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Graphical Abstract
Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in
the presence of strong CT artefacts
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Highlights
Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in
the presence of strong CT artefacts
Franck P Vidal,Iwan T Mitchell,Jean M Létang

• Fully automatic creation of CAD models by image registration of X-ray projections.
• Automatic, accurate and stable geometric analysis of the material scanned by synchrotron microtomography.
• Simulation of the imaging chain, incl. beam hardening, impulse response of the detector, phase contrast, and photon

noise.
• Generation of simulated CT images, including their defects leading to realistic artefacts.
• Fast X-ray simulations on GPU into an objective function to optimise.
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A B S T R A C T
The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling
process difficult to carry out. As an alternative to traditional image segmentation techniques,
we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an
optimisation framework. A user study was also conducted to compare the measurements made
manually by a cohort of volunteers and those produced with our framework. Our implementation
relies on open source software only. We numerically modelled the real experiment, taking into account
geometrical properties as well as beam hardening, impulse response of the detector, phase contrast,
and photon noise. Parameters of the overall model are then optimised so that X-ray projections of the
registered the CAD models match the projections from an actual experiment. It appeared that manual
measurements can be variable and subject to bias whereas our framework produced more reliable
results. The features seen in the real CT image, including artefacts, were accurately replicated in the
CT image reconstructed from the simulated data after registration: (i) linear attenuation coefficients
are comparable for all the materials, (ii) geometrical properties are accurately recovered, and (iii)
simulated images reproduce observed experimental artefacts. We showed that the choice of objective
function is crucial to produce high fidelity results. We also demonstrated how to automatically produce
CAD models as an optimisation problem, producing a high cross-correlation between the experimental
CT slice and the simulated CT slice. These results pave the way towards the use of fast realistic
simulation for accurate CAD modelling in tomographic X-ray data.

1. Introduction
The use of X-ray computed tomography (CT) in

precision engineering is becoming commonplace to assess
the accuracy of a manufacturing process. The ISO
10360-11 standard has recently been issued to define
metrological characteristics and methods for coordinate
measuring systems making use of X-ray CT [14]. In
particular, dimensional metrology makes use of the CT
technique for accurate inspection and geometric analysis, as
shown in a review paper [34]. X-ray CT is becoming an
industrially relevant technology for additively manufactured
materials which require the measurement of complex
internal features [27]. In medical imaging, 3D image
quality is usually degraded by metal implants or surgical
devices in interventional guidance, and the identification
of the known computer-aided design (CAD) component in
the reconstructed tomographic volume bares a significant
promise [25]. One of the main challenges lies in extracting
the 3D surfaces from CT data, which are prone to artefacts
such as beam-hardening, scatter radiation and partial volume
effect [37]. The forward model in analytic X-ray CT
reconstruction is usually based on the Radon transform,
which amounts to assuming a monochromatic Beer-Lambert
attenuation law and therefore translates into discrepancies in
the reconstructed CT data. Sophisticated image processing

∗Corresponding author
f.vidal@bangor.ac.uk (F.P. Vidal); jean.letang@insa-lyon.fr

(J.M. Létang)
ORCID(s): 0000-0002-2768-4524 (F.P. Vidal); 0000-0002-1456-6027

(I.T. Mitchell); 0000-0003-2583-782X (J.M. Létang)

techniques are therefore necessary to accurately compute the
surface [12], and many steps are usually required to extract
CAD models from 3D data. When the input data is 3D point
clouds of object surfaces, up to 11 phases are needed [18],
including segmentation, region classification and surface
fitting, and the CAD surfaces to be modelled are often
engineering-based like planes and quadrics. A reference to
those different stages to determine surfaces from voxel data
is also found in the ISO 10360-11 standard [14] as “surfaces”
are the mesurand for solving dimensional measurements
made with CT-based coordinate measuring systems.

Depending on the final application, it may be necessary
to have highly realistic simulation models, including surface
models (eg statistical roughness distribution [2]) and a
complex forward model. For example this is the case
in model-based iterative CT reconstruction where phase
contrast, noise and Compton scattering are taken in to
account [11]. If traditional segmentation techniques are
impractical to deploy, it may be possible to perform
manual measurements when the sample is made of simple
quadrics. However, manual segmentation by subject experts
or produced by algorithms may exhibit various level of
variability [17].

In a previous study, we investigated the sources of
artefacts in synchrotron microtomography via virtual X-ray
imaging [28]. These artefacts made it difficult and
time consuming to extract CAD models by segmentation
using popular intensity based methods such as threshold
techniques and region growing, even though the sample was
made of geometrically simple structures (parallel cylinders
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in a box-shaped matrix). It was challenging to accurately
locate the boundary between two different materials of the
sample. That was a time when computers were still relatively
slow. We aim to address these two issues by the registration
of highly realistic simulated X-ray images from CAD models
onto experimental CT data. Our assumption is that recent
advances in computational power makes it possible to deploy
high performance X-ray simulation on graphics processing
unit (GPU) in the objective function of a global optimisation
algorithm.

To simulate realistic X-ray projections from CAD
models, Monte Carlo simulation methods are known to
produce the most accurate X-ray images [1]. In such
methods, X-ray photons are emitted from the source toward
the detector. Each photon is tracked independently. At
each step of the simulation, interactions of photons as they
traverse matter could occur depending on stochastic physics
models, i.e. laws of chance that are interaction specific
(Photoelectric effect, Compton scattering, and other less
dominant interactions). This high fidelity model is, however,
very slow. A week may be needed to produce an image
without too much noise [33]. Parallelism and variance
reduction techniques may be deployed to speed up Monte
Carlo simulations, however real-time performance is still
not achievable, particularly on desktop computers. Analytic
methods based on ray-tracing provide a fast alternative
as they rely on a simple forward model [7]. They
are particularly suited for GPU implementations [30] but
sometimes lack realism to reproduce observed CT artefacts.

We have developed and validated an open source library
(gVirtualXRay) to perform the attenuation calculations on
GPU using OpenGL [29, 32, 33]. gVirtualXRay is written
in C++ and GLSL. Wrappers to other popular languages
such as Python, R, Java, are provided. We used Python in
this study. Although this choice reduces the speed of the
framework, it allows us to prototype it as a proof-of-concept.
The beam polychromaticity, the detector response, the phase
fringes and the noise have been added to the forward model
to simulate realistic projections. Both the geometrical and
physical properties of the sample are considered as unknown
parameters to tune, which is performed as an optimisation
problem. Our code is open source and we produced a Jupyter
notebook as a step-by-step tutorial. We show that realistic
X-ray simulation is crucial to get an accurate estimation of
the CAD model and that manual segmentation of CT data
may be prone to bias. We also demonstrate that the choice
of objective function is important to produce high fidelity
results. The data is analysed using interactive information
visualisation (InfoVis). Our visualisations are also available
online.

The paper is organised as follows. Section 2 provides
some context about artefacts in computed tomography.
Section 3 describes the realistic forward model and our
registration pipeline. We quantitatively and visually
assess our results in Section 4, and we also compare the
performance of the framework on nodes with GPU on
a supercomputer and a desktop computer. Parameters

extracted manually and automatically are also compared.
The paper ends with a discussion and conclusion in
Sections 5 and 6 respectively.

2. Context: Artefacts in CT
In X-ray tomographic imaging, the reconstructed volume

is ideally a 3D map of linear attenuation coefficients, which
corresponds to a probability of interaction of the X-ray
photon per unit length. This assumes that the spatial
impulse response of the detector is a Dirac, the X-ray source
is monochromatic and no secondary radiations resulting
from X-ray interactions are detected. However, artefacts
may occur in reconstructed volumes [28, 37]. Indeed,
the increasing use of laboratory microfocus X-ray sources
makes it possible to obtain images with phase contrast
without having to apply for beamtime at a synchrotron
radiation facility centre. These can aid boundary location
but they distort the image contrast locally [6, 37].
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Figure 1: CT slice reconstructed from Figure 2b. Dark streak
artefacts are due to beam hardening and the response of the
detector, black and white fringes are due to phase contrast [28].
Other artefacts are seen around the tungsten cores.

Figure 1 shows a typical example of a reconstructed slice
from a fibre composite where strong CT artefacts are present.
Two kinds of artefacts are clearly visible:

1. Black and white fringes at the silicon carbide edges:
these phase artefacts are similar to some image
enhancement techniques like unsharp masking and
can be modelled by an additive term involving the
Laplacian of the phase shift [6, 20, 22];

2. Dark streaks with bright borders, located along
alignments of high density tungsten cores: these
artefacts are due to beam hardening and the impulse
response of the detector [28]. As voxel values in
these streaks are darker than what they should be,
it means that the linear attenuation coefficients are
underestimated in the artefact areas. Table 5 compares

FP Vidal, IT Mitchell & JM Létang: Preprint submitted to Elsevier Page 2 of 20



Reverse engineering: From microCT to CAD models

the attenuation coefficients in this slice with the
corresponding theoretical values [4, 5]. The tungsten
coefficients are underestimated by a factor of 2 (162.
vs 342. cm−1).

These artefacts make it impractical to extract CAD models
by segmentation using popular intensity based methods

such as threshold techniques and region growing. It is also
extremely challenging to accurately locate the boundary

between a fibre and its core, and between the fibres and the
matrix. A quantitative analysis is also difficult as the

attenuation coefficients are not consistent with the
corresponding theoretical values.

An alternative approach to segment these difficult images
would be the deployment of deep neural networks (DNNs)

that, again, advances in computational power enabled in
recent years. DNN-based method are robust in segmenting
or denoising against artefacts but their downside is the need

for training data [19, 26]. Such data is often labelled
manually, which is labour intensive. Our framework

eliminates this need by the use of simulations.
Alternatively, fast analytical simulations can also be used to
generate training data in a controlled manner. For example,

Haiderbhai et al [8] proposed a method based on a
generative adversarial network (GAN), a machine learning

approach that can be used to create synthetic images.
Images simulated using gVirtualXRay, the same X-ray
generator as in our registration framework, are used to

create a large database to train the GAN.

3. Materials & Methods
The research presented here is available for download [32]:
(i) some of the sinograms acquired at ESRF are provided,

(ii) the code of the X-ray simulation package is open
source [29], (iii) our registration code is provided on
GitHub [31], and as supplementary material with this

paper, (iv) the code of our visualisations is provided in the
same locations and the corresponding HTML pages can be

consulted on gVirtualXRay’s website [29], and (v) a
tutorial is provided as a Jupyter Notebook as

supplementary material. The steps in the sub-sections
below refer to the step numbers in the notebook.

We first present the issues to be addressed, namely (i) how
to enhance the Beer-Lambert law to simulate realistic X-ray

projections including phase contrast, Poisson noise,
impulse response and beam hardening, and (ii) how to

select the optimisation algorithm and the objective
function. The toy test case and the CAD optimisation

framework are then presented.
3.1. Forward modelling

In the literature, a projection is often modelled using the
polychromatic version of the Beer-Lambert law:

𝑰(𝑥, 𝑦) =
∑

𝑖
𝑹𝑖𝑵 𝑖 exp

(

−
∑

𝑗
𝜇𝑗(𝐸𝑖) 𝒅𝑗(𝑥, 𝑦)

)

(1)

with 𝑰(𝑥, 𝑦) the value of the raw X-ray projection at pixel
location (𝑥, 𝑦), and with the sample and with the X-ray
beam turned on; 𝑖 the 𝑖-th energy channel in the beam
spectrum; 𝐸𝑖 the energy in eV; 𝑹𝑖 and 𝑵 𝑖 the detector

response and the number of photons at that energy
respectively; 𝑗 the 𝑗-th material being scanned, 𝜇𝑗(𝐸𝑖) its

linear attenuation coefficient at energy 𝐸𝑖, and 𝒅𝑗(𝑥, 𝑦) path
length in cm-1 of the ray crossing the 𝑗-th material from the

X-ray source to pixel (𝑥, 𝑦).
Projections are then corrected to account for variations in
beam homogeneity and in the pixel-to-pixel sensitivity of

the detector [15]. This is the projection with flat-field
correction (𝐏𝐫𝐨𝐣):

𝐏𝐫𝐨𝐣 = 𝑰 −𝑫
𝑭 −𝑫

(2)

where 𝑭 (full fields) and 𝑫 (dark fields) are projection
images without sample and acquired with and without the
X-ray beam turned on respectively. Note that with an ideal
detector (𝑹𝑖 = 𝐸𝑖), pixels of 𝑫 are null, and pixels of 𝑭

are equal to ∑

𝑖 𝐸𝑖 𝑵 𝑖.
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(a) Projections for a given detector row after flat-field correction,
i.e. 𝐏𝐫𝐨𝐣 in Equation 2.

0 200 400 600 800 1000
Displacement of projection

0.0

90.0

179.8

An
gl

e 
of

 p
ro

je
ct

io
n 

(in
 d

eg
re

es
)

0

2000

4000

6000

8000

10000

12000

(b) Sinogram for a given detector row, i.e. 𝐒𝐢𝐧𝐨 in Equation 4.
Figure 2: Experimental data acquired at ESRF.
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Figure 2a corresponds to 𝐏𝐫𝐨𝐣. We can see that when the
primary spectrum is not monochromatic the measurement
in Equation 1 is the sum of several attenuation laws. We

could however compute the effective monochromatic
attenuation that would give the same measurement:

𝑰(𝑥, 𝑦) = 𝑰0(𝑥, 𝑦) exp

(

−
∑

𝑗
𝜇𝑗(𝐸eff ) 𝒅𝑗(𝑥, 𝑦)

)

(3)

with 𝑰0(𝑥, 𝑦) =
∑

𝑖𝑹𝑖𝑵 𝑖, and where 𝐸eff corresponds to
the monochromatic energy that would give the same

attenuation than the one measured. We are now able to
linearise the transmission tomography data, namely 𝐏𝐫𝐨𝐣 in

Equation 2, and we get the sinogram:
Sino = − ln (Proj) (4)

Now we got a sinogram (Figure 2b), we can reconstruct the
CT slice. As we used a synchrotron, where the

Source-to-Object Distance (SOD) is equal to 140m, we can
assume a parallel source has been used. In this case the

filtered back-projection (FBP) algorithm can be used
instead of the FDK (Feldkamp, Daci, Kress) method.

Figure 1 shows the CT slice reconstructed from Figure 2b.
When the simulations are computed without phase contrast,

gVirtualXRay calculates Eq. 1 for every angle of the
tomography acquisition (Line 9 of Step 44).

When phase contrast is taken into account, gVirtualXRay is
used to generate the path length buffers (𝒅𝑗

) for each
material 𝑗 of the sample (Line 24 of Step 49). The
contribution to phase contrast for each material is

accumulated in a new image (Line 30 to 35 of Step 49):
𝐏𝐡𝐚𝐬𝐞 =

∑

𝑗
𝑘𝑗 𝒅𝑗 ∗ 𝐋𝐚𝐩𝐥𝐚𝐜𝐢𝐚𝐧𝜎(𝑗) (5)

where 𝑘𝑗 is a weighting factor corresponding to the
contribution of the 𝑗-th material to phase contrast, 𝜎(𝑗) a

parameter controlling the width of the Laplacian operator,
and ∗ denotes the convolution of 𝒅𝑗 (the path-length image
of the 𝑗-th material) with a Laplacian kernel implemented

as follows:

𝐋𝐚𝐩𝐥𝐚𝐜𝐢𝐚𝐧𝜎(𝑥, 𝑦) =
(

𝑥2 + 𝑦2

𝜎4
− 1

𝜎2

)

exp
(

−
𝑥2 + 𝑦2

2𝜎2

)

(6)
The final phase contrast model includes two real numbers

for each material 𝑗, 𝑘𝑗 and 𝜎(𝑗).
A pixel-wise subtraction ‘adds’ the phase contrast to the

raw projections (Line 55 of Step 49):
𝑰𝑝 = 𝑰 − 𝐏𝐡𝐚𝐬𝐞 (7)

Once the projections are generated, the response of the
camera (i.e. the line spread-function (LSF) in our case

since the sample is translation invariant) is applied row by
row by convolution (Lines 58 to 60 of Step 49):
𝑰LSF = 𝑰𝑝 ∗ 𝐋𝐒𝐅 (8)

The LSF model from our previous investigation [28] was
refined and is parameterised as follows

𝐋𝐒𝐅 =

(

𝑎
𝑐

(

1 + 𝑥2

𝑐2

)−1
+ 2𝑏

√

𝜋𝑑
exp

(

−𝑥2

𝑑2

)

)

1
𝜋𝑎 + 2𝑏

(9)
and the flat-field correction can be performed on 𝐼LSF to

produce 𝐏𝐫𝐨𝐣LSF using Eq. 2 (Line 63 of Step 49).
Poisson noise is added to the projections (Lines 67 to 72 of

Step 49):
𝐍𝐨𝐢𝐬𝐞𝐌𝐚𝐩 = Poisson [(𝐏𝐫𝐨𝐣LSF + bias) × gain] (10)

and
𝐏𝐫𝐨𝐣𝑛 = 𝐏𝐫𝐨𝐣LSF + intensity × 𝐍𝐨𝐢𝐬𝐞𝐌𝐚𝐩 (11)

𝐏𝐫𝐨𝐣𝑛 is eventually linearised using Eq. 4 to produce a
sinogram suitable for CT reconstruction algorithms

(Line 79 of Step 49).
3.2. Optimisation algorithm

Image registration can be defined as the process of
overlaying two (or more) images [38]. These images may
be from different equipment, time, etc. In medicine they

may even be from different modalities or patients. In image
registration, a moving object is transformed so that its

image matches a target image [21]. The parameters of the
transformation are controlled and iteratively tuned by an
optimisation algorithm (see Figure 3). The optimisation
algorithm will either minimise a discrepancy metrics or

maximise a similarity metrics. The choice of metrics that is
optimised will impact the quality of the

registration [23, 24]. However, there is no image
comparison method that fits all problems. For complex
transformations or complex image comparison metrics,

sophisticated optimisation algorithms must be used [38] as
the choice of optimisation algorithm, stopping criteria, and
objective function can significantly affect the result of the

registration [36].
The two images that are being registered must be compared
in order to minimise their discrepancies or maximise their

similarities. This comparison is performed within the
objective function of the optimisation algorithm. It is very
likely that the derivatives of the various objective functions
to optimise are unavailable, and cannot be obtained. It is,
indeed, the case here. As a consequence, a derivative-free

optimisation algorithm is required. As we make no
assumption on the shape of the search space, we also need

an optimisation algorithm that is robust and can escape
local minima. A stochastic and population-based algorithm
based on artificial evolution is favoured for these reasons.
Artificial evolution is a class of optimisation algorithms

inspired by nature, here Darwin’s principle of natural
selection. The solutions of the optimisation problem are

represented by individuals. The encoding of individuals is
problem-dependent. In our case an individual is a sequence
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Figure 3: Image registration as an optimisation algorithm.

of real numbers. Individuals are grouped in a population.
The fittest individuals of the population have a higher

probability of breeding. This is determined by the values of
the objective function.

During an optimisation loop, called a generation, new
individuals are created (offspring) from the current

population (parents) by repetitively applying genetic
operators such as selection, recombination and mutation.

The selection makes use of the objective values to
randomly select parents. The genes of parents are ‘mixed’
to produce a child, this is the recombination (also called

cross-over). There are various ways to implement the
recombination. The child’s gene are randomly altered
during the mutation. Again, there are various ways to
implement the mutation. Successive generations are

created until a stopping criterion is met.
We use one of today’s most popular global optimisation

algorithm: covariance matrix adaptation evolution strategy
(CMA-ES) [10]. It is an EA designed for difficult

non-linear non-convex optimisation problems in continuous
domain and it is considered as state-of-the-art in

evolutionary computation [9]. CMA-ES does not require a
tedious parameter tuning for its application as finding

suitable internal parameters is part of the algorithm design,
which also makes it attractive. Only an initial solution and
an initial standard deviation must be set by the user. The

default population size is relatively small for fast
convergence. However, if the algorithm becomes stuck in a
local minimum, restart with with increasing population size
improves the global search performance [3] (note that we

purposely did not not use this possibility to assess the

framework). Stopping criteria may be tweaked by the user.
3.3. Objective Functions

Objective functions used in image registration aim to
quantify how dissimilar or how similar two images are.

There are many ways to compare images (Step 50). Mean
absolute error (MAE) and root mean squared error (RMSE)
are two of the most common metrics to quantify differences

(see Equations 12 and 13 respectively). There is no clear
consensus of which one is the best. They both provide an
average model prediction error. MAE is considered more
robust to outliers as the squared values in RMSE give a

higher weight to large errors. It does not mean that MAE is
better. For example, RMSE should be preferred when large

errors must be prevented.

MAE(𝒎, �̂�) = 1
𝑤 ℎ

ℎ
∑

𝑞

W
∑

𝑝

|

|

|

𝑚𝑝,𝑞 − �̂�𝑝,𝑞
|

|

|

(12)

RMSE(𝒎, �̂�) =

√

√

√

√
1

𝑤 ℎ

ℎ
∑

𝑞

W
∑

𝑝

(

𝑚𝑝,𝑞 − �̂�𝑝,𝑞
)2 (13)

where 𝒎 is the reference image (i.e. the experimental one),
�̂� is its approximation (i.e. the simulated one), 𝑤 is the

number of pixels in a projection (here 1024 since a single
row is considered), and ℎ is the number of angles in the

sinogram (here 900). When MAE(𝒎, �̂�) or RMSE(𝒎, �̂�)
are close to 0, the approximated image �̂� is similar to the

reference image 𝒎.
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In computer vision, the Zero Mean Normalized
Cross-Correlation (ZNCC) is a popular way two compare

images as it embeds the zero-mean, unit-variance
normalisation (Equation 17), which tackles changes in

brightness and contrast between the two images.

ZNCC(𝒎, �̂�) = 1
𝑤 ℎ

ℎ
∑

𝑞

W
∑

𝑝

𝑚𝑝,𝑞 − �̄�
𝜎𝑚

�̂�𝑝,𝑞 − ̄̂𝑚
𝜎�̂�

(14)

The ZNCC provides values between -1 and 1 and is often
presented as a percentage. The cross-correlation between 𝒎
and �̂� is 1 when the two images are 100% correlated; it is
0% when they are non-correlated; and −100% when they
are anticorrelated (e.g. when one image is the negative of

the other image). As our optimisation algorithm minimises
the objective function, we use:

1 − ZNCC(𝒎, �̂�)
2

(15)
The structural similarity index measure (SSIM) is also
popular in computer vision as it considers structural

information. It is typically used to assess the perceived
quality of digital images in television and cinema, as well as
other kinds of digital images and videos. It is the structural

similarity index measure (SSIM) [35]. It considers the
image degradation as ‘perceived change in structural
information’, e.g. due to the use of lossy compression

algorithms to encode images. Traditional techniques such
as MAE and RMSE consider every pixel independently

from its neighbours. In SSIM, however, pixels have strong
inter-dependencies, especially when they are spatially

close. When SSIM(𝒎, �̂�) is close to 1, �̂� is similar to 𝒎.
As our optimisation algorithm minimises the objective
function, we use the structural dissimilarity (DSSIM):

DSSIM(𝒎, �̂�) =
1 − SSIM(𝒎, �̂�)

2
(16)

To register simulated data onto the real experiment’s data,
we will evaluate these objective functions computed either

on the projections after flat-field correction (𝐏𝐫𝐨𝐣 in
Equation 2) or the sinogram (𝐒𝐢𝐧𝐨 in Equation 4), and

either with or without zero-mean, unit variance
normalisation (also known as standardisation or Z-score

Normalisation in machine learning):
𝒎𝑜 =

𝒎 − �̄�
𝜎𝑚

(17)

where 𝒎𝑜 is the image after normalisation of Image 𝒎, �̄� is
the average pixel value of Image 𝒎, and 𝜎𝑚 its standard

deviation. After normalisation, the average pixel value is
null and the standard deviation of pixel values is equal to

one.
Whilst this strategy (using four different error metrics)

increases the runtime, it allows us to assess the effect of the
log function used to convert the projections into a

sinogram, and if normalisation is needed or not. One of the

difficulty is the relative wide range of attenuation properties
amongst the material used in the sample. In total, 14

different objective functions will be evaluated.
3.4. Toy test case

In this paper, we use a typical reconstructed slice of an
Ti/SiC fibre composite as an example (see Figure 4 for a

photograph of the sample and an optical microscopy of the
slice). The matrix is a mixture composed of titanium

Object holder

Ti/SiC fibre composite with W cores

(a) Photograph. (b) Optical microscopy.
Figure 4: Scanned object: SiC fibres with a tungsten core in a
Ti90/Al6V4 matrix. From the microscopic image, the tungsten
core diameter is 15µm and the fibre diameter 105µm.

(90%), aluminium (6%) and vanadium (4%). Fibres are
silicon carbide and their cores tungsten. The data has been
acquired at ESRF and a multilayer monochromator used to

make the beam spectrum almost monochromatic. We
selected an energy of 33 keV. As the source is so far away
from the sample and the detector (see experimental set-up
in Figure 5), a parallel geometry can be considered during
the tomography reconstruction using the standard filtered

back-projection (FBP).
The Ti90/Al6/V4 matrix is a parallelepiped. It has a centre,

a size and orientation. These are unknown and will be
tuned by the registration pipeline. The tungsten cores are
cylinders. Each core has a centre and radius. The centres
can easily be retrieved from the image (see below). The

radius is, however, unknown. The SiC fibres are cylinders.
Each fibre has a centre and radius. This radius is also

unknown. SiC fibres and tungsten cores share the same
centres. We subtract the fibres from the matrix using the

difference operator in constructive solid geometry (CSG).
We subtract the cores from the fibres using the difference
operator in CSG. The cores have a smaller radius than the

fibres.

Distance
detector-object: 80mm 

X-ray detector:
- 1217 pixels
- pixel spacing: 1.9 um
- position: -0.08m, 0, 0
- up vector: 0, 1, 0 

Distance
source-object: 145m 

X-ray source:
- position: 145m, 0, 0 
- incident beam: 
    - 97%: 33 keV
    - 2%: 66 keV
    - 1%: 99 keV 

Scanned object:
- geometry
- material composition 
- position: 0,0, 0 

Figure 5: Experimental set up at ESRF’s ID19 -
Microtomography beamline.
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Table 1
Summary of the parameters that need to be optimised.

Parameter Notation
1 Position of the matrix along the primary axis (in µm) 𝑢
2 Position of the matrix along the secondary axis (in µm) 𝑣
3 Size of the matrix along the primary axis (in µm) 𝑤
4 Size of the matrix along the secondary axis (in µm) ℎ
5 Rotation angle of the matrix (in degrees) 𝜃
6 Radius of the cores (in µm) 𝑟𝑊
7 Radius of the fibres (in µm) 𝑟SiC
8 Percentage of 33 keV photons in the beam spectrum 𝑘33keV
9 Percentage of 66 keV photons in the beam spectrum 𝑘66keV
10 Percentage of 99 keV photons in the beam spectrum 𝑘99keV
11 Bias controlling the Poisson noise bias
12 Gain controlling the Poisson noise gain
13 Intensity of the Poisson noise intensity
14 Intensity of the phase contrast for the tungsten core 𝑘W
15 Spread of the phase contrast for the tungsten core 𝜎W
16 Intensity of the phase contrast for the SiC fibres 𝑘SiC
17 Spread of the phase contrast for the SiC fibres 𝜎SiC
18 Intensity of the phase contrast for the Ti90Al6V4 matrix 𝑘Ti90Al6V4
19 Spread of the phase contrast for the Ti90Al6V4 matrix 𝜎Ti90Al6V4

20-23 Parameters of the LSF (see Equation 9) 𝑎, 𝑏, 𝑐, 𝑑

3.5. Optimisation Framework
In our context, the target are the projections (either 𝐏𝐫𝐨𝐣 or
𝐒𝐢𝐧𝐨) provided by the experiment at ESRF. The moving

image is created by simulation using the CAD models and
gVirtualXRay. The simulation model is initialised with all

the known parameters. The unknown parameters
controlling the simulation model (see Table 1) are

repetitively tuned by a global optimisation algorithm until a
stopping criterion is met. The optimisation algorithm will
minimise (or maximise) a numerical value, the objective
function. The comparison between the target and moving

images measures how different (or similar) the two images
are. It is performed within the objective function.

To improve the performance of our registration pipeline,
we use a divide and conquer strategy where we split this
complex optimisation problem into smaller problems that

are easier to solve. In total there are 23 parameters to
estimate (see Table 1). Our registration pipeline is divided

in 8 successive steps:
1. Registration of a cube to approximate the Ti90Al6V4

matrix: 5 real numbers: 𝑢 and 𝑣 for the centre of
the matrix, 𝑤 and ℎ for its width and height, and 𝜃
a rotation angle (Step 52).

2. Registration of the radii of the tungsten cores and SiC
fibres: 2 real numbers: 𝑟SiC the radius of the SiC
fibres, and a scaling factor so that 𝑟𝑊 = scaling× 𝑟SiCwith scaling < 1 (Step 66).

3. Recentring the tungsten cores and SiC fibres (Steps 72
& 73).

4. Refining the registration of the radii of the tungsten
cores and SiC fibres: 2 real numbers: the radius of the
SiC fibres, and the scaling factor (Step 75).

5. Optimisation of the weights of the different energies
in the beam spectrum: 3 real numbers 𝑘33keV, 𝑘66keV,

and 𝑘99keV so that 𝑘33keV + 𝑘66keV + 𝑘99keV = 1
(Step 82).

6. Adding the phase contrast: 8 real numbers: 2 per
material (𝑘W, 𝑘SiC & 𝑘Ti90Al6V4, and 𝜎W, 𝜎SiC &
𝜎Ti90Al6V4), and one for the radii of the tungsten cores
𝑟𝑊 and SiC fibres 𝑟SiC (Step 92).

7. Optimising the LSF parameters and reoptimising the
phase contrast: 7 real numbers: 4 for the LSF
(𝑎, 𝑏, 𝑐, 𝑑), and 1 for the phase contrast of each
material (𝑘W, 𝑘SiC & 𝑘Ti90Al6V4) (Step 100).

8. Optimisation of the noise level: 3 real numbers (bias,
gain and intensity) (Step 111).

The registration framework will vary these 23 parameters
using an optimisation algorithm to improve the value of an
objective function. This objective function is based on the

comparison of the experimental projections acquired at
ESRF with the projections simulated using the parameters
being optimised. To compute these simulated projection,

we need to:
1. Set the fibre and core geometries and material

properties (Step 45)
2. Set the matrix geometry and material properties

(Step 46)
3. Simulate the raw projections for each angle:

• Without phase contrast (Line 9 of Step 49), or
• With phase contrast (Lines 14-55 of Step 49)

4. Apply the LSF (Lines 58-60 of Step 49)
5. Apply the flat-field correction (Line 63 of Step 49)
6. Add Poisson noise (Lines 69-76 of Step 49)
7. Apply the minus log normalisation to compute the

sinogram (Step 8 and Lines 79 of Step 49)
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Table 2
Main simulation parameters. These parameters are fixed,
i.e. they are constant during the registration process.

Parameter Value
Source shape: cone beam

source-object distance (SOD): 145m
source-detector distance (SDD): 145m + 80mm

Pixel spacing: 1.9µm
Pixel resolution: 1024 pixels per line

Number of projections: 900
Angular span: 180°

Beam spectrum: primary energy: 33keV
1st harmonic: 66keV
2nd harmonic: 99keV

3.6. Initialisation of the Simulation Model with
Known Parameters

During the initialisation phase, the input data, here the
X-ray projections, is loaded (Step 8). The corresponding
sinogram is computed (Steps 12 & 13) and it is used to
create the reference CT slice (Step 16). If the objective

function used in the registration makes use of the
zero-mean unit-variance normalisation, it can be applied on
the reference images during the initialisation step so that it

is performed only once (Steps 19 & 20). Note that the
reference CT slice is not actually used during the

registration. It is used afterwards to assess the accuracy of
the registration.

For the X-ray simulation, we first create an OpenGL
context (Step 21). Geometric parameters corresponding to
the experiment conducted at the ESRF are set (Steps 23 &

24). They are summarised in Figure 5 and Table 2. A beam
spectrum of 97% of primary energy at 33keV, 2% of 1st

harmonic at 66keV and 1% 2nd harmonic at 99keV is used
as an initial guess (Step 25). The respective weights will be

optimised at some point during the registration, once
geometric properties of the matrix and fibres are known

(Step 82).
The material properties (chemical composition and density)
of the matrix, tungsten cores and silicon carbide fibres are

then set (Step 27).
The convolution kernel corresponding to the line spread
function measured at ESRF is then loaded as an initial

guess (Step 28) [28]. Its parameters will be tuned at some
point during the registration (Step 100).

The final step of the initialisation is the localisation of the
centre of all the fibres. As the fibres and the cores

correspond to circles in the CT images, the obvious
technique to try is the Hough Circle Transform (HCT) [13].

It is a feature extraction technique used in image analysis
that can output a list of circles (centres and radii).

However, as Figure 6 shows, 13 fibres were missed and
many centres were misplaced (Steps 32-34). Controlling

the meta-parameters of the algorithm can be difficult,
particularly in a fully-automatic registration framework,

and we eventually discarded this method. As the tungsten
cores have a much higher intensity than any other region of
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Reference image and detected Tungsten cores

Figure 6: Circle detection using the Hough Circle Transform
on the reference CT slice.

the image, binary thresholding can be used as an
alternative. We rely on the popular Otsu’s method that

creates an histogram and uses a heuristic to determine a
threshold value (Step 35). It highlights the pixels of the
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Reference image and detected Tungsten cores

Figure 7: Overlay of the binary image showing the tungsten
cores in green and the reference CT slice.

tungsten cores (see Figure 7). Each distinct tungsten core is
assigned a unique label, i.e. a unique pixel intensity (see
Figure 8) (Step 41). For each labelled tungsten core, we

extract the centroid (Steps 43 & 44). We now have a list of
the centres of all the fibres that can be used as the

parameter of a function to create the cylinders
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Cleaned Binary Segmentation of the Tungsten cores

Figure 8: Overlay of the labelled image showing the tungsten
cores in different colours and the reference CT slice.

corresponding to the cores and the fibres (Step 44).
3.7. Validation Methodology
To validate our approach we must demonstrate (i) that the
choice of objective function is key to success, (ii) results

are consistent for a given objective function, (iii) that
results can be obtained in a reasonable amount of time with

a typical desktop computer, and (iv) the benefit(s) of our
framework over manual measurements.

Due to the stochastic nature of the optimisation algorithm,
each experiment is repeated 25 times. This number is
arbitrary. The standard error of the arithmetic mean is

𝜎∕
√

𝑛. The variability between the samples was
sufficiently low for a value of 𝑛 = 25 to be acceptable. This
methodology is commonly used in evolutionary computing
to provide statistically meaningful results. As we compare

14 objective functions (𝐏𝐫𝐨𝐣 vs 𝐒𝐢𝐧𝐨, with or without
zero-mean unit-variance normalisation, using MAE,

RMSE, ZNCC or DSSIM), that is 350 registrations in total.
These test registrations will be performed on GPU nodes of
a supercomputer such as Supercomputing Wales (SCW, the

supercomputer accessible by Welsh universities,
https://www.supercomputing.wales/). For the best

performance, we use a single GPU node per registration.
Otherwise hardware resources might be shared with other
users. A statistical analysis and interactive visualisations

will be used to explore the large amount of data that will be
generated. The aims are (i) to identify which objective
function(s) is significantly better than others and (ii) to

assess, again, variability of the results.
Conducting 350 registrations on a desktop computer may
not be feasible. However, we will perform 25 registrations
with the objective functions that are identified as the ‘best’
ones. This way we will compare the relative computational

performance between a GPU node on the supercomputer
and a regular desktop computer, which is just the office PC

of one of the co-authors.
A user study will be conducted. Suitable volunteers will be
recruited online. To contribute to the user study, volunteers

must be familiar with ImageJ or another image analysis
software that is equivalent. The reference image is provided

in full resolution and with single-precision floating point
accuracy. We prepared an online form with instructions and

a questionnaire (see supplementary materials). The
volunteers are asked:

1. To make sure they record the time when they started
the experiment.

2. To find the structure that corresponds to the
Ti90Al6V4 matrix in the image and measure or
estimate its:

(a) Width,
(b) Height,
(c) Centre of this structure,
(d) Rotation angle.

In addition they are asked to evaluate the difficulty of
these tasks using a Likert scale.

3. Find in the image the structures that corresponds to
three pre-selected fibres. In the form, they must report
for each of the three fibres:

(a) Its centre,
(b) The diameter of its inner white circle,
(c) The diameter of its outer dark circle.

In addition they are asked to evaluate the difficulty of
these tasks using a Likert scale.

4. Record the time when you stopped the experiment.
The aim of this study is to manually extract geometrical

parameters and conduct a statistical analysis to assess the
variability of the responses. Ten respondents participated

to the study. In practice, if no registration was available the
median value for each geometrical parameter could be used
in the simulation to compare the corresponding slice with

the ground truth. Median values are used instead of average
values to avoid using parameters skewed by outliers.

3.8. Pseudo-3D Extension and Robustness to
Changes of Acquisition Parameters
We conducted another experiment with different

acquisition parameters: incident beam 80keV, distance
sample-detector 270mm, distance source-detector 92m,

pixel spacing 1.22µm, angular span 360° over
3500 projections, detector size 1424 × 1024 pixels. The

sample is larger than the detector. To accommodate for this,
the centre of rotation of the sample is off compared to the
central column of the detector. To avoid sample truncation
in the projection domain for the registration optimisation, it

is necessary to reformat the projections using redundant
information so that they span over 180°, and the centre of
rotation and the central column of the detector becomes

aligned. Figure 9 shows that the new dataset is corrupted
by similar streak and phase contrast artefacts.
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1st slice Last slice

Figure 9: ROI of the first slice reconstructed from experimental
data with different acquisition parameters (left) and of the last
slice (right). Both ROIs have been extracted at the same pixel
locations. The differences are due to the fact that the fibres
are slightly tilted.

As 2D projections are now available, it makes it possible to
extend and alter our proposed method from 2D to

pseudo-3D (see Algorithm 1). Indeed, running the pipeline
presented in Section 3.5 for every slice is not necessary and
it would be far to computationally intensive. Only a single
full registration is needed to estimate parameters that will

be constant amongst every slice, such as the radii,
spectrum, phase contrast, LSF and noise. Note that it is not
necessary to optimise the LSF and noise to generate CAD

models. We propose in this section to register the radii only
once, at the same time as the phase contrast. There are two

reasons for that: i) To limit the number of optimisation
steps as much more data will be processed in the 3D case,

and ii) An estimate is available from Figure 4b. For
subsequent slices, only the geometrical parameters of the

matrix must be optimised. Parameters of the previous slice
can be used as an initial guess. The centre of fibres must be

estimated for every slice in case they are slightly tilted.
Comparing the core centres in the ROI of the first slice with
those of the last slice shows that the fibres are indeed tilted

(see Figure 9). Note that the rotation parameters do not
need to be modelled and optimised as they can be estimated

using traditional image analysis techniques in the
projection domain, such as the Hough transform. Our

measurements on the projection data show that fibres are
parallel and tilted by 0.8°.

4. Results
In this section, we aim to demonstrate the benefit of our

framework by performing a series of validation studies. To
identify which objective functions provide the best results,
we will compare the different objective functions in terms
of accuracy, stability, and relative runtime. We will also
compare corresponding runtimes on a GPU node on the
supercomputer and a regular desktop computer. We will
compare the parameters provided by the registration and
parameters extracted manually by a cohort of volunteers.

A registration corresponds to optimising the 23 unknowns
of the model, which was broken down into 8 successive

Algorithm 1 Pseudo-3D extension
1: Initialise known parameters
2: Initialise X-ray simulation library
3: for each slice (i) do
4: if i is 0 then
5: Initialise matrix with initial guess ⊳ can be

random or use rough manual measurements
6: else
7: Use parameters of slice i-1 as initial guess
8: Register the matrix
9: Extract fibre centres

10: Simulate the corresponding sinogram
11: Reconstruct the corresponding CT slice
12: Recentre the fibres
13: if i is 0 then
14: Optimise the beam spectrum
15: Optimise the phase contrast and radii
16: Optimise the LSF and phase contrast⊳ optional
17: Optimise the Poisson noise ⊳ optional
18: Save corresponding CAD models
19: Simulate the corresponding sinogram ⊳ optional
20: Reconstruct the corresponding CT slice ⊳ optional

steps, amongst which 7 are optimisation problems solved
with CMA-ES. Note that CMA-ES has been used as a

black-box optimisation algorithm, its hyperparameters have
not been tuned to achieve the best performance. Only the
initial guess and standard deviations have been set. The

termination tolerance in x-changes (tolx) and on the
function value (tolfun) have been increased from 10−11 to
10−2 or 10−4 (except for the noise where they are 10−8) to
speed up the computations. Again, we made no particular

effort to tweak them. The value of other parameters,
including population size and other stopping criteria, are

set to their default values.
On average each registration takes 1 hour and 35 minutes,

which is achievable on a desktop computer or laptop.
However, the cumulative runtime for 350 registrations is
23 days (𝑖.𝑒. 350 × 1:35), which is only achievable thanks

to the use of GPUs on a supercomputer.
4.1. Quantitative Evaluation of the Objective

Functions
Figure 10 presents the distributions of ZNCC between the
experimental CT slice and the final simulated CT slice for
the 25 runs of each objective function using boxplots. Our

assumption is that the objective function providing the
highest correlation and smallest spread is the best method,
i.e. RMSE on Sino with normalisation. We computed the
𝑝-values between the distribution of ZNCC for the 25 runs
of this objective function and the distributions for the other
objective functions. The aim is to assess if RMSE on Sino
with normalisation is significantly better (𝑝 < .001) than all
the other objective functions (it is the case) or if there are
other objective functions that perform as well (this is not
the case). As a consequence we can use RMSE on Sino
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Figure 10: Boxplot of the ZNCC between the experimental CT
slice and the final simulated CT slice for the 25 runs of each
objective function.

with normalisation as our baseline as it is significantly
better than all the other objective functions. However, there

are a few outliers that need to be investigated. We can
identify these outliers using a parallel coordinate plot (see

Figure 11), a technique popularised by Alfred
Inselberg [16]. Such plots enable us to visualise and

analyse high-dimensional datasets.
When highlighting the 25 runs of RMSE on Sino with
normalisation in Figure 12, we can easily identify the

outliers, the lines with the lowest ZNCC (see
http://gvirtualxray.sourceforge.net/parallel_

coordinates-ZNCC.php for an interactive version). It is clear
that the registration of the radii of the tungsten cores and
SiC fibres did not perform as well as for the other runs.

Considering that the runtime is similar for all the runs, it is
likely that the optimisation algorithm fell into a strong local

minimum. Techniques used in evolutionary computing,
such as restart, can be deployed to address this problem.

Figure 11 also shows that the runtime of the ZNCC-based
optimisations is significantly lower than for others. In case

speed is favoured over accuracy, it is a good contender,
although care must be given to the data used in the fitness
function. Comparing the highlighted lines in Figures 13

and 14 clearly shows that ZNCC on 𝐒𝐢𝐧𝐨 is a valid choice
(92.20% ± 1.02%) whereas ZNCC on 𝐏𝐫𝐨𝐣

(90.68% ± 1.49%) must be discarded.
To further assess if the RMSE on 𝐒𝐢𝐧𝐨 with normalisation
is the best objective function, we consider the distribution

of ZNCC values of the second best objective function
(namely DSSIM on 𝐏𝐫𝐨𝐣 with normalisation). We aim to
assess their relative performance in light of the runtime.
For this purpose, a scatter plot is generated for these two

objective functions (see Figure 15). The runtime is a value
that should be as low as possible, and the ZNCC as high as

possible: Points in the bottom right corner of Figure 15
highlight the objective function that should therefore be

favoured. From Figure 15, it is clear that the spread in term

of ZNCC is smaller for RMSE on Sino with normalisation,
than DSSIM on 𝐏𝐫𝐨𝐣 with normalisation. It is also clear

that ZNCC on 𝐒𝐢𝐧𝐨 is a good solution if speed is preferred
over accuracy.

4.2. Runtime Comparison between a GPU Node
on a Supercomputer and a Desktop PC
We run our framework on two different systems:

Supercomputing Wales, and a desktop computer. Their
specifications are given in Table 3. As we can repetitively
perform the registration on a supercomputer, we make no
assumption on the best choice of image metrics, data and

normalisation: Many stochastic registrations will be
performed to gather statistically meaningful results.

Hardware and software resources are shared on a
supercomputer. Depending on availability, up to 5 GPU

nodes could be used at the same time. Each node is
equipped with a NVIDIA Tesla V100 GPU. Each node

performs a single registration. In addition, we compare the
run times with a desktop computer for three objective

functions: RMSE on Sino with normalisation, ZNCC on
𝐒𝐢𝐧𝐨, and DSSIM on 𝐏𝐫𝐨𝐣 with normalisation.

Table 4 summarises the run times for each optimisation for
each objective function. For each corresponding image
metrics, it always took longer on the sinograms than on
projections. However, minimising the same metrics on

sinogram does not necessary leads to better results than on
projections (see Figure 10). Some of the optimisations

were rather quick, e.g. three to five minutes to estimate the
parameters of the matrix. The first optimisation of the radii

always took more time than the second one (after
recentring). This indicates that initialising the

meta-parameters of CMA-ES with a good initial guess has
the potential to decrease the overall run time by a large

factor. However, for convenience we let the computer do all
the work and minimise the amount of human inputs, even if

it increases the run time. Phase contrast is by far the
longest to tune, by a large factor.

Table 4 also shows that the desktop system performs faster
than a GPU node on the supercomputer. Using the

supercomputer, it took 1 hour and 47 minutes on average
per registration for RMSE on Sino with normalisation. The
desktop computer was 1.40× faster (it only took 1 hour and
17 minutes on average). The same pattern is observed for
ZNCC on 𝐒𝐢𝐧𝐨, the desktop computer was 1.16× faster
(34 minutes vs 29 minutes); for DSSIM on 𝐏𝐫𝐨𝐣 with
normalisation, the desktop computer was 1.41× faster

(1 hour and 39 minutes vs 1 hour and 10 minutes). The
reasons for this difference are hard to pin point as the
systems (both hardware and software) are different.

NVIDIA Tesla V100 on SCW are ten months older than the
NVIDIA GeForce RTX 2080 Ti on the desktop computer.

The Tesla GPUs use the Volta architecture whereas the
GeForce RTX ones use the Turing architecture.

4.3. Visual Comparison of the Results
As RMSE on Sino with normalisation performed

significantly better than any other objective function, we
FP Vidal, IT Mitchell & JM Létang: Preprint submitted to Elsevier Page 11 of 20
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Figure 15: Scatter plot of the two best objective functions for 25 runs each. Points in the lower right corner correspond to runs
that produced the most accurate results in the smallest amount of time.

Table 3
Systems used to perform our tests.

GPU node at SCW PC
RAM 395 GB 32 GB
CPU Intel® Xeon® Gold 6248 CPU @ 2.50GHz × 40 Intel® Core™ i9-9900K CPU @ 3.60GHz × 16

GPU chip NVIDIA Tesla V100 NVIDIA GeForce RTX 2080 Ti
GPU Architecture Volta Turing
GPU Release date December 7, 2017 September 27, 2018

OS Red Hat Enterprise Linux Server 7.8 openSUSE Leap 15.2
OpenGL 4.5.0 4.5.0
Drivers 460.27.04 460.67

only consider it in this section. We extract the result of the
worst, median and best runs in terms of ZNCC. We

compare these three images with the real CT slice using the
checkerboard method, which alternates tiles from the first

and the second images (see Figures 16 and 17). It allows us
to visually assess if the fibre, core, streak artefacts and the

phase contrast are perfectly aligned on both the real CT and
the simulated CT. It is the case for both the median and best

runs, but not the worse one, which failed to estimate the
radii. The ZNCC of the median and best runs are within

0.15% of each other.
It is clear on the corresponding profiles shown in Figure 18
that the features seen in the real CT image are replicated in
the median and best runs: (i) The pixel values in cm-1 are
comparable, (ii) the core radius is similar, (iii) the fibre
radius is similar, (iv) the dip at the centre of the core is

similar, (v) phase contrast around the fibre is similar, (vi)
phase contrast around the core is present although a bit

attenuated. In practice, it is hard to distinguish the median
run from the best one, which demonstrate the stability of

our solution.

To further validate the accuracy of our overall numerical
model, we compare in Table 5 the input linear attenuation
coefficients 𝜇 from the literature [5], from the CT slice of

the experiment at ESRF and the median run using the
RMSE on Sino with normalisation. It is clear that the

reconstructed values from our model are relatively close to
those extracted from the CT slice of the experiment at

ESRF for all the material (162 vs 154 cm-1 for the tungsten,
6 vs 5 cm-1 for the silicon carbide, and 13 vs 11 cm-1

titanium-aluminium-vanadium alloy).
In supplementary material, we provide a Jupyter Notebook.
When the notebook was executed on the desktop computer,
successive results obtained during the artificial evolution

were recorded and we created a video for each optimisation
of the registration pipeline. They are provided as

supplementary material. If the paper
is accepted,
the
publisher
will embed
the videos
here in the
HTML
version of
the paper

4.4. Parameter Sensitivity
We now assess the response of our framework in terms of
parameter sensitivity. In particular, we must ascertain that
the radii and linear attenuation coefficients are consistent
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Table 4
Run times in MM:SS (or HH:MM:SS when appropriate) over 25 runs for each objective
function. 14 objective functions were evaluated with a NVIDIA Tesla V100 GPU on
Supercomputing Wales, and 3 objective functions were evaluated with a NVIDIA GeForce
RTX 2080 Ti GPU on a desktop computer.

Objective System Matrix Radii 1 Radii 2 Spectrum Noise Phase & Radii Phase & LSF Overall

𝐏𝐫
𝐨𝐣 w
/

no
rm

. DSSIM SCW 04:37 ± 01:14 10:47 ± 01:49 06:19 ± 02:22 09:01 ± 01:43 00:01 ± 00:00 50:39 ± 11:48 17:45 ± 02:27 01:39:12 ± 00:13:14
PC 03:40 ± 01:20 09:49 ± 04:19 04:21 ± 01:24 06:25 ± 00:47 00:01 ± 00:00 32:58 ± 11:41 13:11 ± 01:34 01:10:28 ± 00:11:55

MAE SCW 03:43 ± 01:12 11:54 ± 03:11 06:24 ± 04:53 09:36 ± 01:15 00:01 ± 00:00 43:04 ± 21:31 12:17 ± 03:11 01:27:02 ± 00:21:42
RMSE SCW 03:58 ± 01:41 11:56 ± 03:49 06:38 ± 04:48 08:49 ± 02:15 00:01 ± 00:00 29:41 ± 09:23 13:05 ± 03:02 01:14:11 ± 00:12:47
ZNCC SCW 03:46 ± 00:50 10:15 ± 02:47 02:15 ± 02:03 03:32 ± 01:32 00:01 ± 00:00 02:47 ± 03:50 00:15 ± 00:01 00:22:54 ± 00:05:55

w
/o

no
rm

. DSSIM SCW 04:35 ± 00:50 14:44 ± 11:08 09:07 ± 07:14 08:08 ± 00:51 00:01 ± 00:00 47:46 ± 12:29 17:39 ± 02:26 01:42:03 ± 00:18:38
MAE SCW 04:26 ± 02:25 12:33 ± 04:56 05:51 ± 05:10 09:36 ± 01:47 00:01 ± 00:00 25:57 ± 12:02 07:29 ± 04:48 01:05:57 ± 00:12:36
RMSE SCW 03:45 ± 00:57 12:22 ± 05:17 04:59 ± 02:33 09:10 ± 01:49 00:01 ± 00:00 19:51 ± 05:33 00:53 ± 00:31 00:51:03 ± 00:09:55

𝐒𝐢
𝐧𝐨

w
/

no
rm

. DSSIM SCW 04:47 ± 01:06 12:43 ± 01:57 07:40 ± 07:08 08:17 ± 01:34 00:01 ± 00:00 56:00 ± 23:28 18:14 ± 02:17 01:47:45 ± 00:23:04
MAE SCW 04:05 ± 01:14 15:04 ± 10:07 05:53 ± 02:33 30:53 ± 07:39 00:01 ± 00:00 47:42 ± 16:51 15:41 ± 01:58 01:59:23 ± 00:19:26
RMSE SCW 03:23 ± 00:46 13:50 ± 05:36 06:56 ± 03:44 24:37 ± 08:04 00:01 ± 00:00 42:20 ± 09:47 16:16 ± 01:21 01:47:26 ± 00:09:02

PC 02:59 ± 00:56 10:19 ± 02:48 04:28 ± 01:02 19:11 ± 04:55 00:00 ± 00:00 28:17 ± 05:00 11:41 ± 01:04 01:16:59 ± 00:07:10
ZNCC SCW 03:25 ± 00:43 11:38 ± 02:45 04:12 ± 02:15 05:28 ± 01:09 00:01 ± 00:01 07:05 ± 08:47 01:45 ± 01:29 00:33:37 ± 00:10:25

PC 03:09 ± 01:10 11:45 ± 06:48 03:16 ± 01:06 04:28 ± 00:51 00:00 ± 00:00 05:31 ± 04:38 00:40 ± 00:33 00:28:54 ± 00:09:13

w
/o

no
rm

. DSSIM SCW 05:08 ± 01:19 12:31 ± 01:52 05:43 ± 01:13 08:34 ± 01:18 00:01 ± 00:00 06:24 ± 11:47 14:33 ± 05:08 01:52:58 ± 00:13:45
MAE SCW 04:24 ± 01:50 17:49 ± 04:38 08:44 ± 01:54 30:46 ± 08:04 00:01 ± 00:00 21:28 ± 17:33 27:07 ± 03:14 02:50:23 ± 00:18:15
RMSE SCW 04:10 ± 01:32 16:38 ± 04:20 08:32 ± 02:04 25:47 ± 09:59 00:01 ± 00:00 27:49 ± 18:22 29:30 ± 04:35 02:52:30 ± 00:24:02

Worse run, ZNCC: 90.44% Median run, ZNCC: 94.04% Best run, ZNCC: 94.19%
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Figure 16: Checkerboard comparison between the real CT slice and the simulated ones
for the worse, median and best runs using the RMSE on Sino with normalisation. A
checkerboard image alternates tiles from the real and the simulated CT slices. Red squares
are two examples of tiles from the real CT slices; blues squares from the simulated slices.
The colorbar shows the lookup table for all the images in cm-1.

Worse run, ZNCC: 90.44% Median run, ZNCC: 94.04% Best run, ZNCC: 94.19%
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Figure 17: Checkerboard comparison between the fibre in the
centre of the real CT slice and the corresponding simulated
ones for the worse, median and best runs using the RMSE on
Sino with normalisation. Red squares are two examples of tiles
from the real CT slices; blues squares from the simulated slices.

for the runs producing the best results in terms of ZNCC.
Again, we use a parallel coordinate plot (see Figure 19 and

http://gvirtualxray.sourceforge.net/parallel_

coordinates_all_data.php) that we filter to highlight the
runs producing the highest possible ZNCC (Figure 20).

The radius of the tungsten cores is 8 µm, and 52-54 µm for
the silicon carbide fibres. However, the range of attenuation

Table 5
Linear attenuation coefficients in cm-1 from the literature
(Theoretical), from the CT slice of the experiment at ESRF
(Experimental), and of the median run using the RMSE on
Sino with normalisation (Simulated).

Structure Material Theoretical Experimental Simulated
Core W 341.61 162.34 ± 21.67 153.88 ± 19.97
Fibre SiC 2.74 5.61 ± 5.73 4.52 ± 3.98

Matrix Ti90Al6V4 13.13 12.87 ± 3.57 11.34 ± 2.19

coefficient for tungsten is very wide, 110 to 175 cm-1. We
further filter the data to highlight the runs providing both

the highest possible ZNCC and the most realistic 𝜇𝑊(162 cm-1) (Figure 21). There is now a clear consensus on
the size of the radii (8 and 54 µm), and the fibre and matrix

linear attenuation coefficients (4, and 12-13 cm-1
respectively).

After elimination of the four outliers for RMSE on Sino
with normalisation, the radius of the tungsten cores is

7.91 ± 0.05 µm, and 53.71 ± 0.08 µm for the silicon carbide
FP Vidal, IT Mitchell & JM Létang: Preprint submitted to Elsevier Page 14 of 20
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Figure 18: Profiles extracted from the fibre in the centre of
the real CT slice, and the corresponding simulated ones for
the worst, median and best runs using the RMSE on Sino with
normalisation. Grey dotted lines correspond to the average
radii after optimisation (see Table 7).

fibres. This is in very strong agreement with the values
extracted from the optical microscopic image in Figure 4b.

On this CT slice, the matrix is a rectangle of
(1451.93 ± 12.32) × (1062.58 ± 9.77) µm2. It is rotated by
90.68 ± 0.44 degrees. These results show an accurate and

stable geometric analysis of the scanned material when
using our registration framework with this objective

function.
4.5. User study

As demonstrated above, we use RMSE on Sino with
normalisation as a baseline. We compare the statistics of
the parameters (matrix and fibres) that were estimated (i)

using our optimisation framework with realistic GPU
simulation, and (ii) manually by 13 volunteers using

ImageJ or equivalent. Results are shown in Table 6 for the
matrix and in Table 7 for the fibres.

The manual estimation of the matrix parameters are within
a few percent of the optimisation, although the standard
deviations of the matrix sizes are much larger than the

optimised ones; this is due to the non regular parallelepiped
shape which caused more dispersion in the manual

estimations.
The diameter of the tungsten core estimated manually is

biased (by +28%) with respect to the nominal value
recovered from the microscopic image (15 µm see

Figure 4b), whilst the optimised core diameter is not.
Possible reasons are that the tungsten cores are affected by
strong artefacts, and that they are comparably smaller than
the SiC fibres. Both fibre diameter estimations are close to
the nominal value (105 µm), the optimisation one is a bit

better.
Most of the respondents found measuring the properties of

the matrix moderate to easy (3.70 ± 1.06, with 1: very
hard, 5: very easy). One participant found it very easy.

They found measuring the radii slightly easier
(3.90 ± 0.88). Three participants found it very easy. One

participant commented that “manipulating the mouse
cursor to the centre of the tungsten core is a bit fiddly”. It

Table 6
Comparison of the size and orientation of the matrix estimated
(i) using optimisation and (ii) manually by 13 volunteers.

Optimisation Manual
Width (in µm) 1452.8 ± 12.1 1509.5 ± 57.8
Height (in µm) 1061.6 ± 9.9 1081.0 ± 40.3

Rotation (in degrees) 90.7 ± 0.4 91.6 ± 1.5

Table 7
Comparison of the core and fibre diameters estimated (i) using
optimisation and (ii) manually by 13 volunteers.

Optimisation Manual
Core diameter (in µm) 15.80 ± 0.12 19.44 ± 1.45
Fibre diameter (in µm) 104.96 ± 7.54 104.39 ± 2.03

Table 8
Run times in HH:MM:SS for the registration of the first slice
of the 3D dataset.

Optimising Run time
Matrix geometry (first run) 00:15:41

Matrix geometry (second run) 00:19:47
Beam spectrum 00:37:53

Phase contrast and radii 01:05:42
LSF N/A

Poisson noise 00:00:33
Total 03:57:22

took 22 ± 12 minutes to complete the tasks. These results
(variability, bias, perceived difficulty, and time to complete)
demonstrate that extracting the geometrical properties was

not trivial, even with simple geometric shapes.
4.6. Change of Acquisition Parameters and

Pseudo-3D
New experimental parameters were set to take into account

changes of beam spectrum, SOD and SSD. Algorithm 1
was used to generate fully-3D data. A full registration

(including the matrix geometry, the core and fibre
geometries, beam spectrum, phase contrast, and noise) was
performed for the first slice. To recover the tilt of fibres, it

is necessary to perform a partial registration (only the
matrix geometry and the extraction of the fibre centres) of
another slice, e.g. the last one. We performed one single

run only with RMSE on Sino with normalisation as it was
shown in the previous sections that it was producing good
results and it was stable. This run is completed using one

GPU node on the supercomputer. We optimised i) the
matrix geometry (with tolerance=10−4 and with restart), ii)
the beam spectrum, iii) the phase contrast and radii, and iv)
the Poisson noise for the first slice. Restart is used with a

smaller tolerance to make sure the guess for the first slice is
accurate as it will be used as initial guess for the next slice.

For other slices, only the matrix geometry is optimised
(with tolerance=10−2 and without restart). The ZNCC of
the first slice is 90.81%. It is 91.37 ± 0.33 for the other

slices. These results show that the strategy of optimising
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Table 9
Comparison of the average ZNCCs of all the slices of the 3D
scan for images simulated i) without artefact (i.e. using the
monochromatic Beer-Lambert attenuation law only), ii) with
beam hardening (i.e. using the polychromatic Beer-Lambert
attenuation law), and iii) with beam hardening and phase
contrast.

Simulation model ZNCC in %
Without artefacts 90.80 ± 0.30

With beam hardening 90.85 ± 0.30
With phase contrast 91.37 ± 0.33

the whole model on the first slice and using it for
subsequent slices is appropriate as the ZNCCs are

comparable. Three slices (#739, 740, & 741) had a ZNCC
relatively smaller (88.94, 88.75, & 89.63). A closer
inspection of the projection data showed that four

successive columns were incorrectly recorded in the image
files during the experiment. It lead to a ring artefact in

these slices. These were not modelled in the simulation,
which lead to this lower correlation.

Run times in HH:MM:SS for the first slice are given in
Table 8. The run time to register subsequent slices is

00:00:41 ± 00:00:03. It took 14:10:25 to register 1024
slices in total. To further improve this performance, it is

possible to use a more recent GPU on a desktop computer,
or use several GPU nodes at the same time. In this case
every GPU node would register a different subset of the

whole dataset.
Streaks and phase contrast artefacts in the simulated slices

are, again, consistent with the experimental data (see
Figure 22). Figure 23 shows a blend comparison between a
region of interest (ROI) of the first and last slices of the real
experiments, and of the simulated slices after registration.

It shows that the tilt of the fibres is also recovered.
Once the geometrical properties extracted, it is possible to

generate a perfect 3D CT scan without artefacts using
Equation 3. Figure 24 shows the first slice with and without

artefacts. Table 9 provides a comparison of the average
ZNCCs for images simulated i) without artefact (i.e. using
the monochromatic Beer-Lambert attenuation law only), ii)

with the beam hardening (i.e. using the polychromatic
Beer-Lambert attenuation law), and iii) with beam

hardening and phase contrast. It is clear that modelling the
monochromatic Beer-Lambert attenuation law fails to

generate realistic simulations in this experimental context.
Considering the polychromatic case marginally improves

the results: The ZNCC only improved by 0.05%. Extending
the polychromatic Beer-Lambert attenuation law with the
phase contrast to simulate X-ray projections lead to the

most accurate CT reconstructions. Estimating the impulse
response of the detector has the potential to improve this

score further. We provide a video in supplementary
material showing the same ROI as above for each slice to
compare the experimental data with the monochromatic

Beer-Lambert attenuation law and with extended model.If the paper
is accepted,
the
publisher
will embed
the video
(3d_reconstruction_comparisons.mp4)
here in the
HTML
version of
the paper

A difficulty with this new experimental dataset was that the

1st slice Last slice

Figure 22: ROI of the first slice reconstructed from simulated
data after registration (left) and of the last slice (right).

Experimental data Simulated data

Figure 23: Blend comparison between a ROI of the first and
last slices of the real experiment (left), and of the simulated
slices after registration (right).

doi = 10.17632/r8b5mcrj6j.1
With artefacts Without artefacts

Figure 24: ROI of the first slice reconstructed from simulated
data with (left) and without artefacts (right).

sample was larger than the detector. Consequently, the
centre of rotation was off by a large margin and an angular
span of 360° was used. When reformatting the projections

over 180° to avoid sample truncation in the projection
domain, misalignment of the centre of rotation with the

central column of the projections may occur. The
consequence of this misalignment was that the phase

contrast artefact around a fibre would not be rotationally
symmetrical, which affected the optimisation of the phase

contrast parameters.

5. Discussion
The extraction of CAD surfaces from X-ray computed

tomography is the key aspect in dimensional metrology.
We have seen have strong artefacts might occur in the

reconstructed CT data, and two major sources of artefacts
preclude an accurate surface extraction: (i) dark lines in the
direction of the alignments of strongly attenuated regions

and (ii) phase patterns at the materials interfaces. Both type
of CT artefacts are not restricted to ESRF data, but can
occur in volumes acquired with standard industrial CT
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instrumentation. With such degraded CT data, standard
image processing techniques (segmentation, labelling...)

cannot address the surface extraction issue. Manual
measurements, whilst they may seem to be relatively easy

to perform, can be prone to bias and unreliable. It is
therefore essential to have a realistic X-ray simulation tool
embedded in an optimisation scheme to extract the CAD
surfaces. The method proposed here is suitable when it is
possible to generate surface models. One limitation is that
all the geometrical properties, e.g. tilting and warping the

shapes, must be implemented. Taking into account features
such as pores or fibre tows in real materials, even if made of

basic shapes, is not straightforward.
Many feature parameters need to be determined by

optimisation, but the ones that are not sample specific can
be fixed: for example, the X-ray spectrum and the CT

geometry can be calibrated off-line. We clearly see from
this investigation study that manual tuning and ad-hoc

processes might be required, especially for the initialisation
of the feature extraction routine.

The optimisation has been carried out for a single row as
the sample was translation invariant. The generalisation to
3D reconstructed volumes with more complex quadrics is
straightforward and would only require more computation

time. This is particularly attractive if only a partial
registration is needed for subsequential slices. The choice

of the objective function for the optimisation is very
important, and from our tests it seems that RMSE on the
projection data (after taking the log) is the most accurate.
A few outliers were observed using this objective function
due to strong local minima. Using black-box optimisation,
one might miss the opportunity to tweak the algorithm to

maximise the outcome. The result of the evolutionary
algorithm will strongly depends on initial meta-parameters

such as boundary conditions, probabilities of genetic
operators and stopping criteria. Despite of this, it is the

most commonly used approach when solving optimisation
problems in engineering. To avoid this problem, the
algorithm’s meta-parameters could be tweaked. For

example, we could perform quick manual measurements.
We saw such measurements tend to be plausible and

inaccurate at the same time. Another advantage of using
manual measurements as an initial guess would be to speed
up the convergence of the algorithm. It could also be used
to limit the size of the search space. Alternatively, if using
manual measurements is impractical, techniques used in

evolutionary computing, such as restart, would be
successful in avoiding the outliers we observed.

This study was implemented as a proof of concept using
Python. More can be done to improve its computational

efficiency. For example, it is possible to compute the
objective values using GPU computing. It would address
some of the bottlenecks, such as the use of the ln function
in Equation 4 (which is rather slow on CPU compared to

GPU), avoid data transfer from the GPU to the main
memory (RAM) (which, again, is rather slow), and the lack
of parallelism when computing the RMSE in Equation 13.

This preliminary study can be extended to include this
improved forward model within an iterative CT

reconstruction algorithm [11]. It has the potential to
attenuate the artefacts seen in the reconstructed CT slices,
making the data non only more accurate, but also easier to

exploit.
However, another limitation is that it is of importance to

replicate the same experimental conditions in the
simulation. For example, in our pseudo-3D example, the

sample is larger than the actual detector. To accommodate
for this, the centre of rotation of the sample is off compared
to the central column of the detector. The centre of rotation

of the projection data may be slightly misaligned when
converting from 360° to 180°. This is not the case in the
simulated experiment at it directly used projections over

180°. To address this, it would be necessary to model and
optimise the centre of rotation of the sample in the

simulation and convert simulated projections from 360° to
180°, in the same way real projections were transformed

before the tomography reconstruction using standard
algorithms.

6. Conclusion
Our aim was to show that a realistic projection model is

required to automatically produce an accurate CAD model
of a material from X-ray tomography when CT data is so

corrupted by artefacts that geometric analysis is
challenging. Our model takes into account geometrical

properties as well as beam hardening, impulse response of
the detector, phase contrast, and photon noise. Every

unknown of our model was automatically tuned using a
stochastic optimisation algorithm: CMA-ES. It minimises
the discrepancies between the projection data acquired at

ESRF and the projections simulated using our model. The
code was implemented on GPU using gVirtualXRay, an

open source tool for simulating X-ray images. 14 different
objectives functions were evaluated on a supercomputer.
Our results showed that the CT image reconstructed from
the simulated data is 93.68% ± 0.87% correlated with the

experimental CT slice. All the features seen in the
experimental CT image, including artefacts, were
accurately replicated. Our framework enabled an

automatic, accurate and stable geometric analysis of the
scanned material.

Being able to accurately model the imaging chain opens up
new perspective, e.g. the inclusion of such models in

iterative reconstruction algorithms. In future work, we aim
to take advantage of the knowledge discovered with our

registration framework. One topic of interest is to correct
imaging artefacts and improve the value of linear

attenuation coefficients.
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