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EXISTENCE AND DYNAMICS OF STRAINS IN A NONLOCAL
REACTION-DIFFUSION MODEL OF VIRAL EVOLUTION∗

NIKOLAI BESSONOV† , GENNADY BOCHAROV‡ , ANDREAS MEYERHANS§ , VLADIMIR

POPOV¶, AND VITALY VOLPERT‖

Abstract. In this work, we develop a mathematical framework for predicting and quantifying
virus diversity evolution during infection of a host organism. It is specified as a virus density distribu-
tion with respect to genotype and time governed by a reaction-diffusion integro-differential equation
taking virus mutations, replication, and elimination by immune cells and medical treatment into ac-
count. Conditions for the existence of virus strains that correspond to localized density distributions
in the space of genotypes are determined. It is shown that common viral evolutionary traits like
diversification and extinction are driven by nonlocal interactions via immune responses, target-cell
competition, and therapy. This provides us with a mechanistic explanation for clinically relevant
properties like immune escape and drug resistance selection, and allows us to link virus genotypes to
phenotypes.
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1. Introduction. Virus infections of host organisms are initiated when viruses
overcome protective body boundaries like skin and mucosal surfaces. The first step
then is local virus amplification in target cells at the entry site, after which viruses
can subsequently spread to other tissues or organs. Due to the explosive amplification
capacity of viruses, e.g., a CD4 T cell infected by a single human immunodeficiency
virus (HIV) particle can produce around 1000 progeny particles within 24 hours [32],
the host requires a multitude of restricting defense mechanisms both at the cellular
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level (virus restriction factors) as well as at the organism level (immune system)
(see [7, Chapter 1]). These systems, together with error-prone virus replication and
therapeutic interventions, drive the evolution of viruses within genotype space.

Genetic evolution of viruses can play a fundamental role in virus pathogenesis
[50, 51, 12, 29, 14, 47]. However, the prediction of virus evolution remains a challenge
for theoretical and empirical research [22, 46, 41, 27]. Today, the general approach to
analyze virus evolution relies on the notions of fitness and fitness landscapes which
map the genotypes to reproductive success [52]. While these are essential for predict-
ing the selection of mutants, a quantitative a priori description of the fitness landscape
remains difficult as it is determined by multiple factors and constraints [40]. A com-
bination of experimental and mathematical modelling studies provided interesting
means to specify fitness landscapes [40, 17, 57]. They consider as a structure vari-
able for describing virus diversity (i) the binding affinity of viral antigens to T cells
[46], (ii) single nucleotide variants of the HIV-1 genome [57], (iii) antibody binding
affinity, and (iv) RNA virus capsid folding stability [40]. The mathematical models
were formulated with systems of integro-differential equations, stochastic ODEs, and
algebraic equations, respectively.

Since the pioneering works by Fisher [15], Kolmogorov, Petrovskii, and Piskunov
[25], and later Kimura [23], the reaction-diffusion equation and the diffusion-convec-
tion equation (backward Kolmogorov equations) were used to describe the mutation-
driven evolution of gene frequencies in a population. The models were then tailored for
the analysis of intrahost genetic evolution of viruses subjected to immune responses
using a reaction-diffusion equation with a nonlocal competition growth term for the
virus dynamics and an ODE for immune cells [44], or a system of reaction-convection
equations for virus dynamics and immune cells [22].

The concept of quasi-species (clouds of related strains) represents a fruitful frame-
work for the analysis of evolving virus populations [6, 13]. Mathematically, it can be
expressed using either a discrete or a continuous description of the state space. Several
models were formulated with high-dimensional ODE systems that describe the evolu-
tion of individual mutants [36]. The complementary approach we follow here is based
on considering a density distribution function to represent the abundance of viruses in
some defined genotype space u(t, x), x ∈ X. It provides a less-developed-but-powerful
tool to study a range of fundamental issues concerning the dynamics of virus infec-
tions including (i) the presence of wild-type virus versus mutants, (ii) the branching
of genotypes, (iii) mutant extinction, and (iv) escape mechanisms. The following pro-
cesses were taken into account: (1) random generation of mutations of viral genomes,
(2) diversity of target cells in which viral replication takes place, (3) antigen cross-
reactivity of immune cells, (4) bell-shaped responsiveness of antigen-specific immune
cells, (5) competition between quasi-species, and (6) impact of antiviral drugs.

All six processes are described by formulating a general reaction-diffusion model
with time delay and a number of nonlocal terms. The model is an abstraction from
the details of genome sequences and virion structures. It enables the study of a broad
range of dynamical behaviors of viral quasi-species in the respective genotype space
including travelling waves, standing waves, mono- and bistable waves, irregular dy-
namics, pulses, and branching waves. Whereas the travelling waves [42, 43, 41] and
branching waves [46] have received some attention previously, the other dynamical
modes remain to be systematically investigated. We elaborate the conditions under-
lying various evolutionary behaviors and relate them to the within-host viral evolution
subjected to antiviral immune responses and antiviral therapy.
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2. Mathematical model of adaptive evolution. Similar to biological species,
virus strains can be characterized by their genotypes. Consider the one-dimensional
(1D) space of genotypes X in which the viral quasi-species population can be described
as a density function of genotypes x ∈ X, i.e., u(t, x) at time t ∈ [0,∞). The
population density distribution u(x, t) represents a strain if it is localized in the sense
that it has a maximum at some x = x0, and it rapidly decays as |x − x0| grows.
A typical dependence is given by the normal distribution described by the diffusion-
advection equation (see the supplementary material file supplement.pdf [local/web
170KB]). Note that localized density distributions do not exist as stationary solutions
of the diffusion equation. In this and the next section, we will introduce the model
and investigate the existence and dynamics of virus strains.

2.1. Governing equation for the within-host quasi-species dynamics.
We formulate a general mathematical model to investigate the evolutionary dynamics
of the virus density distribution u(t, x) depending on its genotype, being considered as
a continuous variable, and time. As shown in Figure 1, the model takes into account
mutations, quasi-species competition for target cells, immune-mediated elimination
subject to genotype density-dependent regulation, and antiviral treatment. The model
is formulated in a form of reaction-diffusion equation with time lags and nonlocal
regulation:

(2.1)
∂u

∂t
= D

∂2u

∂x2
+ ruH − duC − σ(x)u.

This equation is considered on the interval 0 ≤ x ≤ L with some initial and bound-
ary conditions. For the mathematical convenience, we consider this equation on the
whole axis. In numerical simulations, it will be considered on a bounded interval
with periodic boundary conditions, so that it can be extended on the whole axis by
periodicity. In this case, the problem is defined for all real values of x. In the biolog-
ical interpretation, we will keep in mind a bounded interval of genotypes. Diffusion
coefficient D is a positive parameter related to the mutation rate. Derivation details
of the diffusion equation for describing the mutation-driven evolution of viruses are
presented in the supplementary material. Parameters r and d are positive.

The virus reproduction term ruH = ru(1 − qJ(u)) is proportional to the virus
density u and to the concentration of available host cells H. In the model, virus
replication in target cells is described by a conventional logistic term. However, it takes
into account the genotype-dependent target cell tropism via the nonlocal interaction
term J(u). Three biologically relevant functional forms can be specified:

1. When there is a one-to-one correspondence between the virus genotype x and
the type of infected cells, then J(u) = u(x, t)/H0. Here H0 is a carrying
capacity and u(x, t)/H0 is the proportion of infected host cells.

2. The above case is biologically restrictive since, in general, viruses with differ-
ent genotypes can infect the same target cells. In this case, the logistic term is
replaced by the term ru(1− qJ(u)), where J(u) =

∫∞
−∞ φ(x− y)u(y, t)dy, q is

a positive parameter, and the kernel φ(x− y) shows how the infection of host
cells depends on the distance between the genotypes. Such terms with non-
local consumption of resources were previously considered in the framework
of a nonlocal Fisher-KPP equation, in particular, for addressing evolution
problems [10, 19, 53].

3. If the infection of target cells does not depend on the virus genotype, that is,
φ(x− y) ≡ const, then the reproduction term becomes ru(1− qU(t)), where

https://epubs.siam.org/doi/suppl/10.1137/19M1282234/suppl_file/supplement.pdf
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U(t) =
∫∞
−∞ u(y, t)dy. This is the case of global consumption of resources in

population dynamics [54].
The third term of (2.1) describes the immune-mediated elimination of viruses.

The elimination term duC is proportional to the virus density and the concentration
of immune cells C. Since production of virus-specific immune cells by the organism is
stimulated by viral antigens, their abundance can be considered as a function of virus
concentration, C(x, t) = f(uτ ), uτ = u(x, t− τ). This approximation can be obtained
from a more complete model presented by a system of two equations [9]. Time delay
τ takes into account the duration of clonal expansion of immune cells stimulated by
the antigen. The function f(u) is growing for small u and decreasing for large u since
the virus can downregulate cell proliferation and upregulate their death via a number
of mechanisms, including functional exhaustion, activation-induced apoptosis, etc.

To take into account the cross-reactivity of immune cells and their specificity-
dependent distribution with respect to the virus-elimination efficacy, the following
nonlocal convolution terms are specified:

• The simplest case is a one-to-one correspondence between virus genotype
(antigen) and immune cells (lymphocytes). This assumption reflects the basic
antigen-specific stimulation and is described by the function d · u · f(uτ ).

• However, because of antigen cross-reactivity and bystander stimulation ef-
fects, a specific lymphocyte can be activated by the cytokines released due
to antigens of another specificity. Thus, the genotype dependence will not
be strictly localized. We assume that virus genotypes of some range [xl, xh]
lead to clonal expansion of a certain repertoire of lymphocyte specificities.
Then, instead of the function f(uτ ), we consider a more general expression
f(S(uτ )), where S(uτ )(x, t) =

∫∞
−∞ ψ(x− y)u(y, t− τ)dy. The function ψ(x)

shows how the initiation of clonal expansion of immune cells depends on the
virus genotype.

• Immune cells can also eliminate viruses in some range of genotypes although
with a different efficacy. In this case, the virus elimination term takes the form
u(x, t)

∫∞
−∞ θ(x− y)f(S(uτ )(y, t))dy. The dependence of virus elimination on

immune cells is determined by the function θ(x). In this work we will consider
a particular case of this equation where θ(x) is approximated by a δ-function.

Without loss of generality, we can set
∫∞
−∞ φ(x)dx =

∫∞
−∞ ψ(x)dx = 1.

Finally, the last term of (2.1) describes genotype-dependent virus mortality or
inhibition of its replication. Virus death rate is determined by its degradation in
the infected host which can occur via multiple processes, including the intracellular
ones, such as virus internalization and cytosolic degradation, the degradation of the
viral RNA by a cellular defense system, and stability to various physical and chemical
factors in the extracellular environment. It is known that virus strains differ in their
pH sensitivity [45] and thermal and mechanical stability of viral particles with its
structure defined by the genome [31, 11]. Next, drug resistance is a fundamental
property of many virus infections [1, 26, 36]. It is associated with a partial or complete
reduction of the inhibitory effect of the drugs on virus replication. For some drugs,
a single-point mutation confers a high level of resistance, whereas for other single
drugs or a combination of drugs acquisition of several mutations is needed to reduce
the inhibition to zero [36]. Overall, the genome-dependent differences in the virus
death rate and inhibition are taken into account in the model phenomenologically by
specifying the properties of σ(x).

Taking into account all of these assumptions, we arrive at the following model to
study the intrapatient evolution of viral quasi-species driven by target-cell competi-
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Fig. 1. Nested mathematical models of different nature and complexity used in the study. Left:
Fisher-KPP reaction-diffusion equation extended by considering nonlocal interactions and time-delay
of the immune response. Right: Processes considered to determine the within-host mutation-selection
driven viral evolution.

tion, immune forcing, and antiviral therapy:

(2.2)
∂u

∂t
= D

∂2u

∂x2
+ ru

(
1− q

∫ ∞
−∞

φ(x− y)u(y, t)dy

)

−u
∫ ∞
−∞

θ(x− y)f(S(uτ )(y, t))dy − σ(x)u,

where

S(uτ )(y, t) =

∫ ∞
−∞

ψ(y − z)u(z, t− τ)dz.

The phenomenological features of the nested mathematical models considered in this
study and the represented biological processes are summarized in Figure 1. Equation
(2.2) has a very rich dynamic. We use it to examine the role of nonlocal, nonlinear
interactions for the emergence of various modes of virus evolutionary dynamics sub-
ject to immune- and drug-mediated forcing within a host, i.e., the evolutionary paths
characterized by dominance of wild-type viruses versus mutants, branching of geno-
types, extinction, and escape kinetics. The mathematical conditions of their existence
are elaborated below.

Since (2.2) manifests extremely complex dynamics with many different patterns,
in this work we will study a particular case where (a) the kernels ψ(x) and θ(x) are
the δ-functions such that the corresponding terms become local, (b) there is no time
delay, τ = 0, and we will focus our attention on the existence and dynamics of pulse
solutions. In the following article, we will consider (2.2) under different assumptions
more specific for the analysis of periodic patterns and waves.

3. Existence of virus strains. We will begin the analysis of the equation (see
the assumptions (a), (b) above)

(3.1)
∂u

∂t
= D

∂2u

∂x2
+ ru(1− qU(t))− uf(u)− σ(x)u,

U(t) =
∫∞
−∞ u(x, t)dx, with the investigation of its positive stationary solutions decay-

ing at infinity called pulse solutions. In the context of virus distribution in the space
of genotypes such solutions characterize virus strains. In this section, we will prove
the existence of such solutions in the case of the interaction of virus reproduction with
immune response or with the genotype-dependent mortality.
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3.1. Competition for target cells and immune response. Consider (3.1)
on the whole axis assuming that σ(x) ≡ 0 and f(u) ≥ 0 for u ≥ 0. For simplicity of
presentation, we set D = r = q = 1. We look for a positive stationary solution of this
equation u(x) with the limits u(±∞) = 0 at infinity. Such a solution is called a pulse
solution. It satisfies the problem

(3.2) u′′ + u(1− U)− uf(u) = 0, u(±∞) = 0,

where U =
∫∞
−∞ u(x)dx. Set k = 1− U . Then problem (3.2) writes as follows:

(3.3) u′′ + u(k − f(u)) = 0, u(±∞) = 0.

Existence of a solution of this problem can be studied analytically. Suppose that such
a solution exists and denote it by uk(x), where the subscript k shows its dependence
on the parameter k. From the definition of k we obtain the following equation with
respect to k:

(3.4) 1−
∫ ∞
−∞

uk(x)dx = k.

Existence of its solution determines the existence of a solution of problem (3.2). In
order to get an analytical solution of this problem, let us consider a particular example
f(u) = b− u. Then (3.3) becomes as follows: u′′ − pu+ u2 = 0, where p = b− k. Set
u(x) = pw(

√
px). Then w(y) satisfies the equation w′′−w+w2 = 0. It has a positive

solution w0(y) such that w0(±∞) = 0. Hence, uk(x) = pw0(
√
px), and from (3.4) we

obtain

(3.5) U0

√
b− k = 1− k,

where U0 =
∫∞
−∞ w0(y)dy.

Theorem 3.1. Consider a stationary solution of (3.1) decaying at infinity, that
is, a solution of the problem (3.2) where U =

∫∞
−∞ u(x)dx, f(u) = b− u, b > 0. Then

there exist such positive values b1, b2, b1 < b2 that this problem has a positive solution
for b1 < b < b2, and it does not have a positive solution for 0 < b < b1 and b > b2.

The proof of the proposition follows from the analysis of (3.5). The method
presented here can be generalized for the functions f(u) = b− un, n > 1.

Existence of a positive stationary virus density distribution provided by this the-
orem corresponds, from the biological point of view, to the existence of a virus strain.
Existence of pulses for other functions f(u) and their stability are confirmed by nu-
merical simulations (section 4). Thus, the mechanism leading to the existence of
stable virus strains is determined by the interaction of the nonlocal term in the re-
production rate with the immune response. Such solutions do not exist without an
immune response, that is, for f(u) ≡ 0. Decreasing functions f(u) correspond to the
decaying branch of the immune response where high virus concentration eliminates
the immune cells. Conditions on the parameter b in Theorem 3.1 signify that virus
strain persists for some intermediate intensity of immune response.
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Let us note that if σ(x) ≡ 0, then the solution is invariant with respect to trans-
lation in space. From the biological point of view, this means that for the genotype-
independent virus death, virus quasi-species can form around any value of average
genotype determined by the initial condition (initial viral load).

3.2. Genotype-dependent mortality. In this section we study the existence
of pulses (virus strains) in the case of genotype-dependent mortality determined either
by virus viability for different genotypes or by an antiviral treatment.

3.2.1. Piecewise constant mortality rate. Consider the problem

(3.6) u′′ + u(1− U)− σ(x)u = 0 , u(±∞) = 0

on the whole axis, where U =
∫∞
−∞ u(x)dx, σ(x) = σ0 > 1 for |x| ≥ x0, and σ(x) = 0

for |x| < x0, where x0 is some positive number. We look for a positive bounded
solution of this equation. Clearly, it can exist only if I(u) < 1. Set

(3.7) 1− U = k2.

Then (3.6) can be written as follows:

(3.8) u′′ + k2u = 0, |x| < x0, u′′ + k2u− σ0u = 0, |x| ≥ x0.

Then we get

u(x) = c1 cos(kx), |x| < x0, u(x) = c2e
±λx, |x| ≥ x0,

where c1 and c2 are positive constants, and λ =
√
σ0 − k2 (k2 < σ0). From the

continuity of the solution and its first derivative at x = ±x0, we obtain the following
equalities:

(3.9) c1 cos(kx0) = c2e
−λx0 , c1k sin(kx0) = c2λe

−λx0 .

Dividing the second equation by the first one, we get the equation with respect to k:

(3.10)
√
σ0 − k2 = k tan(kx0).

Let us recall that we look for a solution k < 1 of this equation. Such a solution
exists if x0 is greater than some critical value x∗0, and it does not exist if x0 < x∗0. For
x0 large enough, there are multiple solutions satisfying this condition.

We can now determine the integral U :

U =

∫ ∞
−∞

u(x)dx =
2c1
k

sin(kx0) +
2c2
λ
e−λx0 .

Taking into account the first relation in (3.9), we have

U = 2c1

(
1

k
sin(kx0) +

1

λ
cos(kx0)

)
.

The coefficient c1 is determined from (3.7):
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c1 = (1− k2)/(2h(k)), h(k) =
1

k
sin(kx0) +

1√
σ0 − k2

cos(kx0),

and c2 = c1e
λx0 cos(kx0) .

Thus, problem (3.6) has a positive solution decaying at infinity if the width 2x0 of
the admissible interval where the mortality rate is less than the reproduction rate is
sufficiently large. Otherwise, such a solution does not exist, and the virus population
goes into extinction. A similar analysis for an arbitrary diffusion coefficient D shows
that a virus exists if D is less than some critical value. If the mutation rate determined
by the diffusion coefficient is sufficiently large, then a virus strain does not exist.

3.2.2. Continuous mortality rates. We study here problem (3.6) under the
assumption that σ(x) is a bounded nonnegative sufficiently smooth function. In or-
der to prove the existence of positive solutions of this problem, we will apply the
topological degree method. We begin with a priori estimates of solutions.

Lemma 3.2. Let u(x) be a positive solution of problem (3.6). Then U < 1.

The proof of the lemma follows directly from the maximum principle. Indeed,
if U ≥ 1, then u(x) is a solution of the equation u′′ + q(x)u = 0 with q(x) ≤ 0
and q(x) 6≡ 0. Therefore, u(x) cannot have positive maximum or negative minimum.
Hence, u(x) ≡ 0.

Lemma 3.3. Suppose that σ(x) = σ0 > 1 for |x| ≥ x1 with some positive σ0 and
x1. Then u(x1) <

√
σ0/2.

Proof. For x ≥ x1, (3.6) writes: u′′−au = 0, where a = σ0− (1−U) < σ0, a > 0.
Then

u(x) = u(x1)e−
√
a(x−x1) ,

∫ ∞
x1

u(x)dx =
u(x1)√

a
>
u(x1)√
σ0

.

Hence,

1 > U > 2

∫ ∞
x1

u(x)dx >
2u(x1)√

σ0

.

This inequality proves the lemma.

Lemma 3.4. Suppose that σ(x) is a continuous function and supx σ(x) ≤ M .
Then a positive solution u(x) admits an estimate which depends only on M .

Proof. Solution u(x) of problem (3.6) satisfies the boundary problem

v′′ + b(x)v = 0, v(±x1) = u(±x1)

on the interval −x1 ≤ x ≤ x1. Here b(x) = 1− I(u)− σ(x) is a bounded continuous
function, |b(x)| ≤M+1 ≡ m. According to the previous lemma, the boundary values
of the solution are bounded. Therefore, it is sufficient to estimate a maximum of the
solution inside the interval. Suppose that the function v(x) has a global maximum at
some point x0 ∈ [−x1, x1]. Then

|v′(x)| =
∣∣∣∣ ∫ x

x0

v′′(y)dy

∣∣∣∣ ≤ mv(x0)|x− x0|.

Hence,
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v(x) = v(x0) +

∫ x

x0

v′(y)dx ≥ v(x0)− 1

2
mv(x0)(x− x0)2 = v(x0)g(x),

where g(x) = 1
2 − m(x − x0)2. Denote by Ω the interval in [−x1, x1], where this

function is positive. Then
∫

Ω
g(x)dx ≥ κ > 0, where the constant depends only on

M and possibly on x1. Hence, 1 >
∫∞
−∞ v(x)dx > κv(x0). This estimate proves the

lemma.

We will use the topological degree theory to prove the existence of solutions.
Lemma 3.3 above provides a priori estimates of solutions. Consider the operator

Aθ(u) = u′′ + u(1− U)− σθ(x)u,

acting from the weighted Hölder space C2+α
µ (R) into the space Cαµ (R). Here 0 < α <

1, θ ∈ [0, 1] is a parameter. The space Ck+α
µ (R) is defined as ensemble of functions u(x)

such that u(x)µ(x) ∈ C2+α(R). The weight function µ(x) is increasing at infinity with
a polynomial rate. We set µ(x) = 1 + x2. The introduction of polynomial weighted
is used for the definition of topological degree for elliptic operators in unbounded
domains [53]. Moreover, it does not change the essential spectrum, and the integral
U is well defined.

We will suppose for simplicity that σθ(x) is an infinitely differentiable function
with respect to x and θ. Other conditions will be specified later.

Denote by Lθ the operator obtained by the linearization of the operator Aθ(u)
about u = 0: Lθv = v′′+ v− σθ(x)v. The spectrum of the operator Lθ consists of the
essential spectrum and of eigenvalues. The eigenvalue with the maximal real part is
called the principal eigenvalue. If it is greater than the upper limit of the essential
spectrum, then it is simple, positive, and the corresponding eigenfunction is positive
[5, 55].

Lemma 3.5. Suppose that the principal eigenvalue of the operator Lθ is positive
for θ0 ≤ θ ≤ θ1 and for some θ0, θ1. Then there exists ε > 0 such that um =
supx u(x) ≥ ε for any positive solution of equation Aθ(u) = 0, θ0 ≤ θ ≤ θ1.

Proof. Suppose that the assertion of the lemma does not hold and there is a
sequence of solutions uk(x) for θ = θk such that umk → 0. Without loss of generality,
we can assume that θk → θ∗ for some θ∗ ∈ [θ0, θ1]. Then

0 = Aθk(uk) = Aθk(0) + Lθkuk + o(‖uk‖) = Lθkuk + o(‖uk‖).

Set vk = uk/‖uk‖. Then Lθkvk = o(1). Since Lθk is proper with respect to v and θ
[53], then the sequence vk is compact and we can choose a convergent subsequence
vk → v0. Hence, Lθ∗v0 = 0. Since the functions uk(x) are positive, then v0(x) > 0 for
all x. Therefore, the operator Lθ∗ has a zero eigenvalue with a positive eigenfunction.
However, the only positive eigenfunction corresponds to the principal eigenvalue [56].
We obtain a contradiction with the assumption that the principal eigenvalue of the
operator Lθ∗ is positive.

Theorem 3.6. Suppose that σ(x) = σ0 > 1 for |x| ≥ x1 with some positive σ0

and x1,and the principal eigenvalue of the problem

(3.11) u′′ + u− σ(x)u = λu,
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that is, the eigenvalue with the maximal real part is positive. Then problem (3.6) has
a positive solution converging to 0 at infinity.

Proof. Set σθ(x) = (1 − θ)σ(x) + θσ0. Since σ0 > 1, then the operator L1 (i.e.,
Lθ for θ = 1) has the spectrum in the left half-plane. Let us note that the essential
spectrum Se(Lθ) of the operator Lθ does not depend on θ, and Re Se(Lθ) ≤ −δ < 0
for some positive δ. Denote the principal eigenvalue of this operator, that is, the
eigenvalue with the maximal real part, by λ0(θ). According to the assumption of the
theorem λ0(0) > 0. It is a monotonically decreasing function of θ ∈ [0, 1] [56], and
there exists θ0 ∈ [0, 1] such that

λ0(θ0) = 0, λ0(θ) > 0 for 0 < θ ≤ θ0, λ0(θ) < 0 for θ0 < θ ≤ θ1.

Here θ1 is some value in the interval (θ0, 1]. Since the eigenvalue can approach the
essential spectrum, we cannot guarantee its existence for all θ ∈ [0, 1].

Let us consider the equation Aθ(u) = 0 in a small vicinity of the bifurcation point
θ = θ0. For this value of parameter, the trivial solution u = 0 loses its stability
leading to the appearance of other solutions uθ(x) and ũθ(x). One of them is positive
and another is negative since the principal eigenfunction v0(x) is positive [56]. Fur-
thermore, the index of this solution, that is, the value of the degree with respect to
a small ball containing this solution, equals 1. Indeed, from the homotopy invariance
of the degree it follows that

ind(0) + ind(uθ) + ind(ũθ) = 1

for all θ > θ0 and sufficiently close to θ0. Since ind(0) = −1 being equal to (−1)ν ,
where ν = 1 is the number of positive eigenvalues of the linearized operator, then
ind(uθ) = ind(ũθ) = 1.

It follows from Lemma 3.4 and exponential decay of solutions at infinity that
‖u‖C2+α

µ (R) < M0 for some positive constant M0 and for any positive solution u of the

equation Aθ(u) = 0. Next, from Lemma 3.5 we conclude that ‖u‖C2+α
µ (R) > δ(θ) for

some positive δ(θ), θ < θ0. Consider the following domain:

Ω = {u ∈ C2+α
µ (R), u(x) > 0, x ∈ R, δ0 < ‖u‖C2+α

µ (R) < M0}

for some δ0 > 0 sufficiently small. Choose θ2 < θ0 such that δ(θ) > δ0 for 0 ≤ θ ≤ θ2.
Since Aθ(u) 6= 0 for u ∈ ∂Ω, 0 ≤ θ ≤ θ2, then the value of the degree γ(Aθ,Ω) does
not depend on θ ∈ [0, θ2]. Hence, γ(A0,Ω) = γ(Aθ2 ,Ω) = ind(uθ2) = 1, and equation
A0(u) = 0 has a solution in Ω.

Let us note that a similar method to prove the existence of pulses can be used
for the case for nonlocal consumption where the integral U is replaced by the integral
J(u). In order to illustrate the application of this theorem, consider the following
example.

Example 3.7. Let β(x) = 0 for |x| ≤ x0 and β(x) = σ0 > 1 for |x| > x0 (cf.
section 3.1). Consider an averaged function

σ(x) =

∫ x+ε

x−ε
β(y)dy

for some small ε > 0. This function satisfies conditions of Theorem 3.6. The principal
eigenvalue λ0 of the operator Lu = u′′ + u− σ(x)u is real and simple [56]. Consider
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it as a function of x0, λ0 = λ0(x0). Since the function σ(x) monotonically decreases
for all x as x0 increases, then λ0(x0) is a monotonically increasing function. If x0 is
sufficiently large, then λ0(x0) becomes positive, and the theorem is applicable. Thus,
similar to the piecewise constant mortality rate considered in section 3.1, a virus strain
exists if the interval of admissible genotypes is sufficiently large.

We can estimate the critical value of x0. If x0 > π/2 + ε, then the function
u0(x) = cosx for |x| ≤ π/2 and u(x) = 0 for |x| > π/2 is a lower function for the
operator Lu, that is, the solution of the Cauchy problem ∂u

∂t = Lu with the initial
condition u(x) = u0(x) is a growing function of t for any x ∈ R. Therefore, λ0(x0) > 0
for x0 > π/2 + ε.

3.3. Existence of solutions of a local problem. Finally, we will prove the ex-
istence of pulses for the local problem where the integral U is replaced by u. Consider
the equation

(3.12) u′′ + u(1− u)− σ(x)u = 0

on the whole axis. Here σ(x) = σ0 > 1 for |x| ≥ x0, and σ(x) = 0 for |x| < x0, where
x0 is some positive number. We look for a positive bounded solution of this equation
with zero limits at infinity.

Equation

(3.13) u′′ + u(1− u)− σ0u = 0

considered on the whole axis has a single (up to translation in space) positive solution
u0(x) decaying to 0 at infinity. Hence, the same equation considered on the half-axis
x ≥ x0 has a family of positive decaying solutions vh(x) = u0(x + h) for all real h.
The choice of one solution from this family of solutions is determined by the value
vh(x0). The functions vh(−x) provide solutions on the half-axis x ≤ −x0.

Next, consider

(3.14) u′′ + u(1− u) = 0

on the interval −x0 < x < x0 with the boundary conditions u(x0) = u(−x0) = a for
some a > 0. Denote its solution by ua(x). If for some a and h,

(3.15) ua(x0) = vh(x0), u′a(x0) = v′h(x0),

then the function

u(x) =

{
ua(x), −x0 < x < x0,
vh(|x|), |x| ≥ x0,

is a solution of (3.12).

Lemma 3.8. There exists x∗ > 0 such that for any x0 > x∗, (3.12) has a positive
solution decaying at infinity.

Proof. Consider the first-order system of equations

(3.16) u′ = p, p′ = −u(1− u)− σ0u
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Fig. 2. Trajectories of system (3.16) (solid lines) and of system (3.17) (dashed line).

corresponding to (3.13), and the system

(3.17) u′ = p, p′ = −u(1− u)

corresponding to (3.14). Since (0, 0) is a saddle stationary point of system (3.16),
then there are two trajectories approaching it from the half-plane u > 0 as x→ ±∞
(Figure 2, solid lines). The same stationary point is a center for system (3.17), and
there is a family of limit cycle trajectories around it (dashed line). Denote by a the
coordinate of their intersection, and consider two solid trajectories between u = 0
and u = a and the arc of the dashed trajectory between the solid trajectories. These
three trajectories provide solutions of (3.13) for x > x1 and x < −x1 and of (3.14)
for −x1 < x < x1 with some x1. Moreover, they satisfy conditions similar to (3.15)
where x0 is replaced by x1. The value x1 is determined by the length of the dashed
arc, and in general, x1 is different from x0.

We will now vary the value of a and consider the corresponding values x1 = x1(a).
For a → 0, x1 converges to some positive limiting value denoted by x∗. It can be
explicitly found from the solution of the problem linearized about the stationary
point (0, 0). Increasing a in such a way that the dashed trajectory converges to the
stationary point (1, 0), we get x1(a) → ∞. Therefore, equation x1(a) = x0 has a
solution for any x0 > x∗.

We can use this lemma and the method of upper and lower functions in order to
prove existence of solutions of (3.12) for more general functions σ(x).

Theorem 3.9. Suppose that σ(x) = 0 for |x| ≤ x0 and σ(x) ≥ 1 for |x| ≥ x1,
where x1 > x0 > π/2. Then (3.12) has a positive solution decaying at infinity.

Proof. Consider the arc of the periodic trajectories of system (3.17) in the half-
plane u > 0 (cf. dashed trajectory in Figure 2). Denote the maximal value of u along
such trajectory by um. Therefore, such trajectories exist for all um ∈ (0, 1). Each
such trajectory corresponds to a solution of (3.14) on some interval −x̂ ≤ x ≤ x̂,
where u(±x̂) = 0, u(0) = um. Furthermore, x̂ → π/2 as um → 0. Hence, for um
sufficiently small, x̂ < x0. Then the function
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u−(x) =

{
um(x), −x̂ < x < x̂,

0, |x| ≥ x0,

is a lower function for (3.12).
Set σ0(x) = 0 for |x| < x1 and σ0(x) = 1 for |x| ≥ x1. This function satisfies

conditions of Lemma 3.8. Therefore, equation

u′′ + u(1− u)− σ0(x)u = 0

has a positive solution u+(x) decaying at infinity. Since σ(x) ≥ σ0(x), then u+(x)
is an upper function for (3.12). It remains to note that u−(x) < u+(x), x ∈ R for
um sufficiently small. The methods of upper and lower functions provide existence of
solutions of (3.12).

Thus, pulses (strains) for the local problem exist for sufficiently wide admissible
intervals. From this point of view, this result is similar to the existence result presented
in section 3.2. However, these two cases become essentially different in the case of
two (or more) admissible intervals when the strains compete with each other. We will
discuss this question in the next section. Since the problem is symmetric with respect
to the center of the admissible interval, the maximum of the solution is reached at
x = 0.

4. Dynamics of strains. Existence of pulses is proved above for some particular
cases. In this section, we will use numerical simulations to show their existence
and stability for more general functions f(u) and σ(x). Namely, we will consider
nonmonotone functions f(u) corresponding to the biologically realistic properties of
immune response, and we will consider the mortality rate σ(x) with two admissible
intervals in order to study the competition of virus strains. We present here numerical
simulations of the equation

(4.1)
∂u

∂t
= D

∂2u

∂x2
+ ru(1− qJ(u))− uf(u)− σ(x)u

on the interval 0 < x < L with the periodic boundary conditions. Extending the
solution on the whole axis by periodicity, we define the integral J(u) =

∫∞
−∞ φ(x −

y)u(y, t)dy and consider a piecewise constant kernel, φ(x) = 1/(2N), |x| ≤ N,φ(x) =
0, |x| > N . This approach is convenient since it decreases the influence of the bound-
ary. Otherwise, the integral J(u) differs near the boundary, and perturbs the solution.
If the peak of the solution is sufficiently far from the boundary, and the support of the
kernel φ(x) is small enough, then the influence of the boundary is negligible. Contin-
uation of the problem by periodicity implies that the function σ(x) is also periodic,
and the support of the kernel φ(x) is limited by L. For large values of N , the integral
J(u) approximates U and for small values of N , J(u) converges to u. Thus, varying
this parameter, we can study all three cases: local, nonlocal, and global.

Existence and stability of virus strains. We consider the function f(u) = (k1u +
k2)e−k3u with some positive values of constants ki, i = 1, 2, 3, specified below, and set
σ(x) ≡ 0. The growing branch of this function corresponds to the clonal expansion of
immune cells in response to the antigen; its decaying branch describes the exhaustion
of immune cells for high virus concentrations. Let us recall that the local reaction-
diffusion equation can have pulse solution only in the bistable case, and it is unstable.
The nonlocal reaction-diffusion equation can have stable stationary solutions in the
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form of a single pulse, and also multiple pulses. The latter are not stationary solutions;
they slowly move from each other with a decaying speed. Similar properties were
already observed in [53, 54] for another nonlocal equation, and we will not discuss
them here in detail.

Contrary to the previously studied cases where stable pulses exist only for the
bistable nonlinearity [53, 54], (2.2) admits their existence in both cases, bistable and
monostable, due to the decreasing function f(u). In the bistable case, there are
two pulses; one of them is stable, another is unstable. The latter separates the
trivial solution and the stable pulse. Therefore, in order for the solution of (2.1) to
approach the stable pulse, the initial condition should be sufficiently large. This is
different in the monostable case. For any small nontrivial initial condition, the solution
converges to the stable pulse. This difference is important for the understanding of
the emergence of virus strains.

Existence and stability of pulses depends on the parameter N characterizing the
width of the kernel. If N is small enough, then the nonlocal equation is similar to the
local one, and pulses are unstable. For N sufficiently large, they become stable.

Competition of virus strains. We now consider existence and properties of pulses
due to the genotype-dependent mortality rate σ(x) and without immune response,
f(u) ≡ 0. In order to study the interaction of different virus strains, we set

σ(x) =

{
0, x ∈ I1, x ∈ I2,
1, x ∈ [0, 1], x 6∈ I1, I2.

Hence, we consider two admissible intervals where the birth rate exceeds the mortality
rate. Each admissible interval corresponds to a virus strain. The initial condition
(Figure 3, right, t = 0) is localized at the center of the interval. Numerical simulations
presented in this section are carried out in time interval 0 < t ≤ T with T = 100
(dimensionless time units). By stationary solutions we understand here the solutions
which do not change in this time scale. Numerical simulations in much longer time
scale (T ∼ 105) show that these solutions can be slowly evolving.

The solution of (4.1) converges to the stationary solution whose structure depends
on the value of the diffusion coefficient (Figure 3, left column). For D large enough,
the maxima of solutions in the admissible intervals are equal to each other. For
small D, solution in one of the intervals is much less than in the other interval, or
it practically vanishes. Such behavior of solutions is determined by the competition
between the two strains. The strength of this competition depends on the width N
of the support of the kernel φ(x).

Figure 4 shows the results of the simulations for different values of N . For N
sufficiently small, we obtain a solution similar to the case of the local equation where
J(u) = u. In this case, the peaks of solutions in the admissible intervals are equal
to each other, that is, the two virus strains have a similar population density. For
larger values of N , though the peaks are still equal to each other, the solution is more
restraint to the admissible intervals, and its value outside the intervals decreases (cf.
upper left and middle left images). For N large enough, there is a transition to the
stationary solution with one large and one small peak. The critical value of N is
determined by the distance between the admissible intervals. If N is less than this
distance, then there is no competition between the strains.

Epitope-specific immunodominant cytotoxic T lymphocytes (CTL) responses. Sup-
pose that the immune response depends on the virus genotype due to the immunodom-
inance of antigen-specific immune cells resulting in a skewed response to only a few
specific epitopes [18]. Indeed, the magnitudes and frequencies of virus-specific CTL
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Fig. 3. Stationary solutions of (4.1) with D = 0.005 (upper left), D = 0.001 (middle left),
and D = 0.0001 (lower left). The right image shows the solution u(x, t) as a function of two
variables for D = 0.001. Other values of parameters are as follows: r = 1, q = 1, L = 1, N = 0.5,
I1 = [0.3, 0.4], I2 = [0.7, 0.8].

Fig. 4. Stationary solutions of (4.1) with N = 0.01 (upper left), N = 0.2 (middle left), and
N = 1 (lower left). The right image shows the solution u(x, t) as a function of two variables
for N = 0.2. Other values of parameters are as follows: r = 1, q = 1, L = 1, D = 0.001, I1 =
[0.3, 0.4], I2 = [0.7, 0.8].

responses can spread unevenly across the viral genome, within and between most of
the viral proteins [35]. In addition, mutations leading to changes of amino acids in T-
cell receptors (TCR) epitopes result in changes of TCR two-dimensional (2D) affinity
[24]. This can also be a result of an immunotherapy that increases the effect of the
immune response in an antigen-dependent way. We consider (3.1) with σ(x) ≡ 0 and
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f(u) = (k1(x)u + k2)e−k3u. Figure 5 shows two examples of numerical simulations.
In the first case (left image), there is a single pulse solution corresponding to a virus
strain. If immune response is genotype-independent, then it is a stationary solution.
In the case of a variable function k1(x), the pulse moves towards its minimum where
the elimination of virus by immune cells is weaker. In the second example (right
image), there are two pulses moving in the direction of the decrease of the function
k1(x). After some time, one of the pulses splits into three other pulses (strains). They
push the second pulse aside and stabilize in the left part of the interval where the
immune response is weaker. Hence, antigen-dependent immune responses can lead to
the emergence of new strains and to their evolution in the genotype space.

Fig. 5. Virus dynamics in the case of a genotype-dependent immune response. The solution
u(x, t) is represented as a function of two variables. Left: a single virus strain evolves in the direction
of a weaker immune response. Right: two virus strains evolve together while one of them splits into
three other strains. The values of parameters are as follows: r = 1, q = 0.4, L = 1, D = 0.00005, N =
0.1; f(u) = (k1(x)u + k2)e−k3u, k1(x) = k01x; k01 = 10, k2 = 1.5, k3 = 1 (left, k01 = 0 during small
initial period of time); k01 = 5, k2 = 1.5, k3 = 2 (right).

Elimination of a susceptible virus strain can lead to the emergence of a resistant
strain. We begin with the case without an immune response (f(u) = 0) and consider
(2.1) where H = (1 − qJ(u)). This nonlocal equation describes the competition of
different genotypes for host cells. Suppose that the function σ(x) has two admissible
intervals where the virus reproduction rate is larger than its mortality. If the support
of the kernel φ(x) in the integral J(u) is sufficiently narrow, then the two virus strains
coexist. If the support of the kernel is wide enough, then the strains compete with each
other, and only one of them survives. The choice of the surviving strain is determined
by their relative susceptibility or, if it is the same, by the initial condition.

Suppose that treatment acts on the first strain but not on the second. This
assumption corresponds to the observation that susceptible strains are a better fit.
Then treatment eliminates the first strain. Since there is no more competition, the
second strain, being resistant to treatment, emerges and persists. Before treatment,
the function σ(x) equals 0 in two admissible intervals I1 and I2, and σ(x) = 1 else-
where. An antiviral drug acts on the first strain. During treatment, the function σ(x)
also becomes equal 1 in the interval I1 mimicking drug action.

The mechanism of the emergence of resistant strains is illustrated in Figure 6



REACTION-DIFFUSION MODEL OF VIRUS EVOLUTION 17

Fig. 6. Emergence of a resistant virus strain due to antiviral treatment. Left: elimination
of the first strain leads to the emergence of the second strain. Solution u(x, t) of (3.1) is shown
for the values of parameters r = 1, q = 0.4, τ = 0, L = 1, D = 0.0001, N = 0.5, and admissible
interval I1 = [0.3, 0.4], I2 = [0.7, 0.8]. Before treatment, σ(x) = 0 in both admissible intervals.
Treatment is modelled by imposing σ(x) = 1 in the first interval. Right: three admissible intervals
I1 = [0.2, 0.25], I2 = [0.475, 0.525], I3 = [0.75, 0.8], N = 1 with the presence of immune response
(see (2.2)), f(u) = k1e−k3u, k1 = k3 = 1, and asymmetric initial condition. After the application
of treatment, the central strain disappears leading to the emergence of two other strains. Their
competition and the action of immune response result in the elimination of one of the two strains.

(left). In the beginning, only the first strain is present. Applying treatment, we
eliminate it. Its concentration decreases, while the concentration of the second strain
increases. After some time, there is only the second strain. The second strain appears
discontinuously, and thus is not as a result of a gradual evolution of the first strain.

The second example of the antiviral treatment is shown for the complete model
(2.2) in which the immune response is taken into account (Figure 6, right). There
are three admissible intervals, and in the beginning, there is only one virus strain
corresponding to the central interval. After the application of antiviral treatment, this
strain disappears, and two other strains emerge. Being in competition with each other,
one of them disappears, while another one increases its concentration. Coexistence or
disappearance of the strains is determined by the action of the immune response.

5. Discussion.
Model. In this study we have developed a general mathematical model for the

analysis of the evolutionary dynamics of viruses in genotype space. The model, for-
mulated with nonlocal delay reaction-diffusion equations, considers the viral evolu-
tion within an infected host under the impact of mutations, target-cell competition,
cross-reactive immune responses, and antiviral treatment. We provide a single mathe-
matical framework that allows the assessment and prediction of the impact of a range
of processes on the genetic changes during virus infections. This work contributes
to a rapidly developing field of applications of nonlocal reaction-diffusion equations
in the evolution theory [19, 37], ecology [4], cancer modelling [28], etc., and of their
mathematical analysis and nonlinear dynamics [2, 3, 20, 34, 49] (see more detailed
literature review in [53]). Our study extends modelling of adaptive and innate im-
mune response in various physiological situations, and the analysis of spatiotemporal
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dynamics of the within-host infections [21, 16].
Dynamics of virus strains. Similar to biological species, virus strains are charac-

terized by their genotypes. From the mathematical point of view, they can be viewed
as some localized density distributions around some average (most frequent) geno-
types. Existence of such persistent distributions is not a priori given, and it should
be obtained as stable stationary solutions of appropriate models. We propose in this
work different mechanisms leading to the existence of such solutions:
• The diffusion-advection equation presented in the supplementary material (sup-

plement.pdf [local/web 170KB]) possesses a solution in the form of normal distribu-
tion. It does not correspond to a single strain but to an ensemble of strains with the
same number of mutations.
• In the case of a genotype-dependent virus mortality rate, a virus strain con-

sidered as a localized positive solution exists if the admissible interval is sufficiently
large or if the diffusion coefficient (mutation rate) is sufficiently low. Such solutions
exist with and without an immune response, and with the local or global competition
for host cells. The latter can also describe the competition of different strains, and it
provides a possible mechanism for the resistance to treatment.
• Taking into account an immune response (without a genotype-dependent mor-

tality rate) we obtain stable stationary solutions (strains) due to its interaction with
the nonlocal or global terms in the virus production rate (competition for host cells).

The last mechanism is dominated by an immune response while the previous one
by a genotype-dependent mortality. Both of them eliminate less fit viruses. An exper-
iment in cell culture (without immune cells) can possibly give additional information
about these mechanisms and determine whether a virus strain persists or its genotype
blurs with time (depending on virus type and culture conditions).

Biological insights. Our model describes the extinction of a virus population when
the random diffusion rate in the genotype space, which is proportional to the mutation
probability, exceeds a certain threshold known as error catastrophe. It reproduces the
emergence of viral mutants resistant to genotype-specific drugs and the escape from
epitope-specific immune responses. Being consistent with these fundamental regular-
ities of viral evolution, the model also predicts novel types of evolutionary dynamics
such as travelling waves [15, 44, 22, 41], pulses, pulse bifurcations, and periodic waves
determined by nonlocal genotype-dependent interactions within a quasi-species. El-
egant experiments with poliovirus infections of mice indicated that the size of the
genomic diversity, or genotype space as in our conceptual model, influences virus
adaptability [50, 51]. Our model now gives a potential mechanistic explanation for
this feature, namely the adaptation in response to genotype-dependent nonlocal in-
teractions of various origins.

The phenomena of strain-dependent virus cell tropism, escape of acute CTL re-
sponses, and the selection of drug-resistant mutants are well documented for infections
such as HIV, hepatitis C virus, and influenza virus [33, 14]. Mathematical models
have been extensively used to address various aspects of viral evolution mostly us-
ing ODEs or Fisher-KPP-type equations. The nonlocal delay RDE model presented
in our study serves as a further generalization of the above models. Using powerful
analytical and numerical tools for its analyses, novel insights into the emergence of
regular dynamic patterns pertinent to escape, diversification, and extinction of viral
strains in the infected host due to nonlocal genotype-dependent interactions with host
cells and the immune system are obtained. The model can be further applied to study
specific patterns of viral adaptation towards antivirals. For example, the dependence
of mutations on the genotype known as epistatic interactions can be described by

https://epubs.siam.org/doi/suppl/10.1137/19M1282234/suppl_file/supplement.pdf
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considering the diffusion operator to be dependent on x, i.e., D = D(x). This enables
the analysis of complex mutational patterns, e.g., mutation pathways of the HIV-1
reverse transcriptase under AZT therapy [30].

In view of the demand for designing combination therapies to cure chronic viral
infections like HIV and hepatitis B virus, the formulated model and the developed
analytical framework could be effectively used to quantify virus fitness, i.e., the geno-
type to phenotype mapping as an emergent property of nonlocal interactions between
viruses and host factors parameterized in the genotype space. This may provide a
better understanding of the adaptation of mutating viruses to changes of the host
environment.

Treatment and resistance. Antiviral treatment can be modelled by means of a
genotype-dependent mortality rate. The initial mortality rate σ0(x) can be replaced
at some moment of time by another function σ1(x) where one of the admissible in-
tervals is removed. This means that the corresponding virus strain is eliminated by
the treatment. The response of other strains can be different depending on the com-
petition between them for host cells and on the immune response. In particular, new
strains can emerge in other admissible intervals. They could not develop before the
application of treatment because of the competition with the dominating (e.g., wild-
type) strain. Since the treatment does not act on these other admissible intervals, we
can obtain resistant strains as a result of treatment.

Assuming that treatment can stimulate a genotype-dependent immune response
(immunotherapy), we observe the evolution of virus strains in the genotype space
towards less susceptible (more resistant) strains. This dynamic can be quite complex
including gradual modification of the existing strains or the emergence of new strains.

These mechanisms of the emergence of resistance to treatment are different com-
pared to the mechanism considered in [1, 38, 39]. The latter is based on the as-
sumption of the existence of two endemic equilibria. One of them is dominated by
a drug-susceptible virus and another by a drug-resistant mutant. Before treatment,
the former is stable, while the latter is unstable. Antiviral treatment changes their
stability. The first mechanism suggested in our work, interpreted in terms of ODE
systems, corresponds to the system of competition of species with two stable sta-
tionary points and convergence to one of them determined by the initial condition.
The nonlocal reaction-diffusion equation describes a similar mechanism taking into
account the virus distribution with respect to the genotype variable.

The nonlocal reaction-diffusion model considers the width of the admissible in-
tervals (e.g., I1 and I2) where the mortality rate is smaller than the birth rate. In the
context of drug-resistance analysis, these components of the model can be considered
as quantitative representation of the genetic barrier to drug resistance. The latter
is related to the number of mutations which are needed for the mutants to become
insensitive to certain drugs, i.e., to reduce their mortality rate σ to zero. Therefore,
the model provides a tool for examining the impact of various levels of the genetic
barrier on the evolutionary dynamics of the viral population.

Limitations and perspectives. The qualitative model presented in this work does
not take into account complex intracellular mechanisms of virus multiplication, in-
volvement of different types of immune cells, and various aspects of molecular and
cellular regulation. Nonetheless, these simplifications allow us to reveal some generic
biological mechanisms which can be more difficult to identify in more complete mod-
els. Once these hypothetical mechanisms are delineated, more detailed models and
biological experiments can be used to study them. We expect that this work will open
interesting perspectives in mathematical modelling of viral infections. Furthermore,
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some of these mechanisms can also hold for the evolutionary dynamics of cancer cells.
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