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Abstract: Humans are currently experiencing the fourth industrial revolution called Industry 4.0.
This revolution came about with the arrival of new technologies that promise to change the way
humans work and interact with each other and with machines. It aims to improve the cooperation
between humans and machines for mutual enrichment. This would be done by leveraging human
knowledge and experience, and by reactively balancing some complex or complicated tasks with
intelligent systems. To achieve this objective, methodological approaches based on experimental
studies should be followed to ensure a proper evaluation of human-machine system design choices.
This paper proposes an experimental study based on a platform that uses an intelligent manufacturing
system made up of mobile robots, autonomous shuttles using the principle of intelligent products,
and manufacturing robots in the context of Manufacturing 4.0. Two experiments were conducted
to evaluate the impact of teamwork human-machine cooperation, performance, and workload of
the human operator. The results showed a lower level of participants’ assessment of time demand
and physical demand in teamwork conditions. It was also found that the team working improves
the subjective human operator Know-how-to-cooperate when controlling the autonomous shuttles.
Moreover, the results showed that in addition to the work organization, other personal parameters,
such as the frequency of playing video games could affect the performance and state of the human
operator. They raised the importance of further analysis to determine cooperative patterns in a group
of humans that can be adapted to improve human-machine cooperation.

Keywords: industry 4.0; intelligent manufacturing system; human-machine cooperation

1. Introduction

Human is currently experiencing the fourth industrial revolution called Industry 4.0.
Industry 4.0 aims at creating new factories based on several advanced technologies, such
as cyber-physical systems, cloud computing, digital twins, and the Internet of things [1].
Manufacturing 4.0 translates the new abilities of Industry 4.0 manufacturing systems to
become more intelligent. A manufacturing 4.0 system can monitor processes and support
decisions using real-time communication and computing technologies [2]. Manufactur-
ing 4.0 promises to change the way humans work and interact with each other and with
machines and aims to improve the cooperation between human and machine for mutual
enrichment [3]. This would be done by leveraging human knowledge and experience, and
by reactively balancing some complex or complicated physical or mental tasks between the
human, being operator or supervisor, and the manufacturing systems [4]. An intelligent
manufacturing system (IMS) is a Manufacturing 4.0 system composed of autonomous
artificial entities (e.g., intelligent products, smart production resources, autonomous auto-
mated guided vehicles, and robots, . . . ) able to cooperate with humans and exploit digital
technologies, such as digital twin technologies, to mirror the reality and to test different
strategies relevant to manufacturing activities to reach production objectives (production
rate, quality level, cost, energy consumption . . . ) [4]. These objectives are known to be
conflictual [5].
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This research aims to examine whether a new cooperative human-machine organiza-
tion improves the control and supervision of IMS task performance. Precisely, this study
inspects whether in this organization the human supervisors can effectively perform two
complementary tasks at two cooperative layers: the tactical layer dealing with high decision
level about machines, products, and resources organization, and the operational layer deal-
ing with decisions close to the control level of the process, have to cooperate to meet each
other needs and to adapt their respective tasks [6]. The tasks are as follows: (1) to plan and
manage production; (2) to supervise and control mobile robots. This article is a follow-up
to a previous study presented in [7]. It presents a complementary experiment and provides
results about the human performance and workload with and without assistance systems
when the human was controlling a complex IMS alone. The main results highlighted the
need to improve cooperation between human and artificial entities involved in the control
of the process, but also cooperation between artificial entities. These results are shown in
the study and experiments presented in this paper.

The outlines of this paper are the following. In Section 2, a review of the literature in
the field of human-machine cooperation in the context of Industry 4.0. In Section 3, the
IMS designed within the framework of the HUMANISM project is presented. In Section 4,
the experiments and the results are presented. In Section 5, a discussion is led, and finally,
in Section 6, conclusions and perspectives are provided.

2. Review of the Literature and Presentation of the Research Objective

Both manual and highly skilled labor forces remain crucial in smart factories, es-
pecially in high precision and complex processes or customized production [8]. At the
same time, as induced by Industry 4.0, the technological possibilities to support manual
work are increasing and point out more intelligent and complex industrial systems [9].
Therefore, it would be difficult for the human worker of the future (supervisor or operator)
to understand the behaviors of these systems and interact effectively with them [10]. In
this context, recently, more and more studies in Industry 4.0 emphasize the importance
of closer cooperation between humans and machines and are interested in the design of
this new type of interaction [11,12]. Jones et al. propose a new way to model human
interactions with cyber-physical Systems and Industry 4.0 technologies [13]. They support
the idea of modeling agents (humans and machines) as joint cognitive systems that remove
the separation between them. According to this view, Romero et al. define a symbiotic
industrial framework, in which human workers and intelligent systems dynamically adapt
to each other and cooperate to reach the common goals [14]. To support the evolution of
human-machine symbiosis, Hadorn et al. propose a holistic system modeling in which the
system is considered as a whole, where all-important entities, such as human workers and
technical artifacts are fully integrated [15].

Today, many questions remain to be answered to improve the integration of operator 4.0
in the intelligent factory of the future. Indeed, ethical risks have been identified, especially
regarding the wish of designers dealing with human-machine symbiosis [16]. One of the
main risks is the dependency of humans upon machines’ ability and capacity, and therefore
humans will be unable to complete tasks without machine support when necessary. In
the manufacturing 4.0 domain, a recent study had pointed out the complexity of carrying
out the task of controlling and supervising an IMS by a single human operator [7]. It was
reported that the analysis of the spatial representation of the IMS was difficult for humans
because they had to permanently split their attention between several screens. The study
also highlighted the necessity to better share human activities. Operator 4.0 has real-time
access to large amounts of data and information that would impose a large cognitive
workload. In this sense, this paper focuses on investigating a new cooperative organization
for operators 4.0, in which the production and logistics tasks are performed by two human
operators instead of one. This organization shares the tasks among operators to optimize
the overall process and improve human-machine cooperation by reducing the cognitive
workload of one human operator. This study is relevant because it merges human-human
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cooperation with human-machine one, instead of concentrating on the development and
implementation of technologies like most Industry 4.0 research.

The question of evaluating teams of operators has been raised for years. For example,
Pacaux-Lemoine et al. conducted an analysis of the cooperation that arises from human
operators and introduced the concept of patterns, which describes how humans cooperate
with each other and with machines [17]. Previous studies have confirmed the effectiveness
of cooperative work on a complex task [18]. Other studies have identified some problems
that can occur in group work, such as cognitive conflicts [19]. Clear organization and shar-
ing of tasks between people in the same group make teamwork more meaningful. Just like
in an orchestra [20], everyone needs to know their place, their role, and the tasks they have
to perform. If one musician plays out of tune or at a different tempo, the whole orchestra
suffers. To ensure good integration and organization of human operators, it is necessary to
study upstream that integration and organization. Cognitive task modeling was previously
used to design the human-intelligent manufacturing system. The effectiveness of this
method in deepening the analysis of task allocation strategies has been demonstrated in
the literature [7].

Our work aims to study to what extent human-human cooperation can be studied to
define efficient human-machine cooperation, in the general context of Industry 4.0 systems.
In this paper, a new experiment, for which a set of tasks is shared and performed in-group,
have been led and are described and analyzed. A study of the results helped us to draw
some conclusions that may be useful for researchers working on the efficient design of
the human-machine cooperation system for Industry 4.0. More precisely, the proposed
experimental set-up consists of production and logistics tasks to be performed by two
human operators in the context of manufacturing 4.0. Both operators had to communicate
and cooperate for better work quality and performance. The experimental set-up has been
constructed on the Humanism IMS presented in the next section.

3. The Humanism Intelligent Manufacturing System

The intelligent manufacturing system used in this work is part of the French ANR
project “HUMANISM” and was developed to facilitate the integration and evaluation of
the human industry 4.0 context. It exploited the SUCRé project platform [21] and an exist-
ing real educational cell through one emulator and one simulator (SMART cell at UPHF,
Valenciennes) (Figure 1a). HUMANISM platform uses a digital twin, integrating a digital
shadow of the SMART flexible cell using Arezzo [22]. The digital twin processes informa-
tion about the smart cell and control. The HUMANISM IMS consists of manufacturing
robots linked by conveyors on which shuttles transport products from one manufacturing
robot to another in real-time (cf. Figure 1b).
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In recent years, intelligent manufacturing and logistics have motivated the develop-
ment and use of mobile robots [23]. In this research, real ground mobile robots are used to
virtually supply the manufacturing robots and unload the finished products (cf. Figure 2a).
To link the virtual world of the shuttles and manufacturing robots to the real world of
the mobile robots, a projection of the production cell is made on a wooden structure and
transmitted to the human operator via an interface (cf. Figure 2b). Thus, mobile robots
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could move around the cell area and give the human operator a realistic view of the IMS
(cf. Figure 2c). The mobile robots were programmed in RobotC and the production cell in
Netlogo and interfaced with JAVA. The platform was designed in such a way as to avoid
developing new versions for each new research project. The architecture adopted for this
platform is flexible, allowing modules to be added and/or modified, but also to operate
in the same way under real and simulated conditions. For details about the technical
developments of the HUMANISM platform, the reader is referred to [24].
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The HUMANISM project analyses human-machine cooperation according to the
three decisional levels: strategic, tactical, and operational [25]. In our case, a production
plan detailing the required number and types of products to manufacture is provided by an
industrial manager from the strategic level. At the tactical level, the human supervisor has
to analyze this plan, update if needed and send orders to the operational level. However,
he/she also has to manage unexpected events. At this level, key performance indicators
and information provided by the operational level are used by the human supervisor to
analyze the system performance and adapt the decision in real-time. This work focuses
on the interaction between the tactical and operational levels. The “intelligence” of the
flexible cell resides in the ability of the “intelligent products” to self-organize according
to the events that occur and the manufacturing operations that the robots have to carry
out. The behavior of these intelligent products is based on the principle of potential
fields [10], which is a digital signal that enables production robots to dynamically attract
“intelligent products” that can sense the fields emitted by resources. The value of the
field is set according to the current queue of products to proceed and state for each robot.
The more this value, the more attractive the robots and the fastest the operation shall be
realized. This leads to self-organization among intelligent products and robots composing
the manufacturing 4.0 intelligent manufacturing system, whose global behavior provides
a powerful mechanism to react in real-time to various unexpected events. However, it is
remarked that this approach does not provide sufficient guarantee to achieve production
target, especially in case of disturbances. To address this, the HUMANISM project suggests
asking for human help, as he/she can analyze the intelligent products and robots activities.
Moreover, the human supervisor can react and adapt to unpredictable events, for example,
due to his/her expertise and experience. The human supervisor ensures that manufacturing
goals are met while taking into account constraints, which are hardly implementable in the
self-organized system, such as global energy consumption limits. Nevertheless, given the
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complexity of the self-organized system, the human supervisor must remain focused and
have a good situation awareness to make effective decisions at the right time.

4. Study and Tested Assumptions

In this study, three product types (denoted “L”, “T”, and “I”) were to be manufactured
and required different sets of operations (1 to 7). The same operation could be requested
multiple times for a single product type. The “L” and “I” products are similar but generate
different workloads for the manufacturing robots. “T” product requires a specific operation
that takes a long time to proceed and can be performed by only one manufacturing
robot. The primary task (production control) of the human operator was to complete the
production plan that included the required operations and quantity for each type of product.
This task was to be performed while monitoring the consumption of the manufacturing
robots and maintaining general power consumption under a given limit. The second
task (logistics control) was to supply the manufacturing robots with raw materials and
two mobile robots. The mobile robots can be either autonomous or remotely controlled by
the human operator. Built on a previous study, two experiments were designed to gather
empirical data on the impact of a new cooperative human-machine organization in the
control and supervision of an IMS and to enable relative comparison between the two.
In the first experiment (Organization 1), only one participant handled both tasks. In the
second experiment (Organization 2), both tasks were performed by three participants, one
participant per task. In this second experiment, we added a third task (Analysis task).
During this task, the human operator had to analyze and evaluate the performance of the
production and logistics tasks by writing his/her remarks on a given paper.

Three research questions were formulated about the impact of the working organi-
zation (organization 1 and organization 2) on various performance indicators. The first
question concerns the impact of the work organization on the effectiveness and efficiency
in controlling and supervising the IMS. The second question aims to analyze the impact of
work organization on the workload of the human operator. The third question concerns
the impact of the work organization on human-machine cooperation and the usability of
an assistance system that was provided. Thus, the following assumptions (predictions)
were constructed and tested:

Hypothese 1 (H1). The “Organization 2” outperforms the “Organization 1” for the control and
supervision of the human-intelligent manufacturing system;

Hypothese 2 (H2). The “Organization 2” describes an effective way for the control and supervision
of the human-intelligent manufacturing system;

Hypothese 3 (H3). The “Organization 2” describes an efficient way for the control and supervision
of the human-intelligent manufacturing system;

Hypothese 4 (H4). The “Organization 2” is an effective organization to reduce the human
operator’s workload;

Hypothese 5 (H5). The “Organization 2” improves the human-machine cooperation and the
assistance system usability.

5. Evaluation Method

The experimental method used to test the previous hypotheses is presented in the
following sub-sections.

5.1. Participants

Forty-seven ungraduated students from the Polytechnic University of Hauts-de-
France, with similar levels of academic ability, took part in the experiments. All were
required to perform the tests as part of their coursework. Then, they were trained to
conduct the experiment tasks. Little information has been requested from students except
for their habits with mobile robot use and video games. We did not record and take into
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account physical-motor and psychological abilities during the experiments. We suppose
there was no interaction between participants except verbal communications and through
the experimental platform. Indeed, participants were far from each other, far from robots,
and they were all students with no hierarchical dependence. We did not control the condi-
tions in the experimental room either (temperature, noise, humidity, light, smoke . . . ), but
the experimental room was comfortable, with no disturbances, and was the same for all
the participants.

Twenty-three of them carried out the first experiment. The data of three participants
were not usable and were excluded from the analysis because of burned data. The selected
participants for the first experiment were composed of 2 women and 18 men aged between
20 and 23 years old (mean 20.9; SD: 0.85). The remaining 24 participants carried out the
second experiment, 4 women and 20 men aged between 20 and 27 years old (mean: 21.16;
SD: 8.90).

5.2. Apparatus

As introduced, the experiments were carried out using the HUMANISM IMS defined
in Section 4. Human supervisor’s workplaces, two mobile robots, and the HUMANISM
facility with seven manufacturing robots and six self-organized shuttles were used for
the experiments. One manufacturing robot is dedicated to loading the products to be
manufactured on the shuttles and unloading the finished products, while the others are
responsible for manufacturing the products. In the first experiment, only one workplace
was used to perform both production and logistics tasks, because one human operator had
to perform all these tasks. Figure 3 shows that workplace.
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Figure 3. Workplace to control the intelligent manufacturing system (Organization 1). (1) Production
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In the second experiment (based on organization 2), production and logistics work-
places were set up. The production workplace (cf. Figure 4) includes planning and control
interfaces that allow the human operator to prepare and manage the production and a
bird’s eye view that offers a general view of the real cell.
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The logistics workplace (cf. Figure 5) comprises a display of the bird’s eye view of the
production cell, the control, and tactical interfaces through which the human operator can
manage the mobile robots.
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(3) Bird’s eye view of the production cell.

The mobile robots can either move autonomously or be teleoperated. A joystick was
used to manipulate the direction in which the selected mobile robot moved when in the
remote control level of automation. Under the autonomous level of automation, the mobile
robot navigates autonomously toward an objective (geographical point) sent by the human
operator by clicking on the map of the robot’s environment on the tactical interface, where
the robot’s positions are displayed in real-time.

The experimentation supervision workplace (cf. Figure 6) is added in the second exper-
iment. It has been installed so that the experimenter can manage the experimentation
through an interface that displays an overall view of the experimental environment. The
experimentation supervision and production workplaces are connected, so that random fail-
ure can be triggered by the experimenter, who was also in charge of validating the loading
and unloading of products. In addition, he/she could start, stop or pause the platform.
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As introduced in the previous section, an assistance system was provided to sup-
port humans in the control of the IMS. This assistance system can be used to simulate
new potential field amplitudes and improve the self-organization of products. It also
helps to manage overconsumption by reducing the amplitude of potential fields of high
consumption production robots, as well as by postponing the manufacture of products
requiring these production robots. This assistance system can be used when desired by the
human operator.

5.3. Experimental Design and Measures

Both experiments were run as a between-subjects study design that splits participants
into groups, which tests one organization each (organization 1 or organization 2). The
measures collected during the experiment were

• Objective measures (production performance):

• Effectiveness: effectiveness concerns the objective “to what extent the task was
accomplished?” This is evaluated in our experiments by counting the number of
products produced at the end of the experiment (accomplishment of the produc-
tion plan) and the score performance (the sum of the achieved products and a
bonus minus the overconsumption, the consumption, and a penalty). The bonus
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is assisted based on energy savings and compliance with consumption limits. The
penalty is fixed according to the collisions of mobile robots in the environment.

• Efficiency: efficiency concerns the objective “to what extent the means were used
and how the tasks were accomplished?” This is evaluated in our experiment by
counting the energy consumption and over-consumption (the exceeding of the
energy consumption limit by the manufacturing robots) during the experiment.

For information on how these measures were calculated precisely, the reader is referred
to [7]. However, the main information are presented below.

The recorded data are used to compute a final score representing how well the par-
ticipants performed in the control of the IMS. Factors used to compute are separated
into two families:

• the positive points represent every factor that contributes to the completion of the objec-
tives, also known as what is expected from the IMS and the human supervisor (bonus):

◦ average consumption per product
◦ low cumulated overconsumption
◦ no request to the experiment team on topics not related to technical issues
◦ faced important technical perturbations

• the negative points represent both the infractions to the constraints and elements
inducing a difference in production cost (penalty).

◦ late delivery
◦ major incident with the ground robots (damage or physical assistance to recover

the robot)

Negative points relating to the total consummation are attributed linearly, while
overconsumption is sanctioned using steps with incremental factors.

• Subjective measures:

• Workload: that is “what was the workload perceived by the participants during
the experiment?” This is evaluated using the answers of the participants to the
NASA-TLX questionnaire [26].

• Human-machine cooperation: that is “how was the cooperation between partici-
pants and the system?” This is evaluated using the answers of the participants to
a questionnaire based on the human-machine cooperation model [27].

5.4. Procedure

Upon arrival, the participants received a 30 min self-paced training PowerPoint tu-
torial showing the elements of the experimental platform, the score, and its main factors:
the accomplishment of the production plan, consumption, overconsumption, bonus, and
penalty. The participants have been informed that a ranking will be based on their per-
formance in the experiment. After the tutorial, the participants were introduced to the
workplace of the platform and its major elements. Then, the participants were trained on
the tasks for 15 min assisted by the experimenter to ensure correct training. To counteract
the learning effect, the scenario used for the training was different from the experimental
scenario and no disturbances were caused. Once the participant had correctly completed
the training session, the 10-min testing session started. The experimenter was out of the
direct line of sight of the participant so as not to cause any disturbance. However, the
experimenter had a direct view of the participant as well as video feeds to monitor the good
running of the platform. The participant was allowed to ask questions in case of problems.
The experimenter could only give answers and was not to influence the participant. In case
of a technical problem, the experimenter could try to solve the problem remotely using
specific commands, or could remotely access the digital twin to simulate part of the system
operation to ensure the continuity of the experiment.

During the experiment runs, participants’ tasks were to use the platform to:
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• supervise the whole production system to check the state of the robots, consumption,
and production,

• use the assistance system to simulate new potential field amplitudes and improve the
self-organization of products,

• manage overconsumption by reducing the amplitude of potential fields of high con-
sumption production robots, as well as by postponing the manufacture of products
requiring these production robots,

• manage production robot breakdowns by rescheduling production with an adapted
selection of products requiring these robots.

Once the 10 min have elapsed, the experiment was stopped and considered complete.
At the end of the experimental session, the participants filled out the questionnaires.

6. Results

The results obtained from the objective and subjective measures collected during
the experiments are presented in the following subsections. The statistical effect of the
independent variable (here, the organization) on the dependent one (here, the performance
indicators, perceived workload, and perceived human-machine cooperation) are presented
respectively in the next tables.

6.1. Performance Indicators

Based on the results presented in Table 1, it is possible to list the trends noted when
comparing the averages of each performance indicator for each experimental condition
(organization 1 and organization 2). The trends are the following:

• The number of products produced during the experiment in organization 2 is higher
than in organization 1.

• The score performance is slightly higher in organization 2 than in organization 1.
• Organization 2 leads to lower energy consumption than organization 1.
• Over-consumption is higher in organization 1 than in organization 2.

Table 1. Average of the participants’ performance per group and the result of the significance test.
The energy consumption and overconsumption are in kWh.

Dependent Variables
(Performance Indicators)

Average (Std Dev.)
p-Value (Confidence

Level of 95%)Organization 1
Group, n = 20

Organization 2
Group, n = 24

Number of products produced 6.80 (1.58) 7.04 (2.01) 0.273
Score performance (1 × 104) 1.72 (0.652) 1.76 (0.821) 0.442

Energy consumption (1 × 104) 2.20 (0.325) 2.13 (0.355) 0.259
Overconsumption 623.60 (499.57) 418.08 (442.48) 0.106

6.2. Workload Assessment

The weighted workload score obtained by the TLX questionnaire consists of two parts [26].
The first part is the raw scores for each scale (mental demand, physical demand, temporal
demand, performance, effort, and frustration), as recorded by the participants at the end
of the experiment. The second part is the weighted workload score, which combines the
raw values into a single value. The steps followed in measuring the workload using the
NASA-TLX method are:

• Raw ratings of each scale
• Weightings
• Weighted rating of each scale: (weight × raw)

• Weighted workload score: ∑ Weighted scales
15

Results reveal that organization 1 has the highest subjective temporal demand and
frustration, while organization 2 has the highest subjective physical demand; performance
and effort (cf. Table 2).
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Table 2. Averages of the perceived workload measures and the result of the significance test.

Dependent Variables
(NASA-TLX Workload)

M (S. D.)
p-Value (Confidence

Level of 95%)Organization 1
Group, n = 20

Organization 2
Group, n = 24

Workload 65.90 (9.47) 64.13 (18.75) 0.344
Weighted Mental Demand 308.00 (110.15) 310.42 (108.33) 0.942

Weighted Physical Demand 8.50 (19.27) 43.75 (69.71) 0.034
Weighted Temporal Demand 246.50 (111.23) 190.00 (90.26) 0.070

Weighted Performance 168.50 (70.36) 180.42 (114.46) 0.687
Weighted Effort 110.50 (72.73) 124.00 (110.38) 0.642

Weighted Frustration 146.50 (97.67) 113.33 (151.36) 0.404

The mental demand average rating is approximatively equal under both organizations.
Statistical tests of each scale with factor “organization” were conducted to test whether
the differences in weighted scale ratings between organizations are statistically significant.
A confidence level of 95% and a tendency to a significance level of 98% were considered.
The results show a significant difference in only physical demand (p-value = 0.004) and a
tendency to be significantly different in temporal demand (p-value = 0.07). The average
NASA-TLX workload score in organization 2 tends to be lower than in organization 1 and
thus in the hypothesized direction, but the size of the difference does not reach statistical
significance. Furthermore, the pie chart plot of weightings for each scale of both conditions
(organization 1 and organization 2) reveals the scale mental demand to be the most important
subjective source of workload (27%), and the scale physical demand the less important one
(4%) (cf. Figure 7).
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6.3. Human-Machine Cooperation

The human-machine cooperation is evaluated according to the answers of the partici-
pants to the questionnaire based on the human-machine cooperation model. A question-
naire has been developed using a seven-point Linkert scale where a value of 1 corresponded
to “Not at all” and value of 7 corresponds to “Totally”. The questions were related to the
participant and shuttle Know-How (KH) and Know-How-to-Cooperate (KHC) levels [27].
The results reveal a significant effect of the organization on the human operator KHC re-
garding the control of the shuttles (p-value = 0.049). The question asked was: to what extent
do you feel in control of the shuttles? Organization 2 improves significantly the participants’
sense of control over the shuttles that qualifies a function of participants’ KHC. This means
organization 2 improves the participants’ KHC to some extent. Based on Table 3, other
trends in the direction of the assumptions can also be observed.
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Table 3. Averages of the perceived Human-Machine cooperation measures and the significant results.

Dependent Variables
(Human-Machine

Cooperation Questionnaire)

Average (Std Dev.)
p-Value (Confidence

Level of 95%)Organization 1
Group, n = 20

Organization 2
Group, n = 24

Perception 1 5.05 (1.146) 4.92 (1.283) 0.602
Information Analysis 1 4.95 (1.191) 4.71 (1.628) 0.629

Decision Making 1 4.65 (1.348) 4.29 (1.459) 0.797
Action Implementation 1 6.00 (1.076) 5.42 (1.501) 0.909

Information gathering 2 5.55 (1.356) 5.42 (1.613) 0.544
Conflict detection 2 4.90 (1.518) 4.79 (1.414) 0.567

Conflict management 2 4.15 (1.496) 4.58 (1.442) 0.167
Control of the shuttles 2 4.05 (1.432) 4.83 (1.606) 0.049

Conflict detection 3 5.20 (1.361) 4.63 (1.345) 0.956
Conflict management 3 4.80 (1.436) 4.75 (1.648) 0.452

Authority management 3 5.45 (1.276) 5.29 (1.160) 0.702
1 Shuttle KH functions. 2 Human operator KHC functions. 3 Shuttle KHC functions.

7. Further Results

Given the non-significance of some of the previous results, which could be caused by
the small sample of the population, it was decided to extend the analysis by creating classes
of participants to identify possible clusters concerning the participants’ performance and
their responses to the questionnaires. This classification is carried out by the K-means
method using SPSS software [28]. This is a statistical method of data processing, called
“clustering” that allows the elements under study (in our case the participants) to be
organized into similar groups. According to defined criteria, the elements of a group
should be as similar as possible and different from those of other groups. The creation
of two clusters was chosen because of the limited sample size of the population. The
parameters entered in the SPSS software are the number of clusters and how to label the
observations (hereby the participants’ ID).

7.1. Clusters from Objective Measures

Two clusters were created using the score performance and the use of the simulation
(assistance system) variables. Table 4 presents the ANOVA result of the clustering and the
centers of the final clusters. The significant difference between the classes in their answers
to the questionnaires was tested statistically and the significant results are presented in
Table 5.

Table 4. ANOVA result of the clustering according to score and the number of users of the assistance
system variables, and the final cluster centers.

ANOVA

Cluster Error Cluster Centers

Mean Square dof Mean Square dof F Sig. Cluster 1 Cluster 2

Score 1,450,453,042.50 1 21,620,446.899 42 67.087 <0.001 11,114 22,645
Use of assi. 47.728 1 19.623 42 2.432 0.126 1 3

Table 5. Averages of the participants’ performance per group and the result of the significance test.

Dependent Variables
Average (Std. Dev.) p-Value (Confidence

Level of 95%)Cluster 1, n = 20 Cluster 2, n = 24

Workload 47.9 (14.3) 71.3 (9.54) <0.001
Weighted Mental Demand 247.5 (122.0) 332.5 (93.98) 0.018

Weighted Performance 113.3 (67.9) 198.1 (95.80) 0.008
Weighted Frustration 50.8 (99.2) 157.5 (128.59) 0.005

Sufficient training 5.50 (1.17) 4.19 (1.203) 0.002
Environment complexity 3.67 (1.37) 4.69 (1.447) 0.037
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The results showed that participants who scored high and used the “simulator” as-
sistance system more frequently (cluster 2), were those who reported a higher workload,
mental demand, and frustration. It can also be noted that the participants in this same
cluster under-rated their performance in comparison with the participants in cluster 1. In
addition, these participants felt that they had been sufficiently trained and the experimental
environment was not very complex in comparison to those in cluster 1 (cf. Table 5 and
Figure 8).
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The responses of the participants to personal questions showed that cluster 2 (high
score and use of assistance system) contains more frequent gamers (46% of the participants
often/always play video games) than cluster 1 (45% of the participants never/occasionally
play video games).

The second clusters were created according to the consumption and over-consumption
(cf. Table 6 and Figure 9). Cluster 2 with the lowest consumption contains more participants
in organization 2 (69%) than in organization 1 (31%), as opposed to cluster 2, which contains
more participants in organization 1 (54%) than in organization 2 (46%). The significant
difference between the participants of each cluster in their answers to the questionnaires
was tested statistically but no significant results were obtained.

Table 6. ANOVA result of the clustering according to consumption (cons.), over-consumption
(over-cons.) variables, and the final cluster centers.

ANOVA

Cluster Error Cluster Centers

Mean Square dof Mean Square dof F Sig. Cluster 1 Cluster 2

Cons. 354,135,224.575 1 3,346,472.711 42 105.823 <0.001 23.777 17.879
Over-cons. 3,793,647.098 1 140,768.188 42 26.950 <0.001 733 123

7.2. Clusters from Subjective Measures

Depending on the answers of the participants to the Human-Machine cooperation
questionnaire, 3 × 2 clusters were created (cf. Table 7). Cluster 1 is the group of participants
who better evaluate their own KHC and that of the shuttles, and cluster 2 is the one who
better evaluates the KH of the shuttles. Figures 10–12 give a graphical representation of
the clusters obtained from the shuttles KH, the HO KHC and the shuttles KHC functions
variables, respectively.
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Table 7. ANOVA result of the clustering according to Human-Machine cooperation questionnaire and the final cluster centers.

ANOVA

Cluster Error Cluster Centers

Mean Square dof Mean Square dof F Sig. Cluster 1 Cluster 2

Perception 1 28.219 1 0.828 42 34.098 <0.001 6 4
Analysis 1 50.037 1 0.917 42 54.574 <0.001 6 4
Decision 1 53.201 1 0.755 42 70.468 <0.001 5 3
Action 1 10.370 1 1.599 42 6.484 0.015 6 5

Info. Gathering 2 40.268 1 1.303 42 30.913 <0.001 4 6
Conflict detection 2 52.517 1 0.890 42 59.024 <0.001 3 6
Conflict managt 2 52.953 1 0.940 42 56.334 <0.001 3 5

Control of shuttles 2 32.317 1 1.730 42 18.680 <0.001 3 5

Conflict detection 3 41.613 1 0.924 42 45.023 <0.001 3 6
Conflict managt 3 53.062 1 1.159 42 45.795 <0.001 3 5

Authority managt 3 15.016 1 1.123 42 13.371 <0.001 4 6
1 Shuttle KH functions. 2 Human operator KHC functions. 3 Shuttles KHC functions.
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Figure 12. Graphical representation of the clusters formulated from the subjective evaluation of the
shuttles KHC regarding conflict detection, conflict management, and authority management.

According to the KH of the shuttles, the result shows a significant difference between
cluster 1 and cluster 2 in the score achieved. Participants who had better evaluated the
KH of the shuttles are those who obtained the highest score. The participants who better
evaluate their own KHC and that of the shuttles are those who were those who felt that
the workload was less, that they thought they were sufficiently trained, and that the
experimental environment was not too complex. In addition, regarding the KHC shuttle,
the participants who gave a better evaluation were those who used the assistance system
(simulation support) the most (Table 8).

Table 8. Averages of the participants’ performance per group and the result of the significance test.

Dependent Variables
Average (Std. Dev.) p-Value (Confidence

Level of 95%)Cluster 1 Cluster 2

Score 19,640 (77.11) 14,721 (61.86) 0.026

Workload 71.72 (7.18) 62.09 (16.68) 0.011
Sufficient training 3.85 (1.21) 4.84 (1.27) 0.028

Environment complexity 5.08 (1.44) 4.13 (1.43) 0.044

Use of assistance 0.667 (1.23) 3.21 (5.301) 0.019

The descriptive statistics reveal that most participants (58%) in cluster 1 of shuttles KH
functions had access to the assistance system and 60% of participants in cluster 2 did not.
Most participants in cluster 1 are frequent gamers (46%) and most of them in cluster 2 are
not (45%). Cluster 1 related to the human operator KHC functions has 54% of participants
that are from organization 1 and 58% in cluster 2 are from organization 2. Most of the
participants in cluster 1 are not frequent gamers (54%), while 52% in cluster 2 are.

In addition, most participants in Cluster 1, which relies on KHC shuttles, did not
have access to the support system (73%), which is in contrast to Cluster 2, where 62% of
participants had access to the support system.

Additional clusters were created based on responses to the NASA-TLX questionnaire.
The significant difference between clusters was in the assessment of time demand, effort,
frustration, and overall workload. The results show that the participants in cluster 1 felt the
most time demand, frustration, and workload, and participants in cluster 2 felt they put in
the most effort (cf. Table 9). Figure 13 is a graphical representation of the clusters obtained
from the weighted subjective rating of the NASA-TLX scales and the overall workload.
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Table 9. ANOVA result of the clustering according to weighted NASA-TLX scales and overall workload, and the final
cluster centers.

ANOVA

Cluster Error Cluster Centers

Mean Square dof Mean Square dof F Sig. Cluster 1 Cluster 2

Mental demand 5595.01 1 11,782.96 42 0.475 0.495 300.37 323.53
Physical demand 12.379 1 3151.43 42 0.004 0.950 28.15 27.06

Temporal demand 50165.82 1 9693.184 42 5.175 0.028 188.89 258.23
Performance 11409.80 1 9202.148 42 1.240 0.272 187.78 154.70

Effort 35399.12 1 8269.430 42 4.281 0.045 140.37 82.12
Frustration 484020.4 1 5623.052 42 86.078 <0.001 45.18 260.58
Workload 2153.030 1 182.565 42 11.793 0.001 59.38 73.75
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uation of the NASA TLX scales and the overall workload. (a) Mental and physical demands.
(b) Temporal demand and performance. (c) Frustration and effort. (d) Workload.

The result of the significance test shows that participants in cluster 1 had the highest
rating of the level of training and the lowest rating of the complexity of the experimental
environment (cf. Table 10).

Table 10. Average of the participants’ performance per group and the result of the significance test.

Dependent Variables
Average (Std. Dev.) p-Value (Confidence

Level of 95%)Cluster 1, n = 27 Cluster 2, n = 17

Sufficient training 5.50 (1.17) 4.19 (1.20) 0.002
Environment complexity 3.67 (1.37) 4.69 (1.45) 0.037

Descriptive statistics show that cluster 1 with the highest assessment of physical
demand, performance, and effort has more frequent gamers (55%) than cluster 2 (18%).
Most participants in cluster 1 are from organization 2 (63%) and most participants in
cluster 2 are from organization 1 (59%). In addition, (59%) of participants in cluster 1 had
access to the assistance system (simulator), and only (35%) in cluster 2 did.

8. Discussion and Lesson Learnt

This study was focused on the control and supervision of an IMS in an Industry 4.0
context. Two experiments were conducted to study the performance, workload, and coop-
eration of the human operator under two work organizations (Organization 1, one human
operator performs the task individually. Organization 2, the task is shared between
two human operators). Contrarily to our expectations, the results indicated that coop-
erative work on the control and supervision of an IMS task does not significantly affect the
effectiveness and efficiency of the task. This may be related to other factors. During coop-
erative work, individual differences in personality characteristics are likely to influence
a person’s behavior. Thus, team performance can be directly influenced by personality
factors such as conscientiousness and extraversion [29]. In this sense, during the tests, we
noticed that some participants did not have a communicative personality, which disrupted
the quality of the discussion and provided less help between group members. In addition,
it was found that participants’ assessment of time demand was affected by the type of
organization. These participants had a higher level of time demand when they had to
perform all tasks individually (organization 1) and they also had a significantly lower
physical demand when they had to work in groups (organization 2). This result could
be related to the fact that in teamwork, the human operator has to listen and respond
to the other operator, which increases the physical activity required for the task, as the
participants found. With regard to the aspects of human-machine cooperation, the level
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of feeling of control over the shuttles was higher in organization 2 than in organization 1.
In teamwork, the task performed by each participant (organization 2) was less complex
than in multitasking (organization 1). Referring to [30], multitasking and task complexity
can lead to low performance and thus low cooperation. Lack of training on tasks, pro-
cesses, and teamwork could also have an impact on participants’ teamwork behaviors
and the team’s performance. Previous studies in real-life healthcare, aviation, military,
and university settings have proven the effectiveness of teamwork training in promoting
teamwork and performance [31]. For instance, it has been estimated that about 70% of
adverse events in the medical field are not caused by individual technical errors, but by
failures in teamwork [32]. Therefore, it is essential to ensure that training for teams is
effective as it has a considerable impact on individual performance and teamwork ef-
fectiveness. Table 11 summarizes the results obtained from the clustering method. The
columns of the table represent the clustering variables and the rows the dependent and
independent variables. The independent variables include organization 2, the presence of a
support system (“assistance”), and number of frequent gamers (“gaming”). They allow for
describing to some extent the population of each cluster. Under each clustering variable,
there are two clusters (QCL_1 and QCL_2). Under each cluster, a (+) or (−) sign is written
to indicate the highest and lowest cluster average. The relationship between the clusters,
the independent and dependent variables are indicated by a − or + sign. For example, if a +
is found in the cell joining the QCL_1 column and the organization 2 row, and a - in the cell
joining the QCL_2 column and the organization 2 row, this means that cluster 1 contains
more participants from organization 2 than cluster 2. A sign in the row of a dependent
variable shows which of the two clusters has the higher and lower average.

Table 11. Summary of the results obtained.

Clustering Variables

Score +
Assistance

Cons. +
Over-cons. Shuttles KH HO 1 KHC Shuttles KHC WL 2 + TD 3 +

Frustration
PD 4 + Effort +
Performance

QCL_1
(−)

QCL_2
(+)

QCL_1
(+)

QCL_2
(−)

QCL_1
(+)

QCL_2
(−)

QCL_1
(−)

QCL_2
(+)

QCL_1
(−)

QCL_2
(+)

QCL_1
(−)

QCL_2
(+)

QCL_1
(+)

QCL_2
(−)

Factors (In-
dependent
variables)

Organization 2 − + − + + − + −

Assistance + − − + + − + −

Gaming − + + − − + + − + −

Dependent
variables

Training + − − + + − + −

Env 5.
Complexity − + + − − + − +

Score + −

Workload − + + −

Mental
demand − +

Performance − +

Frustration − +

Use of
assistance − +

1 Human Operator. 2 Workload. 3 Temporal Demand. 4 Physical Demand. 5 Environment.

In summary, the results showed that in addition to the work organization, other
personal parameters, such as the frequency of playing video games could affect the perfor-
mance and state of the operator. The presence of a support system also tends to have an
effect. Patterns of cooperation can be identified by analyzing the activity of the participants
during organization 2 as proposed in [33].

Consequently, from our experimental work, it is possible to list some principles,
yet to be confirmed by complementary studies, that could be useful to design effective
human-machine team cooperation in the context of Manufacturing 4.0:

• Ability in video games influences significantly the use of an assistance system by
the participants, the participants’ performance, the self-assessment of their ability to
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cooperate, their perceived workload, temporal demand, frustration, physical demand,
effort, and performance.

• Team working improves performance by reducing energy consumption and over-
consumption. It enhances the participants’ self-assessment of their KHC, which
tends to reduce the perceived workload, temporal demand, and physical demand.
Nevertheless, teamwork can also increase physical demand and effort.

• The participants who performed better and made the most use of the assistance system
were those who felt they had not been sufficiently trained. In addition, they overstated
the complexity of the experimental environment.

• The participants who rated their KHC best were those who thought they had a
good level of training and were those who underestimated the complexity of the
experimental environment.

• The participants who experienced lower workload, temporal demand, and frustration
were those who felt they were sufficiently trained and that the environment was not
highly complex. However, these participants experienced a greater physical demand
and felt they had put in more effort, and were less satisfied with their performance in
accomplishing their goals (as introduced by the NASA-TLX questionnaire, the perfor-
mance scale is reversed. In other words, a high value corresponds to low satisfaction).

9. Conclusions

This paper aimed to test the hypotheses according to which teamwork in performing
a complex task in industry 4.0 would improve the effectiveness and efficiency of the task,
reduce the workload of the human operator and improve cooperation. The results showed
a lower level of participants’ assessment of time demand and physical demand in team-
work conditions. It was also found that teamwork improves the subjective human operator
Know-how-to-cooperate when controlling autonomous entities such as shuttles. In some
statistical tests, the significance is not reached, which did not allow us to confirm all of the
hypotheses. Nevertheless, the results showed a trend in line with our expectations, and
their analysis allowed us to speculate on the impact of other factors on teamwork effec-
tiveness and performance, such as individual personality, and lack of training. In further
work, complementary analyses of participants’ activities from voice and screen recordings
will be carried out to identify other factors that have an impact on task completion and
cooperation between participants. This would allow the extraction of patterns and get
some possible structures of human-human cooperation.
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