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ABSTRACT: We compared the effects of a non-weight bearing protocol (NWB) and a weight bearing (WB) protocol on energy stored,
stiffness, and shock absorption in the plantar flexor muscle–tendon unit of patients managed non-operatively following an Achilles
tendon rupture. Thirty-eight subjects were randomized to a WB cast fitted with a Bohler iron or a traditional non-weight-bearing cast.
At a 6-month follow-up, a biomechanical assessment utilizing an isokinetic dynamometer allowed measurement of peak passive torque,
energy stored, shock absorption, and stiffness. The WB group had greater peak passive torque (20%). Irrespective of group, peak
passive torque in unaffected legs was greater (26%) than affected legs. Across the groups, energy stored in the NWB group was 74%
of the WB group. The energy stored in affected legs was 80% of that in unaffected legs. Shock absorption was not significantly different
across legs or groups. Irrespective of group, affected legs had significantly less stiffness (20–40%). While the augmentation of plaster
with a Bohler iron to allow increased weight bearing had positive effects, deficits in affected compared to unaffected legs irrespective of
group were notable, and should be addressed prior to participation in vigorous physical activities. 2013 Orthopaedic Research Society
Published by Wiley Periodicals, Inc. J Orthop Res 9999:1–7, 2013
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Rupture of the Achilles tendon causes damage to
collagen and elastin components of the tendon. The
healing process leaves the tendon with altered archi-
tecture including disorganized fiber orientation,
changes in cell and fiber density,1 decreased type one
collagen, and an increase in type 3 collagen.2 Such
changes likely affect the biomechanical properties,
which in turn can affect maximal performance and
efficiency of motion, rate of re-injury, shock absorp-
tion, and coordination. Normally, the anatomical
structures provide the elasticity required to absorb
and release energy, ultimately increasing the efficien-
cy of motion in activities like walking, running, and
jumping.3 Muraoka et al.4 showed that the length of
the Achilles tendon and its aponeuroses are seven
times longer than the muscle fascicles, while Herbert
et al.5 found significantly greater passive lengthening
in the gastrocnemius tendon compared to the muscle
fascicles. More recently Lichtwark and Wilson6 showed
that during gait, the active muscle fascicles remain
relatively constant in length. Such findings suggest
that the ability of the tendon to lengthen is of great
importance in storing elastic energy, an attribute that
might be affected by damage associated with its
rupture and subsequent remodeling during the heal-
ing process.

Changes in tendon structure may also affect the
likelihood of re-injury or strain injury to the musculo-
tendinous complex of the plantar flexors. Stiffness (the
degree of resistance offered by tissues in response to
lengthening) may be important. Interest in stiffness as

a factor influencing injury and re-injury arose from
the observation that many muscle and tendon injuries
occur when the joint is in the mid range and not in an
overextended position. When tissues are too stiff, they
cannot absorb sufficient energy during loading, and
subsequently are more likely to be injured.7,8 Given an
incidence of re-injury to the tendon as high as 20% in
conservatively managed patients,9 it is of considerable
interest to assess the stiffness of the plantar flexor
muscle–tendon unit following rupture.

Shock absorption is an important role of muscle and
tendons. During gait, a loss of shock absorption can
lead to increased impulse forces at foot strike being
transmitted towards the head.10 These larger forces can
place additional stress upon joint and bone structures,
and have been implicated in the progression of osteoar-
thritis.11 The plantar flexor muscles are important in
limiting shock transmission,10 and changes in their
structure following rupture might influence their abili-
ty to undertake this role effectively.

Don et al.12 suggested that alterations in the
mechanical parameters of the Achilles tendon may
lead to changes in muscle activation and hence the
coordination of motion during gait. They observed that
subjects with higher passive stiffness exhibited altered
muscle activation patterns that influenced ankle range
of motion and increased co-contraction.

The above-mentioned parameters therefore can
negatively influence patient function following Achilles
tendon rupture. During treatment, initial weight
bearing status may influence tendon healing13 and
subsequently biomechanical parameters. Recently
researchers14 utilizing more aggressive non-operative
protocols with early weight-bearing noted a far lower
incidence of re-rupture, with rates approaching those
of operative management. To date, no studies have
explored the effects of the immobilization protocol on
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the mechanical properties of the plantar flexor mus-
cle–tendon unit.

Our primary objectives were to compare the effects
of a non-weight bearing protocol and a weight bearing
protocol on energy stored, stiffness, and shock absorp-
tion in the plantar flexor muscles of a group of patients
managed conservatively following an Achilles tendon
rupture. Secondary measures that were assessed in-
cluded strength and range of motion.

METHODS
Subjects
Subjects were recruited from the accident and emergency
departments of three hospitals in the Auckland region
between 2008 and 2010. Inclusion criteria were that subjects:
had a functionally complete, isolated Achilles tendon rupture
confirmed clinically by a palpable gap in the tendon and a
positive Thompson test; presented for treatment < 72 h after
injury; and could understand instructions and read in
English. Exclusion criteria were: presence of an open injury;
injury to the ipsilateral limb; neurological, rheumatic, and
metabolic diseases that might affect the measurements
undertaken; and previous history of injury or tendonitis
affecting plantar flexor muscles. Written and verbal explana-
tions of the procedures and an opportunity to ask questions
about the study were provided to all subjects. Ethical
approval was received from the Northern Regional Ethics
Committee, and all subjects signed a document of informed
consent.

Intervention
A third party with no affiliations to the investigators enrolled
the patients using a computer generated software program
and a sealed envelope protocol. Subjects were randomized to
either a weight bearing cast fitted with a Bohler iron or a
traditional non-weight bearing cast. Both groups had a total
cast time of 8 weeks and were treated with a set protocol.
The first cast was set to “full” equinus without manual
pressure. Subjects fitted with a Bohler iron were instructed
to begin weight bearing immediately. Subjects in the non-
weight bearing group were given crutches and instructed not
to place weight through the injured limb. After 4 weeks, both
groups had their casts changed, and the amount of equinus
was reduced to a “resting” position of 10–20˚ of plantar
flexion. Instructions for the weight bearing group were to
continue to weight bear as tolerated; the non-weight bearing
group were instructed to continue to use crutches and not
put weight through the injured limb. At 8 weeks the casts
were removed, range of motion exercises were begun, as was
weight bearing as tolerated in normal shoes fitted with a
2 cm heel raise. After 4 weeks the raises were removed.
Graduated strength training was instigated at 6 weeks after
cast removal with return to sports a further 3 months
thereafter.

Procedures
A clinical and biomechanical assessment was undertaken
6 months post-injury. The clinical assessment included
range of motion and strength testing. Questions concerning
function (Lower Limb Task Questionnaire15) were also
completed.

The biomechanical assessment involved an examination of
passive motion on an isokinetic dynamometer. In accordance
with manufacturer’s instructions, subjects were seated with

their ankle joint strapped to a Biodex1 dynamometer
(Biodex Corp, Shirley, NY). Initially, the ankle joint was
positioned at 80% of maximal plantar flexion. The subject’s
knee was supported in extension. Subjects were asked to
relax and not activate their lower limb muscles during the
subsequent passive motion. The Biodex was programmed to
move the ankle joint to 80% of the subject’s maximum range
of dorsiflexion at an angular velocity of 5˚/s. Previous
studies16–18 showed that EMG responses of the plantar flexor
muscles to stretch were minimal in these conditions. Each
subject performed a familiarization set of ankle movements
(10 reps) during which they watched their signals on the
computer monitor and were given verbal feedback to ensure
that muscle activity was not affecting their torque curves.
Thereafter, they performed five reps that were saved for data
analyses. Legs were tested in a random order.

Next, maximal effort strength testing was performed.
Subjects were again seated in the dynamometer. An isoki-
netic evaluation that involved concentric muscle work was
conducted at an angular velocity of 240˚/s from a position of
maximal plantar flexion to maximal dorsiflexion. Five sub-
maximal reps were done as a “warm up” prior to testing.
Thereafter, subjects performed three maximal effort repeti-
tions of dorsi and plantar flexion on each leg. Standardized
verbal encouragement was provided to ensure maximal
effort.19 The maximal torque recorded across the three trials
was used in subsequent analyses.

Data Analyses and Processing
All data were processed using a standardized Matlab1 script
(The Mathworks, Natick, MA). Torque, angle, and velocity
signals were filtered using a zero-phase low-pass (10 Hz),
2nd order Butterworth filter. To correct torque for gravity
effects, the mass of the Biodex level arm was determined
during cycles performed with no subject on the dynamome-
ter.20 The mass of the foot was neglected. Data without a
smooth torque-angle relationship were excluded. All process-
ing was performed on the 5th cycle to account for condition-
ing.21 Thereafter, the torque and angle values were
calculated each 5% of the total range of motion for loading
and unloading phases. The energy stored during loading (E,
the area under the loading curve), the energy restituted (ER,
the area under the unloading curve), and the energy
dissipated by the musculo-articular complex (ED, the hyster-
esis area) were calculated. ED was divided by E to calculate
the dissipation coefficient (DC) representative of the shock
absorbing quality of the plantar flexor muscles21,22:

DC  ED

E  E  ER

E 1

The torque-angle curves were fitted using a Sten–Knud-
sen model23:

T  E0

a
eau  a 2

where T is the passive torque, u the ankle angle, and a, E0,

and a are experimental constants determined using optimi-

zation. Both parameters (a, E0, and a) were determined by

minimizing the squared difference between the experimental

and the modeled (Equation 2) responses using Matlab and

the optimization toolbox (Levenberg–Marquard algorithm);

R
2 was calculated to assess the quality of fit. Using this
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exponential model (Equation 2), the stiffness (slope of the

torque-angle relationship) was calculated at 0˚, the mid

range of dorsiflexion, and at the maximal range of motion of

dorsiflexion.

Statistical Analyses
Statistical analyses were undertaken using the Statistical
Package for Social Sciences (SPSS) Version 17.0 (SPSS, Inc.,
Chicago, IL). An alpha level of 0.05 was set across all tests.
Descriptive data were assessed to determine the appropriate-
ness of parametric analysis. The two treatment groups were
compared for baseline characteristics of height, weight, and
BMI using an independent t-test. Two factor ANOVA was
used to assess differences in energy stored, peak passive
torque, the dissipation coefficient, strength and ROM. The
factors were groups (WB and NWB) and limbs (affected and
unaffected). Departures from sphericity in the repeated
measures were accounted for with the Huynh–Fedlt epsilon
value. For stiffness, a three factor ANOVA was used; the 3rd
factor was dorsiflexion position (0˚, mid range, and maximal
range). To assess where differences might lie across these
three points, the Bonferroni post hoc test was utilized.24

RESULTS
Thirty-eight subjects volunteered to participate; eight
were excluded due to technical issues related to data
collection or irregular torque-angle traces. Their demo-
graphic characteristics were not significantly different
from those subjects who completed data collection
(Table 1).

Significant main effects for limbs and groups, but
no interaction effect, were found for maximal passive
peak torque at the end of dorsiflexion. Unaffected legs
had larger torque (26%) than affected legs, and the
WB group had greater maximum torque (20%)
compared to the NWB group (Fig. 1).

Significant main effects for limbs and groups, but
no interaction effect, were found for the amount of
energy stored. Irrespective of group, the mean energy
stored in affected limbs was 20% less than that in the
unaffected limbs. Across the groups, energy stored in
the NWB group was 26% less than the WB group
(Fig. 2). The DC was not significantly different across
limbs or groups.

For stiffness, there were significant main effects for
limbs and position in range of motion, but no main
effect for groups. There were no significant interaction
effects. The affected limb had significantly less stiff-
ness, which ranged from 20% to 40% at the start, mid
range, and the end of range of motion (Fig. 3).

For range of motion for dorsiflexion, there was no
significant main effect for limbs and group, and no
interaction effect. However, for plantar flexion, there
was a significant main effect for limbs, but no group or
interaction effect. For the latter limb effect, a 3.5˚
mean deficit was observed in the affected limbs.

For strength testing, there were significant main
effects across limbs but not across groups. There were
no significant interaction effects. Peak plantar flexion
torque was significantly less (20%) in the affected
limbs.

DISCUSSION
Our findings show that the group with a Bohler iron,
which allowed increased weight bearing early in
rehabilitation, had greater values of peak passive

Table 1. Subject Characteristics in the Weight Bearing
and Non-Weight Bearing Groups

Characteristic

Weight
bearing
group

(N  16)

Non-weight
bearing
group

(N  14)

Sex 8 male 7 male
Age (years) 38 (5) 41 (13)
Height (cm) 171 (8) 172 (9)
Weight (kg) 93 (13) 87 (15)
LLTQ-ADL (/40) 34 (6) 35 (5)
LLTQ-Rec (/40) 21 (9) 23 (11)

LLTQ-ADL, lower limb Task Questionnaire-activities of daily
living; LLTQ-Rec, lower limb Task Questionnaire-activities of
recreation.

Figure 1. Peak passive torque across limbs and groups (WB:
weight bearing; NWB: non-weight bearing). Significant main
effects (p < 0.05) were observed across limbs and groups with no
interaction effect.

Figure 2. Energy stored across limbs and groups (WB: weight
bearing; NWB: non-weight bearing). Significant main effects
(p < 0.05) were observed across limbs and groups with no
interaction effect.
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torque and energy stored compared to those who were
allocated to the non-weight bearing protocol. Irrespec-
tive of group allocation, differences across limbs were
considerable in a number of variables, indicating that
some mechanical parameters associated with muscle
and tendon structure remain reduced at 6 months.
Performance in physical tasks associated with recrea-
tional pursuits as measured by the Lower Limb Task
Questionnaire indicated a need for continued rehabili-
tation. Performance in a number of these tasks could
be influenced by the deficits in the biomechanical
variables.

The reduced energy storage in the affected limbs of
both groups may affect physical performance, particu-
larly in activities that involve the stretch-shorten
cycle.25 Kubo demonstrated that the Achilles tendon
contributed between 20% and 45% to the total amount
of work in ankle joint exercises performed at different
speeds, while Voigt et al.26 showed that up to 60%
of work associated with performing repetitive vertical
jumps was generated from the tendon. Thus exercises
should be instituted to remedy the deficit; previous
research27,28 showed that eccentric muscle work and
plyometric exercises are beneficial. Furthermore, the
reduced energy storage capacity of the affected limbs
has ramifications for re-injury. Authors8 have argued
that a reduced capacity to store energy is a factor
influencing the likelihood of a musculo-tendinous
strain injury.

Stiffness values were similar to those in the litera-
ture.29,30 The reduction in stiffness in the affected
limb was notable, 60–80% of the unaffected limb. In
patients treated surgically, Don et al. noted that the
affected plantar flexors had increased stiffness at 3
and 6 months post-op, but this had reduced to values
similar to the unaffected limb by 12 months. Similarly,
in a longer follow up (1–5 years) by Bressel and
McNair,29 no difference in stiffness across limbs was
observed in patients managed non-operatively. In our
study, the difference across limbs was highest at the
early and mid range of dorsiflexion. This part of the

range of motion is often used in gait, and the findings
suggest less ability to resist strain in the muscle and
tendon (i.e., the musculo-tendinous complex is more
compliant). This might reduce the likelihood of a
strain induced injury31; however, in other instances
this change may not be beneficial. For instance, in
many gait activities contractile muscle elements would
have to activate at higher levels to compensate for the
stiffness loss in the overall musculo-tendinous unit.
Don et al.12 showed that changes in stiffness within
the plantar flexors influenced the amount of dorsiflex-
ion occurring in the latter part of the stance phase. In
our study, the observed increased compliance would
require increased activation in the plantar flexor
muscles to maintain symmetrical motion with the
opposite limb in the late stance phase. Such a strategy
is inefficient metabolically, particularly as the passive
mechanical properties significantly contribute to the
torque production during walking.32 It might also
require an adjustment to the “central pattern gener-
ator’s”33,34 activation of the alpha motor neurons, as
different signals would need to be transmitted from
the neuron to the plantar flexors of each limb due to
the stiffness asymmetry.

The reduced stiffness is likely closely linked to the
decreased strength observed in the plantar flexors.
While muscle cross-sectional area (CSA) was not
measured in our study, muscle atrophy is a common
feature related to strength deficits, and higher levels
of muscle CSA are associated with higher levels of
passive muscle stiffness.35,36 Thus implementing a
strength training program focused upon hypertrophy
of these muscles would be valuable. Fry37 suggested
that loading levels of high intensity are most effective.

The observed strength deficit of 18% was slightly
less than the 23–26% reported by Moller et al.38 and
Keating and Will39 at 6 months post-injury. Such
deficits reflect processes associated with muscle atro-
phy and a reduction in neural activation. That the
deficits were similar across both groups suggests that
the early weight bearing protocol was insufficient to
counter these processes. Previous work in animals
showed that muscle atrophy can be reduced with
earlier activity40; however, the increased activity expe-
rienced by animals is usually notably more than in
humans where patients are still quite constrained in
their ability to exercise, and hence loading levels
sufficiently high for maintaining strength may not be
achieved.

A positive finding was the lack of differences across
limbs or across groups in shock absorption abilities of
the passive plantar flexor muscles. Therefore, the
intrinsic ability of these muscles to limit the joint and
bone stresses associated with the transient impact
forces that range between two and four bodyweights at
foot strike during gait activities such as jogging seems
unaffected.

Dorsiflexion range of motion had been restored to
that of the unaffected side at 6 months, a finding

Figure 3. Stiffness across limbs at the start, mid range and
end of range of motion tested. Significant main effects (p < 0.05)
for limbs and position in the range of motion were observed.
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similar to Keating and Will.39 While there was a
significant difference across limbs with respect to
plantar flexion range of motion in both groups, the
mean difference was 3.5˚ (< 10%) which was similar
again to Keating and Will39 and is unlikely to be of
clinical significance.

In conclusion, despite some positive effects as a
result of the Bohler iron allowing earlier weight
bearing and mobility for patients, we provide evidence
that a number of biomechanical parameters important
to function remain well below levels of those in the
unaffected limb. These should be addressed through
appropriate exercise regimes if patients are to return
to sport safely and at pre-injury levels of performance.
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