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Abstract: 14 

Neutron diffraction is a powerful non-destructive volumetric evaluation method for the 15 

analysis of the internal stress state in components processed by Laser Powder Bed Fusion 16 

(LPBF). High cooling rates and heterogeneous distribution of temperature during additive 17 

manufacturing lead to large residual stress fields. Residual stresses developed during the 18 

building process have unquestionably an important influence on the mechanical performance 19 

and potentially lead to delamination from the support structures, shape distortion but also 20 

crack formation. In the present work, neutron measurements have been carried out on cube-21 

shaped samples prepared by LPBF from a Ti-6Al-4V powder bed. A series of miscellaneous 22 

positions (center, edge and corner) over 3 different depths (close substrate, middle and close 23 

surface) have been analyzed by neutron diffraction so as to systematically characterize the full 24 

stress tensor. The influence of shear stresses and second-order residual stresses on the stress 25 

tensor analysis is also discussed in this work. 26 

 27 
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 1 

1. Introduction 2 

Additive Manufacturing (AM) techniques of metallic parts are expanding rapidly due to the 3 

technologic stake they represent: lightening of structure, complex architecture structure or 4 

reduced post-treatment processes [1]. Laser Powder Bed Fusion (LPBF) has a tremendous 5 

potential in AM methods because it enables to produce fully dense parts with desired inner 6 

structure and surface morphology [2]. LPBF technology can be used with various metallic 7 

powder materials such as Ti-6Al-4V [3,4], iron-based materials [5] and stainless steel [6]. Ti-8 

6Al-4V is an alloy characterized by a combination of high strength, low-density and good 9 

corrosion resistance. Due to its biocompatibility, Ti-6Al-4V is ideal for medical applications 10 

and is also one of the main alloys used for high-temperature aerospace applications as a result 11 

of its high strength to weight ratio and good corrosion properties. Over the last decade, LPBF 12 

machines have become more and more popular in industrial settings which have led to 13 

extensive research regarding the potential use of LPBF for high added value functional Ti-14 

6Al-4V parts production. 15 

The high-temperature gradient, as a result of the locally concentrated energy input, can lead to 16 

property gradients arising from the different interdependent physical phenomena 17 

(metallurgical, thermal, mechanical and fluid mechanics aspects) occurring during this highly 18 

non-equilibrium process [6]. As a consequence, the LPBF process can result in residual stress 19 

gradients, likely large, and hence, crack formation and part deformations which have a 20 

significant effect on the macroscopic mechanical performance [7,8]. Therefore, it is an 21 

important issue to understand the development of residual stresses in LPBF processed 22 

components.  23 

Internal stresses develop in built components due to the high cooling rates, the thermal 24 

gradients and the volumetric changes arising during phase transformations occurring during 25 
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the process [9]. Additionally, multiple process parameters have a significant influence on the 1 

development of internal stresses. It has been notably shown that baseplate nature, power bed 2 

preheating, powder characteristics, laser power, scanning speed, scanning strategy, number 3 

and thickness of the successive layers and the geometry of the part for Ti-6Al-4V have a 4 

significant impact on the residual stress set up [8,10]. Most of the process parameters 5 

(typically scan speed and laser power) cannot be varied independently, as a fully dense part 6 

always needs to be obtained. It is not necessarily easy to distinguish the influence of 7 

individual process parameters on the internal stress generated during the process. In this 8 

complex multi-parameter process, the investigation of the relationship set between LPBF 9 

parameters values and residual stress formation is still necessary. 10 

Although residual stresses are deeply studied for analogous processes such as multi-pass 11 

welding, there are still too few experimental or/and numerical studies concerning the residual 12 

stresses in components processed by LPBF [10]. 13 

Nevertheless, producing as-built parts of near full density and having mechanical properties 14 

similar to those met for conventionally manufactured bulk materials (like casting or forging) 15 

remains one of the most important goals of the AM community. The development of an in-16 

depth expertise of stress setup for AM materials is thus required to achieve such a goal, 17 

especially if certification protocols need to be developed for AM components commissioning. 18 

A major element of this process study involves the development of accurate and reliable 19 

material property databases such as residual stress. 20 

In most cases, residual macroscopic stresses are determined through a large variety of 21 

methods which can be divided into two categories: destructive (contour method [11], hole 22 

drilling [12], crack-compliance [13]) or non-destructive (e.g. X-ray and neutron diffraction 23 

[6,14,15] methods). Each of those has drawbacks and benefits and varies in terms of probed 24 

volume, accuracy or destruction level which can lead to a marked dispersion around results 25 
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reported in the literature. The most commonly used as non-destructive methods are X-Ray 1 

(XRD) and Neutron Diffraction (ND), which permit, respectively, close surface (i.e. a few 2 

tens of microns at best for conventional X-ray equipment) and volumetric residual stress 3 

analysis in metallic materials [16]. Within this framework, ND is particularly relevant since 4 

neutrons have a large penetration depth in most metallic alloys [6,17,18] up to cm length 5 

scale, enabling non-destructive mapping of stress components through the full depth of an 6 

AM part. 7 

Nevertheless, two major drawbacks exist as regard to ND method for residual stress analysis. 8 

The first one is the low acquisition rates of ND coupled with a long beam time acquisition. 9 

The second is the extremely limited access to neutron sources. Furthermore, in order to 10 

provide the full stress tensor defined by 6 independent components, although strain 11 

measurement in 6 independent directions is mathematically sufficient, it is more suitable to 12 

overdetermine the system by performing measurements in at least 12 directions to reduce the 13 

related uncertainty [16]. In order to reduce the long measurement time due to the low 14 

acquisition rates of ND, one strong assumption is commonly made so that the number of 15 

measurement directions is reduced. It consists in assuming that the principal stress directions 16 

are known and can be inferred from the sample geometry [6,16,19]. Strain measurements can 17 

then be limited to these 3 (orthogonal) directions to resolve the principal stress components 18 

𝜎1, 𝜎2, 𝜎3. For single track LPBF specimens, it seems to be reasonable to assume that the 19 

principal stress, 𝜎1, is along the scan track; 𝜎2, lies in the perpendicular direction and 𝜎3, lies 20 

in the direction perpendicular to the baseplate (i.e. parallel to the plan formed by 𝜎1 and 𝜎2) 21 

[6,15,20]. For more complex laser exposure strategies, this assumption is even less self-22 

evident and needs to be used carefully. If the shear stress components are not equal to zero, 23 

the principal stress values determined with this assumption are simply wrong. As far as we 24 
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know, the determination of the full stress tensor has never been performed in Ti-6Al-4V parts 1 

obtained by LPBF, whatever the laser exposure strategy used.  2 

In the present work, ND measurements were carried out on cube-shaped samples 3 

(10×10×10 mm
3
) built by LPBF from a Ti-6Al-4V powder bed. A series of miscellaneous 4 

positions (center, edge and corner) over 3 different depths (close substrate, middle and close 5 

surface) have been analyzed. In order to obtain a substantial data set for strain analysis, 3 6 

{hk.l} reflections and 10 measurement directions for each reflection are probed at each 7 

analyzed position, so as to systematically characterize the full strain tensor. Despite 6 strain 8 

directions would have been sufficient to determine all the tensor components, data acquisition 9 

has been fivefold increased enabling to check the reliability of the data and assess the 10 

significance of shear stresses. In most of the studies, stress analysis by XRD or ND is only 11 

performed with a single {hk.l} reflection. The importance of second-order (or intergranular) 12 

stresses is never quantified or even considered. A specific study is carried out in this paper to 13 

investigate the importance of these stresses in samples prepared by LPBF. 14 

2. Experimental 15 

2.1 Specimen preparation 16 

The parts used for this study were designed and built at the IRT Jules Verne (French Institute 17 

in Research and Technology in Advanced Manufacturing, Bouguenais - France). Cube-shaped 18 

specimens (10×10×10 mm
3
) were produced using a SLM Solutions 280HL machine. They 19 

were built from a Ti-6Al-4V powder (grade 23 ELI) with the following chemical 20 

composition: Ti – balance, Al – 6 %, V – 4 %, Fe  0.25 %, O  0.13 %, H  0.012 %, 21 

C  0.08 % and N  0.05 % (weight %). The metallurgical characterization has been 22 

presented in a previous study where more details concerning the analysis can be found [21]. 23 

Briefly, a SEM analysis of the powder has shown a mostly spherical grain morphology with 24 



6 
 

minimal satellites or smaller particles bonded to larger particles. An analysis of the powder 1 

achieved by a laser scattering technique has showed a particle size distribution spread 2 

between 20 and 63 µm with a median size of d50 = 43 µm. The LPBF process was optimized 3 

to obtain an acceptable level of final part density. The final parameters used to manufacture 4 

the specimens were: 30 µm-thick powder layers, a laser power of 175 W, a beam diameter of 5 

80 µm, a scanning velocity of 775 mm.s
-1

 and a hatch spacing of 120 µm. The build plate was 6 

made of the same Ti-6Al-4V alloy as the powder and was heated to a constant temperature of 7 

200°C during the process. Concerning the scanning strategy, the starting point of the building 8 

process is located on the edge of the part to be built. Each layer is then built through a back 9 

and forth laser path with a rotation of 90° of the main laser path-vector between each layer. 10 

SEM observations have revealed that a porosity density level of approximately 0.01 % is 11 

obtained. Optical microscopy analysis showed the formation of fully columnar structures 12 

along the LPBF building direction which is in accordance with the literature.  13 

2.2 Stress analysis by neutron diffraction 14 

First and foremost, it is worth to recall the stress analysis principles by diffraction and the 15 

different associated assumptions [16]. The measured mean lattice strain 〈𝜀(ℎ𝑘. 𝑙,,)〉𝑉𝑑
 over 16 

the diffracting volume 𝑉𝑑, for grains having the scattering vector Q (defined by inclination 17 

and azimuth angles, respectively  and , as introduced in Figure 1) perpendicular to the 18 

{hk.l} planes, can be calculated from the measured lattice spacing 〈𝑑(ℎ𝑘. 𝑙,,)〉𝑉𝑑
 and a 19 

reference one 𝑑0(ℎ𝑘. 𝑙) using the following expression based on the true (rational) strain 20 

definition [22]: 21 

 22 

〈𝜀(ℎ𝑘. 𝑙,,)〉𝑉𝑑
= 𝑙𝑛 (

〈𝑑(ℎ𝑘.𝑙,,)〉𝑉𝑑

𝑑0(ℎ𝑘.𝑙)
)       (1) 23 

 24 
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Where 𝑑0(ℎ𝑘. 𝑙) is the strain-free lattice parameter related to the considered {hk.l} reflection, 1 

〈 〉𝑉𝑑
 denotes an averaging over diffracting grains for the considered {hk.l} plane family.  2 

The lattice strain along the scattering vector can be calculated once 2θ angle has been 3 

determined from measured diffraction peak using: 4 

 5 

〈𝜀(ℎ𝑘. 𝑙,,)〉𝑉𝑑
= 𝑙𝑛 (

𝑠𝑖𝑛𝜃0(ℎ𝑘.𝑙)

𝑠𝑖𝑛𝜃(ℎ𝑘.𝑙,,)
)        (2) 6 

 7 

Where 0 is the Bragg angle regarding the stress-free material. The most appropriate solution 8 

to determine this stress-free parameter in LPBF specimens consists in digging out this value 9 

from a stress relaxed mini-cube (2×2×2 mm
3
), cut from twin specimens at the exact position 10 

of the stress measurement (incorporating thus the metallurgical state of the measuring points). 11 

The mini-cubes are then beam centered thanks to direct beam absorption measurements and a 12 

theodolite device. Diffraction patterns are recorded while successively rotating around z and x 13 

axes of the part coordinate system (x,y,z) (Figure 1). This results in an in-plane ((x,y) ; -scan 14 

from 0 to 360° at  = 0°) and out of plane (y,z) (-scans from 0° to 90° at  = 0°) averaging 15 

of the lattice spacing. [6, 23]. 16 

In order to resolve the macroscopic stress tensor , diffraction patterns have to be performed 17 

along various directions (defined by  and  angles). 〈𝜀(ℎ𝑘. 𝑙,,)〉𝑉𝑑
 values for those 18 

directions can thereafter be used to calculate the stress tensor using the following relationship: 19 

 20 

〈𝜀(ℎ𝑘. 𝑙,,)〉𝑉𝑑
= 𝐹𝑖𝑗(ℎ𝑘. 𝑙,,)𝜎𝑖𝑗         (3) 21 

 22 

𝐹𝑖𝑗(ℎ𝑘. 𝑙,,) are the diffraction stress factors for the considered {hk.l} reflection [24]. These 23 

factors can be calculated from material single-crystal elastic data and the Orientation 24 
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Distribution Function (ODF), thanks to an appropriate scale transition model. For 1 

macroscopically elastically anisotropic samples, it is important to specify that this relation 2 

remains valid. In equation (3), the second-order stresses (or intergranular stresses) are 3 

however neglected. The deviations of grain stresses from macroscopic stresses are then 4 

considered as exclusively resulting from elastic anisotropy. The deviations due to the 5 

anisotropy of the thermal expansion coefficients, plastic anisotropy or heterogeneity of phase 6 

transformation are not explicitly taken into account [25]. 7 

For quasi-isotropic materials having no preferential crystallographic orientation (i.e. 8 

elastically anisotropic grains in a randomly distributed crystallographic orientation sample), 9 

the correlation between the lattice strains obtained in measuring directions (,) and the full 10 

stress tensor is simply given by: 11 

 12 

〈𝜀(ℎ𝑘. 𝑙,,)〉𝑉𝑑
=13 

1

2
𝑆2(ℎ𝑘. 𝑙)[𝜎11𝑐𝑜𝑠2 + 𝜎12𝑠𝑖𝑛2 + 𝜎22𝑠𝑖𝑛2]𝑠𝑖𝑛2 +

1

2
𝑆2(ℎ𝑘. 𝑙)[𝜎13𝑐𝑜𝑠𝑠𝑖𝑛2 +14 

𝜎23𝑠𝑖𝑛𝑠𝑖𝑛2 + 𝜎33𝑐𝑜𝑠2] + 𝑆1(ℎ𝑘. 𝑙)[𝜎11 + 𝜎22 + 𝜎33] (4) 15 

 16 

1

2
𝑆2(ℎ𝑘. 𝑙) and 𝑆1(ℎ𝑘. 𝑙) are the well-known X-ray Elastic Constants (XEC) [16, 26]. They 17 

depend on the measured {hk.l} reflection and take into account the elastic anisotropy of the 18 

grain. 19 

If the principal stress coordinate system is known, only lattice strain measurements along 20 

these 3 orthogonal directions are required to determine the full stress tensor, which is diagonal 21 

in this case. The relation between the principal stress components 𝜎𝑖  and the principal strain 22 

components 𝜀𝑖  is then given by: 23 
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 1 

𝜎𝑖 =
(2𝑆1(ℎ𝑘.𝑙)+

1

2
𝑆2(ℎ𝑘.𝑙))

1

2
𝑆2(ℎ𝑘.𝑙)(3𝑆1(ℎ𝑘.𝑙)+

1

2
𝑆2(ℎ𝑘.𝑙))

𝜀𝑖 −
𝑆1(ℎ𝑘.𝑙)

1

2
𝑆2(ℎ𝑘.𝑙)(3𝑆1(ℎ𝑘.𝑙)+

1

2
𝑆2(ℎ𝑘.𝑙))

∑ 𝜀𝑗𝑗   𝑗 = 1,2,3   𝑗 ≠ 𝑖  (5) 2 

 3 

For a polycrystal composed of elastically isotropic grains, the residual principal stresses are 4 

simply calculated from the measured strains by the following relationship: 5 

 6 

𝜎𝑖 =
𝐸(1−)

(1+)(1−2)
𝜀𝑖 +

𝐸

(1+)(1−2)
∑ 𝜀𝑗𝑗   𝑗 = 1,2,3   𝑗 ≠ 𝑖     (6) 7 

 8 

Where E and  are, respectively, the Young’s modulus and Poisson’s ratio of the 9 

polycrystalline aggregate. 10 

Experiments have been performed at STRESS-SPEC beamline (Heinz Maier-Leibnitz 11 

Zentrum – MLZ) [27] where one cube-shaped (10×10×10 mm
3
) baseplate-supported sample 12 

has been analyzed. A monochromatic incident neutron wavelength of 1.55 Å has been chosen 13 

for the measurements. A  goniometric assembly with a Position Sensitive Detector (
3
He-14 

PSD) was used [28]. 3 reflections were studied: {10.3} at 2 = 71.9°, {11.2} at 2 = 77.9° and 15 

{20.1} at 2 = 79.2°. The recording time for each ND measurement of a {hk.l} peak took 16 

around 60 min. Peak positions were determined by fitting the experimental data with a 17 

Pseudo-Voigt function and a polynomial background.  18 

A series of miscellaneous positions (center, edge and corner) over 3 different depths (close 19 

substrate, middle and close surface) has been probed by ND (Figure 1). Gauge volume has 20 

been chosen as a compromise between acceptable measurement time scale and position 21 
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resolution in volume (i.e. 2×2×2 mm
3
). Gauge position coordinates have integrated 1 

geometrical concerns ensuring the gauge to remain within the sample volume no matter the 2 

selected measurement direction, even for rim analyses. Five different gauge positions have 3 

been achieved (Figure 1) to analyze the residual stress distribution throughout the depth of the 4 

Ti alloy cube with a practicable testing time.  5 

 6 

Figure 1: schematic of the sample with measurement positions (in green) taken in the analysis. 7 

Note the coordinate system (x,y,z) where x and y directions are parallel to the baseplate and 8 

the z direction is the part building direction. 9 

In order to obtain a consequent data set for strain analyses, 10 (,) directions per diffraction 10 

peak have been probed on each of the 5 strain gauge positions: (0°,0°), (0°,30°), (0,60°), 11 

(0°,90°), (45°,30°), (45,60°), (45°,90°), (90°,30°), (90,60°), (90°,90°). Figure 2 shows an 12 

example of ND patterns where diffraction intensities are plotted as function of the measured 13 

Bragg angle 2 for the E1F0 measurement position. The differences in intensities of the 14 

different diffraction peaks for the (,) directions point to the presence of a crystallographic 15 

texture in the LPBF part. 16 
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 1 

Figure 2: neutron diffraction patterns of the Ti-6Al-4V sample for different (,) directions 2 

for the E1F0 measurement position. The diffraction peaks used in the study are also given. 3 

The XEC have been calculated from single-crystal elastic constants (c11 = c22 = 162.4 GPa, c33 4 

= 180.7 GPa, c12 = 92 GPa, c13 = 69 GPa and c44 = 46.7 GPa [29]) using an elastic-self 5 

consistent model [30]. For the calculation, we assume that the effect of crystallographic 6 

texture is low because the individual crystallites of the polycrystal are characterized by a low 7 

elastic anisotropy (
𝑐11+𝑐12−𝑐33

𝑐13
= 1.07, 

𝑐66

𝑐44
= 0.75, 

𝑐11+𝑐12+𝑐33

4 𝑐44
= 1.07 for titanium [31]). For 8 

the stress calculations, the quasi-isotropic assumption is used. The calculated XEC, 
1

2
𝑆2(ℎ𝑘. 𝑙) 9 

and 𝑆1(ℎ𝑘. 𝑙), necessary for the stress calculation, are:  10 

1

2
𝑆2(10.3) = 10.87 10−6 MPa

-1
,  𝑆1(10.3) = −2.58 10−6 MPa

-1
; 11 

1

2
𝑆2(11.2) = 11.72 10−6 MPa

-1
,  𝑆1(11.2) = −2.88 10−6 MPa

-1
; 12 

 
1

2
𝑆2(20.1) = 11.95 10−6 MPa

-1
, 𝑆1(20.1) = −2.96 10−6 MPa

-1
.  13 
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The full stress tensor is calculated according to the equation (4) for each measurement 1 

position. 2 

 3 

 4 

3 Results and discussion 5 

3.1 Origin of the residual stresses in the LPBF process 6 

As a first step, it may be useful to recall the physical origins of the residual stresses being 7 

built in this manufacturing process. LPBF is characterized by a complex thermal cycle. It is 8 

defined by several phenomena: high heating and cooling rates, melt-back inducing the 9 

simultaneous melting of the upper material layer (powder bed) and re-melting of underlying 10 

previously solidified layers. The fast heating-cooling thermal cycles of LPBF associated with 11 

volumetric changes, caused by both phase transformations and temperature gradients, 12 

generate large residual stresses within LPBF parts. 13 

Mercelis and Kruth [32] proposed a useful two-stage mechanism to explain how residual 14 

stresses occur during the LPBF process: the Temperature Gradient Mechanism (TGM) and 15 

the cool-down stage. The TGM enables describing the stress generation in a single melt track 16 

while the cool-down mechanism depicts the behavior of an entirely melted powder layer. In 17 

the TGM model, due to the fast warming of the top surface by the laser beam, the material 18 

expands thermally. This thermal expansion of the heated top layer is restricted by the colder 19 

underlying material. This phenomenon generates compressive stresses in the heat-affected 20 

zone. Meanwhile, the material yield strength is reduced due to the temperature rise. If the 21 

expansion is sufficiently significant, the compressive stress in the constrained solid material 22 

exceeds the material yield strength and the top layer is then plastically compressed. During 23 

the cooling, as a result of thermal contraction, a shrinkage of the top layers tends to occur. 24 
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The underlying material limits this deformation and elastic tensile strains are thus introduced 1 

in the plastically deformed area which is balanced by a compressive zone below [33]. In the 2 

framework of the cool-down model, the melted top layer initially has a higher temperature 3 

than the underlying one. When the melt zone has cooled and solidified, the added top layer 4 

shrinks owing to thermal contraction. This deformation is inhibited by the surrounding colder 5 

material. Therefore, tensile stresses appear in the newly solidified upper layer and they are 6 

balanced by compressive stresses in the underlying layers. Although these two models clearly 7 

describe the major mechanisms involved in the residual stress generation during LPBF, the 8 

stress field is naturally much more complex since the number of layers, the heat source path 9 

pattern and the heat transfer are tremendously intricate [34]. 10 

3.2 Evolution of stress components of the full stress tensor 11 

Figures 3.a and 3.b show the evolution of stress components of the full stress tensor at 3 12 

building heights (z = 1.73, 5.00, 8.27 mm) in the core sample i.e. central column F0 13 

(x = y = 5 mm), coordinates matching the center of each probed volume. Let us first focus on 14 

the development of the 𝜎33 component for the central column F0 (Figure 3.a). Large negative 15 

stress (𝜎33 = −487 ± 41 MPa) at low z values (near the baseplate) decreasing with higher z 16 

values (the minimum stress is found at z = 8.27 mm: 𝜎33 = −135 ± 20 MPa) is observed in 17 

measurements. At this point, it must be reminded that the gauge volume (2×2×2 mm
3
) probed 18 

in neutron experiments is large as compared to the thickness of the melted layers. The sample, 19 

built with 30 µm layer thickness, results in 67 layers per probed volume so it means that the 20 

stresses are averaged over a large number of layers. Thus, it must be kept in mind that the 21 

results obtained by ND indicate an average stress value and not an extremum value. 22 
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 1 

(a)        (b) 2 

 3 

 4 

(c)        (d) 5 

Figure 3: residual stresses obtained by ND at several building heights in the central column 6 

F0, i.e. core sample (a and b) and the column F2 (c and d) close to a corner of the analyzed 7 

cube. 8 

The stress value obtained at z = 8.27 mm is the mean stress obtained for a depth varying from 9 

6.54 up to 10 mm and not the close-surface stress value. The residual stress increases rapidly 10 

toward low compressive values as the top surface is approached. The normal stress could thus 11 

even reach positive values at the subsurface. The heat transfer is actually weak along the 12 

building direction, leading to a high-temperature gradient, bringing up tensile 𝜎33 stress in the 13 

upper section and compressive stress in the bottom section i.e. in the nearest region of the 14 



15 
 

baseplate. The stresses along the building direction correspond to the process described above 1 

by the cool-down mechanism. Lower longitudinal (𝜎11) and transversal (𝜎22) stress level were 2 

present along the sample height which turned into tension (𝜎11 = 43 ± 19 MPa) in the upper 3 

region. The laser scanning strategy, for which the laser path direction is alternated between 4 

each layer [0°/90°], tends to provide a homogeneous stress field in the x-y plane (Figure 4).  5 

 6 

(a)        (b)7 

 8 

(c)        (d) 9 

Figure 4: residual stresses obtained by ND at several building levels: close substrate (E1: a 10 

and b) and close surface (E2: c and d). 11 

According to the residual stress analysis presented by Ali et al. [35], increasing powder bed 12 

pre-heating temperatures results in a lowering of residual stress due to a reduction in 13 
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temperature gradients during the LPBF process. On the other hand, components that remain 1 

attached to the baseplate contain stress levels close to the material yield strength value 2 

without preheating [36]. The mechanical properties of the specimen at ambient temperature 3 

have been characterized by monotonic tensile tests: RE = 985  12 MPa (yield strength) and 4 

UTS = 1098  16 MPa (ultimate tensile strength). In our study, stress magnitude is smaller 5 

than the yield strength of the samples close to the baseplate in agreement with [35]. The stress 6 

component 𝜎33 = −487 ± 41 MPa (column F0, x = y = 5 mm) gains on 50 % of the yield 7 

strength.  8 

Figure 3.b illustrates the distributions of shear stress components (𝜎13, 𝜎23, 𝜎12) in the central 9 

column F0. The shear stresses vary from −13 ± 9 MPa to 27 ± 19 MPa along the building 10 

direction. 11 

In the column F2 (x = y =1.73 mm), near a corner of the cube, the residual stress state is quite 12 

different from the previous case, especially for the normal stress component 𝜎33 (Figure 3.c). 13 

The stress magnitudes are lower due to the influence of the larger free surface with values 14 

ranging from 𝜎33 = 259 ± 50 MPa (z = 1.73 mm) to 𝜎33 = −108 ± 14 MPa (z = 8.27 mm). 15 

The sample shows an in-plane equi-biaxial stress state no matter the analyzed height. 16 

Longitudinal and transversal stress values are ranging from 76 ±  46 MPa to −66 ±17 

 14 MPa (Figure 3.c). As can be seen, tensile stresses develop at low z values (near the 18 

baseplate) while stresses turn into compression (slightly) with increasing z values. The highest 19 

shear stress values are obtained in the column F2 (Figure 3.d) with values varying between 20 

78 ±  7 MPa and −78 ±  7 MPa. In summary, the stress distribution near the surfaces tends 21 

to have a lower compressive magnitude, even reaching tension mechanical stress state, 22 

especially close to the baseplate at the cube corners (Figures 3.c and 4.a). This is in agreement 23 

with previous works which showed that the bottom and top surfaces of LPBF specimens tend 24 
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to be in tension or low compression while the internal volume of the part being in 1 

compression [32, 37].  2 

3.3 The effect of assuming the principal directions in ND measurements for stress analysis  3 

As mentioned in the introductory chapter, in most previous studies, one strong assumption is 4 

usually made in order to reduce the number of measurement directions and thus the 5 

experiment duration (related to the low acquisition rate of ND technique). Latter entails 6 

assuming that the principal stress coordinate system is known and can be inferred from the 7 

sample geometry. Strains can consequently be measured in only these 3 (orthogonal) 8 

directions to determine the principal stresses 𝜎1, 𝜎2, 𝜎3. This stress state assumption is not a 9 

true representation of the stress within the part, meaning that the use of equation (5) or (6) 10 

may not provide the correct stress values. To highlight this problem, Table 1 shows the 11 

evolution of the principal stress components 𝜎𝑖 , calculated from the equation (5), compared 12 

to the results obtained for the normal components 𝜎𝑖𝑖  with the relation (4) for the column F2. 13 

The 3 principal stress components 𝜎𝑖  have been determined from the equation (5) with the 14 

experimental lattice strain values measured at (,) equal to (0°,0°), (0°,90°) and (90°,90°) 15 

for either each {hk.l} reflection or combining the 3 reflections simultaneously. For the second 16 

principal stress calculation method (reflection combination), since lattice strains were 17 

determined in 3 different sample directions per diffraction peak, we obtain 9 linear equations 18 

with 3 unknowns, to which we applied a least-squares procedure to determine the best 19 

possible values for the 3 (unknown) principal stress components 𝜎𝑖 . Finally, it should be 20 

underlined that there is no way to estimate the errors for the principal stress components when 21 

only 3 directions are used in stress analysis for a single reflection. 22 

The principal stress values calculated with the relation (5) are different from the previous case 23 

(full stress tensor). The largest discrepancy is observed at z = 1.73 mm (E0F2). For example, 24 
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the normal stress value along the x-direction (Figure 1) varies in a significant way according 1 

to the reflection selected in the stress analysis: 𝜎1 {10.3} = 202 MPa, 𝜎1 {11.2} = 27 MPa 2 

and 𝜎1 {20.1} = −291 MPa. These results are quite different from those obtained previously 3 

with equation (4): 𝜎11 = 76 ± 46 MPa. The largest difference is observed for the {20.1} 4 

reflection. This discordance could be partly attributed to the poor quality of the diffraction 5 

peaks for this reflection as regard to the low peak-to-background ratio (see Figure 2). The 6 

same trend is observed for the other diagonal tensor component values 𝜎2  and 𝜎3 . However, 7 

at z = 8.27 mm (E2F2), the calculated 𝜎𝑖  values are close to the 𝜎𝑖𝑖 values determined for the 8 

full stress tensor regardless the reflection or their combination. 9 

Stress component Assumption E0F2 E2F2 

1 (MPa) 

Principal stress-{10.3} 202 -46 

Principal stress-{11.2} 27 -37 

Principal stress-{20.1} -291 -69 

Principal stress 

{10.3}+{21.1}+{20.1} 
-16  135 -51  16 

11-full stress tensor 76  46 -45  14 

2 (MPa) 

Principal stress-{10.3} 166 -74 

Principal stress-{11.2} 18 -51 

Principal stress-{20.1} -277 -91 

Principal stress 

{10.3}+{21.1}+{20.1} 
-25  135 -72 16 

22-full stress tensor 66  46 -66  14 

3 (MPa) 

Principal stress-{10.3} 376 -137 

Principal stress-{11.2} 166 -84 

Principal stress-{20.1} -354 -112 

Principal stress 

{10.3}+{21.1}+{20.1} 
62  135 -110  16  

33-full stress tensor 259  50 -108  14 

Table 1: evolution of the principal stress components 𝜎𝑖 , calculated from equation (5), for 10 

different {hk.l} reflections and compared to the results obtained for the normal components 11 

𝜎𝑖𝑖 , obtained with the relation (4), along the column F2. 12 

At this point, the difference between the normal stress, determined from equation (4), and the 13 

principal stress, obtained by equation (5), must be explained [38,39]. From the equation (4) 14 
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which permits to calculate the full stress tensor, one can easily notice that the relation shows 1 

no coupling between both shear and normal stresses and strains as soon as 3 orthogonal lattice 2 

strains along the macroscopic coordinate axes are measured (i.e. (,) equal to (0°,0°), 3 

(0°,90°) and (90°,90°)): 4 

〈𝜀(ℎ𝑘. 𝑙, 0,90)〉𝑉𝑑
= 𝜀11 =

1

2
𝑆2(ℎ𝑘. 𝑙)𝜎11 + 𝑆1(ℎ𝑘. 𝑙)[𝜎11 + 𝜎22 + 𝜎33]  (7) 5 

〈𝜀(ℎ𝑘. 𝑙, 90,90)〉𝑉𝑑
= 𝜀22 =

1

2
𝑆2(ℎ𝑘. 𝑙)𝜎22 + 𝑆1(ℎ𝑘. 𝑙)[𝜎11 + 𝜎22 + 𝜎33]  (8) 6 

〈𝜀(ℎ𝑘. 𝑙, 0,0)〉𝑉𝑑
= 𝜀33 =

1

2
𝑆2(ℎ𝑘. 𝑙)𝜎33 + 𝑆1(ℎ𝑘. 𝑙)[𝜎11 + 𝜎22 + 𝜎33]  (9) 7 

If the sample geometry coordinate system coincides with the principal stress coordinate 8 

system, the shear strain components are equal to 0 and the principal strains 𝜀𝑖 correspond to 9 

normal strains 𝜀𝑖𝑖 . The principal strains 𝜀𝑖 can be determined by measuring lattice strains 10 

along the macroscopic coordinate axes and the principal stresses are calculated using 11 

equations 7, 8 and 9. 12 

If the shear stress components have non-zero values, the principal stresses are not defined 13 

along the 3 sample coordinate axes but they are in other directions depending on the shear 14 

strain values. The assumption claiming that the sample geometry coordinate system does 15 

overlay the principle stress coordinate system is then wrong. The principal stresses may, 16 

therefore, be much larger depending on the magnitude of the shear strains. Since the normal 17 

stress components 𝜎𝑖𝑖 do not depend on the values of the shear strains (equations 7, 8 and 9), 18 

the stress components 𝜎11, 𝜎22, and 𝜎33 are always true but not necessarily equal to the 19 

principal stresses 𝜎1 , 𝜎2 , and 𝜎3 . In other words, the normal stress components in any three 20 

orthogonal directions may be correctly calculated by measuring the strains in these three 21 

directions whether or not they are the principal directions. This is always verified because the 22 
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shear stress components do not affect the normal strains in a macroscopic isotropic material 1 

[39]. 2 

Through the diagonalization of the full stress tensor [38], it is possible to determinate the 3 

deviation of the principal stress directions (denoted (X,Y,Z)) from the LPBF part orthogonal 4 

axes (x,y,z) (defined in Figure 1) for each measurement point. Table 2 illustrates the angles 5 

between the principal stress directions and the specimen orthogonal stress directions. 6 

Measurement position 
Angle between 

x and X (in degree) 

Angle between 

y and Y (in degree) 

Angle between 

z and Z (in degree) 

E0F0 19° 19° 4° 

E0F2 137° 41° 9° 

E1F0 19° 18° 5° 

E2F0 34° 33° 8° 

E2F2 51° 42° 40° 

Table 2: angles between the principal stress directions (X,Y,Z) and the specimen orthogonal 7 

stress directions (x,y,z) for the different measurement positions. 8 

In the central column, for the E0F0 and E1F0 measurements positions, the principal directions 9 

were aligned with the sample axes within approximately 20 degrees. The principal stress 10 

values were within ± 4 MPa of the corresponding orthogonal stress values shown in Figure 11 

3.a. Near a corner of the cube (E0F2 and E2F2) or close to the top surface (E2F0), a large 12 

deviation is observed. This phenomenon is probably due to the influence of the free surface 13 

with a different thermal history of the probed region as compared to the internal volume of the 14 

part. The principal stress values are quite different from the normal stress component values. 15 

For example, at z = 8.27 mm (E2F2), the principal stress values (respectively the normal 16 

stress values) are: 𝜎1  = 27 MPa (𝜎11 = -45 MPa), 𝜎2  = -47 MPa (𝜎22 = -66 MPa), 𝜎3  = -199 17 

MPa (𝜎33 = -108 MPa). 18 
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Another problem arises when only 3 directions are used in stress analysis, there is no way to 1 

estimate the errors for the stress components. It is better to use a least-squares solution of 2 

equation (5) (respectively (4) for full stress tensor) which can be obtained when more than 3 3 

(respectively 6 for full stress tensor) lattice strain measurements are performed. For example, 4 

at z = 1.73 mm (E0F2), although the {10.3} diffraction peaks are extremely well defined and 5 

thus their location accurately established, the relative difference of the principal components 6 

varies from 45 % to 165 % with the normal component values of the full stress tensor (Table 7 

1). When the 3 reflections are simultaneously taken into account (resolving 9 measurement 8 

directions instead of 3), the large uncertainties given by the least-squares method allow for the 9 

solving quality of the equation system to be appraised (Table 1) and enable thus the detection 10 

of anomalies in the stress analysis. At z = 8.27 mm (E2F2, Table 1), the situation is in stark 11 

contrast to the previous one, with a low uncertainty. This allows us to conclude that the 12 

stresses, calculated by fitting the experimental data to equation (5), are a relevant analysis of 13 

the true state of strain/stress. It should be recalled that the calculated stress values obtained 14 

with equation (4) (𝜎1 = 51 MPa, 𝜎2 = -72 MPa, 𝜎3 = -110 MPa) are close to the normal stress 15 

components determined by equation (5). As explained above, the true principal stress values 16 

are different (𝜎1 = 27 MPa, 𝜎2 = -47 MPa, 𝜎3 = -199 MPa) because a large deviation of the 17 

principal stress directions from the sample axes is observed (Table 2). 18 

3.4 Influence of second-order stresses on residual stress analysis in LPBF produced Ti-19 

6Al-4V part  20 

The full stress tensor has been determined with the relation (4) where the second-order 21 

stresses (or intergranular stresses) are neglected. In this case, the deviations of grain 22 

(mesoscopic) stresses from macroscopic stresses are hence considered to be solely due to 23 

elastic anisotropy. Residual stresses are also generated by inhomogeneous thermo-elastic or 24 

plastic deformations on two scales: one length scale is given by the size of the studied sample; 25 
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the size of the grains forming the polycrystal defines the second one. The first-order (or 1 

macroscopic) stresses are given by the inhomogeneity on the part length scale. The second-2 

order (or intergranular) stresses are given by the inhomogeneity on the grain size scale 3 

(mesoscopic scale). Both are superimposed and a combination of first- and second-order 4 

stresses is given by ND measurements. Concerning the LPBF process, three origins of 5 

residual stresses can stand: difference in plastic flow caused by undergone stress, phase 6 

transformation or non-uniform shrinkage during cooling. If we have a superposition of both 7 

macroscopic and important intergranular contributions, the presence of intergranular strain 8 

influences the measured elastic strain. The stress values calculated by equation (4) will then 9 

necessarily vary with the {hk.l} reflection [30,40]. In most studies, stress analysis by XRD or 10 

ND is only performed with a single reflection. The importance of second-order stresses can 11 

thus never be quantified or even identified. To ascertain this, the evolution of the residual 12 

stresses for each of the 3 analyzed plane famillies {10.3}, {20.1} and {11.2} alone are shown 13 

in Figure 5, and compared with the results obtained previously when the 3 reflections are 14 

simultaneously used for the complete stress analysis. For the sake of clarity, only 𝜎33 15 

evolution is shown for the columns F0 (Figure 5.a) and F2 (Figure 5.b).  16 
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 1 

(a) 2 

 3 

(b) 4 

Figure 5: stress distribution determined with the relation (4) using a single (either {10.3} or 5 

{11.2} or {20.1}) or multiple ({10.3}+{11.2}+{20.1}) {hk.l} reflections for stress analysis 6 

along F0 (a) and F2 (b) columns. 7 
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The stress values change strongly from one reflection to another. For example, for the central 1 

column F0 at z = 8.27 mm, 𝜎33(ℎ𝑘. 𝑙) values reach - 230  31 MPa for {20.1} and - 84  24 2 

MPa for {11.2}. On the other hand, at z = 1.73 mm, the stress values for the different 3 

reflections are similar, with values ranging from -475  20 MPa to -516  70 MPa. An 4 

opposite trend is observed for the column F2: at z = 1.73 mm, 𝜎33 values significantly differ 5 

(𝜎33(10.3) = 396  32 MPa and 𝜎33(11.2) = 144  30 MPa) while, at z = 8.27 mm, closer 6 

stress values are determined by ND. It should be noted that this phenomenon is not due to a 7 

limited set of measurement directions (10 (,) directions per reflection in the present case). 8 

The uncertainties obtained for each reflection are similar to those determined for the full 9 

stress tensor. The fitting of the data to equation (4) seems to be proper as revealed by the low 10 

level of the estimated uncertainties. The results obtained previously, when the 3 reflections 11 

are used simultaneously, logically show intermediate values (Figure 5). The calculated stress 12 

clearly depends on the analyzed plane family. This reflection dependence of the stress values 13 

obtained by ND clearly indicates that strain incompatibilities are present at the grain scale. 14 

The diffracting grains are not the same for each {hk.l} reflection and this allows us to deduce 15 

that different second-order stresses exist, related to a strong thermic and/or plastic anisotropic 16 

deformation for this set of grains. High temperature gradients, as a result of the locally 17 

concentrated energy input, lead to high stress gradients. A residual stress gradient between 18 

core regions and the surface of the part is present. Its magnitude depends on the part 19 

geometry, the material stiffness and the temperature fields. As a consequence, the 20 

development of stress is locally affected and depends on the location in the sample. The 21 

development of second-order stresses is strongly dependent on the thermal history of the 22 

probed region. However, the results obtained with several {hk.l} reflections provide valuable 23 

information on the residual stress generation and should reduce the effects of second-order 24 

stresses on the macroscopic stress evaluation due to its averaging effect.  25 
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4. Conclusions 1 

In this present work, the residual stress distribution in a Ti-6Al-4V sample, produced by 2 

means of LPBF technology, has been evaluated using ND. Residual stress development in 3 

LPBF parts is mostly caused by large cooling rates and high-temperature gradient, proper to 4 

the process. The bottom and top surfaces of LPBF specimens tend to be in tension or low 5 

compression while the internal volume stands in compression. Residual stress in the LPBF 6 

part could be reduced and homogenized through the optimization of process parameters (e.g., 7 

preheating, scanning strategy). A relevant mapping of the stress values through the full depth 8 

of AM parts has to consider the full stress tensor consisting of 6 stress components, otherwise 9 

determined stress values might be distorted or even wrong, mistaking between compression 10 

and tension stress state. Furthermore, in LPBF process, non-negligible residual second-order 11 

stress gradients arise from the different interdependent physical phenomena (metallurgical, 12 

thermal, mechanical and fluid mechanic aspects) occurring during this highly non-equilibrium 13 

process for hexagonal alloys which are generally highly anisotropic materials. These stresses 14 

can be detected by ND with the use of multiple {hk.l} reflections. To obtain a relevant stress 15 

analysis, a large number of (,) directions (i.e. more than 6 lattice strain measurements) is 16 

required to minimize the effects of a single erroneous reflection profile measurement and to 17 

enable an assessment of the quality of the least-squares fitting to the experimental data. 18 
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Figures captions: 1 

Figure 1: schematic of the sample with measurement positions (in green) taken in the analysis 2 

Note the coordinate system (x,y,z) where the x and y directions are parallel to the baseplate 3 

and the z direction is the part building direction. 4 

 5 

Figure 2: neutron diffraction patterns of the Ti-6Al-4V sample for different (,) directions 6 

for the E1F0 measurements position. The diffraction peaks used in the study are also given. 7 

 8 

Figure 3: residual stresses obtained by neutron diffraction at several build heights in the 9 

central column F0 (a and b) and the column F2 (c and d) close to a corner of the analyzed 10 

cube. 11 

 12 

Figure 4: residual stresses obtained by neutron diffraction at several building levels: close 13 

substrate (E1: a and b) and close surface (E2: c and d). 14 

 15 

Figure 5: stress distribution determined with the relation (4) using a single (either {10.3} or 16 

{11.2} or {20.1}) or multiple ({10.3}+{11.2}+{20.1}) {hk.l} reflections for stress analysis 17 

along F0 (a) and F2 (b) columns. 18 

  19 



32 
 

Tables captions: 1 

Table 1: evolution of the principal stress components 𝜎𝑖 , calculated from equation (5), for 2 

different {hk.l} reflections and compared to the results obtained for the normal components 3 

𝜎𝑖𝑖 , obtained with the relation (4), along the column F2. 4 

Table 2: angles between the principal stress directions (X,Y,Z) and the specimen orthogonal 5 

stress directions (x,y,z) for the different measurement positions. 6 

 7 
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 1 

  2 

Figure 1: schematic of the sample with measurement positions (in green) taken in the analysis 3 

Note the coordinate system (x,y,z) where the x and y directions are parallel to the baseplate 4 

and the z direction is the part building direction. 5 
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 1 

Figure 2: neutron diffraction patterns of the Ti-6Al-4V sample for different (,) directions 2 

for the E1F0 measurements position. The diffraction peaks used in the study are also given. 3 

 4 
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 1 

(a)        (b) 2 

 3 

 4 

(c)        (d) 5 

Figure 3: residual stresses obtained by ND at several building heights in the central column 6 

F0, i.e. core sample (a and b) and the column F2 (c and d) close to a corner of the analyzed 7 

cube. 8 
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 1 

(a)        (b)2 

 3 

(c)        (d) 4 

Figure 4: residual stresses obtained by neutron diffraction at several building levels: close 5 

substrate (E1: a and b) and close surface (E2: c and d). 6 
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 1 

 2 

 3 

(a) 4 

 5 

(b) 6 

Figure 5: stress distribution determined with the relation (4) using a single (either {10.3} or 7 

{11.2} or {20.1}) or multiple ({10.3}+{11.2}+{20.1}) {hk.l} reflections for stress analysis 8 

along F0 (a) and F2 (b) columns. 9 
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Stress component Assumption E0F2 E2F2 

1 (MPa) 

Principal stress-{10.3} 202 -46 

Principal stress-{11.2} 27 -37 

Principal stress-{20.1} -291 -69 

Principal stress 

{10.3}+{21.1}+{20.1} 
-16  135 -51  16 

11-full stress tensor 76  46 -45  14 

2 (MPa) 

Principal stress-{10.3} 166 -74 

Principal stress-{11.2} 18 -51 

Principal stress-{20.1} -277 -91 

Principal stress 

{10.3}+{21.1}+{20.1} 
-25  135 -72 16 

22-full stress tensor 66  46 -66  14 

3 (MPa) 

Principal stress-{10.3} 376 -137 

Principal stress-{11.2} 166 -84 

Principal stress-{20.1} -354 -112 

Principal stress 

{10.3}+{21.1}+{20.1} 
62  135 -110  16  

33-full stress tensor 259  50 -108  14 

Table 1: evolution of the principal stress components 𝜎𝑖 , calculated from equation (5), for 1 

different {hk.l} reflections and compared to the results obtained for the normal components 2 

𝜎𝑖𝑖 , obtained with the relation (4), along the column F2. 3 
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Measurement position 
Angle between 

x and X (in degree) 

Angle between 

y and Y (in degree) 

Angle between 

z and Z (in degree) 

E0F0 19° 19° 4° 

E0F2 137° 41° 9° 

E1F0 19° 18° 5° 

E2F0 34° 33° 8° 

E2F2 51° 42° 40° 

Table 2: angles between the principal stress directions (X,Y,Z) and the specimen orthogonal 1 

stress directions (x,y,z) for the different measurement positions. 2 


