 39]. However it has not been addressed in the
context of pure exploration. In this paper, we take a step towards bridging this gap by studying
fixed-confidence Top-m identification in the context of misspecified linear bandits. Our detailed
contributions are as follows.

Contributions. (1) We derive a tractable lower bound on the sample complexity of any δ-correct
algorithm for the general Top-m identification problem. (2) Leveraging this lower bound, we show
that knowing an upper bound ε to ‖η‖ is necessary for adapting to the scale of misspecification,
in the sense that any δ-correct algorithm without such information cannot achieve a better sample
complexity than that obtainable when no structure is available. (3) We design the first algorithm
for Top-m identification in misspecified linear bandits. We derive an upper bound to its sample
complexity that holds for any δ ∈ (0, 1) and that matches our lower bound for δ → 0. Notably,
our analysis reveals a nice adaptation to the value of ε, recovering state-of-the-art dependences in
the linear case (ε = 0), where the sample complexity scales polynomially in d and not in K, and
in the unstructured case (ε large), where only polynomial terms in K appear. (4) We evaluate our
algorithm on synthetic problems and real datasets from drug repurposing and recommendation system
applications, while showing competitive performance with state-of-the-art methods.

Related work. While model misspecification has not been addressed in the pure exploration literature,
several attempts to tackle this problem in the context of regret minimization exist. In [20], the authors
show that, if T is the learning horizon, for any bandit algorithm which enjoys O(d

√
T ) regret scaling

on linear models, there exists a misspecified instance where the regret is necessarily linear. As a
workaround, the authors design a statistical test based on sampling a subset of arms prior to learning
to decide whether a linear or an unstructured bandit algorithm should be run on the data. Similar
ideas are presented in [8], where the authors design a sequential test to switch online between linear
and unstructured models. More recently, elimination-based algorithms [29, 39] and model selection
methods [33, 18] have attracted increasing attention. Notably, these algorithms adapt to the amount of
misspecification ε without knowing it beforehand, at the cost of an additive linear term that scales with
ε. Moreover, while best-arm identification has been the focus of many prior works in the realizable
linear setting, some suggesting asymptotically-optimal algorithms [13, 21], Top-m identification has
been seldom studied in terms of problem-dependent lower bounds. Lower bounds for the unstructured
Top-m problem have been derived previously, focusing on explicit bounds [26], on getting the correct
dependence in the problem parameters for any confidence δ [9, 37], or on asymptotic optimality (as
δ → 0) [19]. Because of the combinatorial nature of the Top-m identification problem, obtaining a
tractable, tight, problem-dependent lower bound is not straightforward.
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2 Setting

At successive stages t ∈ N, the learner samples an arm kt ∈ [K] based on previous observations
and internal randomization (a random variable Ut ∈ [0, 1]) and observes a reward Xkt

t . Let Ft :=

σ({U1, k1, X
k1
1 , . . . , Ut, kt, X

kt
t , Ut+1}) be the σ-algebra associated with past sampled arms and

rewards until time t. Then kt is a Ft−1-measurable random variable. The reward Xkt
t is sampled

from νkt and is independent of all past observations, conditionally on kt. We suppose that the noise is
Gaussian with variance 1, such that the observation when pulling arm kt at time t isXkt

t ∼ N (µkt , 1).
The mean vector µ = (µk)k∈[K] ∈ RK then fully describes the reward distributions.

In a misspecified linear bandit, each arm k ∈ [K] is described by a feature vector φk ∈ Rd. The
corresponding feature matrix is denoted by A := [φ1, φ2, . . . , φK ]> ∈ RK×d and the maximum
`2 -norm of these vectors is L := maxk∈[K] ‖φk‖2. We assume that the feature vectors span Rd
(otherwise we could rewrite those vectors in a subspace of smaller dimension). We assume that the
learner is provided with a set of realizable models

M :=
{
µ ∈ RK | ∃θ ∈ Rd ∃η ∈ RK , µ = Aθ + η ∧ ‖µ‖∞ ≤M ∧ ‖η‖∞ ≤ ε

}
, (1)

where M, ε ∈ R are known upper bounds on the `∞-norm of the mean1 and misspecification vectors,
respectively. Intuitively,M represents the set of bandit models whose mean vector µ is linear in the
features A only up to some misspecification η.

We consider Top-m identification in the fixed-confidence setting. Given a confidence parameter
δ ∈ (0, 1), the learner is required to output the m ∈ [K] arms of the unknown bandit model µ ∈M
with highest means with probability at least 1− δ. The strategy of a bandit algorithm designed for
Top-m identification can be decomposed into three rules: a sampling rule, which selects the arm kt to
sample at a given learning round t according to past observations; a stopping rule, which determines
the end of the learning phase, and is a stopping time with respect to the filtration (Ft)t>0, denoted by
τδ; finally, a decision rule, which returns a Fτδ -measurable answer to the pure exploration problem.
An answer is a set Ŝm ⊆ [K] with exactly m arms: |Ŝm| = m. In our context, the “m best arms of µ”
might not be well defined since the set S?(µ) := {k ∈ [K] | µk ≥ maxmi∈[K] µ

i}2 might contain more
than m elements if some arms have the same mean. Thus, let Sm(µ) = {S ⊆ S?(µ) | |S| = m} be
the set containing all subsets of m elements of S?(µ).

Definition 1 (δ-correctness). For δ ∈ (0, 1), we say that an algorithm A is δ-correct onM if, for all
µ ∈M, τδ < +∞ almost surely and PA

µ

(
Ŝm /∈ Sm(µ)

)
≤ δ .

3 Tractable lower bound for the general Top-m identification problem

LetNk
t denote the number of times arm k has been sampled until time t included. Suppose that the true

model µ has exactlym arms that are among the top-m, i.e., that |S?(µ)| = m and Sm(µ) = {S?(µ)}.
Consider the following set of alternatives to µ,

Λm(µ) := {λ ∈M | Sm(λ) ∩ Sm(µ) = ∅} ,

that is, the set of all bandit models λ inM where the top-m arms of µ are not among the top-m
arms of λ. Note that, while we assumed that the set of top-m arms in µ is unique, this might not be
the case for λ. Define the event Eτδ := {Ŝm ∈ Sm(µ)} that the answer returned by the algorithm
at τδ is correct for µ and consider any δ-correct algorithm A. Let us call KL the Kullback-Leibler
divergence3 and kl the binary relative entropy. Then, using the change-of-measure argument proposed
in [19, Theorem 1], for any λ ∈ Λm(µ) and δ ≤ 1/2,∑

k∈[K]

EA
µ [Nk

τ ] KL
(
µk, λk

)
≥ kl

(
PA
µ (Eτδ),PA

λ (Eτδ)
)
≥ kl(1− δ, δ) ≥ log

(
1

2.4δ

)
,

1The restriction to ‖µ‖∞ ≤M is required only for our analysis, while it can be safely dropped in practice.
2The expression maxmi∈S f(i) denotes the mth maximal value in {f(i) | i ∈ S}.
3We abuse notation by denoting distributions in the same one-dimensional exponential family by their means.

3



where the second-last inequality follows from the δ-correctness of the algorithm and the monotonicity
of the function kl. This holds for any λ ∈ Λm(µ), so we have that

EA
µ [τ ] ≥

 sup
ω∈∆K

inf
λ∈Λm(µ)

∑
k∈[K]

ωkKL
(
µk, λk

)−1

log

(
1

2.4δ

)
, (2)

with ∆K := {p ∈ [0, 1]K |
∑K
k=1 pk = 1} the simplex on [K]. We define the inverse complexity

Hµ := supω∈∆K
infλ∈Λm(µ)

∑
k∈[K] ω

kKL
(
µk, λk

)
. Computing that lower bound might be diffi-

cult: while the Kullback-Leibler is convex for Gaussians, the set Λm(µ) over which it is minimized is
non-convex. Its description using Sm(λ) is combinatorial: we can write Λm(µ) as a union of convex
sets, one for each subset of top-m arms of λ, but this implies minimizing over

(
K
m

)
sets, which is not

practical. In order to rewrite this lower bound, we prove the following lemma in Appendix C.
Lemma 1. ∀µ, λ ∈ RKs.t. |S?(µ)| = m, Sm(λ)∩Sm(µ) = ∅ ⇔ ∃i /∈ S?(µ) ∃j ∈ S?(µ), λi > λj .

Lemma 1 allows us to go from an exponentially costly optimization problem, which implied mini-
mizing over

(
K
m

)
sets, to optimizing across m(K −m) halfspaces. Therefore, by replacing the set

of alternative models as derived in Lemma 1, the lower bound in Equation 2 can be rewritten in the
following more convenient form :
Theorem 1. For any δ ≤ 1/2, for any δ-correct algorithm A onM, for any bandit instance µ ∈ RK
such that |S?(µ)| = m, the following lower bound holds on the stopping time τδ of A on instance µ:

EA
µ [τδ] ≥

 sup
ω∈∆K

min
i/∈S?(µ)

min
j∈S?(µ)

inf
λ∈M:λi>λj

∑
k∈[K]

ωkKL
(
µk, λk

)−1

log

(
1

2.4δ

)
.

Computing the lower bound now requires performing one maximization over the simplex (which
can be still hard), and m(K − m) minimizations over half-spaces {λ ∈ M : λi > λj}, where
(i, j) ∈ (S?(µ))

c × S?(µ). The minimizations are convex optimization problems and can be solved
efficiently. Our algorithm inspired from that bound will need to perform only those minimizations.

Note that a lower bound for Top-m identification using the cited change-of-measure argument has
been obtained in [26]. Aiming to be more explicit, it relies on alternative models where one of the
best arms is switched with the (m+ 1)th best one (or one of the K −m worst ones with the mth

best one). These models are a strict subset of Λm(µ). Hence this bound is not as tight as the one in
Theorem 1, which is why the algorithm we detail in the next sections will rely on the latter instead.

Note that with ε = 0 and m = 1, this lower bound is exactly the one for best arm identification in
perfectly linear models [17]. As the misspecification ε grows, the setM becomes larger and so does
the set of alternative models Λm(µ), thus the lower bound grows. In the limit ε→ +∞, the model
becomes the same as the unstructured model. We show that in fact the lower bound becomes exactly
equal to the unstructured lower bound as soon as ε > εµ, a finite value.

Lemma 2. There exists εµ ∈ R with εµ ≤ maxk µ
k −mink µ

k such that if ε > εµ, then the lower
bound of Theorem 1 is equal to the unstructured top-m lower bound.

The proof is in Appendix C. It considers finitely supported distributions over Λm(µ) that realize
the equilibrium in the max-min game of the lower bound. As soon as one of these equilibrium
distributions for the unstructured problem has its whole support in the misspecified model, the two
complexities are equal.

3.1 Adaptation to unknown misspecification is impossible

We now make an important observation: knowing that a problem is misspecified without knowing an
upper bound ε on ‖η‖∞ is the same as not knowing anything about the structure of that problem.

The lower bound of Equation (2) is a function of the setM of realizable models µ. Let B(µ, δ,M)
be the right-hand side of that equation, such that EA

µ [τδ] ≥ B(µ, δ,M) for any algorithm A which is
δ-correct onM. Suppose that we haveM1 ⊆M, a subset of the model, for which we would like to
have lower sample complexity (possibly at the cost of a higher sample complexity onM\M1). If
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Algorithm 1 MISLID

Require: Set of modelsM, online learner L, stopping thresholds {βt,δ}t≥1

Compute a sequence of arms k1, . . . , kt0 such that
∑t0
t=1 φktφ

T
kt
� 2L2Id // INITIALIZATION

for t = 1, . . . , t0 do
Pull kt, receive Xkt

t , and set ωt ← ekt // PULL SPANNER

end for
Compute empirical mean µ̂t0 and its projection µ̃t0 ← arg minλ∈M ‖λ− µ̂t0‖2DNt0
for t = t0 + 1, t0 + 2, . . . , do

if infλ∈Λm(µ̃t−1) ‖µ̃t−1 − λ‖2DNt−1
> 2βt−1,δ then // STOPPING RULE

Stop and return S?m(µ̃t−1)
end if
Obtain ωt from L
Compute closest alternative: λt ← arg minλ∈Λm(µ̃t−1) ‖µ̃t−1 − λ‖2Dωt
Update L with gain gt : ω 7→

∑
k∈[K] ω

k
(
|µ̃kt−1 − λkt |+

√
ckt−1

)2

// UPDATE LEARNER

Pull kt ∼ ωt and receive reward Xkt
t // ACTION SAMPLING

Update µ̂t and compute projection µ̃t ← arg minλ∈M ‖λ− µ̂t‖2DNt // ESTIMATION

end for

M is the misspecified linear model with deviation ε, let us say thatM1 is the set of problems with
deviation lower than ε1 < ε ; that is, we want the algorithm to be faster on more linear models. This
is not achievable. The lower bound states that it is not possible for an algorithm to have lower sample
complexity onM1 while being δ-correct onM. On every µ ∈M, the lower bound is B(µ, δ,M).

An algorithm cannot adapt to the deviation to linearity: it has to use a parameter ε set in advance,
and its sample complexity will depend on that ε, not on the actual deviation of the problem. Note
that this observation does not contradict recent results for regret minimization [e.g., 29, 39], which
show that adapting to an unknown scale of misspecification is possible. In fact, such results involve a
“weak” form of adaptivity, where the algorithms provably leverage the linear structure at the price of
suffering an additive linear regret term of order O(ε

√
dT ), where T is the learning horizon. Since

the counterpart of δ-correctness for regret minimization is “the algorithm suffers sub-linear regret
in T for all instances of the given family”, this implies that algorithms with such “weak” adaptivity
loose this important property of consistency.

4 The MISLID algorithm

We introduce MISLID (Misspecified Linear Identification), an algorithm to tackle misspecification in
linear bandit models for fixed-confidence Top-m identification. We describe the algorithm in Section
4.1, while in Section 4.2 we report its sample complexity analysis.

4.1 Algorithm

The pseudocode of MISLID is outlined in Algorithm 1. On the one hand, the design of MISLID
builds on top of recent approaches for constructing pure exploration algorithms from lower bounds
[12, 13, 43, 21]. On the other hand, its main components and their analysis introduce several technical
novelties to deal with misspecified Top-m identification, that might be of independent interest for
other settings. We describe these components below. Let us define Dv := diag(v1, v2, . . . , vK) for
any vector v ∈ RK , and Vt :=

∑t
s=1 φksφ

>
ks

.

Initialization phase. MISLID starts by pulling a deterministic sequence of t0 arms that make the
minimum eigenvalue of the resulting design matrix Vt0 larger than 2L2. Since the rows of A span
Rd, such sequence can be easily found by taking any subset of d arms that span the whole space
(e.g., by computing a barycentric spanner [4]) and pulling them in a round robin fashion until the
desired condition is met. This is required to make the design matrix invertible. While the literature
typically avoid this step by regularizing (e.g., [1]), in our misspecified setting it is crucial not to do
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so to obtain tight concentration results for the estimator of µ, as explained in the next paragraph. See
Appendix D.1 for a discussion of the length t0 of that initialization phase.

Estimation. At each time step t ≥ t0, MISLID maintains an estimator µ̃t of the true bandit model µ.
This is obtained by first computing the empirical mean µ̂t, such that µ̂kt = 1

Nkt

∑t
s=1 1 {ks = k}Xks

s ,
and then projecting it onto the family of realizable modelsM according to the DNt -weighted norm,
i.e., µ̃t := arg minλ∈M ‖λ− µ̂t‖2DNt . Since each λ ∈M can be decomposed into λ = Aθ′ + η′ for
some θ′ ∈ Rd and η′ ∈ RK , this can be solved efficiently as the minimization of a quadratic objective
in K + d variables subject to the linear constraints ‖η′‖∞ ≤ ε and ‖Aθ′ + η′‖∞ ≤M . The second
constraint is only required for the analysis, while it often has a negligible impact in practice. Thus,
we shall drop it in our implementation, which yields two independent optimization problems for the
projection µ̃t = Aθ̃t + η̃t: one for θ̃t, whose solution is available in closed form as the standard
least-squares estimator θ̃t = θ̂t := V −1

t

∑t
s=1X

ks
s φks , and one for η̃t, which is another quadratic

program with K variables (see Appendix D).

A crucial component in the concentration of these estimators, and a key novelty of our work, is the
adoption of an orthogonal parametrization of mean vectors. In particular, we leverage the following
observation: any mean vector µ = Aθ + η can be equivalently represented, at any time t, as
µ = Aθt + ηt, where θt = V −1

t

∑t
s=1 µ

ksφks is the orthogonal projection (according to the design
matrix Vt) of µ onto the feature space and ηt = µ−Aθt is the residual. Then, it is possible to show
that ‖θ̂t − θt‖2Vt is exactly the self-normalized martingale considered in [1] and, thus, it enjoys the
same bound we have in linear bandits with no misspecification (refer to Appendix B). This is an
important advantage over prior works [29, 44] that, in order to concentrate θ̂t to θ, need to inflate
the concentration rate by a factor ε2t, which often makes the bound too large to be practical for
misspecified models with ε� 0. It allows us to also avoid superlinear terms of the form ε2t log(t)
which are present in related works and which would prevent us from deriving good problem-dependent
guarantees.

Stopping rule. MISLID uses the standard stopping rule adopted in most existing algorithms for pure
exploration [19, 12, 36]. What makes it peculiar is the definition of the thresholds βt,δ. MISLID
requires a careful combination of concentration inequalities for (1) linear bandits, to make the
algorithm adapt well to linear models with low ε, and (2) unstructured bandits, to guarantee asymptotic
optimality. The precise definition of βt,δ is shown in the following result.
Lemma 3 (MISLID is δ-correct). Let W−1 be the negative branch of the Lambert W function and let
W (x) = −W−1(−e−x) ≈ x+ log x. For δ ∈ (0, 1), define

βuns
t,δ := 2KW

(
1

2K
log

2e

δ
+

1

2
log(8eK log t)

)
, (3)

βlin
t,δ :=

1

2

(
4
√
tε+

√
2

√
1 + log

1

δ
+

(
1 +

1

log(1/δ)

)
d

2
log

(
1 +

t

2d
log

1

δ

))2

. (4)

Then, for the choice βt,δ := min{βuns
t,δ , β

lin
t,δ}, MISLID is δ-correct.

This result is a simple consequence of two (linear and unstructured) concentration inequalities. See
Appendix F.

Sampling strategy and online learners. The sampling strategy of MISLID aims at achieving the
optimal sample complexity from the lower bound in Theorem 1. As popularized by recent works [12,
13, 43], instead of relying on inefficient max-min oracles to repeatedly solve the optimization problem
of Theorem 1 [17, 21], we compute it incrementally by employing no-regret online learners. At each
step t, the learner L plays a distribution over arms ωt ∈ ∆K and it is updated with a gain function gt
whose precise definition will be specified shortly. Then, MISLID directly samples the next arm to pull
from the distribution ωt, instead of using tracking as in the majority of previously mentioned works.
Similarly to what was recently shown by [40] for regret minimization in linear bandits, sampling will
be crucial in our analysis to reduce dependencies on K and, in particular, to obtain only logarithmic
dependencies in the realizable linear case.

Regarding the choice of L, two important properties are worth mentioning. First, MISLID requires
only a single learner, while existing asymptotically optimal algorithms for pure exploration [12, 13]
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need to allocate one learner for each possible answer. Since the number of answers is
(
K
m

)
, a direct

extension of these algorithms to the Top-m setting would yield an impractical method with exponential
(in K) number of learners, hence space complexity, and possibly sample complexity.4 Second, the
choice of L is highly flexible since any learner that satisfies the following property suffices.

Definition 2 (No-regret learner). A learner L over ∆K is said to be no-regret if, for any t ≥ 1 and
any sequence of gains {gs(ω)}s≤t bounded in absolute value by B ∈ R+, there exists a positive
constant CL(K,B) such that maxw∈∆K

∑t
s=1

(
gs(w)− gs(ws)

)
≤ CL(K,B)

√
t .

Examples of algorithms in this class are Exponential Weights [7] and AdaHedge [15]. The latter shall
be our choice for the implementation since it does not use B as a parameter but adapts to it, and thus
does not suffer from a possibly loose bound on B.

Optimistic gains. Finally, we need to specify how the gains gt are computed. Clearly, if
µ were known, one would directly use gt : ω 7→ infλ∈Λm(µ) ‖µ − λ‖2Dω . Since µ is un-
known and must be estimated, we set gt(ω) to an optimistic proxy for that quantity. In
particular, we choose a sequence of bonuses {ckt }t≥t0,k∈[K] such that, with high probabil-

ity, gt(ωt) :=
∑
k∈[K] ω

k
t

(
|µ̃kt−1 − λkt |+

√
ckt−1

)2

≥ infΛ∈λm(µ) ‖µ − λ‖2Dωt , for λt :=

arg minλ∈Λm(µ̃t−1) ‖µ̃t−1 − λ‖2Dωt . As for the stopping thresholds, we construct ckt by a care-
ful combination of structured and unstructured concentration bounds:

ckt := min

{
8(LK + 1)2ε2 + 4αlin

t2 ‖φk‖2V −1
t
,

2αuns
t2

Nk
t

, 4M2

}
,

where αuns
t := βuns

t,1/(5t3) and αlin
t := log(5t2) + d log(1 + t/(2d)). We show in Appendix F that

this choice of ckt suffices to guarantee optimism with high probability.

4.2 Sample complexity

Theorem 2. MISLID has expected sample complexity Eµ[τδ] ≤ T0(δ) + 2, where T0(δ) is the
solution to the equation in t

βt,δ ≥ tHµ + Ô
(

min{tK2ε2+d
√
t`t,
√
Kt`t}; logK

√
t;
√

min{tK2ε2+d`t,K`t} log(1/δ)
)
,

(5)

where `t := log t, Hµ is the inverse complexity appearing in the lower bound (see Equation 2), and
Ô(a; b; c) represent a sum of terms, each of which is O of one of the expressions shown.

See Appendix F for the proof. Since βuns
t,δ ≈ log(1/δ) for small δ, T0(δ) = H−1

µ log(1/δ) +

Cµo(log(1/δ)), where Cµ is a problem-dependent constant. Then lim infδ→0 Eµ[τδ]/ log(1/δ) =
lim infδ→0 T0(δ)/ log(1/δ) = H−1

µ and thus the upper bound matches the lower bound in that limit:
MISLID is asymptotically optimal. The only polynomial factors in K are in a minimum with a term
that depends on ε. In the linear setting, when ε = 0, we have only logarithmic (and no polynomial)
dependence on the number of arms, which is on par with the state of the art [40, 21, 27]. Moreover,
the bound exhibits an adaptation to the value of ε. If ε is small, then the minimums in βt,δ and in the
inequality (5) are equal to the “linear” values which involve Kε and d instead of K. As ε grows, the
upper bound transitions to terms matching the optimal unstructured bound.

Decoupling the stopping and sampling analyses. Our analysis decomposes into two parts: first, a
result on the stopping rule, then, a discussion of the sampling rule. The algorithm is shown to verify
that, under a favorable event, if it does not stop at time t,

2βt,δ ≥ inf
λ∈Λm(µ)

‖µ− λ‖2DNt −O(
√
t) ≥ 2tHµ −O(

√
t) .

The sample complexity result is a consequence of that bound on t. The first inequality is due
solely to the stopping rule, and the second one only to the sampling mechanism. The expression

4The fact that the optimization problem of the lower bound decomposes into m(K −m) minimizations does
not reduce the number of possible answers, which is still combinatorial in K.
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infλ∈Λm(µ) ‖µ− λ‖
2
DNt

does not feature any variable specific to the algorithm: we can combine any
stopping rule and any sampling rule, as long as they each verify the corresponding inequality.

A more aggressive optimism. The optimistic gains that we have chosen, gt(ω) =∑
k∈[K] ω

k(|µ̃kt−1 − λkt | +
√
ckt−1)2, are tuned to ensure asymptotic optimality (with a factor 1

in the leading term). If we instead accept to be asymptotically optimal up to a factor 2, we can use the
gains gt(ω) =

∑
k∈[K] ω

k
(
(µ̃kt−1 − λkt )2 + ckt−1

)
. When using those, the learner takes decisions

which are much closer to those it would take if using the empirical gains
∑
k∈[K] ω

k(µ̃kt−1−λkt )2 and
the theoretical bound, while worse in the leading factor, has better lower order terms. The aggressive
optimism sometimes has significantly better practical performance (see Experiment (C) in Figure 1).

5 Experimental evaluation

Since our algorithm is the first to apply to Top-m identification in misspecified linear models, we
compare it against an efficient linear algorithm, LinGapE [42] (that is, its extension to Top-m as
described in [35], which coincides with LinGapE for m = 1), and an unstructured one, LUCB [23].
In all experiments, we consider δ = 5%. 5 For each algorithm, we show boxplots reporting
the average sample complexity on the y-axis, and the error frequency δ̂ across 500 (resp. 100)
repetitions for simulated (resp. real-life) instances rounding up to the 5th decimal place. Individual
outcomes are shown as gray dots. It has frequently been noted in the fixed-confidence literature that
stopping thresholds which guarantee δ-correctness tend to be too conservative and to yield empirical
error frequencies that are actually much lower than δ. Moreover, these thresholds are different
from linear to unstructured models. In order to ensure a good trade-off between performance and
computing speed, and fairness between tested algorithms, we use a heuristic value for the stopping
rule βt,δ := ln((1 + ln(t + 1))/δ) unless otherwise specified. For each experiment, we report the
number of arms (K), the dimension of features (d), the size of the answer (m), the misspecification
(ε) and the gap between the mth and (m + 1)th best arms (∆ := maxma∈[K] µ

a − maxm+1
b∈[K] µ

b).
The computational resources used, data licenses and further experimental details can be found in
Appendix G.

(A) Simulated misspecified instances. (K = 10, d = 5, m = 3, ε ∈ {0, 5}, ∆ ≈ 0.28) First, we
fix a linear instance µ := Aθ by randomly sampling the values of θ ∈ Rd and A ∈ RK×d from a
zero-mean Gaussian distribution, and renormalizing them by their respective `∞ norm. Then, for
ε ∈ {0, 5}, we build a misspecified linear instance µε = Aθ + ηε, such that, if (4) is the index of the
fourth best arm, ∀k 6= (4), ηkε = 0, and η(4)

ε = ε. Note that any value of ε < ∆ does not switch the
third and fourth arms in the set of best arms of µε, contrary to values greater than ∆. The greater
ε is, the more different the answers from the linear and misspecified models are. This experiment
was inspired by [20], where a similar model is used to prove a lower bound in the setting of regret
minimization. See the leftmost two plots on Figure 1. As expected, LUCB is always δ-correct, but
suffers from a significantly larger sample complexity than its structured counterparts. Moreover,
LinGapE does not preserve the δ-correctness under large misspecification level ε = 5 (with error rate
δ̂ = 0.96), which illustrates the effect of ε on the answer set. Note that it is not due to the choice of
stopping threshold, as running it with the theoretically-supported threshold derived in [1] also yields
an empirical error rate δ̂ = 1. MISLID proves to be competitive against LinGapE. Note that the case
ε = 0 is a perfectly linear instance. See Table 2 in Appendix for numerical results for algorithms
LinGapE and MISLID.

(B) Discrepancy between user-selected ε and true ‖η‖. (K = 15, d = 8, m = 3, ε ∈ {0.5, 1, 2},
∆ ≈ 0.4) MISLID crucially relies on a user-provided upper bound on the scale of deviation from
linearity. We test its robustness against perturbations to the input value ε compared to the value
ε? := ‖η‖∞ in the misspecified model µ := Aθ + η. Values are sampled randomly for θ,A, η, and
the associated vectors are normalized by their `∞ norm (for η, by ‖η‖∞/ε?), where ε? = 1 > ∆ is
the true deviation to linearity. The results, shown in the third plot of Figure 1, display the behavior
predicted by Lemma 2. Indeed, as the user-provided value ε increases, the associated sample
complexity increases as well. The plateau in sample complexity when ε is large enough is noticeable.
Cases ε ∈ {1, 2} display a sample complexity close to that of unstructured bandits.

5All the code and scripts are available at https://github.com/clreda/misspecified-top-m.
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Figure 1: Experiment (A) for ε ∈ {0, 5} (first two from the left). Experiment (B) with ε ∈ {0.5, 1, 2}.
Experiment (C) to compare different optimistic gains (right).

Figure 2: Experiment (D) for drug repurposing in epilepsy (left). Experiment (E) for online recom-
mendation.

(C) Comparing different optimisms. (K = 15, d = 8, m = 3, ε = 1, ∆ ≈ 0.4) We use the same
bandit model as in Experiment (B), and use ε = ε? = 1. We compare the aggressive optimism
described in Section 4.2, no optimism (that is, ∀k ∈ [K],∀t > 0, ckt = 0), and the default optimistic
gains given in Section 4.1. See the rightmost plot in Figure 1. The algorithm with no optimism is
denoted “empirical”, and is significantly faster than the optimistic variants.

(D) Application to drug repurposing. (K = 10, d = 5, m = 5, ε̂ ≈ 0.02, ∆ ≈ 0.062) We use
the drug repurposing problem for epilepsy proposed by [35] to investigate the practicality of our
method. In order to speed up LUCB, we consider the PAC version of Top-m identification, choosing
as stopping threshold 0.06 ≈ ∆, such that the algorithm stops earlier while returning the exact set
of m best arms. Following [34, Appendix F.4], we extract a linear model from the data by fitting a
neural network and taking the features learned in the last layer. We compute ε as the `∞ norm of the
difference between the predictions of this linear model and the average rewards from the data, which
yields ε̂ = 0.02. Since the misspecification is way below the minimum gap, and the linear model thus
accurately fits the data, the results (leftmost plot in Figure 2) show that MisLid and LinGapE perform
comparably on this instance. Moreover, both are an order of magnitude better than an unstructured
bandit algorithm sample complexity-wise. Please refer to Table 3 in Appendix for numerical results
for LinGapE and MISLID.

(E) Application to a larger instance of online recommendation. (K = 103, d = 8, m = 4,
ε̂ ≈ 0.206, ∆ ≈ 0.022) As in Experiment (D), a linear representation is extracted for an instance
of online recommendation of music artists to users (Last.fm dataset [6]). We compute a proxy
for ε and feed the value ∆ to the stopping threshold in LUCB in a similar fashion. Differently
from Experiment (D), this yields a misspecification that is much larger than the minimum gap. To
improve performance on these instances, we modified MISLID. To reduce the sample complexity,
we use empirical gains instead of optimism. To reduce the computational complexity, we check
the stopping rule infrequently (on a geometric grid) and use only a random subset of arms in each
round to compute the sampling rule (see Appendix G for details and an empirical comparison to
the theoretically supported MISLID). See the rightmost plot in Figure 2. This plot particularly
illustrates our introductory claim: an unstructured bandit algorithm is δ-correct, but too slow in
practice for misspecified instances, whereas the guarantee on correctness for a linear bandit does
not hold anymore on these models with large misspecification. Numerical results for LinGapE and
MISLID are listed in Table 3 in Appendix.
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6 Discussion

We have designed the first algorithm to tackle misspecification in fixed-confidence Top-m identifica-
tion, which has applications in online recommendation. However, the algorithm relies exclusively on
the features provided in the input data, and as such might be subjected to bias and lack of fairness in
its recommendation, depending on the dataset. The proposed algorithm can be applied to misspecified
models which deviate from linearity (i.e., ε > 0), encompassing unstructured settings (for large
values of ε) and linear models (i.e., ε = 0).

Our tests on variants of our algorithm suggest that the optimistic estimates have a big influence on
the sample complexity. Removing the optimism completely and using the empirical gains leads to
the best performance. We conjecture that other components of the algorithm like the learner are
conservative enough for the optimism to be superfluous. The main limitation of our method is its
computational complexity: at each round, O(Km) convex optimization problems need to be solved
for both the sampling and stopping rules, which can be expensive if the number of arms is large.
However, the “interesting” arms are much less numerous and we observed empirically that the sample
complexity is not increased significantly if we consider only a few arms. In general, theoretically
supported methods to replace the alternative set by computationally simpler approximations would
greatly help in reducing the computational cost of our algorithm.

Since the sampling of our algorithm is designed to minimize a lower bound, we can expect it to suffer
from the same shortcomings as that bound. It is known that the bound in question does not capture
some lower order (in 1/δ) effects, in particular those due to the multiple-hypothesis nature of the
test we perform, which can be very large for small times. Work to take these effects into account to
design algorithms has started recently [24, 25, 41] and we believe that it is an essential avenue for
further improvements in misspecified linear identification.
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A Notation

Table 1: Notation table

Name Description

d ∈ N∗ Dimension of the feature vectors
K ∈ N∗ Number of arms
[K] := {1, 2, . . . ,K} Enumeration
m ∈ [K − 1] Number of best arms to return
1{c} Kronecker’s symbol, equal to 1 iff. claim c is true
ε ∈ R∗+ Upper bound on the `∞ norm of the deviation to linearity
M ∈ R∗+ Upper bound on the `∞ norm on the mean vector
L ∈ R∗+ Upper bound on the `2 norm on the arm feature vectors
δ ∈ (0, 1) Upper bound for the probability of error in identification
ek ∈ Rk, k ∈ N kth vector of the canonical basis of Rk
∆K = {p ∈ [0, 1]K |

∑K
k=1 p

k = 1} Set of probability distributions over finite set of size K

φk ∈ Rd, k ∈ [K] Feature vector for arm k
A = [φ1, φ2, . . . , φK ]> ∈ RK×d Feature matrix of arm contexts
∆K = {p ∈ [0, 1]K |

∑K
k=1 p

k = 1} Set of probability distributions on finite set of size K
Vω :=

∑
k≤K ωkφkφ

>
k , ω ∈ ∆K Design matrix associated with ω

Vt :=
∑
s≤t φksφ

>
ks
, t > 0 Design matrix at time t

M⊂ RK Set of realizable models:
{µ ∈ RK | ∃θ ∈ Rd, η ∈ RK : µ = Aθ + η, ‖µ‖∞ ≤M, ‖η‖∞ ≤ ε}

µ ∈M True mean vector: µ = Aθ + η
Nk
t ∈ N, k ∈ [K], t > 0 Number of times arm k has been sampled until time t included

Nt = [N1
t , N

2
t , . . . , N

K
t ]> ∈ NK Vector of numbers of samplings for each arm at time t included

DN ∈ RK×K , N ∈ RK Diagonal matrix with coefficients N1, N2, . . . , NK

ks, s > 0 Arm sampled at time s
Xk
s , s > 0, k ∈ [K] Reward observed at time s from arm k

τδ, δ ∈ (0, 1) Stopping time under δ-correctness
Eτδ Event on δ-correctness: Eτδ :=

{
Ŝm ∈ Sm(µ)

}
µ̂t ∈ RK , t > 0 Empirical mean vector at time t: µ̂at := 1

Nat

∑
s≤tX

a
s 1{ks = a}

µ̃t ∈ RK , t > 0 Projection of µ̂t onto setM at time t
Ŝm ⊆ [K],m ∈ [K − 1] Answer to Top-m identification as returned by the algorithm

S?(µ) ⊆ [K], µ ∈ RK
Set of best arms compared to the mth greatest mean:
S?(µ) :=

{
k ∈ [K] | µk ≥ maxmi∈[K] µ

i
}

Sm(µ), µ ∈M,m ∈ [K − 1]
Set of all subsets of size m in S?(µ):
Sm(µ) := {S ⊆ S?(µ) | |S| = m}

Λm(µ), µ ∈M Set of alternative models to model µ:
Λm(µ) := {λ ∈M | Sm(λ) ∩ Sm(µ) = ∅}

Hµ, µ ∈M
Inverse complexity constant:
Hµ := supω∈∆K

infλ∈Λm(µ)

∑
k∈[K] ω

k KL(µk, λk)

KL Kullback-Leibler divergence
kl Binary relative enthropy
W−1 Negative branch of the Lambert W function
W : x 7→ −W−1(−e−x)

L Learner algorithm
gt(ω), ω ∈ RK , t > 0 Gains fed to the learner at time t

ckt , k ∈ [K], t > 0
Optimistic bonus, such that (µ̃kt − µk)2 ≤ ckt for any k ∈ [K]
and large enough t > 0, with high probability
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Please refer to Table 1. Moreover, if ω ∈ RK , at t > 0, we also introduce the following notation
related to orthogonal parameterizations (see Appendix B):

• Aω := D
1/2
ω A ∈ RK×d.

• Pω := Aω(A>ωAω)†A>ω ∈ RK×K .
• Rω := IK − Pω ∈ RK×K , where IK is the identity matrix of dimension K.
• Vt = A>NtANt = A>DNtA =

∑
k∈[K]N

k
t φkφ

>
k =

∑
s≤t φksφ

>
ks

.

• θ̂t := (A>NtANt)
†A>NtD

1/2
Nt
µ̂t, which is the standard least-squares estimator, where † de-

notes the matrix pseudo-inverse.

• θ̃t and η̃t, parameters for the linear and misspecification parts of the projection µ̃t of
empirical mean µ̂t onto setM, such that µ̃t = Aθ̃t + η̃t.

• θt := (A>NtANt)
†A>NtD

1/2
Nt
µ, such that Aθt = D

−1/2
Nt

PNtD
1/2
Nt
µ if DNt is invertible. θt is

the linear part of the orthogonal parametrization of µ at time t (see paragraph “Estimation”
in Section 4.1 in the main paper).

• ηt := µ−Aθt, equal to D−1/2
Nt

RNtD
1/2
Nt
µ if DNt is invertible, is the misspecification part

of the orthogonal parametrization of model µ at time t.
• St := DNt(µ̂t − µ) ∈ RK .

B The orthogonal parameterization and its properties

Throughout the appendix, we shall adopt an orthogonal parametrization for mean vectors in the
modelM. In particular, we leverage the following observation: any mean vector µ = Aθ + η can be
equivalently represented, at any time t, as µ = Aθt + ηt, where

θt := (A>NtANt)
†A>NtD

1/2
Nt
µ = V −1

t

t∑
s=1

µksφks

is the orthogonal projection (according to the design matrix Vt) of µ onto the feature space and
ηt = µ−Aθt is the residual. We now introduce some important properties of this parameterization.

Projecting the empirical mean When we use the orthogonal projection described above on the
empirical mean µ̂t, the resulting linear part is exactly the standard least squares estimator. That is,

θ̂t := (A>NtANt)
†A>NtD

1/2
Nt
µ̂t

Projection matrices For ω ∈ RK≥0, let us define the projection matrix Pω := Aω(A>ωAω)†A>ω ∈
RK×K and the residual matrix Rω := IK−Pω ∈ RK×K . It is easy to check that both are orthogonal
projection matrices, i.e., they are symmetric and idempotent (P 2

ω = Pω and R2
ω = Rω). Moreover,

PωRω = RωPω = 0. Equipped with these matrices, we have the following useful identities:

ANtθt = PNtD
1/2
Nt
µ = PNtD

1/2
Nt
Aθt,

D
1/2
Nt
ηt = RNtD

1/2
Nt
µ = RNtD

1/2
Nt
ηt.

Distances between mean vectors in the model Often we will need to compute quantities of the
form ‖λ− µ‖2DNt for different mean vectors in the model. The following lemma shows how to
leverage their orthogonal decomposition to split the norm into a distance between their linear parts
and a distance between their deviation from linearity.
Lemma 4 (Linear/non-linear decomposition). For any λ ∈M and t ≥ 1, there exist θ′t ∈ Rd and
η′t ∈ RK such that λ = Aθ′t + η′t and

‖λ− µ‖2DNt = ‖θ′t − θt‖
2
Vt

+
∥∥∥RNtD1/2

Nt
η′t −RNtD

1/2
Nt
ηt

∥∥∥2

2
,

‖λ− µ̂t‖2DNt =
∥∥∥θ′t − θ̂t∥∥∥2

Vt
+
∥∥∥RNtD1/2

Nt
η′t −RNtD

1/2
Nt
µ̂t

∥∥∥2

2
.
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Proof. By leveraging the properties of the orthogonal decomposition and of the matrices PNt , RNt
(in particular, PNtRNt = 0 and PNt +RNt = IK),

‖λ− µ‖2DNt = ‖PNtDNt(λ− µ) +RNtDNt(λ− µ)‖22

=
∥∥∥PNtD1/2

Nt
λ− PNtD

1/2
Nt
µ
∥∥∥2

2
+
∥∥∥RNtD1/2

Nt
λ−RNtD

1/2
Nt
µ
∥∥∥2

2

= ‖PNtANtθ′t − PNtANtθt‖
2
2 +

∥∥∥RNtD1/2
Nt
η′t −RNtD

1/2
Nt
ηt

∥∥∥2

2

= ‖θ′t − θt‖
2
Vt

+
∥∥∥RNtD1/2

Nt
η′t −RNtD

1/2
Nt
ηt

∥∥∥2

2
.

The second result can be shown analogously by noting that the projection of µ̂t onto the linear space
spanned by A is exactly the least-squares estimator θ̂t.

The non-linear part of orthogonal parameterizations When applying the orthogonal parameteri-
zation to a mean vector µ = Aθ + η with ‖η‖∞ ≤ ε, while we get some crucial properties for the
linear part θt (like concentration, see Appendix E), it may be that the resulting non-linear part ηt is
such that ‖ηt‖∞ > ε. However, the following result shows that ηt cannot be too distant from η and,
in particular, that ‖ηt‖∞ still decreases with ε.

Lemma 5 (Maximum deviation). Let t any time step such that Vt is invertible. Consider the
orthogonal parameterization (θt, ηt) for µ = Aθ + η with ‖η‖∞ ≤ ε. Then,

‖ηt‖∞ ≤ (LK + 1)ε.

Proof. By definition of the orthogonal parameterization, it is easy to see that ηt − η = A(θ − θt).
Moreover,

θt := (A>NtANt)
†A>NtD

1/2
Nt
µ = (A>NtANt)

†A>NtD
1/2
Nt

(Aθ + η)

= θ + (A>NtANt)
†A>NtD

1/2
Nt
η = θ + V −1

t A>DNtη = θ + V −1
t

∑
k∈[K]

Nk
t φkη

k.

Therefore, for any arm k ∈ [K]:

∣∣ηkt − ηk∣∣ =

∣∣∣∣∣∣φ>k V −1
t

∑
j∈[K]

N j
t φjη

j

∣∣∣∣∣∣
(a)

≤ ‖φk‖2

∥∥∥∥∥∥V −1
t

∑
j∈[K]

N j
t φjη

j

∥∥∥∥∥∥
2

= ‖φk‖2

∥∥∥∥∥∥
∑
j∈[K]

N j
t φjη

j

∥∥∥∥∥∥
V −2
t

(b)

≤ ‖φk‖2ε
∑
j∈[K]

N j
t ‖φj‖V −2

t

(c)

≤ ‖φk‖2εK,

where (a) is from Cauchy-Schwartz inequality, (b) uses the sub-additivity of the norm, and (c) uses
that, for each j ∈ [K], Vt =

∑
q∈[K]N

q
t φqφ

>
q � N j

t φjφ
>
j (in the sense of the partial order on

positive definite matrices). Using that features are bounded by L in `2-norm,

‖ηt − η‖∞ ≤ LKε,

from which the result easily follows.

The linear parts of different parametrizations We consider mainly two parametrizations of µ:
the orthogonal parametrization with respect to Nt and another (θ, η) for which ‖η‖∞ ≤ ε. We will
now relate the linear parts of these two parametrizations.

Lemma 6. Let t any time step such that Vt is invertible. Consider the orthogonal parameterization
(θt, ηt) for µ = Aθ + η with ‖η‖∞ ≤ ε. Then

‖θt − θ‖Vt ≤
√
tε .
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Proof. We use the expression θt = θ+ V −1
t A>DNtη derived in the last paragraph, the fact that PNt

is a projection and lastly ‖η‖∞ ≤ ε:

‖θt − θ‖Vt =
∥∥V −1

t A>DNtη
∥∥
Vt

=

√
η>DNtAV

−1
t A>DNtη

=
∥∥∥D1/2

Nt
η
∥∥∥
PNt

≤
∥∥∥D1/2

Nt
η
∥∥∥ = ‖η‖DNt ≤

√
tε .

C Tractable lower bound for the general Top-m identification problem

We present here the proofs for the claims made in the main paper in Section 3.

C.1 Proof of Lemma 1 and Theorem 1

Lemma. (Lemma 1 in the main paper) ∀µ, λ ∈ RKs.t. |S?(µ)| = m,

Sm(λ) ∩ Sm(µ) = ∅ ⇔ ∃i /∈ S?(µ) ∃j ∈ S?(µ), λi > λj .

Proof. To see this, first suppose that the condition on the right holds. That is, there exist (i, j) ∈
(S?(µ))

c × S?(µ), where |S?(µ)| = m, such that λi > λj . Then, we have two cases. If j does not
belong to any of the top-m sets of λ, that is, j 6∈ S?(λ), the result follows trivially since j belongs
to the top-m set of µ S?(µ) and Sm(µ) = {S?(µ)}. If, on the other hand, j belongs to at least one
top-m set of λ, that is, j ∈ S?(λ), then i ∈ S?(λ) as well since λi > λj . But i 6∈ S?(µ), which
proves that Sm(λ)∩Sm(µ) = ∅. Suppose now that Sm(λ)∩Sm(µ) = ∅ holds and, by contradiction,
that ∀i /∈ S?(µ) ∀j ∈ S?(µ), λi ≤ λj . This trivially implies that S?(µ) is a valid top-m set of λ.
That is, Sm(λ) ∩ Sm(µ) 6= ∅ and we have our desired contradiction.

Theorem. (Theorem 1 in the main paper) For any δ ≤ 1/2, for any δ-correct algorithm A onM, for
any bandit instance µ ∈M such that |S?(µ)| = m, the following lower bound holds on the stopping
time τδ of A on instance µ:

EA
µ [τδ] ≥

 sup
ω∈∆K

min
i/∈S?(µ)

min
j∈S?(µ)

inf
λ∈M:λi>λj

∑
k∈[K]

ωkKL(µk, λk)

−1

log

(
1

2.4δ

)
.

Proof. We start from Equation 2 (main paper), and using Lemma 1, we can rewrite the inf operator.
That yields the desired expression.

C.2 Proof of Lemma 2

Let Λm(µ,M′) ⊆ M′ denote the set of alternative models to µ ∈ RK in the modelM′ (which
might be different fromM). Consider the lower bound problem

Hµ(M′) := sup
ω∈∆K

inf
λ∈Λm(µ,M′)

∑
k∈[K]

ωk KL(µk, λk) .

A pair of equilibrium strategies for that problem is composed of ω ∈ ∆K and q ∈ P(Λm(µ,M′))
(which is the set of probability distributions on Λm(µ,M′)). Let QM′ be the set of equilibrium
distributions. For q ∈ QM′ , let Λq ⊆ Λm(µ,M′) be its support.

Lemma 7. LetM1,M2 be models such thatM1 ⊆ M2. For any q ∈ QM2
, if Λq ⊆ M1, then

Hµ(M1) = Hµ(M2).
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Proof. First, we haveHµ(M1) ≥ Hµ(M2) sinceM1 ⊆M2. If Λq ⊆M1, then using successively
q ∈ P(Λ(µ,M1)) and q ∈ QM2 ,

Hµ(M1) = sup
ω∈∆K

inf
λ∈Λm(µ,M1)

∑
k∈[K]

ωk KL(µk, λk)

≤ sup
ω∈∆K

Eλ∼q
∑
k∈[K]

ωk KL(µk, λk) = Hµ(M2) .

For λ ∈ RK , let |λ|ε = inf{‖η‖∞ | ∃θ ∈ Rd, λ = Aθ + η}. Let us now considerM as defined in
Equation 1 in the main paper, with misspecification upper bound ε ≥ 0.
Lemma 8. Let M′ ⊆ {λ ∈ RK | ‖λ‖∞ ≤ M} be a set of models such that M ⊆ M′ and
ε > εµ(M′) := infq∈QM′ supλ∈Λq |λ|ε.

6 Then Hµ(M) = Hµ(M′).

Proof. If ε > infq∈QM′ supλ∈Λq |λ|ε, then there exists q ∈ QM′ such that for all λ ∈ Λq, |λ|ε ≤ ε.
Hence Λq ⊆M and we apply Lemma 7.

For any modelM′, there exist equilibrium strategies for which q is supported on K points [11].
Hence εµ(M′) is always finite.

LetMu := RK be the set of unstructured models, and for a, b ∈ R,M[a,b] := {λ ∈ RK | ∀k ∈
[K], λk ∈ [a, b]} be the set of models that verify a boundedness assumption.
Lemma 9. Let µ(K) := minj µ

j and µ(1) := maxj µ
j . For all µ ∈ RK , Hµ(Mu) =

Hµ(M[µ(K),µ(1)]) .

Proof. Let us consider any λ ∈ Λm(µ,Mu), such that there exists k ∈ [K] with λk 6∈ [µ(K), µ(1)].
Let us define λ̃ as the projection of λ onto [µ(K), µ(1)]K . Then λ̃ satisfies λ̃ ∈ Λm(µ,M[µ(K),µ(1)]) ⊆
Λm(µ,Mu), and by monotonicity of the Kullback-Leibler divergence in one-parameter exponential
families, for all k ∈ [K], KL(µk, λ̃k) ≤ KL(µk, λk). Thus for all ω ∈ ∆K∑

k∈[K]

ωk KL(µk, λ̃k) ≤
∑
k∈[K]

ωk KL(µk, λk) .

For q ∈ QMu , let q̃ be the distribution in which every support point λ of q is transported onto its
projection λ̃. Then for all ω ∈ 4K ,

Eλ∼q̃
∑
k∈[K]

ωk KL(µk, λk) ≤ Eλ∼q
∑
k∈[K]

ωk KL(µk, λk) ,

from which we obtain that q̃ has lower objective value than q. Since q ∈ QMu
, then q̃ ∈ QMu

as
well. By construction, its support verifies Λq̃ ⊆M[µ(K),µ(1)]. We conclude with Lemma 7.

Applying Lemma 8 toM[µ(K),µ(1)], together with Lemma 9, we finally obtain Lemma 2 from the
main paper, restated here using the notations we introduced:
Lemma. If ε > µ(1) − µ(K) then Hµ(M) = Hµ(M[µ(K),µ(1)]) = Hµ(Mu) .

C.3 Computing the closest alternative

In order to compute the closest alternative to µ ∈ M in the half-space {λ ∈ M | λk ≥ λj}, the
optimization problem we need to solve is

inf
θ,η

1

2
‖Aθ + η − µ‖2DNt

s.t (ek − ej)>(Aθ + η) ≥ 0

‖Aθ + η‖∞ ≤M
‖η‖∞ ≤ ε .

6Note that indeed quantity εµ(M′) depends on µ, since QM′ is defined with respect to µ.
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In our implementation, and thus in the remainder of this section, we shall drop the boundedness
constraint ‖Aθ + η‖∞ ≤M which has typically a negligible effect on the algorithm’s behavior.

Quadratic problem We express the problem as function of the variable (θ>, η>)>. Up to the
constant term, this problem is equivalent to

inf
θ,η

(
θ
η

)>(
A>DNA A>DN

DNA DN

)(
θ
η

)
−
(
θ
η

)>(
A>DNµ
DNµ

)
s.t.

(
A>(ej − ek)
ej − ek

)>(
θ
η

)
≤ 0

‖η‖∞ ≤ ε .
In the code, we directly solve the problem under this form using a quadratic problem solver.

Computing the closest alternative We now detail the form of the solutions analytically (as much
as possible). Let j, k ∈ [K], j 6= k. We want to compute the closest alternative in the half-space
{λ ∈M | λk ≥ λj} to µ ∈ RK . That is, we compute the solution to

inf
θ,η

1

2
‖Aθ + η − µ‖2DNt

s.t (ek − ej)>(Aθ + η) ≥ 0

η ∈ C
Here, to highlight the generality of the following derivation, we replace the `∞ norm constraint on η
with any convex set C. To simplify the notation, we denote by DN the diagonal matrix with Nt on
the diagonal and u := ej − ek. The problem above is then written as

inf
θ,η

1

2

∥∥∥D1/2
N Aθ +D

1/2
N η −D1/2

N µ
∥∥∥2

2

s.t u>(Aθ + η) ≤ 0

η ∈ C

Assumption 1. At t0, A>DNt0
A = Vt0 is invertible.

See paragraph “Initialization phase” in Subsection 4.1 to see how that assumption is ensured in
practice. We now suppose that t ≥ t0. Minimizing first in θ at fixed η, we solve the problem

inf
θ

1

2

∥∥∥D1/2
N Aθ +D

1/2
N η −D1/2

N µ
∥∥∥2

2

s.t u>(Aθ + η) ≤ 0

The Lagrangian is L(θ, α) = 1
2

∥∥∥D1/2
N Aθ +D

1/2
N η −D1/2

N µ
∥∥∥2

2
+ αu>(η + Aθ) with α ≥ 0. We

get that at the optimal θ,

A>DN (Aθ + η − µ) = −αA>u =⇒ θ = (A>DNA)−1A>(−αu+DNµ−DNη) .

At the optimum, from the KKT conditions, either α = 0 and u>(Aθ + η) ≤ 0, or α > 0 and
u>Aθ = −u>η.

Case α = 0. If α = 0, then θ = (A>DNA)−1A>DN (µ − η), D1/2
N (Aθ + η − µ) =

(D
1/2
N A(A>DNA)−1A>D

1/2
N − I)D

1/2
N (µ − η) and the value of the optimization problem is the

norm of this quantity.

Let PN = D
1/2
N A(A>DNA)−1A>D

1/2
N . Note: it is symmetric and idempotent (P 2

N = PN ),
meaning that it is an orthogonal projection. Let RN = I − PN be the residual matrix. We also have
R2
N = RN . Furthermore, PNRN = RNPN = 0.

With these notations, D1/2
N Aθ = PND

1/2
N (µ − η), D1/2

N (Aθ + η − µ) = −RND1/2
N (µ − η)

and the value of the optimization problem is 1
2‖RND

1/2
N η − RND

1/2
N µ‖2. The case α = 0 is
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possible only if the constraint is then satisfied, that is if u>(Aθ + η) ≤ 0 at the optimum, i.e. if
u>(A>(A>DNA)−1A>DNµ + (I − A>(A>DNA)−1A>DN )η) ≤ 0. The problem we need to
solve in that case is

min
ηN

1

2

∥∥∥RND1/2
N η −RND1/2

N µ
∥∥∥2

2

s.t. u>(I −A>(A>DNA)−1A>DN )η ≤ −u>A>(A>DNA)−1A>DNµ

η ∈ C
If C is convex this is a convex optimization problem. It can happen that there is no feasible point,
which simply means that there is no solution with α = 0.

Case α 6= 0. Consider now the case α > 0. We get

u>Aθ = −u>η
=⇒ u>A(A>DNA)−1A>(−αu+DNµ−DNη) = −u>η
=⇒ αu>A(A>DNA)−1A>u = u>A(A>DNA)−1A>DN (µ− η) + u>η

Then

D
1/2
N Aθ = D

1/2
N A(A>DNA)−1A>(−αu+DNµ−DNη)

= −αD1/2
N A(A>DNA)−1A>u+ PND

1/2
N (µ− η)

D
1/2
N (Aθ + η − µ) = −αD1/2

N A(A>DNA)−1A>u−RND1/2
N (µ− η)

= −u
>A(A>DNA)−1A>DN (µ− η) + u>η

u>A(A>DNA)−1A>u
D

1/2
N A(A>DNA)−1A>u

−RND1/2
N (µ− η)

We can now see thatD1/2
N (Aθ+η−µ) is linear in η and the objective value 1

2

∥∥∥D1/2
N (Aθ + η − µ)

∥∥∥2

is quadratic in η. We need to solve a quadratic optimization problem under the constraint
η ∈ C. Let’s now simplify that optimization problem. We first show that the cross

term in 1
2

∥∥∥D1/2
N (Aθ + η − µ)

∥∥∥2

2
= 1

2

∥∥∥−αD1/2
N A(A>DNA)−1A>u−RND1/2

N (µ− η)
∥∥∥2

2
is

zero. Note: if DN is invertible, then 1
2

∥∥∥−αD1/2
N A(A>DNA)−1A>u−RND1/2

N (µ− η)
∥∥∥2

2
=

1
2

∥∥∥−αPND−1/2
N u−RND1/2

N (µ− η)
∥∥∥2

2
and the fact that the cross term is 0 is a simple consequence

of PNRN = RNPN = 0.

(RND
1/2
N (µ− η))>D

1/2
N A(A>DNA)−1A>u

= ((I − PN )D
1/2
N (µ− η))>D

1/2
N A(A>DNA)−1A>u

= (µ− η)>DNA(A>DNA)−1A>u− (µ− η)>D
1/2
N PND

1/2
N A(A>DNA)−1A>u

= (µ− η)>DNA(A>DNA)−1A>u− (µ− η)>DNA(A>DNA)−1A>DNA(A>DNA)−1A>u

= 0 .

Now that we established that the cross term is zero, the objective value is simply the sum of two
square terms,

1

2

∥∥∥D1/2
N (Aθ + η − µ)

∥∥∥2

2
=

1

2
α2u>A(A>DNA)−1A>u+

1

2
(µ− η)>D

1/2
N RND

1/2
N (µ− η)

=
1

2

(
u>A(A>DNA)−1A>DN (µ− η) + u>η

)2
u>A(A>DNA)−1A>u

+
1

2
(µ− η)>D

1/2
N RND

1/2
N (µ− η)

=
1

2
η>Qη + q>η + C
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where C doesn’t depend on η and

Q = D
1/2
N RND

1/2
N

+
1

u>A(A>DNA)−1A>u

(
(I −DNA(A>DNA)−1A>)u

) (
(I −DNA(A>DNA)−1A>)u

)>
q =

u>A(A>DNA)−1A>DNµ

u>A(A>DNA)−1A>u
(I −DNA(A>DNA)−1A>)u−D1/2

N RND
1/2
N µ .

Again if DN is invertible these have simpler expressions:

Q = D
1/2
N

(
RN +

1

u>D
−1/2
N PND

−1/2
N u

(RND
−1/2
N u)(RND

−1/2
N u)>

)
D

1/2
N

q = D
1/2
N RN

(
u>D

−1/2
N PND

1/2
N µ

u>D
−1/2
N PND

−1/2
N u

D
−1/2
N u−D1/2

N µ

)
.

We are looking for a solution to

arg min
η∈C

1

2
η>Qη + q>η .

This is a quadratic objective. The difficulty of finding the minimum depends on C.

Summary. To compute the closest alternative in a half-space, we compute the solution to two
quadratic problems corresponding to the possibilities that Lagrangian multiplier α satisfies either
α = 0 or α > 0. Then we retain the solution with the minimal objective value.

D The MISLID algorithm

D.1 Initialization

MISLID starts by pulling a deterministic sequence of t0 arms that make the minimum eigenvalue of
the resulting design matrix Vt0 larger than 2L2. Since the rows of A span Rd, such sequence can be
found by taking any subset of d arms that span the whole space (e.g., by computing a barycentric
spanner [4]) and pulling them in a round robin fashion until the desired condition is met.

In order to get an approximation of the length t0 of the initialization phase, let us denote σmin(M)
the minimal singular value of a matrix M . Let us consider B = {b1, b2, . . . , bd} ⊆ [K],
|B| = d, the barycentric spanner of size d computed on matrix A. Then, if we stopped the
round-robin sampling such that each arm in the barycentric spanner is sampled exactly u0 times,
Vt0 = u0

∑
k∈B φkφ

>
k . To ensure that Vt � 2L2Id, we need u0σmin

(∑
k∈B φkφ

>
k

)
≥ 2L2.

Let Γ′(A) := min
{
σmin

(∑
k∈B φkφ

>
k

)
| B d-sized spanner of A

}
. Then u0 =

⌈
2L2

Γ′(A)

⌉
is large

enough.

We obtain the bound t0 ≤ d
⌈

2L2

Γ′(A)

⌉
.

D.2 Projection of the empirical mean onto the set of realizable modelsM

As done in Equation 1 in the main paper, we define the set of realizable models as

M :=
{
µ = Aθ + η ∈ RK | ∃θ ∈ Rd∃η ∈ RK , ‖η‖∞ ≤ ε ∧ ‖Aθ + η‖∞ ≤M

}
.

We require our estimates of µ to be in this set, but the estimate at time t µ̂t might not satisfy the
constraint on its `∞ norm (i.e., ‖µ̂t‖∞ > M ). We then directly project the empirical mean vector
ontoM. Define

(θ̃t, η̃t) := arg min
θ′,η′:Aθ′+η′∈M

‖Aθ′ + η′ − µ̂t‖
2
DNt

. (6)
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Lemma 10. Let µ̃t = Aθ̃t + η̃t,7 where (θ̃t, η̃t) are the solution of (6). Then, all the following hold:

‖µ̃t − µ‖2DNt ≤ ‖µ− µ̂t‖
2
DNt

,∥∥∥θ̃t − θt∥∥∥2

Vt
≤
∥∥∥θ̂t − θt∥∥∥2

Vt
,∥∥∥RNtD1/2

Nt
η̃t −RNtD

1/2
Nt
ηt

∥∥∥2

2
≤
∥∥∥RNtD1/2

Nt
µ̂t −RNtD

1/2
Nt
ηt

∥∥∥2

2
,∥∥∥θ̃t − θ∥∥∥2

Vt
≤
∥∥∥θ̂t − θ∥∥∥2

Vt
,∥∥∥RNtD1/2

Nt
η̃t −RNtD

1/2
Nt
η
∥∥∥2

2
≤
∥∥∥RNtD1/2

Nt
µ̂t −RNtD

1/2
Nt
η
∥∥∥2

2

Proof. The first inequality is easy to check by using µ ∈M together with the non-expansion of the
projection in the optimized norm.

The proof of the other inequalities extends Lemma 9 in [40]. Note that, using Lemma 4, an equivalent
formulation of (6) is

(θ̃t, η̃t) := arg min
θ′,η′:Aθ′+η′∈M

{∥∥∥PNtANtθ′ − PNtD1/2
Nt
µ̂t

∥∥∥2

2
+
∥∥∥RNtD1/2

Nt
η′ −RNtD

1/2
Nt
µ̂t

∥∥∥2

2

}
= arg min
θ′,η′:Aθ′+η′∈M

{∥∥∥θ′ − θ̂t∥∥∥2

Vt
+ ‖η′ − µ̂t‖

2

D
1/2
Nt

RNtD
1/2
Nt

}
This is the minimization of a convex function over a convex set. For any θ′ ∈ Rd, η′ ∈ RK , let

f(θ′) =
∥∥∥θ′ − θ̂t∥∥∥2

Vt
and g(η′) = ‖η′ − µ̂t‖2D1/2

Nt
RNtD

1/2
Nt

. Therefore, using the first-order optimality

conditions for convex functions (see, e.g., Theorem 2.8 in [32]), (θ̃t, η̃t) are minimizers if and only if
for each θ′, η′ : Aθ′ + η′ ∈M,

〈∇θf(θ̃t), θ
′ − θ̃t〉 ≥ 0 =⇒ (θ̃t − θ̂t)TVt(θ′ − θ̃t) ≥ 0

〈∇ηg(η̃t), η
′ − η̃t〉 ≥ 0 =⇒ (η̃t − µ̂t)TD1/2

Nt
RNtD

1/2
Nt

(η′ − η̃t) ≥ 0

Note that µ = Aθt + ηt, thus the orthogonal parametrization (θt, ηt) is such that Aθt + ηt ∈ M.
Thus, (θt, ηt) are feasible solutions. This implies∥∥∥θ̂t − θt∥∥∥2

Vt
=
∥∥∥θ̂t − θ̃t∥∥∥2

Vt
+
∥∥∥θ̃t − θt∥∥∥2

Vt
+ 2(θ̂t − θ̃t)TVt(θ̃t − θt) ≥

∥∥∥θ̃t − θt∥∥∥2

Vt

and

‖µ̂t − ηt‖2D1/2
Nt

RNtD
1/2
Nt

= ‖µ̂t − η̃t‖2D1/2
Nt

RNtD
1/2
Nt

+ ‖η̃t − ηt‖2D1/2
Nt

RNtD
1/2
Nt

+ 2(µ̂t − η̃t)TD1/2
Nt
RNtD

1/2
Nt

(η̃t − ηt)

≥ ‖η̃t − ηt‖2D1/2
Nt

RNtD
1/2
Nt

.

Rearranging concludes the proof of the second and the third inequalities. To show the last two
inequalities, simply use the same argument by noting that (θ, η) is also a feasible solution (since
µ = Aθ + η ∈M).

E Concentration results

E.1 Concentration of the linear part

In this section we derive concentration results for

7Note that the equation θ̂t = θ̃t mentioned in Section 4.1 in the main paper no longer holds, because we
consider the boundedness assumption µ ∈M =⇒ ‖µ‖∞ ≤M
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∥∥∥θ̂t − θt∥∥∥2

Vt
=
∥∥V −1

t A>St
∥∥2

Vt
=
∥∥A>St∥∥2

V −1
t

.

We rewrite the quantities involved to make obvious that this is the usual self-normalized quantity
from the linear bandit literature [1]:

A>St =

t∑
s=1

(
Xks
s − µks

)
A>eks =

t∑
s=1

(
Xks
s − µks

)
φks and Vt =

t∑
s=1

φksφ
>
ks .

We restate here Theorem 20.4 (in combination with the Equation 20.9) of [28], which states a result
due to [1].

Theorem 3. Suppose that for all k ∈ [K], ‖φk‖2 ≤ L. For all x > 0 and δ ∈ (0, 1],

P
(
∃t ∈ N,

1

2

∥∥A>St∥∥2

(Vt+xId)−1 ≥ log
1

δ
+
d

2
log

(
1 +

tL2

xd

))
≤ δ .

Corollary 1. If we ensure that Vt0 � xId (in the sense of positive definite matrices), then

P
(
∃t > t0,

1

2

∥∥∥θ̂t − θt∥∥∥2

Vt
≥ 2 log

1

δ
+ d log

(
1 +

tL2

xd

))
≤ δ .

Proof. If Vt � xId then 2Vt � Vt + xId and∥∥∥θ̂t − θt∥∥∥2

Vt
=
∥∥A>St∥∥2

V −1
t
≤ 2

∥∥A>St∥∥2

(Vt+xId)−1 .

The 2 log(1/δ) term is fine for some steps of the analysis but not for the stopping rule. For the
stopping rule concentration inequality, we need log(1/δ).

Corollary 2. Suppose that Vt0 � xId. Then

P
(
∃t ≥ t0,

1

2

∥∥∥θ̂t − θt∥∥∥2

Vt
≥ 1 + log

1

δ
+

(
1 +

1

log(1/δ)

)
d

2
log

(
1 +

tL2

xd
log

1

δ

))
≤ δ .

Proof. Suppose that Vt0 � xId and let γ(δ) := log(1/δ)−1. For any t ≥ t0,∥∥∥θ̂t − θt∥∥∥2

Vt
=
∥∥A>St∥∥2

V −1
t
≤ (1 + γ(δ))

∥∥A>St∥∥2

(Vt+xγ(δ)Id)−1 .

Then we conclude by applying Theorem 3.

E.2 Unstructured concentration

Let W−1 be the negative branch of the Lambert W function and let W (x) = −W−1(−e−x). Note
that for x ≥ 1, x+ log x ≤W (x) ≤ x+ log x+ min{ 1

2 ,
1√
x
}.

Lemma 11. For t > 1, with probability 1− δ,

1

2
‖µ̂t − µ‖2DNt ≤ 2KW

(
1

2K
log

e

δ
+

1

2
log(8eK log t)

)
.

Proof. See [14, Appendix A, Theorem 4] for that form of the lemma, which is a small reformulation
of a result due to [30].

The concentration inequality of Lemma 11 is also valid for ‖µ̃t − µ‖2DNt since the first inequality of

Lemma 10 states that ‖µ̃t − µ‖2DNt ≤ ‖µ̂t − µ‖
2
DNt

.
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E.3 Elliptic potential lemmas

All lemmas in this section are derived under the following assumption.
Assumption 2. For t ≥ t0, Vt � 2L2Id.

In the remainder of the section, we consider ωt ∈ ∆K , for any time t > 0.
Lemma 12. Under Assumption 2, with probability 1− δ,

t∑
s=t0+1

K∑
k=1

ωks ‖φk‖
2
V −1
s−1
≤
√

2t log
1

δ
+ d log

(
1 +

t

d

)
.

Proof.
t∑

s=t0+1

K∑
k=1

ωks ‖φk‖
2
V −1
s−1

=

t∑
s=t0+1

(
K∑
k=1

ωks ‖φk‖
2
V −1
s−1
− ‖φks‖

2
V −1
s−1

)
+

t∑
s=t0+1

‖φks‖
2
V −1
s−1

.

The first term is the sum of a martingale difference sequence with bounded increments

E

[
K∑
k=1

ωks ‖φk‖
2
V −1
s−1
− ‖φks‖

2
V −1
s−1
| Fs−1

]
= 0 ,∣∣∣∣∣

K∑
k=1

ωks ‖φk‖
2
V −1
s−1
− ‖φks‖

2
V −1
s−1

∣∣∣∣∣ ≤ 1 .

since Vs−1 � 2L2Id and ‖φk‖ ≤ L. By the Azuma-Hoeffding inequality, with probability 1− δ,
t∑

s=t0+1

(
K∑
k=1

ωks ‖φk‖
2
V −1
s−1
− ‖φks‖

2
V −1
s−1

)
≤
√

2t log
1

δ
.

The second term is an elliptic potential, bounded in Lemma 13 below.

Lemma 13. Under Assumption 2, for t > t0,
t∑

s=t0+1

‖φks‖
2
V −1
s−1
≤ d log

(
1 +

t

d

)
.

Proof. Let Vs:t denote the design matrix using only rounds from s to t. We use Lemma 14,
t∑

s=t0+1

‖φks‖
2
V −1
s−1
≤

t∑
s=t0+1

‖φks‖
2
(2L2Id+Vt0+1:s−1)−1 ≤ d log

(
1 +

t

d

)
.

Lemma 14. Under Assumption 2, for t > t0,
t∑

s=t0+1

‖φks‖
2
(Vt0+1:s−1+2L2Id)−1 ≤ d log

(
1 +

t

d

)
.

Proof. By definition of L, for all k ∈ [K], φkφ>k � L2Id. From Lemma 15 below, we have
t∑

s=t0+1

‖φks‖
2
(Vt0+1:s−1+2L2Id)−1 =

t∑
s=t0+1

‖φks‖
2
(Vt0+1:s−1+L2Id+L2Id)−1

≤
t∑

s=t0+1

‖φks‖
2
(Vt0+1:s+L2Id)−1

≤ d log

(
1 +

2t

d

)
.
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A general statement (extracted from [13] but widely known, see for example [28]) is

Lemma 15. Let (ωt)t≥1 be a sequence in the simplex ∆K and x > 0. Let Wt :=
∑t
s=1 ωs and

VWt
:=
∑t
s=1

∑K
k=1 ω

k
sφkφ

>
k . Then

t∑
s=1

K∑
k=1

ωks ‖φk‖
2
(VWs+xId)−1 ≤ d log

(
1 +

tL2

dη

)
.

Proof. Define the function f(W ) = log det(VW + xId) for any W ∈ (R+)K . It is a concave
function since the function V 7→ log det(V ) is a concave function over the set of positive definite
matrices (see Exercise 21.2 of [28]). Its partial derivative with respect to the coordinate k at W is

∇kf(W ) = ‖φk‖2(VW+xId)−1 .

Hence using the concavity of f we have

K∑
k=1

ωks ‖φk‖
2
(VWs+xId)−1 = (Ws −Ws−1)>∇af(Ws) ≤ f(Ws)− f(Ws−1) ,

which implies that

t∑
s=1

K∑
k=1

ωks ‖φk‖
2
VWs+xId

≤ f(Wt)− f(W0) = log

(
det(VWt

+ xId)

det(xId)

)
≤ d log

(
1 +

tL2

dx

)
,

where for the last inequality we use the inequality of arithmetic and geometric means in combination
with Tr(VWt

) ≤ tL2 .

Lemma 16. Let C > 0 be a constant. With probability 1− δ,

t∑
s=t0+1

K∑
k=1

ωks−1 min

{
C,

1

Nk
s−1

}
≤ C

√
2t log

1

δ
+K(C + 1 + log t)

Proof. The first term is due to a martingale argument to bound∑
s

(∑
k ω

k
s−1 min

{
C, 1

Nks−1

}
−min

{
C, 1

Nkss−1

})
. Then

t∑
s=t0+1

min

{
C,

1

Nks
s−1

}
≤ CK +

K∑
k=1

I
{
Nk
t−1 > 0

}Nkt−1∑
j=1

1

j
≤ K(C + 1 + log t) .

E.4 Martingale concentration

Lemma 17. Let µ ∈M (with upper bounds M and ε) and Zs(λ) := (µks − λks)2 − Ek∼ωs [(µk −
λk)2]. For any δ′ ∈ (0, 1),

P

{
∃t ≥ 1 : sup

λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣ > r(t, δ′)

}
≤ δ′,

where

r(t, δ′) := 2M2

√√√√ t

2

(
log

4t2

δ′
+ d log

6(M + ε)Lt√
Γ(A)

+K log max{4εt, 1}

)
+ 2 + 8M ,

Γ(A) := maxω∈∆K
σmin

(∑K
k=1 ω

kφkφ
>
k

)
, and σmin(M) is the minimal eigenvalue of matrix M .
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Proof. First note that ωs is Fs−1-measurable. Thus, for any fixed λ,

E[Zs(λ)|Fs−1] = E[(µks − λks)2|Fs−1]− Ek∼ωs [(µk − λk)2] = 0,

which implies that {Zs}s≥1 is a martingale difference sequence. Moreover, it is easy to check that
|Zs(λ)| ≤ 4M2. Unfortunately, we cannot directly use this martingale property to concentrate the
desired term since λ is adaptively chosen as a function of the whole history up to time t. As a solution,
we shall use a covering argument on the whole model familyM.

Suppose that we have a finite ξ-cover M̄ξ ofM, i.e., for any λ ∈M, there exists λ̄ ∈ M̄ξ such that
‖λ− λ̄‖∞ ≤ ξ. For such a couple (λ, λ̄), this implies that, for any s ≥ 1, k ∈ [K],∣∣(µk − λk)2 − (µk − λ̄k)2

∣∣ =
∣∣(λ̄k − λk)2 + 2(µk − λ̄k)(λ̄k − λk)

∣∣
≤ (λ̄k − λk)2 + 2|µk − λ̄k||λ̄k − λk| ≤ ξ2 + 4Mξ.

Moreover, using this bound in the definition of Zs(λ),∣∣∣∣∣
t∑

s=1

Zs(λ)−
t∑

s=1

Zs(λ̄)

∣∣∣∣∣ ≤ 2tξ2 + 8tMξ.

Let h(t) be some function to be specified later. With some abuse of notation w.r.t. the derivation
above, we shall instantiate a different ξt-cover for each time step t. Then

P

{
∃t ≥ 1 : sup

λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣ > h(t)

}
= P

{
∃t ≥ 1 : sup

λ∈M
inf

λ̄∈M̄ξt

∣∣∣∣∣
t∑

s=1

Zs(λ)± Zs(λ̄)

∣∣∣∣∣ > h(t)

}
(a)

≤ P

{
∃t ≥ 1 : sup

λ̄∈M̄ξt

∣∣∣∣∣
t∑

s=1

Zs(λ̄)

∣∣∣∣∣+ sup
λ∈M

inf
λ̄∈M̄ξt

∣∣∣∣∣
t∑

s=1

Zs(λ)− Zs(λ̄)

∣∣∣∣∣ > h(t)

}
(b)

≤ P

{
∃t ≥ 1, λ̄ ∈ M̄ξt :

∣∣∣∣∣
t∑

s=1

Zs(λ̄)

∣∣∣∣∣ > h(t)− 2tξt
2 − 8tMξt

}
(c)

≤
∞∑
t=1

∑
λ̄∈M̄ξt

P

{∣∣∣∣∣
t∑

s=1

Zs(λ̄)

∣∣∣∣∣ > h(t)− 2tξt
2 − 8tMξt

}
,

where (a) follows by the triangle inequality, (b) from the property of the cover, and (c) from
the union bound and the fact that the cover is finite. Let δ′t ∈ (0, 1). If we choose h(t) :=

2M2
√

t
2 log(2/δ′t) + 2tξt

2 + 8tMξt, using Azuma’s inequality, each probability in the sum above

is bounded by δ′t. Hence, choosing δ′t := δ′

2|M̄ξt |t2
,

∞∑
t=1

∑
λ̄∈M̄ξt

P

{∣∣∣∣∣
t∑

s=1

Zs(λ̄)

∣∣∣∣∣ > h(t)− 2tξt
2 − 8tMξt

}
≤
∞∑
t=1

δ′

2t2
≤ δ′,

where the last inequality can be verified easily. Therefore, putting everything together, we proved that

P

{
∃t ≥ 1 : sup

λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣ > 2M2

√
t

2
log

4|M̄ξt |t2
δ′

+ 2tξt
2 + 8tMξt

}
≤ δ′.

It only remains to build the cover, compute its size, and specify the value of ξt. Recall that each
model λ ∈ M can be written as λ = Aθ′ + η′, where ‖η′‖∞ ≤ ε and ‖λ‖∞ ≤M . Using Lemma
28 below, we have that ‖θ′‖2 ≤ B̄ := M+ε√

Γ(A)
. Then, we can build two separate covers for the linear

and deviation parts. Specifically, we build a ξt/(2L)-cover M̄lin
t in `2-norm for the linear part and a

ξt/2-cover M̄dev
t in `∞-norm for the deviation part. Then, we take the full cover as the (finite) set

M̄t := {λ̄ = Aθ̄+ η̄ : θ̄ ∈ M̄lin
t , η̄ ∈ M̄dev

t }. With this choice, we have that, for any λ = Aθ′ + η′,
there exits λ̄ ∈ M̄t such that

‖λ− λ̄‖∞ = ‖Aθ′ + η′ −Aθ̄ − η̄‖∞ ≤ L‖θ′ − θ̄‖2 + ‖η′ − η̄‖∞ ≤ ξt.
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Let us compute the size of the cover M̄t. It is easy to see that this is |M̄t| = |M̄lin
t ||M̄dev

t |. For the
linear one, it is known that the ξt/(2L)-covering number (in `2-norm) of a ball in Rd with radius
B̄ is at most (6LB̄/ξt)

d. For the deviation, we can have a ξt/2 cover in `∞-norm with at most
max{(4ε/ξt)K , 1} points, where the maximum is to deal with too small values of ε (e.g., ε = 0).
Then, the final cover has size at most |M̄t| ≤ (6B̄L/ξt)

d max{(4ε/ξt)K , 1}. Setting ξt = 1/t, we
get the desired bound.

F δ-correctness and sample complexity analysis

F.1 Correctness

We prove Lemma 3 in the main paper, restated below.

Lemma. Let W−1 be the negative branch of the Lambert W function and let W (x) =
−W−1(−e−x) ≈ x+ log x. For δ ∈ (0, 1), define

βuns
t,δ := 2KW

(
1

2K
log

2e

δ
+

1

2
log(8eK log t)

)
, (7)

βlin
t,δ :=

1

2

(
4
√
tε+

√
2

√
1 + log

1

δ
+

(
1 +

1

log(1/δ)

)
d

2
log

(
1 +

t

2d
log

1

δ

))2

. (8)

Then, for the choice βt,δ := min{βuns
t,δ , β

lin
t,δ}, MISLID is δ-correct.

Proof. δ-correctness is composed of two properties: stopping in a finite time with probability one
and verifying, for all instances µ ∈M, P(Ŝm 6⊆ S?(µ)) ≤ δ. The fact that the stopping time is finite
almost surely is a consequence of the sample complexity bound (see further down in this section).
We now prove the bound on the probability of error in identification.

We first relate the event that the algorithm does not return a correct answer to a large deviation, by
writing that for the algorithm to make a mistake, there must be a time at which the stopping condition
is met and µ̃t is in the alternative to µ:

P(Ŝm 6⊆ S?(µ)) ≤ P
(
∃t ∈ N, inf

λ∈Λm(µ̃t)
‖µ̃t − λ‖2DNt > 2βt,δ ∧ µ̃t ∈ Λm(µ)

)
.

If the two conditions of the right-hand side happen, then µ ∈ Λm(µ̃t) and we get

P(Ŝm 6⊆ S?(µ)) ≤ P
(
∃t ∈ N, ‖µ̃t − µ‖2DNt > 2βt,δ

)
.

It then suffices to prove that we have both

P
(
∃t ∈ N,

1

2
‖µ̃t − µ‖2DNt > βlin

t,δ

)
≤ δ/2 , (9)

and P
(
∃t ∈ N,

1

2
‖µ̃t − µ‖2DNt > βuns

t,δ

)
≤ δ/2 . (10)

The result for (10) is Lemma 11 (and the remark below that lemma stating that it applies to µ̃t). We
now prove the concentration inequality using the linear term (9).

let θ̃t,ε and η̃t,ε be parameters for µ̃t with ‖η̃t,ε‖ ≤ ε, which exist since µ̃t ∈M. On the other hand,
let θ̃t and η̃t be the orthogonal parameters of µ̃t with respect to Nt.

‖µ̃− µ‖DNt = ‖A(θ̃t,ε − θ) + η̃t,ε − η‖DNt
≤ ‖A(θ̃t,ε − θ)‖DNt + ‖η̃t,ε − η‖DNt
= ‖θ̃t,ε − θ‖Vt + ‖η̃t,ε − η‖DNt
≤ ‖θ̃t,ε − θ̃t‖Vt + ‖θ̃t − θt‖Vt + ‖θt − θ‖Vt + ‖η̃t,ε − η‖DNt .
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Lemma 6 bounds the first and third terms by
√
tε. The last term is bounded by

√
t‖η̃t,ε−η‖∞ ≤ 2

√
tε

since both vectors have `∞ norm bounded by ε.

Finally

P
(
∃t ∈ N,

1

2
‖µ̃t − µ‖2DNt > βlin

t,δ

)
≤ P

(
∃t ∈ N,

1

2

∥∥∥θ̂t − θt∥∥∥2

Vt
>

1

2
(
√

2βlin
t,δ − 4

√
tε)2

)
≤ δ/2

by Corollary 2.

F.2 Restriction to a good event

Assumption. We start by pulling arms deterministically until t0, such that Vt0 ≥ 2L2Id. See
paragraph “Initialization phase” in Subsection 4.1 in the main paper.

Definition of the good event. For t ≥ t0 and k ∈ [K], define

αlin
t := log(5t2) + d log

(
1 +

t

2d

)
, αuns

t := 2KW

(
1

2K
log(2e5t3) +

1

2
log(8eK log t)

)
.

Consider the following events. Each of these holds with probability at least 1− 1
5t2 by the indicated

concentration result.

1. Concentration of the projected linear part (Corollary 1)

E1
t :=

{
∀s ≥ t0 :

1

2

∥∥∥θ̃s − θs∥∥∥2

Vs
≤ αlin

t

}
,

2. Unstructured concentration of the projected estimator (Lemma 11)

E2
t :=

{
∀s ≤ t :

1

2
‖µ̃s − µ‖2DNs ≤ α

uns
t

}
,

3. Martingale concentration for sampling (Lemma 17)

E3
t :=

{
sup
λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣ ≤ r (t)

}
,

where r(t) is obtained by setting δ′ = 1
5t2 in r(t, δ′) in Lemma 17, which yields

r(t) = 2M2

√√√√ t

2

(
log(4× 5t4) + d log

6(M + ε)Lt√
Γ(A)

+K log max{4εt, 1}

)
+ 2 + 8M.

4. Elliptical potential with sampling (Lemma 12)

E4
t :=

{
t∑

s=t0+1

K∑
k=1

ωks ‖φk‖
2
V −1
s−1
≤
√

2t log(5t2) + d log

(
1 +

t

d

)}
,

5. Elliptical potential with sampling for the unstructured bound (Lemma 16)

E5
t :=

{
t∑

s=t0+1

K∑
k=1

ωks min

{
4M2,

2αuns
t

Nk
s−1

}
≤ 4M2

√
2t log(5t2) + 4M2K + 2Kαuns

t log(et)

}
.

Then, we define the “good” event Et :=
⋂5
i=1 E it .

Lemma 18. For all t ≥ 1, P(Ect ) ≤ 1/t2 .

Proof. Apply an union bound by noting that each event E it fails with probability at most 1/(5t2).
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Lemma 19. Let T0(δ) ∈ N be such that for t ≥ T0(δ), Et ⊆ {τδ ≤ t}. Then E[τδ] ≤ T0(δ) + 2 .

Proof. Successively using the definition of T0(δ) and Lemma 18:

E[τδ] =

+∞∑
t=0

P(τδ > t) ≤ T0(δ) +

+∞∑
t=T0(δ)

P(Ect ) ≤ T0(δ) +

+∞∑
t=1

1

t2
≤ T0(δ) + 2 .

Consequences of the good event.
Lemma 20. For t ≥ t0 and k ∈ [K], define

ckt := min

{
8(LK + 1)2ε2 + 4αlin

t2 ‖φk‖
2
V −1
t

,
2αuns

t2

Nk
t

, 4M2

}
,

where we use the convention that 2αuns/Nk
t = +∞ if Nk

t = 0. Then under Et, for all s ∈
{max{t0,

√
t}, . . . , t} and k ∈ [K], (µ̃ks − µk)2 ≤ cks .

Proof. We know that 1
2

∥∥∥θ̃s − θs∥∥∥2

Vt
≤ αlin

t holds for all s ≥ t0 by definition of E1
t . For s ≥

max{t0,
√
t}we also have αlin

s2 ≥ αlin
t , hence 1

2

∥∥∥θ̃s − θs∥∥∥2

Vt
≤ αlin

s2 . Using first (a+b)2 ≤ 2a2+2b2

then the Cauchy-Schwarz inequality on (V
−1/2
s φk)>(V

1/2
s (θ̃s − θs)) and Lemma 5,

(µ̃ks − µk)2 ≤ 2(φ>k (θ̃s − θs))2 + 2(η̃ks − ηks )2 ≤ 2 ‖φk‖2V −1
s

∥∥∥θ̃s − θs∥∥∥2

Vs
+ 8(LK + 1)2ε2

≤ 8(LK + 1)2ε2 + 4αlin
s2 ‖φk‖

2
V −1
s

.

Moreover by definition of E2
t , for all s ≤ t, 1

2 ‖µ̃s − µ‖
2
DNs
≤ αuns

t . For s ≥ max{t0,
√
t} we have

αuns
s2 ≥ αuns

t , hence 1
2 ‖µ̃s − µ‖

2
DNs
≤ αuns

s2 . Therefore,

(µ̃ks − µk)2 = (e>k (µ̃s − µ))2 ≤ ‖ek‖2D−1
Ns

‖µ− µ̃s‖2DNs ≤
2αuns

s2

Nk
s

.

Finally, (µ̃ks − µk)2 ≤ ‖µ̃s − µ‖2∞ ≤ 4M2.

Lemma 21. For all t ≥ 1, under the good event Et,

∀s ∈ {t0, t0 + 1, . . . , t} : ‖µ̃s − µ‖2DNs ≤ f(t) := 2 min{αuns
t , αlin

t + 2t(LK + 1)2ε2}.

Proof. That for all s ≤ t, ‖µ̃s − µ‖2DNs ≤ 2αuns
t directly follows from the definition of E2

t . To see
the second inequality, we first decompose the norm on the lefthand-side into its linear and deviation
components

‖µ̃s − µ‖2DNs =
∥∥∥θ̃s − θs∥∥∥2

Vs
+
∥∥∥RNsD1/2

Ns
η̃s −RNsD

1/2
Ns
ηs

∥∥∥2

.

The deviation part can be bounded by 4t(LK + 1)2ε2 for all s ≤ t using Lemma 5. The linear part
can be bounded by 2αlin

t for all s ≥ t0 by the definition of E1
t .

F.3 Analysis under a good event

Fix any time step t ≥ t0. Suppose that the good event Et of Section F.2 holds and the algorithm does
not stop at time t. We proceed in different steps.
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Stopping rule analysis.
Theorem 4. If the algorithm does not stop at time t then under Et, using stopping threshold βt,δ as
defined in Lemma 3 in the main paper,

2βt,δ ≥ inf
λ∈Λm(µ)

‖µ− λ‖2DWt − hδ(t)− r(t) .

where

• hδ(t) =
√

8βt,δf(t) + f(t), with f(t) a bound on ‖µ− µ̃t‖2DNt (see Lemma 21) ,

• r(t) = 2M2

√
t
2

(
log(4× 5t4) + d log 6(M+ε)Lt√

Γ(A)
+K log max{4εt, 1}

)
+ 2 + 8M ,

and Wt :=
∑t
s≤1 ωs is the sum over time of the weight vectors played by the learner.

The proof of this theorem is detailed in Steps 1 to 3 below.

Step 1. From Λm(µ̃t) to Λm(µ).
Lemma 22. For all µ, µ′ ∈M, for any non-negative function f : RK × RK → R with f(x, x) = 0,

inf
λ∈Λm(µ)

f(µ, λ) ≥ inf
λ∈Λm(µ′)

f(µ, λ) .

Proof. Either Λm(µ) = Λm(µ′) and the two expressions are equal, or Λm(µ) 6= Λm(µ′). In the
second case, µ ∈ Λm(µ′). The right-hand side is then equal to zero, which is lower than the left-hand
side since f is non-negative.

Since the algorithm does not stop at time t, from the stopping rule

2βt,δ ≥ inf
λ∈Λm(µ̃t)

‖µ̃t − λ‖2DNt ,

where Λm(µ̃t) is the set of alternative models to µ̃t. We change the alternative set over which the
minimization is performed using Lemma 22:

2βt,δ ≥ inf
λ∈Λm(µ̃t)

‖µ̃t − λ‖2DNt ≥ inf
λ∈Λm(µ)

‖µ̃t − λ‖2DNt . (11)

Step 2. From µ̃t to µ. The next step is to replace the estimated mean µ̃t in the norm with the true
mean µ. For all λ ∈M, using the triangle inequality,

‖µ̃t − λ‖DNt ≥ ‖µ− λ‖DNt − ‖µ̃t − µ‖DNt ≥ ‖µ− λ‖DNt −
√
f(t) ,

where the last inequality uses Lemma 21 to concentrate ‖µ̃t − µ‖2DNt . Using this for the specific

choice of λt ∈ arg minλ∈Λm(µ) ‖µ̃t − λ‖
2
DNt

in combination with (11), we obtain(√
2βt,δ +

√
f(t)

)2

≥ ‖µ− λt‖2DNt ⇒ 2βt,δ ≥ inf
λ∈Λm(µ)

‖µ− λ‖2DNt − hδ(t) , (12)

where hδ(t) :=
√

8βt,δf(t) + f(t) is a sub-linear function of both t and log(1/δ).

Step 3. From Nt to Wt. We now show that it is possible to replace Nt with Wt :=
∑t
s=1 ωs in the

norm at the price of subtracting another low-order term. Let Zs(λ) := (µks − λks)2 − Ek∼ωs [(µk −
λk)2]. Note that ‖µ− λ‖2DNt =

∑t
s=1(µks − λks)2 and ‖µ− λ‖2DWt =

∑t
s=1 ‖µ− λ‖

2
Dωs

=∑t
s=1 Ek∼ωs [(µk − λk)2]. Therefore, from (12),

2βt,δ ≥ inf
λ∈Λm(µ)

(
‖µ− λ‖2DNt − ‖µ− λ‖

2
DWt

+ ‖µ− λ‖2DWt
)
− hδ(t)

= inf
λ∈Λm(µ)

(
‖µ− λ‖2DWt +

t∑
s=1

Zs(λ)

)
− hδ(t)

≥ inf
λ∈Λm(µ)

‖µ− λ‖2DWt − sup
λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣− hδ(t) .
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Using the good event E3
t , we can finally write

2βt,δ ≥ inf
λ∈Λm(µ)

‖µ− λ‖2DWt − hδ(t)− r(t) , (13)

which ends proving Theorem 4.

Sampling rule analysis. Let Hµ = supω∈∆ infλ∈Λm(µ)
1
2 ‖µ− λ‖

2
Dω

(the inverse complexity
at µ). In the first part of the sampling rule analysis, we introduce the optimistic estimates gt(ω)
mentioned in Algorithm 1 in the main paper, which will be used by the learner for ωt.

Theorem 5. Let (µ̃s)s≤t ∈M[t] be estimates such that under Et, we have a bound cks on (µ̃ks −µk)2

for all k ∈ [K] and s ∈ [t]. Then define the optimistic estimate

gs(ω) :=

K∑
k=1

ωk
(∣∣µ̃ks−1 − λks

∣∣+
√
cks−1

)2

where λs := arg min
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs .

Under Et,

inf
λ∈Λm(µ)

‖µ− λ‖2DWt ≥
t∑

s=t0+1

gs(ωs)− 4Ct − 4
√

2tCtHµ ,

with Ct :=
∑t
s=t0+1

∑K
k=1 ω

k
s c
k
s−1.

The proof of this theorem is detailed in the Steps 4 to 7 below. Once this result is established, we will
use the regret property of the learner to exhibit the final bound (Steps 8 to 10).

Step 4. From Λm(µ) back to Λm(µ̃s−1) for s ∈ [t]. We now start moving from
infλ∈Λm(µ) ‖µ− λ‖

2
DWt

to the actual gain fed into the online learner at time t. We first need
to go back to the estimated set of alternative models at each time s = 0, . . . , t− 1. We have

inf
λ∈Λm(µ)

‖µ− λ‖2DWt = inf
λ∈Λm(µ)

t∑
s=1

‖µ− λ‖2Dωs ≥
t∑

s=1

inf
λ∈Λm(µ)

‖µ− λ‖2Dωs (14)

≥
t∑

s=1

inf
λ∈Λm(µ̃s−1)

‖µ− λ‖2Dωs , (15)

where the first inequality follows by the concavity of the infimum, and the second one is an application
of Lemma 22.

Step 5. Drop the first rounds. The first t0 rounds are dedicated to making sure that Vt is sufficiently
large (for the partial order on positive definite matrices). Also, our upper bounds on the deviation of µ̃kt
from µk are valid from max{t0,

√
t}. We define t′0(t) = max{t0,

√
t}. We drop the corresponding

nonnegative terms from the sum to keep only the rounds for which t is large enough:
t∑

s=1

inf
λ∈Λm(µ̃s−1)

‖µ− λ‖2Dωs ≥
t∑

s=t′0(t)+1

inf
λ∈Λm(µ̃s−1)

‖µ− λ‖2Dωs .

Step 6. From µ back to µ̃s−1 for s ∈ [t]. We can now use the concentration of µ̃s−1 to replace
µ in all terms ‖µ− λ‖2Dωs for s ∈ [t]. Let λµs := arg minλ∈Λm(µ̃s−1) ‖µ− λ‖

2
Dωs

. Using first the
triangle inequality, then the inequality ‖a− b‖ ≥ ‖a‖ − ‖b‖ for an `2 norm in dimension t− t′0(t),√√√√ t∑

s=t′0(t)+1

‖µ− λµs ‖2Dωs ≥

√√√√ t∑
s=t′0(t)+1

(
‖µ̃s−1 − λµs ‖Dωs − ‖µ− µ̃s−1‖Dωs

)2

≥

√√√√ t∑
s=t′0(t)+1

‖µ̃s−1 − λµs ‖
2
Dωs
−

√√√√ t∑
s=t′0(t)+1

‖µ− µ̃s−1‖2Dωs .
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We now remark that
∑t
s=t′0(t)+1 ‖µ̃s−1 − µ‖2Dws ≤ Ct and get, by the definition of λµs√√√√ t∑

s=t′0(t)+1

‖µ− λµs ‖2Dωs +
√
Ct ≥

√√√√ t∑
s=t′0(t)+1

‖µ̃s−1 − λµs ‖
2
Dws

(16)

≥

√√√√ t∑
s=t′0(t)+1

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dws . (17)

Step 7. Optimistic gains. We now replace the term on the right-hand side in (17) by the optimistic
gains fed into the online learner. At time s, we define optimistic estimates

gs(ω) :=

K∑
k=1

ωk
(∣∣µ̃ks−1 − λks

∣∣+
√
cks−1

)2

where λs := arg min
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs .

Lemma 23. For all ω ∈ ∆K and s ≥ t′0(t), gs(ω) ≥ infλ∈Λm(µ) ‖µ− λ‖
2
Dω

.

Proof. For all k ∈ [K], s > t′0(t), and λ ∈ RK , using Lemma 20 (to write (µk − µ̃ks−1)2 ≤ cks−1):(
µk − λk

)2
=
(
µ̃ks−1 − λk + µk − µ̃ks−1

)2 ≤ (∣∣µ̃ks−1 − λk
∣∣+
∣∣µk − µ̃ks−1

∣∣)2
≤
(∣∣µ̃ks−1 − λk

∣∣+
√
cks−1

)2

.

Then, for any ω ∈ ∆K , by noticing that function f : λ 7→∑K
k ω

k
(∣∣µ̃ks−1 − λk

∣∣2 + 2
∣∣µ̃ks−1 − λk

∣∣√cks−1

)
is nonnegative and that f(µ̃ks−1) = 0:

gs(ω) :=

K∑
k=1

ωk
(∣∣µ̃ks−1 − λks

∣∣+
√
cks−1

)2

≥ inf
λ∈Λm(µ̃s−1)

K∑
k=1

ωk
(∣∣µ̃ks−1 − λk

∣∣+
√
cks−1

)2

=

K∑
k=1

ωkcks−1 + inf
λ∈Λm(µ̃s−1)

K∑
k=1

ωk
(∣∣µ̃ks−1 − λk

∣∣2 + 2
∣∣µ̃ks−1 − λk

∣∣√cks−1

)

≥
K∑
k=1

ωkcks−1 + inf
λ∈Λm(µ)

K∑
k=1

ωk
(∣∣µ̃ks−1 − λk

∣∣2 + 2
∣∣µ̃ks−1 − λk

∣∣√cks−1

)
(due to Lemma 22)

= inf
λ∈Λm(µ)

K∑
k=1

ωk
(∣∣µ̃ks−1 − λk

∣∣+
√
cks−1

)2

≥ inf
λ∈Λm(µ)

K∑
k=1

ωk
(
µk − λk

)2
(using the previously derived coordinate-wise majoration)

= inf
λ∈Λm(µ)

‖µ− λ‖2Dω .

We now prove an upper bound on gw(ω), which will be useful later.

Lemma 24. For all s ≥ t0 and all ω ∈ 4K , gs(ω) ≤ 36M2
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Proof. Using the definition of ckt , k ∈ [K], t ≥ 0 in Lemma 20, and µ, λs ∈ M: gs(ω) =∑K
k=1 ω

k
(∣∣µ̃ks−1 − λks

∣∣+
√
cks−1

)2

≤
∑K
k=1 ω

k
(∣∣µk − λks ∣∣+ 2

√
cks−1

)2

≤
∑K
k=1 ω

k (6M)
2

=

36M2.

We have proved that the estimates are indeed optimistic in the sense that they are an upper-bound
to the value of interest, as mentioned in paragraph “Optimistic gains” in Subsection 4.1 in the main
paper. We now bound by how much they overestimate the empirical value.

Lemma 25. √√√√ t∑
s=t′0(t)+1

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs ≥

√√√√ t∑
s=t′0(t)+1

gs(ωs)−
√
Ct . (18)

Proof. We start by a bound for a single s ∈ N. Using the triangle inequality for an `2 norm,

√
gs(ωs) =

√√√√ K∑
k=1

ωks

(∣∣µ̃ks−1 − λks
∣∣+
√
cks−1

)2

≤

√√√√ K∑
k=1

ωks
(
µ̃ks−1 − λks

)2
+

√√√√ K∑
k=1

ωks c
k
s−1 .

Reordering this inequality, we get

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs ≥

√gs(ωs)−
√√√√ K∑
k=1

ωks c
k
s−1

2

.

Then, summing over s ∈ [t′0(t) + 1, t] and using ‖a− b‖ ≥ ‖a‖ − ‖b‖,√√√√ t∑
s=t′0(t)+1

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs ≥

√√√√√ t∑
s=t′0(t)+1

√gs(ωs)−
√√√√ K∑
k=1

ωks c
k
s−1

2

≥

√√√√ t∑
s=t′0(t)+1

gs(ωs)−

√√√√ t∑
s=t′0(t)+1

K∑
k=1

ωks c
k
s−1 .

Summary of Steps 4 to 7. Putting together Equations (15), (17) and (18), we proved that under
event Et, for estimates (µ̃s)s≤t such that we have a bound cks on (µ̃ks − µk)2 for all s ∈ {t′0(t) +
1, . . . , t} and k ∈ [K],

√
inf

λ∈Λm(µ)
‖µ− λ‖2DWt + 2

√
Ct ≥

√√√√ t∑
s=t′0(t)+1

gs(ωs) .

Note that infλ∈Λm(µ) ‖µ− λ‖
2
DWt

≤ tmaxω∈∆K
infλ∈Λm(µ) ‖µ− λ‖

2
Dω

= 2tHµ. We then get

inf
λ∈Λm(µ)

‖µ− λ‖2DWt ≥
t∑

s=t′0(t)+1

gs(ωs)− 4Ct − 4
√

2tCtHµ ,

which ends proving Theorem 5.
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Step 8. No-regret property. The first t0 rounds are used to initialize our algorithm. After that, we
use a learner with small regret. We will bound the gains between t0 and t′0(t) = max{t0,

√
t} by

36M2 (see Lemma 24). We use the regret bound of the learner (refer to Definition 2 in the main
paper) to get that, for some additional low-order term CL(K,B)

√
t, and by combining Theorems 4

and 5:

2βt,δ ≥
t∑

s=t′0(t)+1

gs(ωs)− hδ(t)− r(t)− 4Ct − 4
√

2tCtHµ

≥
t∑

s=t0+1

gs(ωs)− hδ(t)− r(t)− 4Ct − 4
√

2tCtHµ −max{
√
t− t0, 0}36M2

≥ max
ω∈∆K

t∑
s=t0+1

gs(ω)− hδ(t)− r(t)− 4Ct − 4
√

2tCtHµ − CL(K,B)
√
t

−max{
√
t− t0, 0}36M2 .

A specific upper bound on the regret for the learner AdaHedge used in the implementation of MISLID
is mentioned in Lemma 27.

Step 9. From the optimal gain to the lower bound value. Finally, we can relate the optimal
optimistic gain of the learner to the value of the lower bound. Using the optimism (Lemma 23),

max
ω∈∆K

t∑
s=t0+1

gs(ω) ≥ max
ω∈∆K

t∑
s=t0+1

inf
λ∈Λm(µ)

‖µ− λ‖2Dω = (t− t0) max
ω∈∆K

inf
λ∈Λm(µ)

‖µ− λ‖2Dω︸ ︷︷ ︸
= 2Hµ

.

Step 10. Computing the sample complexity. We thus have obtained an inequality of the form

2βt,δ ≥ 2tHµ − hδ(t)− r(t)− 4Ct − 4
√

2tCtHµ − CL(K,B)
√
t− 2t0Hµ

−max{
√
t− t0, 0}36M2 ,

from which we can obtain the desired sample complexity bound. Remember that

• βt,δ := min
{
βuns
t,δ , β

lin
t,δ

}
• r(t) := M2

√
2t

(
log(4× 5t4) + d log 6(M+ε)Lt√

Γ(A)
+K log max{4εt, 1}

)
+ 2 + 8M

• hδ(t) :=
√

8βt,δf(t) + f(t)

• f(t) := 2 min
{
αuns
t , αlin

t + 2t(LK + 1)2ε2
}

where:
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βuns
t,δ := 2KW

(
1

2K
log

2e

δ
+

1

2
log(8eK log t)

)
,

βlin
t,δ :=

1

2

(
4
√
tε+

√
2

√
1 + log

1

δ
+

(
1 +

1

log(1/δ)

)
d

2
log

(
1 +

t

2d
log

1

δ

))2

,

αuns
t := 2KW

(
1

2K
log(14et3) +

1

2
log(8eK log t)

)
= βuns

t,1/5t3 ,

αlin
t := log(5t2) + d log

(
1 +

t

2d

)
,

ckt := min

{
8(LK + 1)2ε2 + 4αlin

t2 ‖φk‖
2
V −1
t

,
2αuns

t2

Nk
t

, 4M2

}
,

Ct :=

t∑
s=t0+1

K∑
k=1

wks c
k
s−1 ≤ 8(LK + 1)2ε2t+ 2αlin

t2

(√
2t log(5t2) + d log

(
1 +

t

d

))
,

Ct ≤ 4M2
√

2t log(5t2) + 4M2K + 2Kαuns
t2 log(et) .

Combining this bound with Lemma 19 proves Theorem 2 in the main paper.

F.4 Using several estimates

If we employ two sets of estimates, with corresponding optimism functions (gis(ω))i∈{1,2} and
bounds cki,s, we get for i ∈ {1, 2},

inf
λ∈Λm(µ)

‖µ− λ‖2DWt ≥ max
i∈{1,2}

(
t∑

s=t0+1

gis(ωs)− 4Cit − 4
√

2tCitHµ

)

≥
t∑

s=t′0(t)+1

min
i∈{1,2}

gis(ωs)− min
i∈{1,2}

(
4Cit + 4

√
2tCitHµ

)
,

where the quantity Cit is similarly defined as Ct, with respect to gains git.

Since the minimum of concave functions is concave, gs : ω 7→ mini∈{1,2} g
i
s(ω) is concave (which

allows the use of a regret-minimizing algorithm, see Subsection F.6). It satisfies the inequality of
Lemma 23 and its gradient is the gradient of gi

?

s (ω) for i? ∈ arg mini∈{1,2} g
i
s(ω).

F.5 Aggressive Optimism

If we are happy with an algorithm which is within a factor 2 of the lower bound for the log 1
δ term

instead of insisting on a factor 1, we can use a different, more aggressive optimism. Take

ĝs(ωs) := 2

K∑
k=1

ωk
(
(µ̃ks−1 − λks)2 + cks−1

)
where λs := arg min

λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs .

The main difference is that the term added to (µ̃ks−1 − λks)2 is of order cks−1 instead of
√
cks−1. In an

unstructured bandit, that means 1/Nk
t instead of 1/

√
Nk
t . Let us prove the counterpart to Lemma 23

for these new gains:

Lemma 26. For all ω ∈ ∆K , ĝs(ωs) ≥ infΛ∈λm(µ) ‖µ− λ‖
2
Dω

.

Proof. For all k ∈ [K] and λ ∈ RK , using Lemma 20

(µk − λk)2 ≤ 2(µ̃ks−1 − λk)2 + 2(µk − µ̃ks−1)2 ≤ 2(µ̃ks−1 − λk)2 + 2cks−1 .
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Then, since ω ∈ ∆K

2

K∑
k=1

ωk
(
(µ̃ks−1 − λk)2 + cks−1

)
≥

K∑
k=1

ωk(µk − λks)2 = ‖µ− λs‖2Dω ≥ inf
Λ∈λm(µ)

‖µ− λ‖2Dω .

Then, using Lemma 26 and the definition of λs, we have

ĝs(ω)− 2 inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs =

K∑
k=1

ωks
[
2(µ̃ks−1 − λks)2 + 2cks−1 − 2(µ̃ks−1 − λks)2

]
= 2

K∑
k=1

ωks c
k
s−1 .

So now we can prove a counterpart to Step 7 in the proof of Theorem 5:

t∑
s=t0+1

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs

=
1

2

t∑
s=t0+1

ĝs(ωs)−
1

2

t∑
s=t0+1

(
ĝs(ωs)− 2 inf

λ∈Λm(µ̃s−1)
‖µ̃s−1 − λ‖2Dωs

)

≥ 1

2

t∑
s=t0+1

ĝs(ωs)− Ct .

F.6 Regret of AdaHedge

Lemma 27 ([10]). On the online learning problem with K arms and gains gs(ω) :=
∑
k∈[K] ω

kUks
for s ∈ [t], AdaHedge, predicting (ωs)s∈[t], has regret

Rt := max
ω∈∆K

t∑
s=1

gs(ω)− gs(ωs) ≤ 2σ
√
t log(K) + 16σ(2 + log(K)/3) ,

where σ := max
s≤t

(
max
k∈[K]

Uks − min
k∈[K]

Uks

)
.

We recall here the “gradient trick”, which we can use to employ AdaHedge on any concave gains.If
for any time t > 0, the loss function `t at that time is convex, then for all ω ∈ ∆K ,

t∑
s=1

`t(ωt)− `t(ω) ≤
t∑

s=1

(ωt − ω)>∇`t(ωt)

Running a regret-minimizing algorithm with loss ¯̀
t(ω) = ω>∇`t(ωt) then leads to a regret bound

on `t.

F.7 Technical tools

Generic bounds on vector norms.
Lemma 28. Let θ ∈ Rd, η ∈ RK be such that ‖η‖∞ ≤ ε and ‖Aθ + η‖∞ ≤M . Then

‖θ‖2 ≤
M + ε√

Γ(A)
,

where Γ(A) := maxω∈∆K
σmin

(∑K
k=1 ω

kφkφ
>
k

)
, where σmin(M) is the minimal singular value

of matrix M .
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Proof. For λ := Aθ + η with ‖η‖∞ ≤ ε and ‖λ‖∞ ≤M ,

‖Aθ‖∞ = max
k∈[K]

∣∣φ>k θ∣∣ ≥ ‖θ‖2 min
u∈Rd:‖u‖2=1

max
k∈[K]

∣∣φ>k u∣∣ , (19)

using that the value for θ/ ‖θ‖2 is larger than the minimum over u ∈ Rd with ‖u‖2 = 1. On the other
hand, successively using the triangle inequality and the boundedness assumptions,

‖Aθ‖∞ ≤ ‖Aθ + η‖∞ + ‖η‖∞ ≤M + ε . (20)

Note also that

min
u∈Rd:‖u‖2=1

max
k∈[K]

∣∣φ>k u∣∣2 = min
u∈Rd:‖u‖2=1

max
ω∈∆K

‖u‖2(∑K
k=1 ω

kφkφ>k ) ≥ max
ω∈∆K

σmin

(
K∑
k=1

ωkφkφ
>
k

)
︸ ︷︷ ︸

:= Γ(A)

,

(21)

where the inequality stems from the min-max theorem (principle for singular values). Finally, by
combining the three inequalities (19), (20) and (21), ‖θ‖2 ≤

M+ε√
Γ(A)

.

The term Γ(A) depends only on the set of linear features {φk}k∈[K]. In the unstructured case (where
φk = ek), we have Γ(A) = 1

K . However, in a structured case with d � K, Γ(A) can be much
smaller. For instance, when A contains the canonical basis of Rd, we have Γ(A) ≥ 1

d .

G Experimental evaluation

G.1 Computational architectures

Experiments on simulated datasets (Experiments (A), (B), (C)) were run on a personal computer
(processor: Intel Core i7− 8750H, cores: 12, frequency: 2.20GHz, RAM: 16GB).

Experiment (D) was run on a personal computer (processor: Intel Core i7 − 9700K, cores: 8,
frequency: 3.60GHz, RAM: 16GB).

Experiment (E) was run on a internal cluster (processor: Westmere E56xx/L56xx/X56xx
(Nehalem−C), cores: 24, frequency: 3.2GHz, RAM: 155GB).

G.2 License for the assets

Experiment (D). The drug repurposing dataset for epilepsy was proposed in [35], and made publicly
available under the MIT license.

Experiment (E). The original dataset Last.fm is publicly available online at
https://www.last.fm/ under CC BY-SA 4.0.

Experimental code. The code hosted at https://github.com/clreda/misspecified-top-m
is under MIT license.

G.3 Extracting representations from real datasets

We describe in detail the procedure we adopted to extract misspecified linear representations from the
real-world datasets of Experiment (D) and (E). In both cases, we adopted a very similar procedure
based on training neural networks as the one used in [34]. We describe all its steps for the sake of
completeness.

Step 1. (Data preprocessing) First, we start from preprocessing the raw data to obtain a dataset
containing tuples of the form (φ, x), where φ ∈ Rd is an arm feature and x ∈ R is a reward. The drug
repurposing dataset used in [35] (hosted on their repository) is already available in this form, with a
total of 509 arms representing different drugs, d = 67 features representing genes, and, for each of
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them, 18 reward samples representating the responses of 18 different patients to such drugs. Out of
those 509 arms, we filter out those which outcomes are unknown (associated “true” scores are set
to 0, according to the file of scores available on the same repository). Then 175 arms (representing
either antiepileptics, with score equal to 1, and proconvulsants, with score equal to −1) are left.

On the other hand, the Last.fm dataset is in a different form; it contains information about the music
artists listened by each user of the system. As done in [34, Appendix F.4], we first preprocessed
the data by keeping only artists listened by at least 120 users and users that listened at least to 10
different artists. We thus obtained U = 1, 322 users and A = 103 artists. The result is a matrix in
RU×A containing the number of times each user listened to each artist (which we treat as reward).
We then extract user-artist features by applying low-rank Singular Value Decomposition on this
matrix and keeping only the top 80 singular values. This yields U d-dimensional user features, and A
d-dimensional artist features, where d = 80. The final user-artist features are the concatenation of the
two, which yields a dataset with U ×A tuples (φ, x) ∈ Rd × N in our desired form.

Step 2. (Neural-network training) For both datasets, the second step consists in training a neural
network to regress from φ to x. First, we split the datasets randomly into 80% training set and 20%
test set. Then, we train a neural network with two hidden layers of size 256, rectified linear unit
activations, and a linear output layer of 8 neurons. We obtain an R2 score on the test set of 0.92 for
the drug repurposing data, and 0.85 for the Last.fm one.

Step 3. (Extracting a linear representation) Finally, we extract a linear model from the trained
neural network by taking, for each input φ ∈ Rd in our data, the 8-dimensional features (i.e.,
activations) computed in the last layer together with the corresponding parameters. When specified, a
subset of arm features is considered instead of the whole dataset. Then, in that case, we apply a lossless
dimensionality reduction to make sure these features span the whole space. The reduced features are
the one we feed into our learning algorithms (Experiment (D): d = 5, K = 10; Experiment (E.i):
d = 8, K = 103; Experiment (E.ii): d = 7, K = 50). Moreover, we compute the maximum absolute
error of this linear model in predicting the original data, and use that as a proxy for ε.

Note that, since the Last.fm data is in the form of user-artist features and, in our problem, we consider
the artists only as arms, the representation we select for our experiments is obtained by choosing a
user randomly among the available U = 1, 322 ones.

Moreover, in Step 3, we apply a dimension reduction procedure on features to ensure the fea-
ture matrix is not ill-conditioned, at the cost of increasing the norm of misspecification ε. This
is needed in order to reduce the length t0 of the initialization sequence ; remember that in
Appendix D.1 we showed that t0 is upper-bounded by quantity d

⌈
2L2

Γ′(A)

⌉
, where Γ′(A) :=

min
{
σmin

(∑
k∈B φkφ

>
k

)
| B barycentric spanner of A of size d

}
crucially relies on the condition-

ing of A. How much misspecification is required to improve the conditioning of the matrix is an open
question (which has also been raised in other recent works [34]). Ideally, one would want to learn a
representation of the data which balances those two effects, but we leave such a method to future
investigations.

G.4 Numerical results for sample complexity

Table 2: Statistics (mean ± standard deviation rounded up to the next integer) for Experiment (A).
Names are similar to those in the first two leftmost plots of Figure 1. Values are averaged across 500
iterations. LinGapE is not δ-correct in the setting where ε = 5 (with δ = 0.05).

Sample complexity LinGapE MISLID

ε = 0 577± 348 890± 546
ε = 5 553± 536 5, 156± 3, 629
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Table 3: Statistics (mean ± standard deviation rounded up to the next integer) for Experiments (D)
and (E). Names are similar to those in the plots of Figure 2. Values are averaged across 100 iterations.
Note that LinGapE is not δ-correct (with δ = 0.05) in Experiment E.

Sample complexity LinGapE MISLID

Experiment D 21, 593± 8, 296 42, 751± 13, 942
Experiment E 10, 907± 4, 474 289, 703± 185, 205

G.5 Tricks to reduce sample and computational complexity on large instances (D) and (E)

In large instances (more particularly on our real-life datasets in Section 5 in the main paper), the
number of arms can be large, and the theoretically supported version of the algorithm MISLID might
become too slow. Based on our experiments, we have decided to change some parts of the algorithm.

No optimism. As shown in the rightmost plot in Figure 1 in the main paper, empirical gains (i.e.,
without any optimistic bonus) actually considerably improve sample complexity.

Restriction of the set of arms used in the sampling rule. In order to compute the gains which are
fed to the learner, MISLID needs to compute the closest alternative, which implies solving m(K−m)
quadratic optimization problems, one for each pair of arms (i, j), with i among the m best arms and
j among the K −m worse arms (as defined in Theorem 1 in the main paper). We observed that
the majority of arms never realize the minimum over (i, j) of the distance to the alternative, and in
hindsight they could be ignored. We mimicked that behavior by only considering a subset of arms
at each step. We kept m + d arms in memory, consisting of the recent argmins i, j for the closest
alternative model, and sampled d more among the K −m worse arms. The resulting set of at most
m+ 2d arms is then used to compute the closest alternative. The gain in computational complexity
is large when K � d, since we solve m(m + 2d) minimization problems instead of m(K −m).
We don’t use that trick to compute the stopping rule, since we would not be guaranteed to preserve
δ-correctness.

Geometric grid for testing the stopping rule. Instead of checking the stopping criterion at each
learning round of the algorithm, we suggest testing it on a geometric grid (that is, testing it for the
first time at t1, and then retest it at γt1, then at γ2t1, etc. where 1 < γ ≤ 1.3 in practice), and restrict
the computation of the stopping rule to a random subset of arms. In our experiments, we have actually
used γ = 1.2. When using the geometric grid, we can obtain a sample complexity bound of the same
form as in Theorem 2 in the main paper, except that T0(δ) is replaced by γT0(δ).

Together, the sampling and stopping rule changes reduce the time needed to complete a run of the
algorithm by a factor 29 on Experiment (D), while increasing the sample complexity by a factor 1.2
(refer to Table 4, comparing algorithmic versions named “AdaHedge” and “Default”). See the middle
plot of Figure 3 for a comparison of the sample complexity.

Table 4: Statistics (mean ± standard deviation rounded up to the next integer) for Experiment (D),
with different versions of MISLID. Names are similar to those in the center plot of Figure 3. Values
are averaged across 100 iterations.

Per run AdaHedge Greedy Default

Average runtime (in sec.) 69± 20 76± 178 1, 993± 1, 311
Average sample complexity 51, 965± 15, 260 52, 108± 125, 230 42, 751± 13, 943

We have also tested another learner which is less conservative than AdaHedge, to check if this
improves sample complexity (note that we did not show any experiment using this trick in the main
paper):

Change of learner. We replace AdaHedge by a Greedy/Follow-The-Leader learner combination for
the computation of (ωt, λt).
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Figure 3: Comparison between default MISLID, modified MISLID using learner AdaHedge, and
modified MISLID using learner Greedy (Experiment (D) (left), Experiment (E)). Unfortunately, one
outlier in the runs using learner Greedy in Experiment (D), above 1, 200, 000 rounds, would prevent
the readability of the plot if figured. To overcome this issue, we have cropped out the y-axis above
200, 000 in this plot.

We have run three versions of MISLID on the dataset of Experiment (D): the default MISLID, the
modified version with learner AdaHedge, and another modified version with the Greedy learner. We
have also launched the latter two on Experiment (E). See Figure 3.
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