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a b s t r a c t 

Understanding the biomechanics of the heart in health and disease plays an important role in the diag- 

nosis and treatment of heart failure. The use of computational biomechanical models for therapy assess- 

ment is paving the way for personalized treatment, and relies on accurate constitutive equations map- 

ping strain to stress. Current state-of-the art constitutive equations account for the nonlinear anisotropic 

stress-strain response of cardiac muscle using hyperelasticity theory. While providing a solid foundation 

for understanding the biomechanics of heart tissue, most current laws neglect viscoelastic phenomena 

observed experimentally. Utilizing experimental data from human myocardium and knowledge of the 

hierarchical structure of heart muscle, we present a fractional nonlinear anisotropic viscoelastic consti- 

tutive model. The model is shown to replicate biaxial stretch, triaxial cyclic shear and triaxial stress re- 

laxation experiments (mean error ∼ 7 . 68% ), showing improvements compared to its hyperelastic (mean 

error ∼ 24% ) counterparts. Model sensitivity, fidelity and parameter uniqueness are demonstrated. The 

model is also compared to rate-dependent biaxial stretch as well as different modes of biaxial stretch, 

illustrating extensibility of the model to a range of loading phenomena. 

Statement of Significance 

The viscoelastic response of human heart tissues has yet to be integrated into common constitutive mod- 

els describing cardiac mechanics. In this work, a fractional viscoelastic modeling approach is introduced 

based on the hierarchical structure of heart tissue. From these foundations, the current state-of-the-art 

biomechanical models of the heart muscle are transformed using fractional viscoelasticity, replicating pas- 

sive muscle function across multiple experimental tests. Comparisons are drawn with current models to 

highlight the improvements of this approach and predictive responses show strong qualitative agreement 

with experimental data. The proposed model presents the first constitutive model aimed at capturing 

viscoelastic nonlinear response across multiple testing regimes, providing a platform for better under- 

standing the biomechanics of myocardial tissue in health and disease. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

The biomechanical function of the human heart is a critical 

omponent of cardiac physiology. Beyond the role of its active 

roperties leading to contraction of the myocardium, the passive 

haracteristics of heart muscle play a key role in cardiac patho- 

hysiology, particularly in conditions such as diastolic heart fail- 
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re [1] , heart failure with preserved ejection fraction (HFpEF) [2] , 

nd myocardial infarction [3] . Patients with these conditions often 

ave poor outcomes due, in part, to patient variability and cur- 

ent challenges in predicting therapy efficacy. Cardiac biomechani- 

al modeling provides a tool for addressing these needs, providing 

he capacity for patient-specific assessment and model predicted 

utcomes. These models are playing an increasingly important role 

n translational cardiac modeling [4] and rely on appropriate con- 

titutive models to predict the passive biomechanical response of 

he myocardium throughout the cardiac cycle. 

Constitutive model characterization of passive myocardial tis- 

ue has been a focus of research for over 1.5 centuries [5,6] . Ex-

erimental studies in animals have shown that myocardial tissue 

xhibits nonlinear stress-strain response [7] , anisotropy in biaxial 

tretch [8,9,10] , and orthotropy under shear [11,12] . Recently, these 

ffects were extended and shown in bovine [13,14] and human my- 

cardial tissue [15,16] . These experimental insights have driven the 

evelopment of numerous mechanical constitutive models, with 

arying degrees of fidelity [4] . In most cases, myocardial models 

ave leveraged hyperelasticity theory [17,18,19] , defining the stored 

nergy (strain-energy) in response to the loading of muscle tissue. 

fforts at developing constitutive relations largely paralleled avail- 

ble data, with early descriptions focusing on transversely isotropic 

train-energy equations [20,21,9,22] , followed by orthotropic de- 

criptions [23,24,25,26] . In the hyperelastic formulation, the trans- 

er from external energy to internal energy (or vice versa ) is loss- 

ess, providing perfect energetic retention and return. 

While current models treat the heart muscle as hyperelastic, 

his belies the considerable evidence of myocardial viscoelastic- 

ty. Viscoelastic response has long been observed in muscle tissue, 

ith early evidence stemming from the work of Blix [5,27,28] who 

howed hysteresis in ex vivo frog gastrocnemius. This loss was fur- 

her characterized by Hill and Hartree [29] , who demonstrated the 

oss of energy in the stretch and relaxation of viable/non-viable 

uscle tissue samples. These viscous elastic effects were initially 

xplained using a spring and dashpot model by Levin and Wyman 

30] . Hysteresis and nonlinear stress-strain relations were later 

emonstrated in the canine papillary by Walker [31] and at the 

rgan-scale in the Langendorff feline heart experiments of Leach 

nd Alexander [32] . Viscoelastic relaxation phenomena were ob- 

erved in the ex vivo beating tortoise heart by O’Brien and Rem- 

ngton [33] . Similar experiments were studied in conscious dogs, 

emonstrating hysteresis and creep in vivo [34] . A comprehensive 

echanical assessment was later performed in the rabbit papillary 

uscle by Pinto and Fung [7] , showing relaxation, creep, hystere- 

is along with a modest frequency dependence. Since, viscoelastic 

ehaviors have been reported in many experimental works [8,10–

2,15,16] . 

The role of viscoelasticity in myocardial mechanics, while clear 

xperimentally, has yet to be widely adopted by the constitutive 

quations for heart tissue. This is, in part, due to the already com- 

lex nature of state-of-the-art cardiac mechanics models – involv- 

ng multiple nonlinear anisotropic terms with multiple unknown 

arameters. In addition, the lack of straightforward nonlinear vis- 

oelastic models to build from has limited their extension. A range 

f rheological analyses have been performed [35] , and used as the 

asis for linear viscoelastic models (see, e.g. , [36–38] ). These efforts 

ere soon extended into nonlinear elasticity theory by Coleman 

nd Noll [39] , Truesdell and Noll [40,19] , Pipkin and Rogers [41] ,

nd extended to quasi-linear viscoelasticity for biological tissues 

y Fung [37] (see the review by Wineman [42] ). Efforts mov- 

ng nonlinear viscoelastic models into simulations were done by 

imo [43] and Holzapfel [44–46] . Extension of these approaches to 

he nonlinear viscoelastic behavior in the heart were presented by 

uyghe et al. [47] and Cansiz et al. [48] . Recently, a study by Gül-

ekin et al. [49] used an analogue to the Maxwell-Wierchert model 
2 
o characterize viscoelastic effects in the different microstructural 

rientations, providing the first three-dimensional anisotropic non- 

inear viscoelastic constitutive equation for human myocardial tis- 

ues. Interestingly, however, the model required significantly differ- 

nt parameter sets and relaxation times depending on the experi- 

ent performed by Sommer et al. [15,16] . 

Here we present a three-dimensional viscoelastic constitutive 

odel framework for the human myocardium. A structural argu- 

ent is presented based on the hierarchical nature of the my- 

cardial tissue, suggesting the presence of a spectrum of re- 

axation times. Following the previous works of Simo and oth- 

rs [43,44,46] as well as extensions to fractional approxima- 

ions [50,51] , a fractional anisotropic nonlinear viscoelastic model 

s proposed that encapsulates phenomena observed in the heart. 

he model developed for myocardium is fit to recent human my- 

cardial data [15,16] , showing mean errors of ∼ 7 . 68% compared 

o ∼ 24% for hyperelastic variants. Moreover, the model is used 

o predict variations of biaxial stretch and stretch rate, showing 

ompelling predictions of the passive muscle response. The de- 

eloped model uses 11 parameters (compared to 17 and 18 used 

n [4 8,4 9] ), which are shown to be unique. This model represents

he first nonlinear anisotropic viscoelastic model of human my- 

cardium demonstrated to fit the biomechanical response of my- 

cardial tissue and show reasonable predictions of tissue response. 

Outlining the work, we begin by reviewing the potential 

ources of myocardial viscoelasticity, building a structural argu- 

ent that provides the foundation of the model ( Section 2.1 ). Ba- 

ic notation and hyperelastic formulations for cardiac mechani- 

al models are reviewed ( Sections 2.2 and 2.3 ). From these foun- 

ations the anisotropic nonlinear viscoelastic power law model 

or the human myocardium is introduced ( Sections 2.4 –2.6 ). 

ections 2.7 and 2.8 review the human rheological data used in 

his study as well as the parameterization procedure followed. Re- 

ults of the model are then presented in Section 3 , with discussion 

resented in Section 4 . 

. Materials and methods 

.1. Origins of viscoelasticity in passive myocardium 

The complex structure of myocardial tissue has led to discus- 

ion over the origins of viscoelasticity. Many constituent com- 

onents of the myocardium have been implicated as the source 

f viscoelasticity, including tissue perfusion, extracellular fluid, 

yocytes, the extracellular matrix (ECM) and others. Simulated 

oromechanical studies [52] have demonstrated that tissue perfu- 

ion can yield stress relaxation. Increased extracellular fluid con- 

ent is known to significantly influence the biomechanics of tis- 

ues [53–55] . Experimental studies on sarcomeres have demon- 

trated that the primary contractile proteins of the heart exhibit 

assive viscoelastic behavior [56] . Studies have also shown that the 

ain constituents of the ECM exhibit viscoelasticity [57] , suggest- 

ng molecular friction as a source of viscoelastic response. While 

hese factors are often considered and advocated for individually, 

t is highly likely that all factors can contribute to the viscoelas- 

ic response of the myocardium with varying degrees of impor- 

ance depending on the spatiotemporal scales and loading condi- 

ions considered. In the following section, we review the evidence 

or these different factors contributing to the viscoelastic response 

f myocardial tissue. 

.1.1. Influence of tissue perfusion and extracellular fluid 

Due to the surrounding interstitial fluid space and the perfu- 

ion of myocardial tissues by the coronary vasculature, it is clear 

hat the heart is a complex poromechanical organ. Debate then 

rises whether the viscoelastic behavior observed predominantly 
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tems from fluid movement through the porous tissue ( i.e. the tis- 

ue is nearly poroelastic) or if the solid compartment itself is vis- 

oelastic ( i.e. the tissue is poroviscoelastic). Questions also arise 

egarding the influence of these effects in vivo versus the typ- 

cal testing environment ex vivo . In multiple tissue studies [11–

3,16] , non-perfused tissues exhibited significant viscoelastic re- 

ponse. While this could be explained by the movement of inter- 

titial fluid, the shear rates required to dissipate the energy ob- 

erved experimentally would require much larger frequencies and 

ould not explain the seemingly nonlinear loss response observed. 

his was shown through modeling by Yang and Taber [52] , who 

emonstrated that the viscoelastic response due to poroelasticity 

as not sufficient to explain hysteresis observed in data. However, 

he presence of extracellular fluid and vasculature has a clear in- 

uence on the biomechanics of tissue, with results showing that 

 change in the aqueous solution directly impacts apparent stiff- 

ess [58] . Hydration of myocytes and the ECM proteins both have 

ignificant impacts on their properties and viscoelasticity, making 

hese factors critical to the passive behavior of tissue. Further, in 

imulation studies [59] , it was shown that pore pressure yields a 

eneralized stiffening by loading the ECM which could, in turn, 

nfluence viscoelastic response of structural proteins. As a conse- 

uence, the viscoelastic response of tissue is inextricably linked to 

he constituents of the extracellular environment whether (or not) 

he porous flow of fluid plays a leading role in the viscoelastic me- 

hanical response observed. 

.1.2. Influence of cardiomyocytes 

The passive mechanics of cardiomyocytes have also been iden- 

ified as contributors to viscoelastic response. The viscoelastic im- 

act of myocytes is often thought to be significant due to the 

ncapsulated fluid of the cytosol. However, skinned myocytes ex- 

ibit strong passive viscoelastic response, thought to arise from 

olecular friction in the macromolecules such as titin [60] . In 

ddition, intracellular structural proteins, such as actin [61] , have 

lso exhibited viscoelasticity due to molecular friction. While my- 

cytes exhibit passive viscoelastic response, it is unclear the de- 

ree to which passive cellular forces contribute to the total tissue 

esponse. Witzenburg et al. [62] demonstrated that decellulariza- 

ion of rat myocardium increased the apparent stiffness of the my- 

cardium 6.7 fold in biaxial tests; an increase that corresponded 

o the 5.6 fold reduction in cross-sectional area. While this may 

uggest that cells provide a minor contribution to passive biome- 

hanics, it is clear that the turgid cylinder-like structure of the car- 

iomyocyte plays a significant role in resistance to shear and com- 

ression. 

.1.3. Influence of extracellular matrix structure 

The extracellular matrix is acknowledged as a critical, and 

ominant, component of passive mechanical properties in the 

eart [63–65] . The ECM is highly hierarchical [66] (see Fig. 1 ), 

xhibiting important structural organization at multiple scales. A 

undamental building block of myocardial ECM are collagen I and 

II [67] (approximately 300 nm in length). The extremely rigid 

ollagen molecule triple helices are bound to form collagen fib- 

ils, with diameters of 10 − 500 nm and lengths on the order of 

0 − 30 μm (see Fig. 2 A). This structural arrangement provides op- 

ortunity for significant molecular interaction, yielding potential 

olecular friction mechanisms as molecules translate relative to 

ne another. Indeed, Shen et al. [57] performed stress relaxation 

xperiments on individual collagen (type I) fibrils, demonstrating 

iscoelastic response. Characterization of this relaxation response 

equired a 2-component Maxwell-Weichert model, suggesting mul- 

iple relaxation times are present at the scale of individual fibrils. 

t has also been shown that collagen fibrils exhibit nonlinear re- 
3 
ponse, stemming from an uncoiling of end groups leading to pro- 

ressive recruitment of molecules [68,69] . 

Collagen fiber formation bundles together many individual fib- 

ils. Fiber bundles vary significantly in diameter (with type I form- 

ng larger bundles than type III) and can span over extended dis- 

ances. To avoid rigid locking between fibrils, a layer of proteogly- 

ans and glycosaminoglycans cover the outer fibril surface [70] (see 

ig. 2 B). These large proteins are strongly hydrophilic, binding with 

ater and enabling molecular lubrication between fibrils. Collagen 

bers are then linked together to other collagen molecules, often 

unning in close proximity through myocardial tissue (see Fig. 2 C). 

At the tissue scale, fibers weave together forming the ECM 

see Fig. 1 ). Fibers form complex layers of endomysial collagen 

surrounding and spanning between individual myocytes – and 

erimysial collagen – surrounding and spanning between muscle 

heets (see Fig. 2 D). Endomysial and perimysial collagen exhibit 

 complex structure that undergoes predictable molecular realign- 

ent and uncoiling under load [71–73] . Stretch of individual cells 

equires deformation of the endomysial layer, resulting in molec- 

lar friction as fibers translate relative to one another. Scaling up 

o the level of myocardial sheets, a similar process of deformation 

nd relative translation occurs within the perimysial layer. 

Examining the hierarchical structure of the ECM, it is clear that 

olecular friction and potential drivers of viscoelastic response are 

ervasive and present at multiple spatial scales. From fibril to fiber 

o collagen layers, a relative translation of molecules to macro- 

olecular complexes can be observed. The multiscale mechanisms 

f molecular friction suggest that myocardial tissue is likely char- 

cterized by a spectrum of relaxation events occuring at a broad 

ange of time-scales. This is in contrast to some collagen hydrogels 

hich can exhibit less orderly structure [74,75] and can be well 

haracterized by a simple series of relaxation times [76–79] . 

.2. Kinematics and notation 

Here, we briefly introduce the classic kinematic notation used 

n nonlinear mechanics (see, e.g. , [17,18,80] ). Deformation in the 

eart can be defined by the motion of material points as they 

ove from their reference, �0 ⊂ R 

3 , to their physical configura- 

ions, �t ⊂ R 

3 (at some time t ∈ [0 , T ] ). Marking material points 

f the reference domain by their coordinate position, X ∈ �0 

with the gradient operator, ∇ X ), the relative motion is defined 

y the displacement field u : �0 × [0 , T ] → R 

3 whereby x (X, t) =
 (X, t) + X . Local deformation of material axes and volumes is 

haracterized by the deformation gradient, F = ∇ X u + I, and its de- 

erminant, J = det F > 0 , respectively [18] . Often, the heart is ap-

roximated as an incompressible tissue ( e.g. , J = 1 ), though de- 

ate about this exists in the literature [81] . Measures of stretch 

re given by the right and left Cauchy Green tensors, defined as 

 = F T F and B = F F T , respectively. 

Often it is convenient to define constitutive relations using in- 

ariants of stretch / strain tensors (here generically denoted by A ) 

iven by Bonet and Wood [17] 

 A = A : I, II A = A : A , III A = det A . (1)

t can also be convenient to consider isochoric invariants, replacing 

 with Ā = A / III 1 / 3 
A 

in Eq. (1) ( e.g. , Ī A = Ā : I), as these can facilitate

he isochoric / deviatoric split in hyperelastic formulations. 

Considering anisotropic materials, such as myocardium, a com- 

on approach is to define mutually orthogonal local microstruc- 

ural directions, { e f , e s , e n } , at each material point. Here e a de-

otes the unit orientation vector along myofibers (f), sheets (s) 

nd sheet normals (n) [82] . The physical (deformed) orientation of 

hese microstructural directions are given by ε a = F e a , a ∈ { f,s,n } .
ence, the squared stretch along microstructural directions can be 
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Fig. 1. Scanning electron microscopy of ECM structure in the (A) rabbit and (B,C) canine myocardium. (A) Illustrates the detailed microstructure and collagen fibers composing 

the endomysial collagen layer that normally surrounds and interlinks cardiomyocytes. (B) Shows magnification of the ECM structure, showing pockets normally encasing 

multiple myocytes as well as the coronary microvasculature. (C) Magnification of the ECM, showing myocardial sheets separated by perimysial collagen layers (marked with 

arrows). Reproduced with permission from Benedicto et al. [101,102] . 
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xpressed by the pseudo invariants, 

 a = C : e a � e a = e a · (Ce a ) = ε a · ε a , a ∈ { f,s,n } . (2)

eneralizing Eq. (2) , 

 ab = C : sym (e a � e b ) = ε a · ε b , a, b ∈ { f,s,n } , (3)

here sym (A ) = 

1 
2 (A + A 

T ) is the symmetric transformation. These 

nvariants play an important role in defining the constitutive be- 

avior in myocardial tissue [24] . 

.3. Hyperelastic formulations of the myocardium 

Though a number of constitutive equations have been devel- 

ped to describe myocardial tissue [24–26] , in this study we focus 

n two of the most common orthotropic models, the Holzapfel and 

gden [24] ( HO ) and the Costa [23] models. The HO model is a hy-

erelastic incompressible strain-energy function, widely employed 

n modeling studies and is appealing for both theoretical reasons 

 e.g. , convexity and objectivity) as well as parameter identifiabil- 

ty [83,26] . Recalling briefly, the incompressible HO strain-energy 

 e : R 

3 ×3 × R → R ≥0 can be written as 

 e (C, p) = W iso ( ̄I C ) + W ff(I ff) + W ss (I ss ) + W fs (I fs ) + p(J − 1) , (4)

here 

 iso ( ̄I C ) = 

a 

2 b 

[
exp { b ( ̄I C − 3) } − 1 

]
, (5) 

 kl (I kl ) = 

a kl 

2 b kl 

[
exp { b kl (I kl − δkl ) 

2 } − 1 

]
, (6) 

nd δkl denotes the Kronecker delta (zero unless k = l, in which 

ase it is 1). In this formulation, the strain-energy is written 

s a sum of components. The isotropic term, W iso , provides the 

sotropic bulk distortional energy associated with tissue defor- 

ation. Anisotropic terms W kl (where k,l ∈ { f,s,n } ) are introduced 

o account for the varying distortional energy associated with 

eformation along microstructural directions. We note that the 
4 
nisotropic invariants I ff and I ss are thought to not support com- 

ression, hence making the anisotropic strain-energy terms zero 

hen I ff, I ss < 1 [24] . We note, in the tests considered here, nei-

her I ff nor I ss are in compression. In the HO model, the set of 

nisotropic terms depend on 8 fitting parameters (denoted by a ’s 

nd b’s). In the HO model, the second Piola Kirchhoff stress (PK2) 

can be written as 

 = 

2 

J 2 / 3 
∂W iso 

∂ ̄I C 

(
I − I C 

3 

C −1 
)

+ 

∑ 

kl ∈ S 
2 

∂W kl 

∂ I kl 

sym (e k � e l ) + S p , (7) 

ith S = { ff, ss , fs } and S p = pJC −1 . Through push forward opera-

ions ( i.e. , σ = J −1 F SF T ), the second Piola Kirchhoff stress tensor 

an be extended into the Cauchy stress tensor. We note that the 

riginal HO formulation considered the strain-energy defined using 

tandard invariants [24] , with later forms defined using isochoric 

nvariants and/or dispersion [49] . 

Another constitutive equation that is widely employed is the 

osta model [23] . This model is well-posed in terms of convex- 

ty and objectivity [24] and relies on an orthotropic formulation of 

he exponential Fung-type law. While typically written in terms of 

otated Green Lagrange strain tensors, the Costa model can simi- 

arly be expressed in terms of invariants of the right Cauchy Green 

train tensor, e.g. 

 = 

C 

4 

[ W(C) − 1 ] + p(J − 1) , W(C) = 

∏ 

kl ∈ S ′ 
W 

′ 
kl (I kl ) , (8) 

here 

 

′ 
kl (I kl ) = exp { b kl (I kl − δkl ) 

2 } , (9) 

nd S ′ = { ff, ss , nn , fs , fn , sn } . This form is useful for compari-

on of these models, illustrating that the Costa model shares 

he same underlying exponential invariant formulation; however, 

train-energy terms are grouped in one term W(C) , through mul- 

iplication. In this case, the Costa model is comprised of 7 mate- 

ial parameters, an outer scaling constant, C, along with anisotropic 
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Fig. 2. Schematic representation of the hierarchical structure of the extracellular matrix, and its representation as a power spectrum. (A) Illustration of the collagen triple 

helix and structural arrangement of the collagen fibril. (B) Illustration of the lattice arrangement of fibrils within a collagen fiber, showing fibrils, proteoglycans and their 

hydration. (C) Illustration of bundled fibrils within collagen fibers and their cross section. (D) Illustration of the myocardial tissue showing myocytes and capillaries sur- 

rounded by endomysial collagen fibers and encased in sheets covered by perimysial collagen. (E) Illustration of multiscale friction processes yielding a fractional relaxation 

response moduli. (Left) Sketch of multiscale friction processes (A) within fibrils, (B) between fibrils, (C) at the endomysial collagen scale, and (D) at the perimysial collagen 

scale. (Middle) Effective density of relaxation phenomena within a representative volume. (Right) Combined multiscale relaxation response modulus with colors indicating 

different scales of response and its representation using a fractional model where K(z) ∝ z −α (red curve). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

5 
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caling constants, b. The PK2 stress tensor can be written as 

 = CW(C) 
∑ 

kl ∈ S ′ 
b kl (I kl − δkl ) sym (e k � e l ) + S p . (10) 

Both HO and Costa models utilize exponential forms commonly 

mployed in collagenous biological tissues [68,69] reflecting the 

oe, heel and linear regime of collagen fibrils and the progres- 

ive recruitment of coiled fibers with stretch. Further, while in this 

aper we focus on incompressible forms, both models have been 

sed considering the myocardium as compressible (or nearly in- 

ompressible), where S p is replaced with an appropriate compress- 

bility term. The primary variation between models is the sepa- 

able form employed in HO compared to the coupled exponential 

orm of the Costa model. Both model forms have advantages and 

isadvantages in terms of model performance and parameter iden- 

ifiability. 

.4. Extension to cardiac viscoelasticity 

Viscoelastic phenomena in muscles have been described using 

 range of linear spring, dashpot and spring pot system models 

30,84] . One of the simplest models that captures stress relaxation 

impulse stretch) and creep (impulse stress) is the Zener model, 

ontaining a Maxwell model in parallel with a spring (cf. [36,18] ). 

enoting the stress in the elastic branch of the model as σ e 
0 
(t) = 

 0 ε(t) , the total stress in the Zener model can be written as 

(t) = σ e 
0 (t) + 

∫ t 

0 

B exp { (s − t) /τ } ̇ σ e 
0 (s ) ds (11) 

here τ = (E/η) −1 is the relaxation time, B = E/E 0 is the relax- 

tion weight and E and η are the elastic and viscous moduli of 

he Maxwell branch [35] . In this model, the asymptotic elastic re- 

ponse is given by the first term, while the viscoelasticity is en- 

apsulated in the second term. Eq. (11) provides a template for 

efining the stress response [85] . Extending this idea to nonlin- 

ar materials, a straightforward approach is to replace the elastic 

tress component σ e 
0 

with its nonlinear hyperelastic variants. Re- 

lacing σ e 
0 

with an appropriate nonlinear PK2 form S e , yields the 

uasi-linear viscoelastic (QLV) Fung model, 

(t) = S e (t) + 

∫ t 

0 

K(s − t) ̇ S e (s ) ds + S p (t) , (12)

here, for the Zener model, K(s − t) = B exp { (s − t) /τ } . Here the

LV Fung model extension is considered linear due to the lin- 

ar dependence on S e . As noted in Section 2.1 , myocardial tissue 

s strongly influenced by viscoelastic phenomena across a hierar- 

hy of scales, with collagen fibrils themselves exhibiting multiple 

elaxation times [57] . A straightforward adaptation is to consider 

 nonlinear variant of the Maxwell-Wiechert model (or General- 

zed Maxwell model) [86,87] . Considering n viscoelastic elements 

n parallel, due to linearity, this could be modeled simply by alter- 

ng the QLV form, with the relaxation 

(s − t) = 

n ∑ 

k =0 

B k exp { (s − t) /τk } . (13) 

ere, B k and τk represent the relaxation weights and relaxation 

imes of the various viscoelastic elements. Note that, here, we 

ave assumed that the branches share the same nonlinear form S e , 

hich need not be the case. In the limit as the number of branches

ets increasingly large, the relaxation response modulus can be 

onsidered as a continuous distribution across relaxation times, re- 

riting the sum as an integral over the reciprocal ξ = 1 /τ with 

 continuous relaxation weight B = B (ξ ) representing the propor- 

ional influence of a given relaxation time, e.g. 

(s − t) = 

∫ ∞ 

B (ξ ) exp { (s − t) ξ} dξ . (14) 

0 

6 
n this form, the continuous relaxation response modulus is simply 

he Laplace transform of the continuous relaxation weight B (ξ ) , 

.g. L { B ; t − s } . While this form provides generality for encapsulat- 

ng the viscoelastic response of a material in the QLV framework, 

t also requires unique determination of all the relaxation weights 

nd times or relaxation weight spectrum itself, which is challeng- 

ng to obtain experimentally particularly for nonlinear anisotropic 

aterials like the myocardium. However, if these weights and time 

onstants were distributed in a well-characterized way, it’s possi- 

le that the spectrum could follow a simplified approximate form. 

.5. Extension to fractional viscoelasticity 

Fractional viscoelasticity – a class of viscoelastic models – has 

een shown to capture some of the key viscoelastic behaviors 

f soft tissues [ 50,35,88,89 ] across a range of tissues. Fractional 

iscoelasticity can be closely related to the gernalized Maxwell 

odel, where the relaxation behavior is comprised of multi- 

le exponential decay terms such that K(s − t) ∝ (t − s ) −α (see 

ig. 2 ). Formally, the fractional model can be thought of as an 

nfinite series of exponential decay terms where the relaxation 

eight B (ξ ) = B 0 ξ
α−1 sin (πα) /π, for some constant B 0 > 0 and

∈ (0 , 1) . Substitution of this form into Eq. (14) simplifies K(s −
) = B 0 (t − s ) −α/ �(1 − α) , resulting in the fractional viscoelastic 

orm 

(t) = S e (t) + B 0 D 

α
t S e + S p (t) , (15) 

here D 

α
t denotes the α-order Caputo derivative [90] 

 

α
t g = 

1 

�(1 − α) 

∫ t 

0 

(t − s ) −α ˙ g (s ) ds, α ∈ [0 , 1] . (16)

ere, B 0 modulates the relative strength of the viscoelastic re- 

ponse, while α modulates the distribution of relaxation times. 

onceptually, the fractional model represents a material with a 

ontinuous viscoelastic relaxation spectrum, where K is weighted 

or long timescales ( α → 0 ) or short timescales ( α → 1 ) depending

n a hierarchial distribution of relaxation mechanisms [ 86,91 ]. Use 

f this model significantly reduces the complexity and number of 

arameters required to construct the material response. This sim- 

lification is not for free; however, but instead reflects an inbuilt 

ssumption that the relaxation spectrum exhibits power-law be- 

avior with a distribution of relaxation occurring across timescales. 

In myocardial tissue, viscoelastic response can be attributed to 

ultiple phenomena across spatiotemporal scales linked to its hi- 

rarchical structure as discussed in Section 2.1 . To argue for frac- 

ional viscoelasticity, we consider a representative volume of my- 

cardial tissue (see Fig. 2 ). At the microscale, the relaxation times 

an be relatively small reflecting the fact that friction occurs be- 

ween molecules at small spatial scales. Bridging toward larger 

ength scales, the relaxation times can increase reflecting that fric- 

ion occurs between larger conglomerates of molecules or whole 

issue structures. The effective density of these different mecha- 

isms also varies across scales. Within a representative volume, 

e propose that the relative occurrence of these effects yields a 

istribution of relaxation times well-encapsulated by a fractional 

iscoelastic model. 

Generalizing the framework in Eq. (15) , the viscoelastic PK2 

tress tensor can be conveniently written as a fractional viscoelas- 

ic differential equation, e.g. 

(t) = S 
 (t) + S p (t ) , S 
 (t ) + δD 

α
t S 


 = S e (t) + D 

α
t S v , (17) 

r the analogous form, 

(t) = S e (t) + S 
 (t) + S p (t ) , S 
 (t ) + δD 

α
t S 


 = D 

α
t S v , (18) 

here S v and S e denote the nonlinear viscoelastic and elastic re- 

ponses, S 
 denotes the solution to the fractional differential equa- 

ion, and δ > 0 is a scaling weighting the history dependence on 
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he PK2 stress tensor itself. Note, this is a departure from the 

inearity seen in the QLV model. Eq. (17) was shown to exhibit 

ealistic viscoelastic behavior across a range of testing scenar- 

os [35] , providing advantages to the fractional form in Eq. (15) . 

q. (18) performs similar to Eq. (17) , with the primary difference 

hat the model retains a purely elastic term S e . 

.6. A fractional viscoelastic model for the myocardium 

In this paper, we propose a viscoelastic model capable 

f capturing the behavior of myocardial tissue. Building from 

ections 2.3 to 2.4 , we propose the model form shown in Eq. (18) .

n this case, the elastic form S e denotes the response of the under- 

ying base structure of the tissue and is characterized by a simple 

eo-Hookean model with a single stiffness parameter, a, e.g. 

 e = 

a 

J 2 / 3 

(
I − I C 

3 

C −1 
)
. (19) 

he complex nonlinear and viscoelastic response of the tissue is 

ncorporated through S 
 , which is governed by the fractional dif- 

erential equation in Eq. (18) . In this formulation, the underlying 

aterial response is dictated by the choice of S v , with the vis- 

oelastic effects controlled by the parameters α and δ. Mimicking 

he structural forms of both HO and Costa models, we choose S v to 

e, 

 v = 

∑ 

kl ∈ S ∗
b kl (W 1 I kl − 1) e k � e l + W 2 

∑ 

kl ∈ S ⊥ 
b kl I kl sym (e k � e l ) , (20) 

here S ∗ = { ff, ss , nn } and S ⊥ = { fs , fn , sn } and 

 1 (C) = exp { b 1 (I C − 3) } , (21) 

 2 (C) = exp { b 2 (I 2 fs + I 2 fn + I 2 sn ) } . (22) 

ore details on the selection of this model form can be found in 

he Supplementary Materials . Like the HO model, the first term con- 

ains an isotropic scaling, W 1 ; however, this term scales weighted 

tructurally anisotropic terms. As a hyperelastic contribution, this 

erm would lead to a diagonal matrix at the reference state, sug- 

esting the reference state is not a stable state. However, as part 

f the fractional viscoelastic model (differentiated by the Caputo 

erivative), this is no longer a factor. Similar to the Costa model, 

he invariant terms are grouped, with the first term covering the 

um of the diagonal invariants (note, I C = I ff + I ss + I nn ) and the sec-

nd incorporating the shear invariants. Similar to the first term, W 2 

cales weighted shear terms. Unlike the Costa model, weighting is 

one through scalings b kl which are not reflected in the exponents 

f W 1 or W 2 . While incorporation of scalings b kl into the expo- 

ential scalings of S v would make it straightforward to write as 

 strain-energy function, given the model is viscoelastic, this con- 

traint is lifted. Moreover, grouping terms with two exponents, b 1 
nd b 2 , significantly simplifies the parameterization process. Last, 

he model considered in this paper utilizes an incompressible for- 

ulation, where S p = pJC −1 . However, other formalisms are pos- 

ible to incorporate compressibility (though care must be taken 

hen considering these forms [92] ). 

Important properties for constitutive models are objectivity and 

aterial frame indifference [42] . While these properties are well- 

nown for S e and S p , for these properties to hold for S, they must

old for S 
 . Both objectivity and material frame indifference for the 

roposed model are shown in Appendix A . 

The proposed viscoelastic model in Eq. (18) requires 11 pa- 

ameters in total. Seven constants are used to scale the isotropic 

nd anisotropic model contributions linearly, θl = { a e b ff, b ss , b nn , 

 fs , b fn , b sn } . The remaining four parameters – including the frac- 

ional order, the scaling on the stress in Eq. (18) , and the exponen-
7 
ial scaling parameters – have a nonlinear dependence and con- 

ribute to the nonlinear and viscoelastic response of the material 
∗ = { α, δ, b 1 , b 2 } . 
.7. Experimental testing of human myocardium 

This modeling study relies on rheological tests performed on 

uman myocardial samples by Sommer et al. [15,16] . While com- 

lete details on the experimental data acquisition can be found 

n [15,16] , we reiterate the basics of data acquisition here (see 

ig. 3 ). Briefly, human heart muscle samples were collected during 

ransplant surgery, infused with 200mL cardioplegic solution (CPS, 

elsior by Genzyme Corporation), inserted into a path of 10 0 0 mL 

f CPS and cooled to 4 ◦C. From the collected hearts, samples were 

ut into 25 × 25 mm 

2 thin sheets for biaxial testing and (4 mm ) 3 

ubed samples for shear testing. Passive tests of the cardiac mus- 

le were performed at 37 ◦C, in a bath of CPS with 20 mM 2,3-

utanedione monoxime (BDM). 

Biaxial extension tests were performed on thin square spec- 

mens whose sides were aligned with the mean-fiber ( e f ) and 

heet directions ( e s ) ( Fig. 3 b). Test were performed using dis- 

lacement control with real-time optical measurement of sam- 

le kinematics [15] . Equibiaxial stretches ranging between 5–20% 

ere performed, as well as non-equibiaxial stretches of varying ra- 

ios between the mean-fiber and sheet directions, (e f : e s ) ∈ { (1:1),

1:0.75), (1:0.5), (0.75:1), (0.5:1) } . Four preconditioning cycles were 

erformed before acquiring the data during the fifth cycle, at a 

oading speed of 3 mm/min. 

Triaxial shear tests were performed on cubes extracted from ad- 

acent locations of the biaxial samples. The cube sides were cut in 

rder to align with the tissue microstructure ( Fig. 3 a). Shear de- 

ormations between 10 and 50% were performed, with a 10% in- 

rement and loading speed of 1 mm/min. Shear relaxation tests 

ere also performed at 50% at a ramp speed of 100 mm/min and 

 duration of 5 min. As a cube can be used to test two orthogonal

irections, a total of three specimens were needed to test all six 

odes of simple shear. For triaxial testing, two deformation cycles 

ere used for preconditioning, with the data being acquired during 

he third cycle. 

In total, 14 tests were used to fit models: 6 shear relaxation 

ests at 50% shear, 6 cyclic shear tests at 50% shear maximum am- 

litude, and fiber/cross fiber equibiaxial stretch at 10% . To verify 

he models, the identified parameters were used to predict the 

ehavior of myocardium in non-equibiaxial stretch tests (fiber to 

heet stretch ratios of { (1:1), (1:0.75), (0.75:1), (1:0.5), (0.5:1) } ) 
nd in equibiaxial stretch at three different frequencies: 0.01, 0.033 

nd 0.1 Hz. Additionally, the model prediction at lower shear lev- 

ls (10–40%) is compared against data acquired using two different 

rotocols – increasing or decreasing shear levels. 

.8. Parameter identification and analysis 

The proposed model parameters were fit to human triaxial 

nd biaxial experimental data collected in [16] , assuming idealized 

hear and biaxial kinematics, i.e. 

 = γ e k � e l + I, and F = γ1 e f � e f + γ2 e s � e s + 

1 

γ1 γ2 

e n � e n , 

here e k , e l denote shear along different microstructural direc- 

ions, and γ , γ1 , γ2 denote the time dependent amount of stretch 

r shear applied for each test (see Fig. 3 a). Here we refer to the

arious data tests as groups - relaxation, cyclic shear and biax- 

al stretch, which will be indicated by superscripts i ∈ { r, c, b} , re-

pectively. The relaxation tests were done for each microstructural 

hear direction M 

s = { fs, fn, sf, sn, nf, ns } , producing six tran-

ient Cauchy shear stress measurements, σkl with kl ∈ M 

s , to com- 

are with model based outcomes. In this case, γ = 0 . 5 min (1 , t)
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Fig. 3. Illustration of the experimental tests performed on human myocardial samples in [16] . (a) Reference tissue block with shear deformations applied in different 

directions relative to the underlying tissue microstructure. (b) Reference biaxial sample with stretch applied in fiber and sheet directions. (c) Experimental test rigs for 

triaxial and biaxial experiments. 
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s shown in Fig. 3 a. Similarly, cyclic shear measurements were ac- 

uired in all shear directions M 

s , resulting in an additional six 

ransient Cauchy stress tensor measurements. In this case, γ = 

 . 5 sin (ωt) (see Fig. 3 a), with ω ≈ 1 . 31 e − 2 s −1 . Simulated predic-

ions were generated over three cycles, as in the experiment, with 

he final cycle used for comparisons. In addition to the cyclic shear 

nd shear relaxation, 1:1 biaxial stretch was also considered, with 

1 = γ2 = 1 + 0 . 1 asin ( sin [ ωt]) (where ω ≈ 3 . 14 e − 2 s −1 ). In the bi-

xial tests, two transient Cauchy stress tensor measurements were 

cquired, σkl with kl ∈ M 

b = { ff, ss } . 
A total of 14 transient experimental measurements were used 

or model fitting. For each of those, let σ i 
kl 

denote the respective 

omponent of the Cauchy stress, with σ̄ marking the values mea- 
kl 
θ

8 
ured in the experiments, and σ the values computed using the 

odel. The bold versions, σ i 
kl 

and σ̄ i 
kl 

, denote the stress over time 

or the i th test set and kl th stress component. Note, all models 

ere preconditioned following the data protocol, and compared at 

heir final cycles (where applicable). 

.8.1. Minimization problem 

In this paper, we consider the fit of three models: the 

O model, Costa model, and proposed viscoelastic model from 

ection 2.6 . All models considered were fit to data by minimizing 

he objective function across all 14 tests simultaneously ( Eq. (23) ) 

o determine the model’s set of N-parameters (denoted as θ) 

= arg min y ∈ R 

N + 
χ(y) , (23) 
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here the objective function, χ, is given as 

(y) = min 

β∈ R 

3 

(∑ 

i,k,l 

∥∥∥ 1 
R i 

kl 

(
1 
β i σ

i 
kl 
(y) − σ̄ i 

kl 

)∥∥∥2 

2 

)1 / 2 

(∑ 

i,kl 

∥∥∥ 1 
R i 

kl 

σ̄ i 
kl 

∥∥∥2 

2 

)1 / 2 
, (24) 

nd R i 
kl 

= ‖ ̄σ i 
kl 
‖ 2 is introduced to give tests equivalent weights (ir- 

espective of the magnitude or number of time points). Note that 

gives the relative error across all tests, with χ = 1 denoting 

00% error. In this minimization, a parameter set is found to best 

atch all datasets. 

In this study, the data is representative of the myocardium be- 

avior in relaxation, cyclic shear and biaxial stretch, but it is not 

uaranteed to come from the same sample (e.g., for the same 

hear mode in relaxation and cyclic oscillations), or even from 

he same heart. Therefore, innate variability is introduced that 

ay be reflective of animal to animal variability. Here we assume 

hat the relative magnitudes test to test may vary as a result of 

ifferent sam ples, but the shapes should be maintained. This is 

chieved through the introduced relative scalings β, which are se- 

ected to minimize the difference between model and data across 

ll time points. In order to meaningfully preserve the anisotropy, 

= (βr , βc , βb ) was applied across all kl directions for given tests. 

he selection of β was done iteratively with an initial guess β = 1 , 

olving the minimization for y, minimizing for β and repeating un- 

il convergence. 

Errors were also quantified on a test by test basis to under- 

tand areas of model strength and weakness using the related test- 

pecific objective function, 

i 
kl (θ) = min 

β∈ R 

3 

∥∥∥ 1 
R i 

kl 

(
1 
β i σ

i 
kl 
(θ) − σ̄ i 

kl 

)∥∥∥
2 ∥∥∥ 1 

R i 
kl 

σ̄ i 
kl 

∥∥∥
2 

, (25) 

here the β i and θ are determined from the minimization in 

q. (23) . Minimization for the Costa and HO models were done us- 

ng the nonlinear lsqnonlin minimization routine in MATLAB. 

ultiple initial guesses were selected for the model parameters, 

ith the reported results selected using the best fit. 

To examine the behavior and uniqueness of the parameter 

pace of the proposed viscoelastic model, a parameter sweep was 

erformed. To generate model predictions, each experiment had 

o be simulated based on the given kinematics to solve the frac- 

ional differential equation forward in time (see [35,93] for de- 

ails). In this case, the model predicted response depended lin- 

arly on parameters θl given a set of parameters, θ∗. Hence, sweep- 

ng the space of all parameters ( e.g. R 

11 + ) can be be reduced to

 sweep through the space for θ∗ ( e.g. R 

4 + ), with a simple least 

quares solve applied to find the optimal parameters, θl . Unique- 

ess of the linear parameters was then determined by the solv- 

bility of the least squares system. Because of the simple kine- 

atics and known stresses during the relaxation tests, it was also 

ossible to reduce the parameter space to R 

3 + by determining 

he functional relationship between δ and α during the relax- 

tion tests. Sweeps were performed over b 1 ∈ { 0 , 1 , 2 . . . 20 } , b 2 ∈
 0 , 0 . 5 , 1 . . . 10 } , and α ∈ { 0 . 2 , 0 . 22 , 0 . 24 . . . 0 . 4 } resulting in 4,851

inimizations and 67,914 test simulations. Note, a coarser sweep 

ver higher parameter values showed continued growth in χ . This 

weep indicated that the minimum is achieved at α = 0 . 24 , b 1 = 9

nd b 2 = 2 . A refined sweep was then conducted around these 

alues, as follows: α ∈ { 0 . 2 , 0 . 21 , 0 . 22 . . . 0 . 28 } , b 1 ∈ { 7 , 7 . 5 , 8 . . . 11 }
nd b ∈ { 1 , 1 . 25 , 1 . 5 . . . 3 . 5 } . 
2 

9 
.8.2. Model sensitivity analysis 

Sensitivity was assessed from two perspectives: the effect of 

oise in the data on the best-fit material parameters, and the ef- 

ect of parameter perturbations on the fitting error. In the first 

nstance, 100 noisy datasets were produced via adding unbi- 

sed uniformly distributed noise vector over time η, to the mea- 

ured stress values: ˜ σ i 
kl 

= σ̄ i 
kl 

+ η. The noise level was set to 10% 

f the peak stress across a test for a specific mode, e.g. , η ∈ 

 . 1[ −| ̄σ i 
kl 
| ∞ 

, | ̄σ i 
kl 
| ∞ 

] , E(η) = 0 . For each noisy dataset ˜ σ i 
kl 

, a model

t with a different set of optimal parameters θ were obtained, fol- 

owing the same parameter fit procedure. Next, the optimal param- 

ters θmin were perturbed by ±10% of the original value, by turn. 

he error function χ was computed for each local perturbation, 

ccording to Eq. (24) . 

. Results 

Fig. 4 shows the best fit for HO , Costa and proposed viscoelastic 

VE) models to the data. Example curves for the relaxation, cyclic 

hear and biaxial tests are shown along with bar plots showing 

est-specific errors for each of the 14 datasets, computed accord- 

ng to Eq. (25) . The overall errors, computed using Eq. (24) , were

3 . 73 , 24 . 73 and 7 . 68% for HO , Costa and VE models, respectively.

ere the data shows classical viscoelastic effects, with stress re- 

axation and hysteresis. Note that for the cyclic shear and biaxial 

tretch experiments, the loading curve generates a larger stress, 

hich relaxes faster during unloading. This behavior was observed 

n the data and viscoelastic model. 

Fig. 5 explores the VE model error across the α (0.1–0.3), b 1 (0–

0) and b 2 (0–10) parameter space. The error across all datasets, 

omputed according to Eq. (24) , is shown in the bottom right 

anel. The error computed separately for the relaxation, cyclic 

hear and biaxial tests is shown in the top left, top right and bot- 

om left panels, respectively. Note that the linear parameters were 

ptimized for each { α, b 1 , b 2 } across all tests, and test-specific er-

ors were plotted. The isosurfaces help visualizing the error be- 

avior in the 3D space. In each of the four panels, the minimum 

rror is indicated by the white sphere with the overall minimum 

niquely identified at α = 0 . 184 , b 1 = 10 . 027 and b 2 = 1 . 158 over

ll datasets. The errors over the individual tests were computed 

sing Eq. (25) . 

Fig. 6 illustrates synthetic noisy datasets alongside the original 

ata, showing the resultant noisy data for cyclic shear (fs, top left) 

nd biaxial (top right) stretch (ff). Equivalent datasets were gen- 

rated for all test cases, and replicated 100 times to examine the 

ensitivity of the fit to noise. For each of the 100 noisy datasets, 

 new set of VE linear parameters θl were determined. The pa- 

ameters’ mean (red marker) and standard deviation (error bars) 

re shown relative to the original parameters, indicated by the 

aseline 1 (bottom right). To further understand model sensitiv- 

ty to parameters, variation of the objective function was found 

hen changing parameters by ±10% (bottom left) for both linear 

nd nonlinear parameter sets. The original parameter values can 

e seen in Fig. 4 . The dotted line indicates the minimum model fit 

rror of 7 . 68% . 

Fig. 7 shows the prediction of the models under biaxial 

tretches of various ff:ss ratios (1:1 – blue, 1:0.75 – cyan, 0.75:1 

green, 1:0.5 – red and 0.5:1 – black). The models are shown 

n the top left ( HO ), top right (Costa) and bottom left (VE) pan- 

ls, while the original data, from Sommer et al. [16] , are presented 

n the bottom right panel. The solid curves indicate the fiber re- 

ponse, and the dashed curves show the response in sheet direc- 

ion. Note that here none of the models was fit to data (except for 

f:ss ratio of 1:1 which was part of the original fitting dataset), and 

he curves represent predictions obtained by using the parameters 

hown in Fig. 4 . 
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Fig. 4. Constitutive model fit for HO , Costa and the proposed viscoelastic (VE) models, with overall error ( χ ) of 23 . 73 , 24 . 73 , and 7 . 68% , respectively. Plots 

comparing experimentally measured Cauchy Stress components, σ, with model-based predictions. Optimal parameters for HO were { a f , a s , a fs , a , b f , b s , b fs , b } = 

{ 1 . 56 , 0 . 70 , 0 . 46 , 0 . 61 , 35 . 31 , 33 . 24 , 5 . 09 , 7 . 50 } , with a parameters given in units of kPa and { β r , βc , βb } = { 1 . 41 , 0 . 74 , 0 . 53 } . Optimal parameters for Costa were { C, b ff, 

b ss , b nn , b fs , b fn , b sn } = { 0 . 13 , 33 . 27 , 20 . 83 , 2 . 63 , 12 . 92 , 11 . 99 , 11 . 46 } , with C in units of kPa and { β r , βc , βb } = { 1 . 37 , 0 . 75 , 0 . 14 } . Optimal parameters for VE were { α, δ, 

b 1 , b 2 } = { 0 . 184 , 0 . 023 , 10 . 02 , 1 . 158 } , { a e , b ff, b ss , b nn , b fs , b fn , b sn } = { 0 . 200 , 1 . 640 , 0 . 897 , 0 . 409 , 6 . 175 , 3 . 520 , 2 . 895 } with a e and b mn in units of kPa and { β r , βc , βb } = 

{ 1 . 42 , 0 . 81 , 0 . 33 } . Model fits shown for shear relaxation (top left/center) and cyclic shear (middle left/center) in fs and sf directions and biaxial stretch (bottom left/center) in 

ff and ss directions, following the protocols outlined in Section 2.8 . Test-specific errors, χ i 
mn , are shown for the relaxation (top right), cyclic shear (middle right) and biaxial 

stretch (bottom right) tests for all models. 

a

c

r

b

t

p

p

d

Fig. 8 shows the prediction of the viscoelastic model in ff:ss bi- 

xial stretch (left), at three frequencies: 0.01, 0.033 and 0.1 Hz. The 

orresponding data, from the original study [16] , is shown in the 

ight panel. At 0.01 Hz, the testing conditions are identical to the 

iaxial test used for the model fitting. However, the data used for 
10 
he fitting and the data shown in Fig. 8 come from different sam- 

les, with the data in the frequency test reaching fiber and sheet 

eak amplitude smaller by a factor ∼1.48. 

Fig. 9 shows the VE model prediction to shear compared with 

ata from the original study [16] on human myocardium as well 
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Fig. 5. Values of the objective function χ across fractional order values α ∈ [0 , 1] and exponential powers b 1 , b 2 ∈ [0 , 20] . The heat maps indicate how the error changes 

across the 3D space. Isosurfaces are aiding in the visualisation of the error, with the white spheres indicating the location where the minimum is achieved. (Top Left) Error 

χ r across the relaxation tests only. The sweep minimum (2.65%) is achieved at α = 0 . 2 , b 1 = 6 and b 2 = 8 . 5 . (Top Right) Error χ c across the cyclic shear tests only. The 

sweep minimum (9.2%) is achieved at α = 0 . 24 , b 1 = 8 and b 2 = 1 . (Bottom Left) Error χ b across the biaxial stretch tests only. The sweep minimum (6.80%) is achieved at 

α = 0 . 16 , b 1 = 15 and b 2 = 0 . (Bottom Right) Error χ across all tests. The minimum (7.68%) is achieved at α = 0 . 184 , b 1 = 10 . 027 and b 2 = 1 . 158 . 
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s porcine myocardium. The shear tests conducted for human my- 

cardium start from low ( γ = 0 . 1 ) to high shear ( γ = 0 . 4 ), while

he data from porcine myocardium start from high shear ( γ = 0 . 4 )

o low ( γ = 0 . 1 ). In both cases, 4-6 cycles are performed at a

iven shear level with the final cycle shown. Predictions from the 

E model are shown (center) using the parameters presented in 

ig. 4 and scaled by βc = 0 . 38 , which was determined by matching

he model to original data (top row) peak amplitude in the cyclic 

hear test at γ = 0 . 4 in the human myocardial data. 

. Discussion 

.1. Analysis of the proposed viscoelastic model 

The model proposed in this work introduces viscoelasticity 

hrough a fractional approach. This choice reflects a hierarchy of 

elaxation times mirroring the hierarchical structure of myocardial 

issue and the different spatiotemporal scales that lead to viscous 

issipation. The proposed viscoelastic model presented here relies 

n an underlying form that combines aspects of the HO and Costa 

yperelastic models (for more details, see the Supplementary Ma- 

erial ). As in the HO model, the model terms used here are based 

n invariants that reflect the microstructural composition of the 

assive myocardium. However, the terms are not completely sepa- 

ated, allowing for coupling between invariants, as seen in Eq. (20) . 
11 
oupling of the microstructural directions is characteristic of the 

osta model, where all stretches are inherently coupled. Overall, 

he VE model captures the characteristics of the data, as seen 

n representative examples of the three deformation protocols in 

ig. 4 . In relaxation, the model can capture the initial peak and the 

ubsequent decay. In cyclic shear and biaxial stretch, the hysteresis 

nd nonlinearity are well matched. 

The viscoelastic model entails 11 parameters uniquely deter- 

ined through the fitting process. Four of these have a nonlinear 

ffect on the model - the fractional order α, exponential powers 

 1 and b 2 and the viscoelastic PK2 scaling δ, while the remaining 

 parameters act as linear scalings of terms. Parameter δ is de- 

ermined from the relaxation tests, at each α value, as explained 

n Section 2.8 . For the other 3 nonlinear parameters, a sweep is 

arried, and at each point in the 3D space a set of 7 unique lin-

ar parameters can be identified. Fig. 5 shows the error behavior 

cross the 3D space of the sweep. Overall, the total objective func- 

ion, χ, appears convex across the parameter space with a unique 

inima. To test this, nonlinear root finding was applied with 100 

ifferent random seed points distributed across parameter space 

 α ∈ [0 , 1] , b 1 ∈ [0 , 100] , b 2 ∈ [0 , 70] ), all of which converged to the

ame minima (values α = 0 . 184 ± 5 . 5 e − 4 , b 1 = 10 . 00 ± 0 . 04 , b 2 =
 . 16 ± 0 . 024 ). 

Examining the breakdown of how errors from different test 

roups contributed to the total error, Fig. 5 shows that cyclic shear 
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Fig. 6. Sample datasets for the fs and ff modes of deformation with added 10% unbiased noise compared to the original experimental data. (Top Left) Noisy data in fs 

cyclic shear and (Top Right) ff biaxial stretch. Plots comparing experimentally measured Cauchy Stress components, σ, with model-based predictions. (Bottom Left) Relative 

variation of model parameters obtained by fitting 100 noisy datasets. For each parameter the mean (shown as the red dot) and the range of one standard deviation (solid 

black line) can be compared relative to the original value (dotted line). (Bottom Right) Variation of the objective function χ due to 10% variation in parameters. (For 

interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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nd biaxial tests both exhibit clear minima. For the relaxation tests, 

he objective is less specific for b 1 and b 2 owning to the test essen-

ially going to a single deformation state. However, the relaxation 

ests exhibit a strong dependence on α, with errors being small 

s long as α ∈ [0 . 12 , 0 . 25] . Among the three groups – relaxation,

yclic shear and biaxial, the smallest errors are achieved in relax- 

tion, as it can be seen in both Figs. 5 and 4 . 

Sensitivity analysis was conducted on the viscoelastic model 

nd its parameters. Compared to the original values ( Fig. 4 ), the 

oise led to at most 4% standard deviation and averages close to 

he reference values, as seen in Fig. 6 . This suggests that the model

arameters are identifiable and robust to noise. A perturbation of 

10% in b ff and b ss leads to the model error increase of ∼ 1 . 5% ,

hile ±10% perturbation of α and b 1 leads to a significant error 

ncrease – 3 to 11%. Importantly, all parameters alter the objective 

unction, showing the model parameters are observable. 

.2. Model-based predictive response 

To examine the response of the proposed VE model, predictions 

f other tests not used for training were simulated, including bi- 

xial stretch to different fiber/cross-fiber ratios ( Fig. 7 ), frequency 

esponse ( Fig. 8 ), and different degrees of maximal cyclic shear 

 Fig. 9 ). Applying biaxial stretch at different ratios, the proposed VE 

odel shows excellent predictive behavior by capturing the inher- 

nt nonlinearity and hysteresis. Importantly, it also demonstrates 

he inherent coupling of fiber/cross-fiber stretches seen in the data, 

hereby change in the stretch applied in one direction influences 

he stress in other directions. Another predictive behavior of the 

E model is shown in Fig. 8 , for biaxial stretch tests at 0.01, 0.033

nd 0.1 Hz. The data show that changes in frequency of one or- 
12 
er of magnitude yield a modest increase in hysteresis and peak 

tress amplitude (up to ∼ 19% ). Modest increase in the viscoelastic 

odel is also observed ( ∼ 41% ), due to the fractional differential 

orm. While the predictive increase is higher, this model captures 

his modest growth and would likely perform better with multi- 

requency data created at higher frequencies. 

Lastly, the VE model behavior is investigated at lower cyclic 

hear levels. From the original study data [16] , strain softening can 

e observed as the shear increases with fairly sustained hystere- 

is, see Fig. 9 (left plot). In contrast, the proposed VE model (cen- 

er plot), predicts decreased hysteresis at lower shears and nested 

urves that do not exhibit strain softening. However, the original 

ata was acquired following a protocol of progressive increases in 

hear strain, with preconditioning cycles at each level. This means 

hat the sample was not preconditioned to the largest shear lev- 

ls until later cycles. To demonstrate this impact, the test was re- 

eated using porcine myocardium (using the same experimental 

rotocol) whereby the shear protocol was stepped from largest to 

mallest shear strain (right plot). In this case, the passive tissue 

esponse resembles that predicted by the VE model. 

.3. Comparison with other models 

To investigate the relative impact of the proposed VE model, 

esults were compared with standard hyperelastic HO and Costa 

odels (see Fig. 4 ). Here, hyperelastic HO and Costa models were 

ptimized and fit using the same protocol applied to the viscoelas- 

ic model, providing a fair basis for comparison. As expected, both 

yperelastic models exhibit a constant stress in relaxation and no 

ysteresis; however, both models do well at capturing the behav- 

or of the data with errors of 23 . 73 and 24 . 73% . It is clear that the
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Fig. 7. Prediction of the models in biaxial stretch, fiber to sheet ratio ff:ss of 1:1 

(blue), 1:0.75 (cyan), 0.75:1 (green), 1:0.5 (red) and 0.5:1 (black). Solid curves show 

the behavior in the fiber direction, and dashed curves in the sheet direction. Plots 

comparing experimentally measured Cauchy Stress components, σ, with model- 

based predictions. (Top left) HO model prediction with βb = 0 . 65 ; (Top right) Costa 

model prediction with βb = 0 . 14 ; (Bottom left) VE model prediction with βb = 0 . 33 ; 

(Bottom right) Data from the original study [16] . Note all model predictions used 

parameters from Fig. 4 . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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oading / unloading differences observed in the data cannot be cap- 

ured by the hyperelastic models, leading to elevated errors; how- 

ver, fitting across all 14 datasets enables us to see how well these 

odels can perform. It can be seen that the HO model performs 
ig. 8. The behavior of the proposed VE (left) against data from the original study [16] (ri

z – red, 0.1 Hz - blue). Plots comparing experimentally measured Cauchy Stress compon

irection, and dashed curves in the sheet direction. The model employs the parameters s

gure legend, the reader is referred to the web version of this article.) 

13 
etter in describing the nonlinear trend of the biaxial test, with the 

rrors in this group being ∼ 8% smaller than for the Costa model. 

n contrast, the proposed model reduces the error metric by ap- 

roximately a factor of 3 to 7 . 68% , with the largest reduction in

elaxation tests. While these results are expected to improve (in 

art, due to the increase in parameters from 7 to 8 to 11), these 

ests provide an important benchmark for understanding the po- 

ential benefit of using a viscoelastic modeling approach. Moreover, 

he VE model seems to be able to better capture the shape of the 

urves (particularly comparing biaxial test results). 

Another important comparison is with the previous viscoelas- 

ic model published by Gültekin et al. [ 49,94 ] that fits the data

tilized here. This paper extended the HO model using a non- 

inear Maxwell approach [35] that relied on 18 parameters fit to 

ach test separately. Using the results from the most recent pa- 

er [ 94 ], an analysis was performed computing our error measures 

n the original parameters as well as optimization of all linear 

aterial parameters (see Supplementary Materials ). In this case, er- 

ors for the original model were 19 . 35% and for the re-fit model 

ere 11 . 24% . Predictions from these models lack the variation in 

ber / cross fiber stretch observed in the non-equibiaxial tests, 

nd predict a significant decrease in hysteresis with increasing 

peed. As a result, the proposed VE model exhibits lower errors, 

ses fewer parameters and generally exhibits improved predictive 

ccuracy. 

Examining the predictive responses, a key observation comes 

hen comparing the biaxial data at varying levels of stretch, see 

ig. 7 . In this figure, the classic HO model shows an uncoupling of 

tretch along microstructural directions, whereby loading the fiber 

o the same stretch and varying the stretch across fibers produces 

early the same load. This is in contrast to the Costa model and 

he experimental data, which show that these loads are not fully 

ndependent. In contrast, the VE model provides varying responses 

hat qualitatively match the behavior of the data. In our testing, 

dding fiber dispersion to the HO model does show improvement; 

owever, this tends to come at the expense of accuracy in other 

ests and adding these parameters did not substantially improve 

he model response. As this model forms the basis of that pre- 

ented in [49] , which shows similar challenges to these biaxial pre- 

ictions, it may be insufficient to improve through inclusion of dis- 

ersion alone. 
ght), in biaxial stretch tests with variable loading frequency (0.01 Hz – green, 0.033 

ents, σ, with model-based predictions. Solid curves show the behavior in the fiber 

hown in Fig. 4 and βb = 0 . 48 . (For interpretation of the references to color in this 
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Fig. 9. Qualitative comparison between data and model in cyclic shear. (Left) shear at multiple levels from human myocardium [16] , (center) model predictions of shear 

response, and (right) cyclic shear in porcine myocardium. Experiments used the same rig and protocols, with the only exception that (left) increased shear levels (pre- 

conditioning each level), while (right) started from higher shear, decreasing shear levels. Plots comparing experimentally measured Cauchy Stress components, σ, with 

model-based predictions. 
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.4. Study limitations 

In this study, data from 14 tests were utilized to parameterize 

ll models – a challenge which is often not attempted within con- 

titutive model studies. While integration provides arguably a more 

omplete result, the challenge comes that no tests stem from the 

ame samples. Hence, the inherent variability in tissues make the 

nalysis challenging. To circumvent this, all models were arbitrar- 

ly scaled based on testing groups (relaxation, cyclic shear, biaxial 

tretch). This allowed models to capture the essential shape, with- 

ut being heavily biased by the total amplitude. An improvement 

o this study could be the use of new testing rigs [13] , capable of

roviding a wide range of tests on a single sample. 

In addition, idealized kinematics were used for model parame- 

erization across all tests and constitutive equations. This assump- 

ion is commonly employed in constitutive model studies; how- 

ver, it’s important to note that tissue tests are often more com- 

lex. Inhomogeneity in tissue structures, microstructural orienta- 

ions, presence of other structural elements ( e.g. arteries) were 

ot considered in this analysis and could alter the mechanics 

nd kinematics. Additionally, the rheological tests performed in- 

ariably exhibit some variation from the idealized kinematics as- 

umed. Equibiaxial displacement driven testing may not exhibit 

recise strains internally, particularly for anisotropic materials such 

s myocardium. Similarly, cyclic shear may yield non-idealized de- 

ormations due to boundary conditions, microstructural variations, 

ounting, amongst others. These factors could be improved in 

uture studies through more precise regional characterization of 

eformations [62] as well as model-integrated parameterization 

14] . 

While the model proposed here presents a specific form lever- 

ging fractional viscoelasticity and tensors analogous to those from 

lassical hyperelasticity in myocardium, we note that these forms 

re not unique. Numerous tensor forms were experimented with 

representing S e and S v ), including nonlinear polynomial forms and 

ore generalized split exponentials using a variety of invariants. 

owever, other tensor forms derived from alternative hyperelas- 

ic formulations [ 9,22,95–97 ] could be worthwhile pursing to see 

f further improvements in model performance could be gained. 

n addition, while this study focuses on the applicability of frac- 

ional viscoelasticity, many other viscoelastic formulations have 

een proposed – such as K-BKZ or Pipkin-Rogers forms (for review, 

ee [42] ). While the fractional model introduced shows strong fi- 

elity and compelling predictive capacity, further exploration of 

iscoelastic forms may provide further gains in the modeling of 

yocardial tissues. 
14 
An important consideration for material models is their ther- 

odynamic consistency, in particular, whether they satisfy the 

lausius-Planck Inequality. These are often well described and de- 

ned for hyperelastic materials, but require more care when con- 

idering viscoelastic material responses Some proofs for nonlinear 

iscoelastic materials [ 98 ] and linear fractional viscoelastic mate- 

ials [ 99 ] have been published. Further, following the work of Fol- 

owing Bagley and Torvik [ 100 ], Appendix B presents an analysis 

emonstrating the Clausius-Plank inequality holds for the proposed 

nisotropic cardiac model in the oscillatory small strain limit when 

aterial parameters are strictly positive. However, a more general 

heory encompassing nonlinear anisotropic fractional viscoelastic 

odels remains to be shown. 

. Conclusions 

In this paper, we present a nonlinear viscoelastic constitutive 

odel for passive myocardium using a fractional approach. The 

odel is tested against human myocardial data across a range of 

esting protocols, demonstrating effective reproduction of experi- 

ental measurements as well as strong prediction of other tis- 

ue measures. The model builds on the idea of cardiac viscoelas- 

icity stemming from its hierarchical structure, yielding a spec- 

rum of viscoelastic phenomena that span spatiotemporal scales. 

he model is compared with classic hyperelastic models, demon- 

trating a significant improvement in fitting (mean error ∼ 7 . 68% 

ompared to ∼ 24% ), as well as in predictive response (particularly 

or variable biaxial stretch). The model also is shown to exhibit a 

nique set of parameters that are observable and it is robust. The 

roposed VE model presents one of the first constitutive models 

imed at capturing viscoelastic nonlinear response across multiple 

esting regimes, providing a platform for better understanding the 

iomechanics of myocardial tissue in health and disease. 
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ppendix A. Objectivity and material frame indifference 

Objectivity and material frame indifference are two impor- 

ant theoretical considerations for material models (see Wine- 

an [42] for discussion in the case of viscoelasticity). Considering 

bjectivity, the model must exhibit a Cauchy stress tensor indepen- 

ent of the selected physical coordinate frame selected, making the 

auchy stress tensor a simple rotational transformation between 

ifferent (rectangular Cartesian) conventions of the physical frame. 

uppose an arbitrary rigid body rotation /translation is applied to 

he physical frame, where x ′ denotes the rotated physical position 

f the body x with 

 

′ = Q (t) x (X , t) + x 0 (t) 

here Q (t) is an arbitrary orthonormal tensor with unit determi- 

ant at all times, t . In this scenario, the deformation gradient af- 

er rotation is F ′ = Q (t) F . Objectivity requires that the rotated PK2

nd Cauchy stresses, denoted S ′ and σ′ , are related to their non- 

otated forms by, 

 

′ = S, σ ′ = Q σQ , (A.1) 

t remains to show that either conditions of Eq. (A.1) hold for 

he proposed material model. Noting that Q 

T Q = I, we can see 

hat C ′ = (F ′ ) T F ′ = C and, moreover, any invariants from Eqs. (1) to

3) are equivalent. Hence, S ′ e = S e and S ′ p = S p . What remains from

q. (18) is to prove S 
 ′ = S 
 . Noting that the anisotropic invariants

f C are equivalent, and rotations do not alter microstructural vec- 

ors in the reference frame, we can see that S ′ v = S v and, as a con-

equence of Eq. (18) , S 
 ′ = S 
 . 

Material frame indifference is the idea that the material re- 

ponse should be independent of the selection of the material 

rame, making the PK2 stress tensor a simple rotational transfor- 

ation between (rectangular Cartesian) material frames. Suppose 

e rotate the material frame by the orthonormal transform, H, 

aking a new reference frame X 

∗ = HX . In this case, the rotated 

K2 stress tensor and Cauchy stress tensor, denoted S ∗ and σ∗, are 

elated to their non-rotated forms by, 

 

∗ = H SH 

T , σ∗ = σ, (A.2) 

here S ∗ = S ∗(C ∗, e ∗
i 
) and S = S(C, e i ) . As in the case of objec-

ivity, it suffices to show one of these conditions holds. Not- 

ng that H 

T H = I and F ∗ = ∇ X ∗ x ∗ = F H 

T , it can be shown that

ight Cauchy Green strains are related by rotation C ∗ = H CH 

T . As

 result, all isotropic invariants of C in Eq. (1) are equivalent to 

heir C ∗ counterparts. Similarly, since e ∗
i 

= He i , anisotropic invari- 

nts from Eq. (3) maintain equivalence. Maintaining conditions in 

q. (A.2) on S ∗ requires that these conditions hold for S ∗e , S ∗p and

 


 ∗. The first two are satisfied (noting H 

−1 = H 

T ), leaving deter-

ination of this property on S 
 ∗. From the fractional differential 

quation in Eq. (18) (and noting that H commutes with the Caputo 

erivative), S 
 ∗ = H S 
 H 

T when 

 


 ∗ + δD 

α
t S 


 ∗ = HD 

α
t (S v ) H 

T = D 

α
t (HS v H 

T ) = D 

α
t S 

∗
v . 

ence, material frame indifference holds for S 
 ∗ if it holds for S ∗v . 
his can be verified by noting that W 1 and W 2 remain equivalent 

based on equivalence of invariants) and microstructural directions, 

 

∗
i 

= He i . 
15 
ppendix B. Clausius-Planck inequality for oscillatory small 

train limit 

Following Bagley and Torvik [ 100 ], we consider the case of 

mall strain cyclic oscillatory loading in the myocardial model. In 

his case, we suppose that the displacement and pressure may be 

ritten as 

 (X , t) = U 0 (X ) sin (ωt) , |∇ X U 0 | ≤ γ << 1 , 

p(X , t) = Re { p 0 (X ) exp (iωt) } , 
here ω > 0 is the frequency of oscillation, U 0 : �0 → R 

3 encodes 

he spatial solution of displacement, and p 0 : �0 → C encodes the 

patial solution of pressure (which may be out of phase with the 

isplacements). 

Considering the Clausius-Planck inequality for an isothermal 

rocess, the material’s internal energy and and power must satisfy, 

 loc = −ρ ˙ ψ + 

1 

2 

S : ˙ C ≥ 0 , (1) 

here D loc denotes the local dissipation and ψ denotes the free 

nergy. Bagley and Torvik [ 100 ] use this condition to argue that 

nder these kinematic conditions that: (1) any increasing compo- 

ent of the power P = 

1 
2 S : 

˙ C must be strictly positive, and (2) that

he integral of the power must be greater or equal to zero for all 

ime. 

Considering the model introduced in Section 2.6 , we start 

y considering the linearization (noting that γ << 1 ), the right 

auchy Green strain tensor can be simplified to 

 = 2 ε + I + O(γ 2 ) , ˙ C = 2 ̇

 ε + O(γ 2 ) , C −1 = I − 2 ε + O(γ 2 ) 

here 

 = 

1 

2 

(∇ X u + ∇ X u 

T ) , = ε 0 sin (ωt) , 

enotes the small strain tensor. Similarly, the determinant can be 

inearized 

 = 1 + ∇ X · u + O(γ 2 ) 

hich, assuming incompressibility, implies that 

 X · U 0 = 0 , ε : I = 0 . 

Considering the material invariants of C, 

 C = tr (2 ε + I) + O(γ 2 ) = 3 + O(γ 2 ) 

 kl = 2 I kl , ε + δkl + O(γ 2 ) 

Leveraging these linearized kinematic quantities, we can exam- 

ne the impact on the material kinetics quantities. Considering the 

lastic and hydrostatic components, we observe that 

 e + S p = 2 a ε + p(I − 2 ε ) + O(γ 2 ) 

sing a power series expansion of the exponential, we can see 

hat W 1 = 1 + O(γ 2 ) and W 2 = 1 + O(γ 2 ) . Consequently, the vis-

ous stress tensor, S v , becomes 

 v = 

∑ 

kl ∈ S∪ S ⊥ 
b kl (2 I kl , ε − δkl ) sym (e k � e l ) 

Looking at the periodic steady-state response of S 
 (as t >> 1 ), 

et S 
 (X, t) = Re { S 0 (X ) exp (iωt) } (where S 0 : �0 → C 

3 ×3 ), and not-

ng ε = −Re { i ε 0 exp (iωt) } , 
 0 + δ(iω) αS 0 = (iω) α

∑ 

kl ∈ S∪ S ⊥ 
2 b kl I kl , ε 0 sym (e k � e l ) 

aking the temporal evolution of S 
 defined as, 

 


 = [ B cos (ωt) + A sin (ωt)] 
∑ 

kl ∈ S∪ S ⊥ 
2 b kl I kl , ε 0 sym (e k � e l ) 



D. Nordsletten, A. Capilnasiu, W. Zhang et al. Acta Biomaterialia xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ACTBIO [m5G; September 11, 2021;11:10 ] 

w

A

B

m

P

A

p

p  

t

a

C

S

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ith 

 = ω 

α δω 

α + cos ( π
2 
α) 

1 + 2 δω 

α cos ( π
2 
α) + (δω 

α) 2 
, 

 = ω 

α sin ( π
2 
α) 

1 + 2 δω 

α cos ( π
2 
α) + (δω 

α) 2 
. 

Examining the power production within the cardiac viscoelastic 

odel, we can see that 

 = 

1 
2 

S : ˙ C , 

= 

1 
2 [ S e + S p + S 
 ] : 

[
2 ̇

 ε + O 

(
γ 2 

)]
, 

= 2 a ε : ˙ ε + p ( I − 2 ε ) : ˙ ε + S 
 : ˙ ε + O 

(
γ 2 

)
, 

= ( 2 a | ε 0 | 2 + AK 

)
sin ( ωt ) cos ( ωt ) + BK cos 2 ( ωt ) , 

with K = 

∑ 

kl ∈ S∪ S ⊥ 2 b kl 

(
I kl , ε 0 

)2 
. 

s a result, the power has a dissipating growth ensuring the ap- 

ropriate sign of D loc if BK ≥ 0 , and has strictly positive integrated 

ower if (2 a | ε 0 | 2 + AK) ≥ 0 . A sufficient condition that satisfies

hese inequalities is the requirement that all parameters ( a, δ, b kl ) 

re strictly positive. In this case, the model is consistent with the 

lausius-Planck inequality in Eq. (B.1) . 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.actbio.2021.08.036. 
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