
HAL Id: hal-03408953
https://hal.science/hal-03408953v1

Submitted on 29 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Survey on Recent Progress in the Theory of
Evolutionary Algorithms for Discrete Optimization

Benjamin Doerr, Frank Neumann

To cite this version:
Benjamin Doerr, Frank Neumann. A Survey on Recent Progress in the Theory of Evolutionary Al-
gorithms for Discrete Optimization. ACM Transactions on Evolutionary Learning and Optimization,
2021, 1 (4), pp.1-43. �10.1145/3472304�. �hal-03408953�

https://hal.science/hal-03408953v1
https://hal.archives-ouvertes.fr

ar
X

iv
:2

00
6.

16
70

9v
3

 [
cs

.N
E

]
 8

 J
ul

 2
02

1

A Survey on Recent Progress in the Theory of

Evolutionary Algorithms for Discrete

Optimization

Benjamin Doerr∗ Frank Neumann†

July 9, 2021

Abstract

The theory of evolutionary computation for discrete search spaces
has made significant progress in the last ten years. This survey sum-
marizes some of the most important recent results in this research
area. It discusses fine-grained models of runtime analysis of evolu-
tionary algorithms, highlights recent theoretical insights on parameter
tuning and parameter control, and summarizes the latest advances for
stochastic and dynamic problems. We regard how evolutionary algo-
rithms optimize submodular functions and we give an overview over
the large body of recent results on estimation of distribution algo-
rithms. Finally, we present the state of the art of drift analysis, one
of the most powerful analysis technique developed in this field.

1 Introduction

Evolutionary computing techniques have been applied in a large variety of dif-
ferent settings ranging from classical optimization problems in the context of
supply chain management and renewable energy [BM16, TWD+13, NAW20]
over to the creation of music and art [Dos13, Lew08, NAN20]. The easy
applicability of evolutionary algorithms makes them attractive also to users
from outside of computer science disciplines and is one of the major rea-
son for their success in a wide range of engineering applications such as

∗Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique
de Paris, Palaiseau, France

†Optimisation and Logistics, School of Computer Science, The University of Adelaide,
Adelaide, South Australia, Australia

1

http://arxiv.org/abs/2006.16709v3

the design of water networks [BDM15] or processing and planning in min-
ing [MD10, OWBM13, RNRN21].

The theoretical understanding and analysis of evolutionary algorithms
is key to further improve the applicability and performance of evolutionary
computing methods in a wide range of settings. The area of runtime analysis
has played a predominant role during the last 25 years in the area of theory of
evolutionary computation when considering discrete optimization problems.
This area provides rigorous insights based on mathematical analyses of the
search behaviour of evolutionary algorithms. Such theorem-proof style results
do not depend on the design of experimental settings which often comes
with problems regarding interpretability. While the mathematical results
obtained here are often for more restricted settings than in experimental
studies, their proofs not only guarantee the result to be correct, but also
show why a certain algorithm shows a certain optimization behavior. This
way, theoretical research can provide a deeper way of understanding how
evolutionary algorithms work.

The goal of this survey is to point out important research directions and
their main results of the last 5-10 years. Due to the size of this research area,
this survey cannot give a complete description of the progress in this field.
We therefore focus on six areas that from our (subjective) point of view are
currently the most active and promising ones.

While the area of rigorous runtime analysis provides theoretical in-
sights based on mathematical proofs, it should be noted that there are
other approaches contributing to the theoretical understanding of evolu-
tionary algorithms. In particular, important insights into the working be-
haviour of evolutionary algorithms can be gained through sound exper-
imental studies which investigate important modules and parameters of
evolutionary algorithms [BP14, SFAM18]. Furthermore, the area of fit-
ness landscape analysis [PA12, KP19] has contributed significantly to the
theoretical understanding of evolutionary computing methods in relation
to characteristics of the landscape of optimization problems such as the
classical Traveling Salesperson problem [WSOC14, OV18]. Feature-based
analysis is another technique which tries to capture features of an optimiza-
tion problem that make it hard or easy to be optimised by a given algo-
rithm [SvH11, MBT+13, NWN15]. All these areas make important contribu-
tions to the theoretical understanding of evolutionary computing and set the
basis for the novel design of high performing evolutionary algorithms. We
concentrate in this survey on results obtained in the area of runtime analysis
and recommend the reader to consult the original articles for the previously
named areas.

2

We now give an overview on the different areas covered in this survey. We
start with approaches that provide a fine-grained runtime analysis of evo-
lutionary computing in Section 2. This area investigates the runtime with
respect to the given input size and additional parameters such as a fixed
target value or results achievable within a fixed budget. Another important
area that provides a fine-grained view is the area of parameterized runtime
analysis which takes into account important structural parameters of a given
problem instance. These approaches allow one to give a more fine-grained
view on the runtime behavior and reveals how structural parameters or com-
putational budgets influence the results. The parameterized analyses carried
out in this area are focused on classical combinatorial optimization prob-
lems such as minimum vertex cover and the Euclidean Traveling Salesperson
problems and we will summarize the main results for them.

Setting the parameters of evolutionary algorithms is a key challenge in
the profitable use of these heuristics. In Section 3, we discuss how recent
theoretical works suggest to set the parameters. We also discuss different
ways to let the algorithm optimize its parameters itself, which currently
appears as a very powerful, easy-to-use approach.

Dynamic and stochastic problems play a key role in many real-world
applications [RP13, RNRN21, XNN21] and evolutionary algorithms have
been shown to be very successful in dynamic and stochastic environ-
ments [NY12, RKD17]. The theoretical investigations in terms of runtime
analysis for such problems have been started by Droste [Dro02, Dro03, Dro04]
in the early 2000s and a wide range of results have been obtained during the
last 10 years. We will summarize such results in Section 4.

Many important problems can be formulated in terms of a submodular
functions with a given set of constraints. The analysis and the design of
evolutionary algorithms for submodular optimization problems has gained a
lot of attention during the last 5 years. Various types of constraints as well
as dynamic and stochastic settings have been investigated and provably effi-
cient evolutionary algorithms outperforming previous state-of-the-art greedy
approaches have been designed. The most important results and the different
areas investigated are presented in Section 5.

Estimation-of-distribution algorithms (EDAs) are evolutionary algo-
rithms which do not evolve a population of good solution candidates, but a
probability distribution on the search space that allows one to sample good
solutions. Due to the complicated nature of the underlying mathematical ob-
jects (a random process taking probability distributions as states), for a long
time the theoretical understanding of these algorithms was very limited. The
last few years, however, have seen great progress in this topic, both showing

3

new advantages of EDAs such as robustness to noise and giving advice in
how to set their parameters. We review some of these results in Section 6.

We end this survey with a discussion of an important analysis tools de-
veloped in the EA community. The area of drift analysis has provided a
wide range of analytical methods that allow to translate an understanding
of the typical progress of an EA into information about its runtime. We will
summarize the most important drift theorems and their applications together
with the challenges involved when using drift analysis in Section 7.

2 Fine-grained Runtime Analysis of Ran-

domized Search Heuristics

Traditional runtime analysis investigates the runtime of an evolutionary com-
puting technique on a given problem with respect to the size of problem in-
stance. Usually, a worst-case view is taken and upper bounds on the runtime
of all problem instances of a given size are proven.

Many important optimization problems can be stated as binary prob-
lems. A binary problem is defined on the search space {0, 1}n and a problem
instance is given as a pseudo-Boolean functions f : {0, 1}n → R. We call n
the size of the instance. A common goal is to analyse the expected number
of solutions that an evolutionary algorithm generates until an optimal solu-
tion with respect to f has been produced for the first time. In general, the
runtime is measured in terms of the number of solutions that are produced
and evaluated before the considered algorithm has obtained a given goal for
the first time. The expected optimization time refers to the expected number
of constructed solutions until an optimal solution has been produced for the
first time.

Studies focus on simplified algorithms such as the (1+1) EA which is a
special case of the (µ+1) EA shown in Algorithm 1 for maximizing a pseudo-
Boolean function f . Randomized local search (RLS) is an even simpler vari-
ant and differs from the (1+1) EA by flipping in each iteration exactly 1 bit
chosen uniformly at random. For problems where 1-bit flips leads to obvious
local optima a combination of 1-bit and 2-bit flips is considered [NW07].

Early analyses reveal that the expected time until RLS and the classical
(1+1) EA has obtained an optimal solution for the maximization of the
benchmark function

OneMax(x) =
n

∑

i=1

xi

4

Algorithm 1: (µ+ 1)-EA for maximization problems

1 Choose a population P consisting of µ solutions chosen from {0, 1}n
uniformly at random;

2 repeat forever
3 Choose x ∈ P randomly;
4 Create x′ by flipping each bit of x independently with probability

1/n;
5 Add {x′} to P .;
6 Remove an element y from P for which y = argminx∈P f(x)

holds;

is Θ(n logn). Similarly, the expected runtime of RLS and the (1+1) EA for
the maximization of the benchmark function

LeadingOnes(x) =
n

∑

i=1

i
∏

j=1

xj

is Θ(n2). Studies of this type have been frequently carried out in the area
of runtime analysis over the last 25 year. Furthermore, the research area
discusses the time to obtain an optimal solution or the time to achieve a
good approximation in the case of NP-hard problems. One drawback of the
described approach is that it is not able to distill other important character-
istics that make a problem instance hard or easy to solve.

During the last years, different approaches have been taken to give a
more precise view on the runtime behavior of evolutionary algorithms. This
includes approaches for evaluating the runtime until a fixed target value
(instead of an optimal value) is achieved. Furthermore, the parameterized
analysis allows to obtain results in terms of additional structural parameters.
We start by summarizing some important results in the area of fixed budget
and fixed target analysis and discuss parameterized results afterwards.

2.1 Fixed Budget and Fixed Target Analysis

Fixed budget analysis has been introduced in [JZ12] and considers the qual-
ity that an evolutionary algorithm achieves within a given time budget b.
Classical runtime analysis often already provides the insights for such fixed
budget analysis as it analyzes the progress that an evolutionary algorithm
makes at the different stages of the optimization process. Taking a more fine-
grained view on such classical runtime results, fixed budget results can often

5

be obtained. In [JZ12], results for RLS and the (1+1) EA on the benchmark
problems OneMax and LeadingOnes are obtained which are based on more
fine-grained insights of previous studies on the expected optimization time.
An extension of these fixed budget results has been provided in [JZ14a].
Furthermore, a general method for obtaining fixed budget results based on
classical runtime analysis results has been presented in [DJWZ13]. Fixed
budget analysis can also be used to provide further insights of other types of
randomized search heuristics. For example, artificial immune systems have
been analyzed using fixed budget analysis in [JZ14b]. The authors show
how to translate previous runtime results on the use of hypermutations in
artificial immune systems to results when given a fixed budget.

Related to fixed budget analysis is fixed target analysis [BDDV20]. In-
stead of considering the solution quality obtainable within a given time bud-
get, fixed target analysis considers the time needed to achieve a given target
quality k. The runtime analysis is therefore parameterized by k. Results
have been obtained for well studied benchmark problems such as OneMax
and LeadingOnes. Furthermore, fixed target results for the classical min-
imum spanning tree problem have been obtained. In [ABD20b], the dual
question of how long an EA needs to find the optimum when already start-
ing with a good solution was investigated. Surprisingly, different types of
EAs profit to very different extents from such a favorable initialization. Also
different parameter values become optimal when starting with a good instead
of a random solution.

2.2 Parameterized Analysis

Parameterized analysis of algorithms [DF99] allows to investigate algorithms
not just with respect to the worst-case behaviour regarding the length of the
given input, usually denoted by n, but also with respect to some additional
parameter(s) that characterize the problem. A problem is defined to be fixed
parameter tractable (FPT) with respect to a parameter k iff there is an
algorithm that runs in time O(poly(n) · f(k)), where f(k) is a function only
depending on k. We call an algorithm an FPT algorithm with respect to a
parameter k iff it runs in time O(poly(n) · f(k)). This implies that an FPT
algorithm runs in polynomial time if k is constant.

The approach of analyzing evolutionary algorithms in the context
of parameterized complexity has been introduced by Kratsch and Neu-
mann [KN13] although there are earlier analyses that investigate RLS and
the (1+1) EA for the maximum clique problem on planar graphs [Sto06]
and population-based EAs with respect to the runtime dependent on the
size of the cliques obtained [Sto07]. We call an evolutionary algorithm a

6

Algorithm 2: GSEMO for minimization problems

1 Choose an initial solution x ∈ {0, 1}n uniformly at random;
2 Determine f(x) and initialize P ← {x};
3 repeat forever
4 Choose x ∈ P randomly;
5 Create x′ by flipping each bit of x independently with probability

1/n;
6 Determine f(x′);
7 if ∃x′′ ∈ P, f(x′′) ≤ f(x′) and f(x′′) 6= f(x′) then
8 P is unchanged

9 else
10 exclude all x′′ where f(x′) ≤ f(x′′) from P and add x′ to P

fixed-parameter evolutionary algorithm with respect to a parameter k iff its
expected optimization time is O(poly(n) · f(k)).

2.2.1 Results for Minimum Vertex Cover

The minimum vertex cover problem is the classical problem in the area of
parameterized complexity and several FPT algorithms are available. The
input of the minimum vertex cover problem is an undirected graph G =
(V,E) and the goal is to find a minimum set of vertices V ′ ⊆ V such that
each edge is covered by at least one node of V ′, i.e. e ∩ V ′ 6= ∅ holds for all
e ∈ E.

Kratsch and Neumann [KN13] showed that a simple evolutionary multi-
objective algorithm called GSEMO (see Algorithm 2) frequently used in
the area of runtime analysis [NW06, GL10, FHH+10] is able to compute a
kernelization for the problem. A kernelization is a reduced problem where
the decision for some nodes whether or not to include them has already been
made in an optimal way. It is shown in [KN13] that such a kernelization
can be obtained by using two different types of helper objectives as a second
objective. The first one considered in the article is the number of uncovered
edges of a given solution x. The second approach uses the optimal value of the
linear programming relaxation of the graph consisting only of the uncovered
edges of a given solution x. Note that both helper objectives estimate the
degree of infeasibility of a solution x which is quite common when using multi-
objective models for single-objective optimization problems in the context of
evolutionary computing [NW06, FHH+10].

7

Having obtained such a solution an alternative mutation operator flipping
bits corresponding to nodes that are adjacent to so far uncovered edges can
obtain an optimal solution in time O(f(k) ·poly(n)) which leads to the result
that the examined evolutionary algorithms are fixed parameter evolutionary
algorithms. It has also been shown that a factor (1 + ǫ)-approximation, 0 ≤
ε ≤ 1, can be obtained in expected time O(n2 ·logn+OPT ·n2+n·4(1−ǫ)·OPT),
where OPT is the value of an optimal solution, when using the LP relaxation
as the second objective. This gives a trade-off between approximation quality
and runtime. Setting ǫ = 1, it shows that the approach computes a factor
2-approximation in expected polynomial time.

In the weighted vertex cover problem, each node has a positive weight
and the goal is to minimize the sum of the weights of the chosen nodes
under the condition that all edges are covered. The use of the dual for-
mulation of the vertex cover in form of edge sets has been investigated by
Pourhassan et al. [PSN19]. They have generalized the edge based presen-
tation by Jansen et al. [JOZ13] to the weighted case and shown that their
evolutionary multi-objective algorithm is a fixed parameter evolutionary al-
gorithm for the weighted vertex cover problem. The authors have shown
that a 2-approximation for the weighted vertex cover problem is obtained
by the algorithm in expected polynomial time and presented a population-
based approach which achieves a (1 + ǫ)-approximation in expected time
O(n · 2min{n,2(1−ǫ)OPT} + n3). Setting ǫ = 1, it shows that the approach com-
putes a factor 2-approximation in expected polynomial time for the weighted
vertex cover problem.

2.2.2 Results for the Euclidean Traveling Salesperson Problem

The traveling salesperson problem is another very prominent problem in the
area of combinatorial optimization. Given a set of n cities i = 1, . . . , n,
and distances d(i, j) between them the goal is to compute a tour of minimal
cost visiting each city exactly once and returning to the origin. A possible
solution for the TSP is usually given by a permutation π = (π(1), . . . , π(n))
of the given n cities and the goal is to find a tour π that minimizes

c(π) = d(π(n), π(1)) +
n−1
∑

i=1

d(π(i), π(i+ 1)).

In the context of parameterized analysis of evolutionary algorithms, the
Euclidean TSP has been investigated by Sutton et al. [SNN14]. Here each
city i is given as coordinates (xi, yi) and the distance between city i and j is
given as d(i, j) =

√

(xj − xi)2 + (yj − yi)2. The Euclidean TSP is still NP-
hard but admits a polynomial time approximation scheme (PTAS) [Aro98].

8

In terms of parameterized analysis, the impact of the number of inner points
has been considered which is given by the number of points that do not lie
on the convex hull of the points in 2D. We denote by n− k the points on the
convex hull and k the number of inner points.

The Euclidean TSP can be solved by classical algorithms in time
O(poly(n)·f(k)) using dynamic programming [DHOW06]. This makes use of
the properties that an optimal solution has to visit the points of the convex
hull in the order as they appear on the hull. The difficult task is then to ”fill
in” the inner points such that an optimal solution is obtained.

Investigations in the area of evolutionary algorithms focused on runtime
analysis with respect to the number of inner points for the Euclidean TSP.
The first part of the analysis carried out in [SN12] analyzes the expected
time until the classical (1+1) EA using inversion as the mutation operators
has computed a tour that is intersection free. The analysis depends on the
progress that can be made by inversion operations removing an intersection
and this progress depends on the angle ǫ > 0 between any three points in the
given set of cities. It is assumed that any three points are not collinear, i.e. do
not lie on a single straight line. For an intersection free tour it is known that
the points on the convex hull appear in the permutation in the same order as
they appear on the convex hull. The remaining part analyzes the expected
time until an optimal solution has been produced from an intersection free
tour. This part of the analysis uses that at most 2k inversion operations are
sufficient to produce from an intersection free tour an optimal tour. This
implies that the (1+1) EA obtains an optimal solution in expected time
O(n3m5+n4k(2k− 1)!) when the points are placed on an m×m grid and no
set of three points is collinear. Here the parameter m for the grid directly
determines the smallest angle that any set of three non collinear points can
have. Note that the runtime bound does not meet the requirement of a fixed
parameter evolutionary algorithm.

Afterwards, the ability of evolutionary algorithms to fill in the inner points
correctly given that the points on the convex hull are in correct order has
been examined. Ant colony optimization [NSN13b] and evolutionary algo-
rithms [NSN13a, SNN14] have been investigated in this context. For ant
colony optimization, the crucial aspect to obtain a runtime of O(nk) is to
construct solutions following the order on the convex hull. For evolutionary
algorithms, a population-based algorithm building on a previous approach
of Theile [The09] and allowing to build an optimal tour following dynamic
programming leads to a fixed parameter evolutionary algorithm with respect
to the number of inner points. Furthermore, it is shown in [SNN14] that a
simple (µ + λ)-EA searching for a permutation of the inner points and con-

9

necting them to the outer points using the dynamic programming approach
given in [DHOW06] leads to a fixed parameter evolutionary algorithm.

2.2.3 Further Results for Combinatorial Optimization Problems

The early studies of Storch [Sto06] for the maximum clique problem in planar
graphs investigated the runtime of RLS and the (1+1) EA with respect to
the size of the maximum clique. The fitness (to be maximized) of a search
point x ∈ {0, 1}n, representing a selection of nodes, is given by the number
of selected nodes if x represents a clique and −∞ otherwise. The algorithms
investigated start with the initial solution x = 0n which is a feasible solution.
For standard bit mutations an expected optimization time of Θ(n6) has been
shown for (1+1) EA. However, it should be noted that the size of a maximum
clique in a planar graph is at most 4 as the complete graph on 5 vertices is
not planar. Improved results have been shown in [Sto06] for restart strategies
used in RLS and for variants of the (µ+1)-EA always deleting an individual
with the worst fitness from the population.

The use of problem-specific mutation operators in the (1+1) EA for the
maximum leaf spanning tree problem has been investigated in [KLNO10b].
In this work, it has been pointed out that standard bit flip mutations do not
lead to fixed parameter evolutionary algorithms, where the parameter is the
value of an optimal solution. Edge exchanges that include an edge currently
not present in a spanning tree and that remove an edge from the resulting
cycle are frequently used for spanning tree problems as they again lead to
spanning trees. Using edge exchanges for mutation where the number of
edge exchanges is chosen according to a Poisson distribution with expected
value 1, it has been shown in [KLNO10b] that the resulting (1+1) EA is a
fixed-parameter evolutionary algorithm when taking the value of an optimal
solution OPT as the parameter.

2.3 Future work

There is lot of potential for future studies using fine-grained analyses to
provide new and important insights. Fixed budget and fixed target analysis
has mainly been applied to classical benchmark problems but the number
of results for classical combinatorial optimization problems is very limited.
Obtaining fixed budget results for such combinatorial optimization problems
which do not follow directly from the corresponding worst case analyses would
be very valuable and show the quality obtainable within a given time limit.
The same holds for fixed target analysis where such studies would reveal

10

important insights for combinatorial optimization problems in terms of the
time need to reach a desired quality.

The area of parameterized analysis of randomized search heuristics has
been explored for some of the classical combinatorial optimization problems
and such studies show which types of kernelization can be obtained in ex-
pected polynomial time. There are a wide range of kernelization techniques
available in the classical parameterized complexity literature and it is unclear
which types of kernels can be efficiently computed by evolutionary algorithms
or similar search heuristics. Once a kernel is obtained, current studies use
mutation operators that sample the reduced search space (almost) uniformly
at random. While this leads to fixed parameter evolutionary algorithms,
such operators are usually not that effective in practice. The question arises
whether there are other useful techniques such as parameter adaptation that
can be embedded into such mutation operators and ensure fixed parameter
evolutionary algorithms and high performance in practice.

3 Setting the Parameters of Evolutionary Al-

gorithms

The parameters of an evolutionary algorithm allow a user to adjust the EA to
the problem to be solved and thus to optimize its performance. This is a great
feature of EAs, but, at the same time, a difficult challenge [LLM07]. Missing
good parameter values often results in horrible performance. Unfortunately,
there is not much general advice on how to set the parameters.

In this section, we show how theoretical works have helped to understand
how the parameters of EAs influence their performance. Recently, the the-
ory of EAs has also made big progress in understanding and even designing
automated ways to find good parameter values.

3.1 Finding Optimal Static Parameter Values (Param-
eter Tuning)

By parameter tuning we understand the problem (or process) or finding suit-
able parameter values and then running the EA with these parameters. The
parameter values are not changed during the run, so we speak also of static
parameter values. For reasons of space, we cannot discuss the whole liter-
ature on theoretical results that help tuning EA parameters, and therefore
pick the mutation rate in elitist algorithms using standard bit mutation as
the most prominent example. Other parameters that have attracted the-

11

Algorithm 3: The (1 + λ) EA for maximization problems.

1 Choose x ∈ {0, 1}n uniformly at random;
2 repeat forever
3 repeat i = 1 to λ
4 Create yi by flipping each bit of x independently with

probability 1/n;

5 Choose i ∈ [1..λ] such that yi has maximal fitness among
y1, . . . , yλ, breaking ties uniformly at random;

6 if f(y) ≥ f(x) then
7 x := y

oretical research include the parent and offspring population size (see, e.g,
[JJW05, Wit06, RS14, DK15, ADFH18]) and the selection pressure (see, e.g.,
[JS07, Leh10, Leh11, LY12, ADY19]). For a discussion on how to set the pa-
rameters of estimation-of-distribution algorithms, we refer to Section 6.2.3.

We will focus our discussion in the following on the mutation rate, both
because it is an important parameter and it is a parameter where a deep
theoretical understanding exist. It is intuitively clear that we are faced with
a trade-off situation when setting the mutation rate. A small mutation rate
leads to slow a progress because the radius of exploration is small. A high
mutation rate is detrimental because the random choice of the bits to be
flipped on average increases the distance from the target solution, and this
effect is linear in the mutation rate.

An early established [Müh92, Bäc93] and generally accepted [Bäc96,
BFM97] recommendation is to use the mutation rate p = 1

n
in standard

bit mutation, that is, we generate an offspring by flipping each bit indepen-
dently with probability 1

n
. With this choice, the expected distance between

parent and offspring is one, so we inherit principles from local search. Dif-
ferent from local search, this mutation operator can leave local optima by
flipping more than one bit.

A large number of mathematical runtime analyses shows that p = 1
n

often is optimal and thus complements the experimental support for this
recommendation (see, e.g., [Och02] and the references therein). For the per-
formance of the (1 + 1) EA on OneMax, a mix of rigorous and heuristic
arguments already in [Müh92] and then fully rigorously in [GKS99] shows
that p = 1

n
is asymptotically optimal. For the LeadingOnes benchmark, a

rate of p ≈ 1.59
n

was proven to be optimal in [BDN10]. The OneMax result
was greatly extended in [Wit13] with a proof that p = 1

n
is the asymptotically

12

optimal mutation rate for each pseudo-Boolean linear function with non-zero
coefficients. In [GW17] it was proven that p = 1

n
is the asymptotically opti-

mal mutation rate for the (1 + λ) EA when the offspring population size λ is
not too large. The optimality of p = 1

n
was also shown for the optimization

of long-path functions [Sud13]. For monotone functions, the situation is not
fully understood, but again mutation rates around p = 1

n
appear to be a good

choice. For the runtime of the (1 + 1) EA on strictly monotonically increas-
ing functions, a Θ(n logn) runtime can easily be shown when the mutation
rate is c

n
for a constant 0 < c < 1. That c

n
mutation rates for larger c can

lead to exponential runtimes was first shown in [DJS+13], the best known
value for the constant c is 2.13... [LS18]. In the range around p = 1

n
, for a

long time only a runtime guarantee of O(n3/2) was known for p being exactly
1
n
[Jan07]. A significant progress on this long-standing problem was only

made very recently – in [LMS19] an entropy compression argument was used
to show that an O(n log2 n) runtime guarantee holds for all mutation rates
p = c

n
, where c ≤ c0 for some constant c0 > 1.

We note that the above results give some indication that p = 1
n
is a

good first choice for the mutation rate, but by no means they prove that
it always is. Indeed, already in [JW00] an example was constructed such
that the (1 + 1) EA with any mutation rate that is not Θ(logn

n
) needs super-

polynomial time with high probability to optimize this problem. In [Prü04],
the optimal mutation rates for the (1 + 1) EA optimizing hurdle functions
with hurdle widths 2 and 3 were shown to be 2

n
and 3

n
. This result could

have led to the following findings, but apparently its broader implications on
mutation rates (in a paper primarily discussing crossover) were not detected.
So it was only in [DLMN17] that the optimal mutation rate of the (1 + 1) EA
on jump functions was shown to be roughly k

n
, where k is the size of the fitness

gap of the jump function. Also, it was shown that a small deviation from
the optimal rate, say by a factor of (1 ± ε), ε > 0 a constant, leads to a
significant increase of the runtime by a factor exponential in k.

This result shows that the optimal mutation rate depends strongly on
the input instance, that there is no rate that is universally good for all jump
functions, and that the price for missing the right rate is significant. This
lead the authors of [DLMN17] suggest to use a random mutation rate, chosen
independently for each mutation from a power-law distribution (we remark
that random mutation rates were studied earlier to cope with unknown so-
lution lengths [DDK19] and higher-arity representations [DDK18]). This
heavy-tailed mutation operator shares with the classic mutation operator
the property that a single bit (and more generally, any constant number of
bits) is flipped with constant probability. When the power-law exponent is
above two, then it also shares the property that an expected constant num-

13

ber of bits is flipped. Different from the classic recommendation, however,
higher numbers of bits are flipped with larger probabilities. This essentially
parameterless operator was shown to give on any jump function a perfor-
mance of the (1 + 1) EA that differs from the one with instance-optimal
mutation rate by only a small factor polynomial in k. Heavy-tailed mutation
operators proved to be successful in several other discrete optimization prob-
lems [FQW18, FGQW18b, FGQW18a, WQT18, ABD20a, ABD20b, AD20].
From a broader perspective, this line of work is an example showing that
theoretical work not only can help understanding evolutionary algorithms,
but it can also propose new operators and algorithms.

3.2 Dynamic Parameter Settings (Parameter Control)

Instead of trying to find a good parameter setting before starting the EA
and sticking to this choice throughout the run of the EA, one could also
think of optimizing the parameters during the run of the algorithm. This
sophisticated-looking idea is called parameter control and turns out to be
less frightening than it appears at first.

Indeed, the decision space (and thus also the opportunity to take an un-
suitable decision) is much larger now – in principle, we could choose different
parameter values in each iteration – but there are several powerful ways to
overcome this difficulty. The advantage of parameter control is that we can
react on the performance observed so far. This has two particularly positive
consequences: (i) The need for finding good parameter values before the start
of the algorithm, based on a maybe only vague understanding of the problem
to be solved, is reduced since a suboptimal initial choice can be corrected.
(ii) In the common situation that different parameter settings are optimal
during different stages of the optimization process, we have the chance to use
the optimal parameters for each stage (whereas a static choice would need
to find a suitable trade-off).

It is clear that the large space of different parameter settings for each
iteration renders it unlikely to find the absolutely best dynamic choice of the
parameters. However, it turns out that often very simple success-based or
learning-based approaches lead to a very good performance, and often one
that is better than the best static parameter setting. This is confirmed in
many practical applications, see, e.g., [KHE15], but also in now a decent
number of theoretical works.

The theoretical superiority of dynamic parameter settings over static ones
was already demonstrated in [DJW00] (see also [JW06] for an extension of
this work), albeit for a simple algorithm with a simple time-dependent param-
eter choice optimizing an artificial problem. Nevertheless, this result has rig-

14

orously proven that, in principle, dynamic parameter choices can efficiently
solve problems where classic static choices would badly fail. Interestingly,
the idea of time-dependent mutation rates was recently used again [RW20]
to help EAs leaving local optima.

It took ten years until dynamic parameter choices could be shown su-
perior also for classic benchmark problems. The first such work [BDN10]
(see also [Doe19a, Section 2.3] for an extension) showed that a constant-
factor runtime gain can be obtained from a fitness-dependent choice of the
mutation rate when optimizing the classic LeadingOnes benchmark via
the (1 + 1) EA. Again it took some time until in [BLS14], a super-constant
runtime gain (of order O(log log λ)) from a dynamic parameter setting was
shown for the (1 + λ) EA optimizing OneMax. Other fitness-dependent pa-
rameter choices were discussed in [DDE15, DDY20]. A main problem with
fitness-dependent parameter settings (or more generally speaking, parameter
choices that depend on the current state of the algorithm) is that is needs a
very good understanding of the problem to define a suitable functional de-
pendence of the parameter value on the algorithm state. For the two exam-
ples from [BLS14, DDE15], it appears unlikely that without a mathematical
analysis someone would have found the optimal functional dependence. Find-
ing sub-optimal state-dependent parameter values that beat the best static
values appears more realistic, but this remains a challenging task requiring
a lot of expert knowledge.

Fortunately, there are dynamic parameter settings that need much less
expertise. Generally speaking, these observe how the algorithm performs
with the current parameter values (and sometimes also the values used in
a longer history) and based on this try to adjust the parameter values to
more profitable values. The easiest of these on-the-fly parameter choices are
success-based multiplicative parameter updates. Assume we suspect that in-
creasing a specific parameter assignment also increases the chance to find an
improvement, but at the price of increasing the computational cost of one
iteration. Then increasing the current parameter value after each iteration
without improvement and decreasing it after each iteration with improve-
ment is a simple way to try to move the parameter value into a profitable
region. Exactly this was suggested for the offspring population size λ of
the (1 + λ) EA in [JJW05] and was rigorously analyzed in [LS11], where an
asymptotically optimal speed-up of the parallel runtime (number of itera-
tions, ignoring the different costs of the iterations) was shown. The same
basic idea was shown to give a (small) asymptotic improvement of the total
runtime (number of fitness evaluations) for the (1 + (λ, λ)) GA optimizing
OneMax [DD18] and certain random SAT instances [BD17].

15

The usual way to change the parameter value is multiplying or dividing
by suitable constant factors. In [LS11], the factor 2 was used, and it is clear
that any other constant factor would have given the same asymptotic run-
time. In general, as observed in [DD18], smaller update factors can be the
safer choice, and also the relation of the factors used in case of success and
no success can be important. In [DDL19], a detailed analysis how the choice
of these hyperparameters influences the runtime of the (1 + 1) EA with dy-
namic mutation rate on the LeadingOnes function was conducted. Other
theoretical works on multiplicative parameter updates include [DDK18] for
multi-valued decision variables, [MS15] for migration intervals of island mod-
els, and [DLOW18] for the learning period of a hyperheuristic. We note that
the results just described are the first examples of success-based parameter
updates in discrete evolutionary optimization. In continuous optimization,
a multiplicative update of the step size known as one-fifth rule was already
proposed in [Rec73].

Multiplicative update rules work best if there is a simple monotonic influ-
ence of the parameter on the success, e.g., as seen for the offspring population
size of the (1 + λ) EA. Since such a simple relation is harder to find for the
mutation rate in the (1 + λ) EA, a different success-based scheme was devel-
oped in [DGWY19]. Here half of the offspring are generated with twice the
current rate, the other half with half the current rate. The mutation rate
is then updated to the rate the best offspring was generated with (however,
only with probability a half, with the other one-half probability the new rate
is chosen randomly from the two alternatives). This mechanism was shown
to let the (1 + λ) EA optimize OneMax in asymptotically the same time as
with the optimal fitness-dependent mutation rate developed in [BLS14].

A second way to go beyond multiplicative updates, and to additionally
take more stable decisions, was proposed in [DDY16]. Here for a small
number of possible values of a parameter, a time-discounted estimate of
the effectiveness of this parameter value was computed. In each iteration,
with large probability, the best-performing value was used (exploitation) and
with small probability a random one of the other values was used. With the
right choice of the hyperparameters, this mechanism was shown to arbitrarily
well approach the optimal mutation strengths of the (1 + 1) EA optimizing
OneMax that were computed in [DDY20].

The most generic way to let an EA optimize its parameters itself is self-
adaptation, which means that the parameters are made part of the encoding
of the solution candidates and thus become subject to variation and selection.
The first to use this idea from evolution strategies in discrete evolutionary
optimization was Bäck [Bäc92]. Taking the mutation rate as example, one ap-
pends an encoding of the mutation rate to the representation of the solution

16

candidates. When mutating such an extended individual, one first mutates
the mutation rate encoded in the extended individual and then, with the
new rate, the remainder of the individual. The hope is that the suitability
of a rate is visible from a higher fitness of the resulting individuals, and that
the selection mechanisms of the EA bring these individuals (and thus the
good mutation rate) forward in the population. While this way of adjust-
ing parameters is clearly more natural for an EA than parameter adjustment
mechanisms outside the evolutionary process, only three rigorous results sup-
porting the usefulness of self-adaptation in discrete evolutionary computation
have been published. In a first proof-of-concept work [DL16], an example is
constructed that shows that self-adaptation can be useful. In this example,
only two different mutation rates are available and it is assumed that the
whole initial population starts in a particular search point. In [DWY21], the
(1, λ) EA with self-adapting mutation rate is analyzed. With the hyperpa-
rameters suitably chosen, it can evolve sufficiently good mutation rates to
obtain asymptotically the same performance on OneMax that was previ-
ously obtained with the optimal fitness-dependent setting [BLS14] and the
two-population self-adjustment [DGWY19]. A self-adaptive choice of the
mutation rate for the (µ, λ) EA optimizing LeadingOnes was proposed
and analyzed in [CL20]. Here, the mutation rate is multiplied by a con-
stant A > 1 with some probability p, otherwise it is multiplied by a factor
b ∈ (0, 1). Such a multiplicative update was used in a success-based manner
in [DDL19]. When the algorithm parameters A, b, p, µ, λ satisfy certain natu-
ral range constraints, then this self-adjusting algorithm optimizes the capped
LeadingOnes function LeadingOnesk = min{LeadingOnes, k} (defined
on bit strings of length n) in time O(k2) for all k ∈ [Ω(log2 n)..n].

3.3 The Future of Parameter Research

The existing results show that we are now able to analyze a variety of static
and dynamic parameter choices with a precision high enough to clearly dis-
tinguish good from bad choices. Some of these works not only analyzed
existing algorithms or parameter adjusting mechanisms, but also suggested
new approaches. Clearly, as true for all theoretical works, the algorithms
and problems that were regarded are much simpler than those occurring in a
practical application of EAs. To what extent the recommendations obtained
from these simple settings generalize to more realistic ones is a crucial ques-
tion which can only be answered in a collaboration between theoretical and
applied researchers.

From the theory perspective, the following questions appear timely and
interesting.

17

• Interaction of parameters: So far, the vast majority of runtime anal-
yses varies at most one parameter of the algorithm. Experience from
practice shows that the interaction of several parameters is even harder
to understand. So more runtime analyses discussing several parame-
ters at once are clearly needed. Also, to the best of our knowledge,
there is currently no theoretical work regarding two or more indepen-
dent heavy-tailed parameters or self-adjusting or self-adaptive settings
of two or more parameters.

• Self-adaptation: The most natural way to let an algorithm optimize
its parameters is self-adaptation, where the parameters are integrated
into the evolutionary cycle. So far, only very little theoretical advice
exists how to successfully control parameters via self-adaptation. Here
clearly more work is required.

• Connections with machine learning: The area of machine learning has
made tremendous progress in the last decades. Given that EAs are
iterative algorithms in which often the state of the system changes
only little in each iteration, one could envisage that dynamic parame-
ter choices can profit from ideas and concepts borrowed from machine
learning. While some ideas used in EAs can be related to similar ideas
in machine learning, it seems to us that the full power of this connection
has not yet been exploited.

4 Analysis of Evolutionary Algorithms in

Dynamic and Stochastic Environments

Dynamic and stochastic environments play a key role in real-world appli-
cations as information is often uncertain and circumstances change over
time. Evolutionary algorithms have the ability to deal with changing cir-
cumstances and perform well in noisy environments which makes them well
suited for dealing with dynamic and stochastic problems. A key contribu-
tion to the design of evolutionary for dynamic problems is the PhD Thesis
of Branke [Bra00] which provides a wide range of techniques and investiga-
tions of evolutionary algorithms in dynamic environments. Many dynamic
problems have been tackled by evolutionary algorithms and other search
heuristics. This includes important problems with frequent dynamic com-
ponents such as vehicle routing [MGRD05, HO07]. Comprehensive presen-
tations on the different techniques and problems investigated can be found
in [NYB12, MLY17].

18

The area of runtime analysis has initially focused on simple toy problem
in dynamic and stochastic settings. Again the function OneMax has played
a crucial role to get initial insights. An important aspect in the context
of dynamic optimization is how often and how drastic a function changes
over time. We will describe important results for settings where the function
or the constraints of a given problem change dynamically. Furthermore,
we will summarize results where the fitness evaluation is impacted by noise
and point out different results according to different noise models studied in
the literature. Additional investigations regarding dynamic and stochastic
constraints in the context of submodular optimization are summarized in
Section 5.

4.1 Dynamic Benchmark Functions

The runtime analysis for dynamically changing functions in discrete search
spaces has been started by Droste [Dro02, Dro03]. He investigated a dy-
namic variant of the classical OneMax problem on binary strings. In the
first dynamic setting, one randomly chosen bit is flipped in each iteration
with probably p. Droste [Dro02] showed that the expected optimization
time of the (1+1) EA is polynomial iff p = O(log(n)/n). In the case where
each bit is flipped in each iteration with a given probability p investigated
in [Dro03], the runtime becomes super-polynomial if p = ω(log(n)/n2) and
is polynomial if p = O(log(n)/n2). These investigations were revisited ten
years later using drift analysis and generalized to the case where each element
is not binary but can take on r different values [KLW15a]. Investigations on
the magnitude and frequency of change for artificial benchmark functions
have been carried out in [RLY09]. This study provides examples where the
expected runtime changes drastically, i.e. from polynomial to exponential, if
the frequency of change changes from low to high (or vice versa).

A comparison on the ability of simple evolutionary algorithms and ant
colony optimization approaches for dealing with dynamic fitness functions
has been carried out in [KM12a, LW16]. These studies show that ant colony
optimization can beat evolutionary algorithms due to their ability of ad-
justing slowly to changes in the fitness functions. Investigations of parallel
evolutionary algorithms using island models carried out in [LW18] for the
MAZE function, introduced in [KM12a], show that infrequent migration of
individuals is necessary for dense models where as infrequent migration be-
comes less necessary when working with sparse topologies in the island model.
Furthermore, the usefulness of using non-elitist populations to track optima
of dynamically changing problems has been pointed out in [DJL17].

19

4.2 Dynamic Combinatorial Optimization Problems

There are also some results on classical combinatorial optimization problems
in the dynamic setting. Lissovoi and Witt [LW15] have investigated ACO
algorithms and shown how the number of ants can impact different types
of changes that can be tracked over time. They also give an example of
dynamic oscillations that can not be tracked with a polynomial number of
ants. Dynamic makespan scheduling for two machines has been investigated
by Neumann and Witt [NW15]. They have studied dynamic settings where
solutions of small discrepancy of the two machines have to be recomputed.
The results show that a worst case discrepancy of U , where U is an upper
bound on the maximal job length, can be maintained. Furthermore, better
upper bounds on the runtime and lower discrepancies are shown for the case
where the processing times of the jobs change randomly.

Dynamic variants of the minimum vertex cover problem have been con-
sidered in [PGN15, PRN20]. Following the edge-based encoding for the min-
imum vertex cover problem introduced in [JOZ13], the problem formulation
makes use of the dual formulation of the problem in order to represent so-
lutions. In [PGN15], the expected time to recompute 2-approximation when
edges are added or removed has been studied and improved results have been
presented in [PRN20].

Dynamic settings of the classical graph coloring problem have been inves-
tigated in [BNPS21]. Here, in particular, bipartite graphs have been studied
and the necessity of complex mutation operators has been revealed even if
there are only slight dynamic changes to the graph structure. These inves-
tigations have recently been extended in [BNPS20] and it has been shown
that a dynamic setting where edges are presented to the algorithm in an
iterative way can provably lead to better optimization times than presenting
the algorithm with the whole input graph at once.

4.3 Noisy Problems

Studies in the area of runtime analysis of evolutionary computing techniques
for discrete search spaces involving noisy objective functions have again been
started by Droste [Dro04] who analyzed the (1+1) EA on a noisy version of
OneMax. He studied a prior noise model. In this case, some bits of a solution
x are flipped prior to the fitness evaluation. The studies considered flipping
each bit with probability p prior to fitness evaluation and Droste showed that
the (1+1) EA can still obtain the optimal solution for OneMax in expected
polynomial time if p = O(n/ logn) whereas the expected optimization time
becomes super-polynomial if p = ω(n/ logn). In general, investigations can

20

be separated into ones investigating prior noise as described above and poste-
rior noise. In the case of posterior noise, the fitness of a solution x is evaluated
using the given fitness function f but noise is added afterwards to the fitness
value f(x). Gießen and Kötzing [GK16] build on this initial study by Droste
and extended the study to population-based evolutionary algorithms and
considered prior and posterior noise. Results for prior bit-wise noise for the
classical benchmark functions OneMax and LeadingOnes have been obtained
in [BQT18, QBJT19]. Additional and improved results including an exam-
ple where noise helps have been provided by Sudholt [Sud18] and estimation
of distribution algorithms (see Section 6) have been studied for OneMax in
[FKKS17]. A method that can be used for the analysis of dynamic and
noisy fitness functions has been developed in [DNDD+18]. Furthermore, the
trade-off between reducing noise through resampling and the computational
cost of resampling has been investigated by Friedrich et al. [FKQS17]. The
authors investigated classical evolutionary algorithms, estimation of distri-
bution algorithms and ant colony optimization for OneMax and the case of
additive posterior Gaussian noise. The use of non-elitist population based
evolutionary algorithms for noisy versions of OneMax and LeadingOnes has
been analyzed in [DL15a].

In terms of classical combinatorial optimization problems, Sudholt and
Tyssen [ST12] investigated the stochastic single-destination shortest path
problem and have pointed out settings where ant colony optimization is able
to solve this problem in expected polynomial time or obtain a good approx-
imation in expected polynomial time. These investigations have been ex-
tended in [DHK12] where a slight modification of the previously considered
ant colony optimization approach has been analyzed and shown that this
modified approach finds shortest path lengths efficiently although it does not
necessarily converge. Furthermore, stochastic constraints in form of chance
constraints which require that stochastic constraints can only be violated
with a small probability have been investigated recently (see Sections 4.4
and 5.3).

4.4 Combinatorial Optimization Problems with Dy-

namic and Stochastic Constraints

Dynamic constraints reflect the change in resources to solve a given problem.
This is often a crucial aspect in many planning problems where resources
such as trucks and trains might become unavailable due to failures or be-
come available (again) after maintenance. Considering dynamic constraints,
the objective function to be optimized is often assumed to be fixed and only

21

changes to the constraints are considered. The simplest example is the max-
imization of a linear function subject to a uniform constraint which limits
the number of elements to be at most B. The first runtime analysis in this
area considered the case where the bound B changes to B∗ and the question
is how long an evolutionary algorithm needs to recompute from an optimal
solution for a given bound B an optimal solution for the updated bound
B∗. The (1+1) EA and simple evolutionary multi-objective algorithms have
been studied in [SSF+19]. The multi-objective formulations enable to ef-
ficiently deal with constraint bound changes and this leads to significantly
better experimental results on a wide range of knapsack instances as shown
in [RNN18, RNN20] if the magnitude and frequency of change is not too
large.

Chance constraints model constraints that are impacted by some noise of
the given components and the goal is to optimize a given function f under the
condition that the constraint is violated with probability at most α, where
α is usually a small value, e.g. α = 0.001. Evolutionary algorithms for the
chance-constrained knapsack problem have by studied from an experimental
perspective by Yue et al. [XHA+19, XNN20, XNN21]. Furthermore, Assimi
et al. [AHX+20] investigated evolutionary multi-objective evolutionary al-
gorithms for the dynamic chance-constrained knapsack problem where the
constraint bound for the knapsack dynamically changes over time through
experimental studies. A first runtime analysis for problems with chance con-
straints has been carried out by Neumann and Sutton [NS19] for special
instances of the knapsack problem. It shows that even very simple linear
functions with a simple linear stochastic constraint can lead to local optima
with large inferior neighbourhoods that may make it hard for the (1+1) EA
to produce an optimal solution. These investigations have been extended by
Yue et al. [XNNS21] to the case of uniform stochastic weights where there
are groups of elements that are correlated. For the setting in which every
correlated group has the same profit profile, polynomial upper bounds on the
expected optimization time of RLS and the (1+1) EA have been given.

Important results on evolutionary algorithms for the optimization of sub-
modular functions under dynamic and stochastic constraints have been ob-
tained recently and are summarized in Section 5.3. Furthermore, a more
comprehensive and technical survey on the theory of evolutionary comput-
ing in dynamic and stochastic environments can be found in [RPN18].

4.5 Future work

While there has been quite a large progress in recent years in this area of re-
search, there are still a wide range of open problems and questions for future

22

research. Obviously, the understanding is still limited to basic benchmark
functions and some well structured combinatorial problems and to further
push the boundary of understanding is an important task. Combining exper-
imental analysis with mathematical investigations seems to be an important
way to go as understanding evolutionary algorithms from a mathematical
perspective is already challenging in static environments and even more true
in the case of dynamic and stochastic problems. The design of evolutionary
algorithms for dynamic and stochastic problems can (and has already been)
guided by theoretical results. One example are dynamic and stochastic vari-
ants of the knapsack problem as investigated in [RNN18, XHA+19] where the
multi-objective formulations are based on previous theoretical results. Such
interactions of experimental and mathematical research seems to be able to
bridge the gap and allow to transfer theoretical results into the design of
higher performing evolutionary algorithms.

5 Submodular optimization

Submodular functions play a keyrole in the area of optimization. Many real
world problems can be stated in terms of a submodular function as they face a
diminishing return when adding additional components to a solution (see the
survey of Krause and Golovin [KG14]). A wide range of greedy algorithms
and local search approaches are available to solve different types of submodu-
lar problems with different types of constraints [NWF78, KMN99, LMNS09].
In the area of classical algorithms, these algorithms are generally designed
and analyzed in terms of approximation guarantees that can be obtained
in polynomial time [CC84, Von10]. The wider area of artificial intelligence
also follows this approach but tests the performance of the developed ap-
proaches on important real-world problems matching the studied character-
istics [ZV16, MKF+19]. The previously mentioned studies can roughly be
divided by the type of objective functions that are considered and the set
of constraints. Furthermore, recent more general investigations consider the
case where a function is not necessarily submodular and obtain results de-
pendent on how close it is to being submodular measured in terms of the
so-called ”submodular ratio”. Other important characteristics of the prob-
lems considered are noisy or dynamic problems [Mon20, HS17] and problems
where additional information is revealed over time [GK11, EKM19].

Evolutionary algorithms have recently been analyzed and applied to dif-
ferent submodular optimization problems. We will summarize some of the
key results in this section. For more details on some of the results we refer
to the original articles or the recent book by Zhou et al. [ZYQ19]. This book

23

gives a very comprehensive presentation on submodular optimization by evo-
lutionary algorithms and discusses a wide range of submodular problems in
the areas of optimization and machine learning.

We consider the following setting. Given a set V = {v1, . . . , vn} of ele-
ments, the goal is to maximize a function f : 2V → R

+ that maximizes f
subject to a given set of constraints. Submodular functions are usually con-
sidered in terms of marginal value when adding a new element. We denote
by Fi(A) = f(A ∪ {i})− f(A) the marginal value of i with respect to A. A
function f is submodular iff Fi(A) ≥ Fi(B) for all A ⊆ B ⊆ X and i ∈ X \B.
Furthermore, a function f is called monotone iff f(A) ≤ f(B) for A ⊆ B.

The first investigations in terms of runtime behaviour of evolutionary al-
gorithms for submodular functions, we are aware of, have been carried out by
Rudolph [Rud97] in the 1990s. More than 15 years later this research area has
been re-started by Friedrich and Neumann [FN14] and has since then gained
significant attention. The research in the context of static optimization can
be grouped with respect to the type of objective functions and the type of
constraints that are considered. In terms of objective functions, it is usually
differentiated between monotone and non-monotone submodular functions.
Furthermore, the submodularity ratio plays a crucial role when broadening
the class of functions to functions that are not submodular. This ratio mea-
sures how close a function is to being submodular. The submodularity ratio
αf of a given function f is defined as

αf = min
X⊆Y,v 6∈Y

f(X ∪ v)− f(X)

f(Y ∪ v)− f(Y)
.

Note that if f is submodular then αf = 1 holds. The other important
component in these investigations are the type of constraints that are con-
sidered. Constraints are usually of the type c(X) ≤ B, where c : 2V → R

+

assigns a non negative cost to each set of elements X ⊆ V and B is a given
constraint bound. This type of constraints includes the case of a simple
uniform constraints where c(X) = |X| holds and limits the number of ele-
ments that can be included in a feasible solution by B. The maximization of
a monotone submodular function under a uniform constraint is already NP-
hard and can be approximated within a factor of (1−1/e) by a simple greedy
algorithm [NWF78]. More complex constraints involve partition or matroid
constraints which are given in form of linear functions. Complex constraints
that have been considered include cost values that can only be approximated,
i.e. involving NP-hard routing problems. Then the approximation obtained
for the submodular function depends on the type of objective function as
well as the ability to calculate the cost of the considered constraint. In the

24

following, we summarize some of the main results in this currently very active
research area.

5.1 Monotone Submodular Functions

Optimal solutions for monotone submodular functions f(X) with a cost con-
straint c(X) ≤ B can often be approximated well by simple greedy algo-
rithms (see [KG14] for a comprehensive survey).

Such greedy algorithms start with the empty set and add in each iterations
an element with the largest marginal gain

(f(X ∪ {x})− f(X))/(c(X ∪ {x})− c(X))

that does not violate the constraint. The algorithm stops if no element can
be added without violating the constraint bound.

Variants of GSEMO (see Algorithm 2) have been widely studied in the
context of optimzing submodular functions. The initial analysis carried out in
[FN14] considered the maximization of monotone submodular functions with
different types of constraints. After this GSEMO has been widely studied
in the context of submodular optimization under the umbrella of Pareto
Optimization which formulates a given constraint optimization problem as
a multi-objective problem by establishing an additional objective based on
the considered constraint. Such approaches have been widely used already
before this in the context of runtime analysis of GSEMO. Solving single-
objective problems by multi-objective formulations is a well-known concept in
the evolutionary computation literature and has been studied from a practical
and theoretical perspective since mid of the 2000s [Jen04, NW06, BFH+09].

For the simplest case of a uniform constraint where c(X) = |X|, GSEMO

can select in each step an element with the largest marginal again with respect
to f . Friedrich and Neumann [FN14] have shown that GSEMO produces
a (1 − 1/e)-approximation for monontone submodular functions with a uni-
form constraint in expected time O(n2(log n+B)) where B ≤ n. For mono-
tone submodular functions with k matroid constraints, local search and sim-
ple single-objective evolutionary algorithms such as the classical (1+1) EA
are able to obtain good approximation results. It has been shown by Lee
at al. [LMNS09] that local search introducing at most 2p new elements
and removing at most 2kp elements is able to obtain a (1/(k + 1/p + ǫ))-
approximation in polynomial time if k ≥ 1 and p ≥ 2 are constants. This
result has later on been used to show that the (1+1) EA is able to obtain the
same approximation guarantee in expected time O(1

ǫ
· n2p(k+1)+1 · k · log n).

The crucial part of the proof is a result from [LMNS09] which shows that

25

every solution x for which there is no y in the defined neighborhood with
f(y) ≥ (1 + ǫ

n(k+1)
) · f(x) is already a (1/(k + 1/p+ ǫ))-approximation.

Further investigations lead to a wide range of results for GSEMO on
various submodular problems with cost constraints. The algorithmGSEMO

is often called POMC (Pareto Optimization algorithm for maximizing a
monotone function with a monotone Cost constraint) (or similar) in such
articles. The approaches are referred to as Pareto optimization and specify
the class of problems to be tackled. However, usually the difference only lies
in the formulation of the objective functions to formulate the constrained
submodular problems as a multi-objective optimization problem.

An important result covering a wide range of monotone functions for a
broad class of cost constraints has been obtained by Qian et al. [QSYT17].
They investigated monotone functions in terms of submodularity ratio and
general cost functions including ones for which it is hard to obtain an opti-
mal solution exactly. Their theoretical results make use of proof ideas used
for an adaptive greedy algorithm and show that POMC is able to obtain
the same approximation guarantee in expected pseudo-polynomial time. The
expected runtime may be exponential with respect to the given input here
if both the submodular function and the cost function can take on exponen-
tially many values. In this case, the population size of GSEMO may become
exponential during the run. More precisely, they have shown that POMC

obtains a (α/2) · (1 − e−α)-approximation, α is the submodularity ratio, for
a tightened cost constraint bound B̂ (instead of B) where B̂ depends on how
well the given cost constraint can be approximated. Note that this setting
includes problems where the cost of a solution may be hard to compute, i.e.
for a selection of items it could be an approximation of a minimum Traveling
Salesperson tour. The experimental results show that POMC clearly out-
performs the adaptive greedy approach if the evolutionary algorithm is given
a sufficient large number of fitness evaluations. Recently, an evolutionary
multi-objective algorithm called EAMC has been introduced in [BFQY20]
which obtains the same worst-case approximation ratio as POMC in ex-
pected polynomial time if the submodularity ratio of the given problem in
known and used as a parameter in the algorithm. However, EAMC usually
performs worse than POMC on important benchmark problems.

Subset selection has also been investigated in the context of sparse regres-
sion. Here the submodular ratio αf of the underlying function to be optimized
plays a crucial role for the approximation quality obtained. Again, a vari-
ant of GSEMO called POSS [QYZ15] achieves in expected polynomial time
the same approximation quality as a greedy approach called forward regres-
sion [DK11], namely a solution X with f(x) ≥ (1−e−α)·OPT . Furthermore,
POSS outperforms forward regression and other simple heuristics in experi-

26

mental investigations in terms of solution quality when giving it a sufficient
amount of time to improve solutions during the evolutionary optimization
process.

5.2 Non-monotone Submodular Functions

For symmetric functions which are not necessarily monotone and have k ma-
troid constraints, evolutionary algorithms and local search approaches can
increase the function value by local operations to obtain a good approxi-
mation. Lee et al [LMNS09] have shown that if the value of a solution x
can not be increased by a factor of at least (1 + ǫ/n4) by changing at most
k + 1 elements, then x is a 1

(k+2)(1+ǫ)
-approximation. The series of such lo-

cal improvements requires that the algorithm obtains a solution x of value at
least f(x) ≥ OPT/n. Such a solution can be obtained from the empty set by
adding the single element with the largest function value. Consequently local
search algorithms building on such a solution and exchanging at most k + 1
elements obtain a solution with the stated approximation quality in polyno-
mial time [LMNS09]. It has been shown that GSEMO obtains a 1

(k+2)(1+ǫ)

-approximation in expected time O((1/ǫ)nk+6 log n). The proof analyzes the
process until a solution x with f(x) ≥ OPT/n is obtained and the required
number of local improvements until a solution of the stated approximation
quality is obtained.

In their recent work, Qian et al. [QYT+19] give other major results which
are broadening the setting of previous investigations. They considered an
evolutionary multi-objective algorithm called GSEMO-C which differs from
GSEMO by producing from the offspring x′ a second offspring x′′ which
is the complement of the first offspring. The selection step of GSEMO is
then applied to both x′ and x′′. The authors first showed that for the case
of non-monotone submodular functions without any constraint, GSEMO-C

is able to obtain a (1/3− ǫ/n)-approximation in expected time O(n
4

ǫ
log n).

For ǫ-monotone submodular functions, ǫ ≥ 0, where f(X ∪ {x}) ≥ f(X)− ǫ
holds for any X ⊆ V and x 6∈ X , and a uniform constraint with bound
B, they showed that GSEMO-C achieves a solution x with f(x) ≥ (1 −
1/e) · (OPT − kǫ) in expected time O(n2(B + log n)) which generalizes the
result given in [FN14] to a wider range of functions by taking their closeness
to monotonicity into account. Similar approximation results also hold for
GSEMO-C when considering ǫ-approximately submodular functions, i.e.
for functions f for which a submodular function g exists such that for all
X ⊆ V , (1− ǫ)g(X) ≤ f(X) ≤ (1 + ǫ)g(X) holds. The authors showed that
suitable approximation can also be obtained for a wider range of functions

27

with a cardinality constraint in expected time O(n2(B+logn)). Specifically,
they obtained results that depend on the submodularity ratio of the problem
and investigated functions that are ǫ-approximately submodular.

Functions with bounded curvature under partition matroid constraints
have been investigated in [FGN+19]. The results include the case of non-
monotone submodular functions and approximation guarantees have been
shown for the generalized greedy algorithm. These investigations have re-
cently been extended by Do and Neumann [DN20a] to the evolutionary
multi-objective algorithm GSEMO which is able to guarantee the same ap-
proximation quality as greedy but usually outperforms greedy in practice.

5.3 Submodular Functions with Dynamic and Stochas-

tic Constraints

Recent studies extended the investigations for monotone objective and costs
functions to problems with dynamic constraints as well as constraints involv-
ing stochastic components. Roostapour et al. [RNNF19] investigated the
setting of general cost constraints where the constraint bound B changes
over time. Generalizing the results of Qian et al. [QSYT17] which are sum-
marized in Section 5.1, they have shown that the evolutionary multi-objective
approach POMC computes an approximation for every budget b, 0 ≤ b ≤ B.
Furthermore, they have shown that if B is increased to B∗, then an approx-
imation for every b, 0 ≤ b ≤ B∗ is obtained in pseudo-polynomial time. In
contrast to this, it has been pointed out in [RNNF19] that simple adaptations
of the generalized greedy algorithm are not able to maintain good approxima-
tions when dynamic changes are carried out. Furthermore, POMC is able
to learn the dynamic problems over time which gives it significant advan-
tages over the greedy approaches as shown in comprehensive experimental
investigations [RNNF18].

Recently, the investigations in the area of submodular optimization have
also been extended to stochastic constraints. Chance constraints play an im-
portant role in stochastic settings. These model situations where components
of a constraint are stochastic and the goal is to optimize a given submodular
objective function such that the probability of violating a given constraint
bound is at most α. Doerr et al. [DDN+20] investigated greedy algorithms
for the optimization of monotone submodular functions for two settings. In
the first setting, the stochastic weights are identically and independently uni-
formly distributed within a given interval [a−δ, a+δ], δ ≤ a, where δ models
the uncertainty of the items. In the second setting each element s has its own
expected weight and is chosen independently of the others and uniformly at

28

random in [a(s) − δ, a(s) + δ], δ ≤ mins∈V a(s). The investigations have re-
cently been extended by Neumann and Neumann [NN20] to GSEMO and it
has been shown that this algorithm is able to obtain the same approximation
guarantee as the greedy approach in expected polynomial time in the case
of identically and independently uniformly distributed weights. For the sec-
ond setting, the same approximation guarantee as the one obtained for the
greedy approach is obtained in expected pseudo-polynomial time. Further-
more, experimental investigations carried out for the influence maximization
problem in social networks and the maximum coverage problem show that
GSEMO significantly outperforms the greedy approach. A comparison of
GSEMO to a standard setup of NSGA-II reveals that GSEMO is also often
outperforming NSGA-II for the investigated settings which suggests that the
ability of GSEMO to construct solutions in a greedy fashion is also crucial
for the success of the algorithm in practice.

5.4 Future work

The studies show that evolutionary algorithms often provide the same worst
case performance guarantees as classical algorithms but perform much better
in practice. Many studies focus on variants of GSEMO which may encounter
an exponential population size. Recent investigations show that special type
of archived based algorithms such as EAMC only need a polynomial popu-
lation size and achieve the same approximation guarantees. However, these
algorithms usually perform worse in practice. Overall, it would be impor-
tant to get a better understanding of classical evolutionary multi-objective
algorithms for the use of Pareto optimization approaches in the context of
submodular functions. Furthermore, the multi-objective model is usually
used to enable a greedy process and the question arises whether the whole
set of possible trade-offs in the multi-objective formulation is required to
achieve good results from a mathematical and experimental perspective. In
terms of problem characteristics, it seems to be important to expand previous
investigations, in particular, in the areas of dynamic, stochastic problems and
further investigate the adaptation capabilities of evolutionary approaches for
submodular problems in changing environments.

6 Theory of Estimation-of-Distribution Algo-

rithms

Estimation-of-distribution algorithms (EDAs) are a more recent class of evo-
lutionary algorithms (EAs). As a main difference to classic EAs, they do

29

not evolve a population (that is, a finite set of solution candidates), but a
probabilistic model of a solution candidate (that is, a probability distribution
over the search space). Whereas a traditional EA selects individuals from a
parent population, creates from them offspring via mutation and crossover,
evaluates the offspring, and based on this evaluation selects from parents and
offspring the next parent population, the EDA samples individuals from the
current probabilistic model, evaluates them, and based on this evaluation
defines the next probabilistic model. When viewing a parent population of
a classic EA as probabilistic model (uniformly distributed on the individu-
als of the population), one can interpret population-based EAs as particular
EDAs, but it is clear that the probabilistic models of EDAs are much more
expressive than models building on finite populations. The obvious hope
is that this richer class of algorithms contains better optimizers. However,
there is also the additional hope that the probabilistic model evolved by an
EDA can give insights beyond the good solutions that can be sampled from
it.

Most EDAs were defined in the 1990s, first in 1993 in an unpublished
work [JBS93] by Ari Juels, Shumeet Baluja, and Alistair Sinclair (see [Lob07])
proposing the equilibrium genetic algorithm (similar ideas can already be
found in [Ack87, Sys93]). While clearly containing the right ideas, this pa-
per was never published and this algorithm is little known. Acknowledging
the joint work with Ari Juels, Shumeet Baluja [Bal94] proposed a very sim-
ilar algorithm called population-based incremental learning (PBIL). As an
important special case of it, Mühlenbein and Paass [MP96] two years later
suggested the univariate marginal distribution algorithm (UMDA). In 1999,
Harik, Lobo, and Goldberg [HLG99] proposed the compact genetic algorithm
(cGA). These and many other EDAs found numerous successful applications
in the following years, see, e.g., the surveys [HP11, LL02, PHL15].

First attempts to understand EDAs via theoretical means soon followed,
starting – as often – with convergence results such as [HR97]. We note, how-
ever, that many of these very early results work with simplifying assumptions
such as infinite population models and thus are not fully rigorous in the strict
mathematical sense. In a series of works, Shapiro [Sha02, Sha05, Sha06] an-
alyzed how the parameters of EDAs influence the effect of genetic drift. We
discuss this central topic in more detail in Section 6.2.3.

The first rigorous runtime analysis for an EDA was presented by Droste
at GECCO 2005 (journal version [Dro06]). Chen, Lehre, Tang, and
Yao [CLTY09] exhibited an artificial example problem which is easily solved
by the UMDA, but for which the (1 + 1) EA with any Θ(1

n
) mutation rate

needs exponential time to find the optimum. In [CTCY10], Chen, Tang,
Chen, and Yao discussed the use of frequency boundaries to prevent prema-

30

ture convergence. After these early works, it took another five years without
theoretical works on EDAs until this area gained significant momentum in
2015–2016 with works like [DLN19] (conference version at GECCO 2015),
conducting a runtime analysis of the UMDA on OneMax and Leading-

Ones, [FKKS17] (conference version at ISAAC 2015) on the robustness of
EDAs to noise, [SW19] (conference version at GECCO 2016) on how the
update strength influences the runtime of the cGA, and [FKK16] pointing
out that the main known EDAs are balanced, but not stable (that is, sub-
ject to genetic drift). These works generated a broad interest in theoretical
analyses of EDAs, resulting is a large number of strong papers by a number
of different authors. We refer to the recent survey [KW20a] for more details.

There is a natural connection between EDAs and ant colony opti-
mization (ACO), since the pheromone system of an ACO algorithm leads
to a probabilistic model of the search space as well. Two notable dif-
ferences between classic EDAs and ACO algorithms are (i) that some
ACO algorithms perform a pheromone update with the best-so-far solu-
tion, hence the state of the algorithm is not only described by the proba-
bilistic model, and (ii) that many ACO algorithms, in particular those for
graph-based problems, use a very particular way of constructing new solu-
tions. For this reasons, we do not discuss ACO algorithms in this section
and refer the reader to the literature, e.g., the early concergence analy-
ses [Gut00, SD02, Gut02, Gut03, ST05], the first steps in runtime analysis for
the 1-ANT algorithm and the MMAS with best-so-far improvement [NW09,
DJ07, Gut08, GS08, NSW09, DNSW11], runtime analyses on graph-based
problems [AF08, Zho09, NW10a, KNRW10, KLNO10a], runtime analyses
for ACO algorithms with iteration-best improvement (which are very close
to EDAs) [NSW10, SW19], works demonstrating the robustness of ACO in
stochastic environments[KM12b, ST12, DHK12, FK13, LW16, FKKS16], or
the survey [Gut11], which still is a very valuable resource.

6.1 The Compact Genetic Algorithm

We now describe the compact genetic algorithm (cGA) [HLG99], which will
serve as a central example in this section. Other EDAs such as the UMDA
or PBIL are substantially different, but appear to have similar strengths
and challenges, so expecting similar results for these is a reasonable rule of
thumb. However, we only concentrate on EDAs for discrete optimization
problems here and we expect very different results in the continuous world.
For reasons of simplicity, we only regard pseudo-Boolean problems, that is,
the optimization of functions f : {0, 1}n → R.

31

The compact genetic algorithm (cGA) is a univariate EDA, that is, it
treats the decision variables independently. For pseudo-Boolean problems,
its probabilistic model is described by a frequency vector p ∈ [0, 1]n. This
frequency vector determines the following probability distribution on the
search space {0, 1}n. If X = (X1, . . . , Xn) ∈ {0, 1}n is a search point sampled
according to this distribution – we write X ∼ Sample(p) to indicate this –
then we have Pr[Xi = 1] = pi independently for all i ∈ [1..n] := {1, . . . , n}.
In other words, the probability that X equals some fixed search point y is
Pr[X = y] =

∏

i:yi=1 pi
∏

i:yi=0(1− pi).

In each iteration, the cGA samples two search points x1, x2 ∼ Sample(p),
computes their fitness, sorts them by fitness, that is defines (y1, y2) := (x1, x2)
if x1 is at least as fit as x2 and (y1, y2) := (x2, x1) otherwise, and updates the
frequency vector to p := p + 1

K
(y1 − y2), capped into the interval [0, 1], that

is, with entries below zero replaced by zero and entries above one replaced by
one. This definition ensures that when y1 and y2 differ in some bit position
i, the i-th frequency moves by a step of 1

K
into the direction of y1i (but not

below zero and above one). The hypothetical population size K, often also
denoted by µ, is an algorithm parameter that controls how strong this update
is. To avoid a premature convergence, one often works with the frequency
boundaries 1

n
and 1− 1

n
, that is, one caps the new frequency vector into the

interval [1
n
, 1− 1

n
] instead of [0, 1].

This iterative frequency evolution is pursued until some termination cri-
terion is met. Since we aim at analyzing the time (number of iterations) it
takes to sample the optimal solution (this is what we call the runtime of
the cGA), we do not specify a termination criterion and pretend that the
algorithm runs forever.

Algorithm 4: The compact genetic algorithm (cGA) to maximize
a function f : {0, 1}n → R.

1 p = (1
2
, . . . , 1

2
) ∈ [0, 1]n;

2 repeat
3 x1 ∼ Sample(p);
4 x2 ∼ Sample(p);
5 if f(x1) ≥ f(x2) then (y1, y2)← (x1, x2) else (y1, y2)← (x2, x1);
6 p← p+ 1

K
(y1 − y2) capped into [0, 1] or [1

n
, 1− 1

n
];

7 until forever ;

32

6.2 Central Results

In this section, we discuss three main insights which the theoretical analysis
of EDAs has produced. For reasons of space, we point out two of them only
briefly, namely that EDAs can perform well in noisy optimization and that
they can cope well with local optima, and then discuss in detail how to set the
parameters of EDA as this might the biggest obstacle in successfully using
EDAs.

6.2.1 EDAs Can Cope Well with Noise

In their remarkable work [FKKS17], Friedrich, Kötzing, Krejca, and Sutton
exhibit that the cGA is extremely robust to noise. More precisely, they show
that the cGA with a suitable parameter choice can optimize a OneMax

function subject to additive normally distributed noise in a runtime that only
polynomially depends on the variance σ2 of the noise. As they also show,
such a performance cannot be obtained with many classic EAs. The reason
for this robustness is the cautious update of the probabilistic model in each
iteration (as opposed to the “drastic” alternatives of a classic EA, rejecting an
offspring or keeping it and discarding some other individual). This caution
of the EDA implies that a single wrong evaluation of a search point only
has a small influence on the future run of the algorithm. In the only other
study on how EDAs cope with noise, Lehre and Nguyen [LN19b] show that
the UMDA with suitable parameter choices can optimize the LeadingOnes

problem in time O(n2) also in the presence of constant-probability one-bit
prior noise.

6.2.2 EDAs Can Cope Well with Local Optima

Another difficulty for many EAs are local optima. Once the population of
the EA is concentrated on the local optimum, it is difficult to leave this local
optimum. As Hasenöhrl and Sutton [HS18] (see also [Doe19c]) show, the
larger sampling variance of the cGA (in the regime without genetic drift)
enables the algorithm to leave local optima much faster than many classic
EAs. More specifically, Hasenöhrl and Sutton show that the cGA can opti-
mize a jump function with jump size k in time exp(O(k + log n)), whereas
many mutation-based EAs need time Ω(nk).

6.2.3 Genetic Drift and Optimal Parameter Choices

Both the result on noisy optimization and the one on local optima indicate
that EDAs can have significant advantages over classic EAs. For reasons of

33

brevity, we nevertheless omit further details and now turn to an important
topic where a large sequence of works together have greatly increased our
understanding, namely how to choose the parameters of EDAs and what is
the role of genetic drift in EDAs.

While choosing optimal parameters for EAs is never easy, for many clas-
sic EAs a number of easy rules of thumb have been developed. For exam-
ple, for mutation-based EAs the general recommendation to use standard-
bit mutation with mutation rate p = 1

n
often gives reasonable results

(though [DLMN17] suggests that this impression is caused by an overfit-
ting to unimodal problems). For EDAs, such general rules that are true over
different classes of problems appear to be harder to find. From a large num-
ber of theoretical works, we now understand quite well why and we also have
a number of different solutions to this problem.

The main challenge is choosing an appropriate speed of adapting the
probabilistic model. If this speed of adaptation is low, then it simply takes
a long time to change the initial, usually uniform, model into a model that
samples good solutions with reasonable probability. However, if the speed of
adaptation is high, then the small random signals stemming from the ran-
dom choices in the sampling of solutions are over-interpreted and the model
is quickly adjusted to an incorrect model. When an EDA without frequency
boundaries is used, this means that the model has (at least partially) con-
verged to an incorrect model without the possibility to ever return. With
frequency boundaries, there is still the chance to revert to a good model,
but practical experience and theory shows (i) that this can take a long time
and (ii) that usually the EDA continues to work with degenerate models and
thus, to some extent, imitates classic EAs (and consequently does not profit
from the more general model-building ability). The effect that frequencies
without a justification from the fitness function move to boundary values is
known as genetic drift.

Since genetic drift can lead to significant performance problems and since
the risk of encountering genetic drift via unfortunate parameter choices is
high, the question how to avoid genetic drift is, explicitly or implicitly, a
common theme of almost all theoretical works on EDAs. Shapiro’s very
early works [Sha02, Sha05, Sha06] discussed this question explicitly, Droste’s
first rigorous runtime analysis regarded how the cGA optimizes OneMax

only when the update strength 1
K

is O(n−0.5−ε) for some constant ε > 0, a
parameter regime in which the cGA with high probability finds the optimum
of OneMax in a way that never a frequency goes below 1

3
, that is, without

encountering genetic drift. For reasons of space, we shall not describe in
detail the whole history of understanding genetic drift of EDAs, but present
immediately the final result only mentioning that both explicit investigations

34

of genetic drift like [Sha02, Sha05, Sha06, FKK16, DZ20b] and the insights
gained from many runtime analyses like [Dro06, DLN19, LN17, SW19, Wit19,
KW20b, LSW21, HS18, Doe19c, Doe19b] paved the way towards this result.

Before discussing how to avoid genetic drift, let us quickly describe what is
known about the danger of genetic drift. A first indication that genetic drift
could be dangerous can be derived from the positive results – the majority
of the proven upper bounds for runtimes of EDAs only apply to regimes in
which there is provably no genetic drift, and in fact, most proofs heavily
exploit this. Rigorous proofs that genetic drift can lead to performance
losses are much more rare and appeared only very recently, owing to the
fact that lower bound proofs for EDAs are often very difficult. In their
deep analysis [LSW21], Lengler, Sudholt, and Witt showed that the cGA
with K = Θ(n0.5/(logn · log log n)) needs time Ω(n7/6/(logn · log log n)) to
optimize OneMax and the proof of this result shows that genetic drift is
present. For K = cn0.5 lnn, c a sufficiently large constant, the cGA only
needs time O(n logn) and here no genetic drift occurs [SW19]. A more
drastic loss from genetic drift, albeit on an artificial example problem, was
observed in [LN19a, DK20c]. Lehre and Nguyen [LN19a] define the deceiving-
leading-blocks (DLB)1 problem and show that the UMDA with Ω(log n) ≤
µ = o(n) needs time exponential in µ to find the optimum. By [DZ20b], in
this parameter regime genetic drift is encountered when the runtime is ω(n2).
In [DK20c], it is shown that the UMDA with µ = Θ(n logn) can optimize the
DLB problem in time O(n2 logn) by profiting from the fact that now there
is no genetic drift. A few experimental results also discuss the influence of
genetic drift on the performance of an EDA, e.g., Figure 3 in [KW20a] shows
the runtime of the UMDA on OneMax and Figure 1 in [DZ20a] shows the
runtimes of the cGA on OneMax, LeadingOnes, jump functions and the
DLB problem. These results show a mild negative impact of genetic drift in
the two OneMax experiments, a stronger impact for LeadingOnes, and a
drastic impact for jump functions and DLB.

We now discuss how to predict and avoid genetic drift. A good way to
measure genetic drift is by regarding a fitness function with a neutral bit,

1While not essential for the understanding of this section, for the sake of completeness
we give a definition of the DLB problem. Let n be even. Then the DLB problem with
problem size n is the following function f defined on bit strings of length n. The unique
global optimum of f is x∗ = (1, . . . , 1), it has fitness f(x∗) = n. For all x ∈ {0, 1}n \ {x∗},
let LB(x) = max{i ∈ [0..n/2] | ∀j ∈ [1..2i] : xj = 1} denote the number of disjoint blocks
of length two that are equal to (1, 1), counted from left to right until a different block is
encountered. We call this block (x2LB(x)+1, x2LB(x)+2) the critical block. The fitness f(x)
of x is 2LB(x) + 1, if the critical block equals (0, 0), and is f(x) = 2LB(x) if the critical
block is (1, 0) or (0, 1).

35

that is, a bit position that has no influence on the fitness. This might be
overly pessimistic, since for such a bit the risk that the frequency approaches
an unwanted boundary value might be higher than for a bit with strong
influence on the fitness, but (i) a pessimistic view cannot be wrong here as a
slightly too weak model update strength only slightly increases the runtime,
whereas genetic drift as just seen can be detrimental, and (ii) the results
just described show that the estimates from regarding neutral bits, for these
examples, cannot be far from the truth.

The up to now most complete answer to the question of genetic drift
was given in [DZ20b], as said, a work that would not exist without the long
sequence of previous works named above. We discuss this result in detail for
the cGA and note that similar results are true for the UMDA and PBIL.

Theorem 1. Let f : {0, 1}n → R. Assume that the i-th bit of f is neutral,
that is, f(x) = f(y) for all x, y ∈ {0, 1}n with xj = yj for all j ∈ [1..n] \ {i}.
Consider optimizing f via the cGA with hypothetical population size K using
the frequency range [ε, 1− ε] for some ε ∈ [0, 1

4
]. Denote by p(t) the frequency

vector resulting from the t-th iteration.

1. Let T ∗ = min{t | p(t)i ∈ {ε, 1− ε}}. Then E[T ∗] = O(K2).

2. Let T1/4 = min{t | p(t)i ∈ [0, 1
4
] ∪ [3

4
, 1]} ≤ T ∗ be the first time the

i-th frequency leaves the interval (1
4
, 3
4
) of the frequency range. Then

E[T1/4] = Ω(K2).

3. For all γ > 0 and T ∈ N, we have Pr[∀t ∈ [0..T] : |p(t)i − 1
2
| < γ] ≥

1− 2 exp
(

−γ2K2

2T

)

.

In very simple words the above result states that if we run the cGA for less
than roughly K2 iterations, then we do not encounter genetic drift, whereas
after more than roughly K2 iterations, genetic drift is likely to occur.

The tail bound (3) together with a simple union bound admits more
precise guarantees, e.g., the following two formulations.

• If our aim is to run the cGA for T iterations on some pseudo-Boolean
function of dimension n, then by taking K ≥

√

32T ln(2n2) we can en-
sure that with probability at least 1− 1

n
no neutral bit has its frequency

leave the interval (1
4
, 3
4
) within these T iterations.

• When K is given, the probability that within T ≤ K2

32 ln(2n2)
iterations a

neutral frequency leaves the interval (1
4
, 3
4
) is at most 1

n
.

36

We note without further details that similar statements hold for bits which
are not neutral, but which have a preference for a particular value b, that
is, where changing the bit-value to b can never decrease the fitness. Here
the above statements hold for the undesired events that the frequency of this
bit approaches the wrong boundary 1− b. We refer to [DZ20b] for a precise
statement of this result. This extension allows one to determine good values
for the hypothetical population size for simple test functions likeOneMax or
LeadingOnes: If we run the cGA on one of these functions for T iterations,
then taking K ≥

√

32T ln(2n2) ensures that with probability at least 1 − 1
n

no frequency will go below 1
4
.

For bit-values that have no uniform preference for a particular value
(which is, naturally, the typical case for difficult optimization problems),
we would still recommend to stick to the above-derived recommendations for
setting K since this at least avoids that frequencies reach the wrong value
due to genetic drift. If a fitness landscape is strongly deceptive (the fitness
drags the typical heuristics away from the global optimum), clearly, such
arguments cannot avoid that frequencies approach the wrong end of the fre-
quency range due to the misleading fitness signal. We note though that the
heuristic argument for setting K along the lines from above gives a good
value and a good optimization behavior for the non-unimodal jump function
class [HS18, Doe19c].

We finally note that there are three “automated” ways to approach the
difficulty of finding the right parameter value. Inspired by the above insight,
Doerr and Zheng [DZ20a] proposed to start with a small value of K, run the
cGA until either a satisfying solution is found or the time exceeds a limit
up to which we are sure to not observe genetic drift and then restart with
twice the K-value. In [Doe19c], a strategy is proposed that in parallel works
with different K-values. Both approaches were proven to optimize simple
test functions in a time that is by at most a logarithmic factor larger than
the runtime that can be obtained from using the optimal value of K. An
experimental comparison [DZ20a] gives no clear picture which of the two
approaches is superior. Clearly, both perform better than what results from
a static, but inappropriate choice of K.

Instead of solving the genetic drift problem via a suitable choice of K,
the significance-based cGA proposed in [DK20b] tries to avoid genetic drift
outright. We recall that genetic drift is caused by random fluctuations of
the frequencies, which again are caused by sampling search points from the
probabilistic model and updating the model based on these. Therefore, the
significance-based EDA avoids updating the model based on such short-
sighted insights. Instead, this algorithm does not update the model until
the history of the process gives sufficient evidence that some bit should bet-

37

ter have a particular value. In this case, a drastic model update is performed
by setting the corresponding frequency to 1

n
or 1 − 1

n
. This algorithm was

shown to optimize both OneMax and LeadingOnes in time O(n logn), a
performance not observed with any other classic EA or EDA so far. With no
research on non-unimodal objective functions and no practical experience so
far, of course, this is still a very preliminary line of research.

6.3 Open Problems

Being a very recent research topic, it is clear that the theory of EDAs con-
tains more open problems than solved ones, and many open problems are
fundamental for our understanding and the future use of EDAs. We first
mention briefly research topics where we feel that more results would greatly
help and then give more details for two particular research questions.

• Robust optimization: The only two results [FKKS17, LN19b] here show
that the cGA can efficiently optimize OneMax in the presence of nor-
mally distributed additive posterior noise and that the UMDA can effi-
ciently optimize LeadingOnes in the presence of one-bit prior noise.
Having such results for other EDAs, other optimization problems, and
other noise models (and other stochastic disturbances such as dynam-
ically changing problem instances) would be highly desirable.

• Combinatorial optimization: While for classic EAs a large num-
ber of runtime analyses for combinatorial optimization problems ex-
ist [NW10b], no such results have been shown for EDAs.

• Representations different from bit strings: For classic EAs, a number
of results exist for problem representations different from bit strings,
e.g., [STW04, DJ10, DDK18], and these results show that the choice of
the representation and the choice of the variation operators for these
can make a crucial difference. For EDAs, all results so far only discuss
bit-string representations.

We now discuss in more detail two possible directions for future research.

6.3.1 Runtime Results in the Regime with Genetic Drift

In the regime without genetic drift, EDAs often show a regular optimization
behavior which often allows one to prove matching upper and lower bounds
for runtimes. In the presence of genetic drift, the runtime is strongly in-
fluenced by how some frequencies approach the boundaries of the frequency

38

range. It is thus rare events that determine the runtime and this makes it
much harder to prove tight bounds. One could argue that runtime anal-
yses in this regime are less interesting since we rather expect larger run-
times and rather an undesired behavior (e.g., imitating EAs), but this is
not the full truth. For example, the UMDA optimizes OneMax in time
Θ(n log n) both for µ = Θ(logn) in the regime with (strong) genetic drift
and for µ = Θ(

√
n log n) in the regime without genetic drift.

Apart from sporadic results, which most likely are not tight in most of
the cases, not much is known about the runtimes of EDAs in the genetic drift
regime. In particular, the following questions are not understood.

• Runtimes of EDAs for very high update strengths: The few runtime
analyses in the genetic drift regime all assume that the update strength
is at least so small that a (sufficiently large) logarithmic number of
frequency updates is necessary to bring a frequency to a boundary
value, e.g., that K ≥ C lnn for some sufficiently large constant C
when considering the cGA. Nothing nontrivial is known for even larger
update strengths, but it is conjectured that one will typically encounter
a super-polynomial runtime here.

• Runtimes of EDAs on OneMax for moderate update strengths. For
the case that the update strength is smaller than in the previous para-
graph, but still high enough to lead to genetic drift, a general Ω(n log n)
lower bound for the cGA and UMDA [KW20b, SW19] and an O(nλ)
upper bound for the UMDA [DLN19, Wit19] are known. For the cGA,
a slightly stronger lower bound of Ω(K1/3n) was shown in the regime
K = Ω(log3 n) ∩ O(

√
n/ log2 n) [LSW21]. With this being all that is

known, a true understanding of this regime is far from established.

• Runtimes of EDAs on jump functions: In the regime without genetic
drift, a reasonable understanding of the runtime of the cGA on jump
functions has been obtained in [HS18, Doe19c, Doe19b]. The lower
bound [Doe19b], exponential in the jump size k, also applies to the
regime with genetic drift, but is by far not sufficient to explain the
huge runtimes observed experimentally [DZ20a] in this regime. Hence
a proof that the cGA optimizing jump functions suffers significantly
from genetic drift is still missing.

6.3.2 Multivariate EDAs

While multivariate EDAs are used a lot and very successfully in practice,
essentially all theoretical research so far regarded univariate EDAs only, that

39

is, EDAs which evolve a univariate probabilistic model in which the bits are
sampled independently. This is not surprising given how difficult it already
was to obtain our limited understanding of univariate EDAs.

So far, only two theoretical results on multivariate EDAs exist, and both
rely on theory-driven experiments and not on proven results. In [LN19a], the
authors claim that the bivariate EDA mutual information maximization for
input clustering (MIMIC) can cope better with fitness landscape in which
the decision variables are interdependent. They define an artificial fitness
landscape with strong inter-variable dependencies, the DLB-problem, prove
that the UMDA with µ = o(n) needs time exponential in µ and show experi-
mentally that the MIMIC can optimize this landscape in time polynomial in
n. Based on this finding, they suggest “that one should consider EDAs with
more complex probabilistic models when optimizing problems with some de-
gree of epistasis and deception.” As discussed in Section 6.2.3, the lower
bound on the runtime of the UMDA only applies to the regime with strong
genetic drift and from µ = Ω(n log n) on, the runtime of the UMDA on DLB
becomes O(µn) [DK20c]. For this reason, it is not clear if the MIMIC, and
more generally, bivariate EDAs, are also superior to the UMDA with the
right choice of the parameters.

While so far no example exists in which a multivariate EDA was proven
to have a better optimization behavior than a univariate one (with good
parameters), the recent work [DK20a] shows (again only experimentally) that
bivariate EDAs can evolve very expressive probabilistic models. For a simple
fitness landscape with 2n/2 global optima it is shown that the MIMIC very
quickly evolves a probabilistic model which allows it to sample global optima
with constant chance and in a way that very rarely an optimum is sampled
repeatedly. Hence the model evolved indeed represents to some extend the
structure of the set of optimal solutions. It is clear that this would not be
possible with a univariate EDA or a population-based EA.

In summary, there is a cautious indication from theoretical work that
multivariate EDAs could be interesting both from the viewpoint of good
optimization times and good representations of the structure of the fitness
landscape, but almost all of the work in this direction still needs to be done.

7 Drift Analysis

Drift analysis has become one of the most heavily employed tools in the
mathematical analysis of evolutionary algorithms (EAs). Interestingly, it is
one of the few tool sets which were not imported from the classic algorithms

40

field. Rather, the classic algorithms field is now starting to use the drift
theorems developed in our field, see, e.g., [BLM+20, GKK18, KU18, OE12].

Using drift analysis as a tool in the performance analysis of EAs builds
on the insight that it is often easy to estimate the expected progress (with
regard to some suitable measure) of an EA in one iteration. Drift analysis
therefore tries to translate this information into estimates for the first time
that a particular goal is achieved.

As a simple humorous example, inspired by a similar one from [Doe11],
consider the following question. You have an initial capital of $1,000. Each
day you go to your favorite pub and drink a random number of beers for an
expected total price of $10. After how many days you are bankrupt?

If there was no randomness involved, that is, if you would spend ex-
actly $10 each day, then obviously it takes exactly 100 days to spend your
money. So does the answer change with randomness? Interestingly, it does
not (of course, we can now only talk about the expected number of days to
bankruptcy): The expected number of days until you have spend all your
money is exactly 100, regardless of the distribution of the amount you spent
per day (which could be different for each day, could depend on previous
days, and could also take negative values). This is a simple application of
the additive drift theorem (Theorem 2 below).

The additive drift theorem is intuitive, but is in fact a deep mathematical
result. Also, we have to note that it is not true that “randomness never
changes things”. Take for example the opposite process: You start with no
money, but each day you earn an expected number of ten dollars. What is
the expected time it takes until you have at least $1,000? Now we can only
say that it is at least 100 days (with a slightly less direct application of the
additive drift theorem), but it could be much larger. For example, if each
day we earn $10,000 with probability 0.001 and $0 otherwise, then it takes
an expected number of 1000 days until we have at least $1,000.

Drift analysis was introduced to the field of evolutionary computation in
the seminal paper [HY01] of He and Yao, which builds on Hajek’s funda-
mental work [Haj82]. Since some of the early uses of drift arguments led
to quite technical proofs, many researchers first shied away from using this
new method and preferred classic arguments like Wegener’s fitness level tech-
nique [Weg01]. Over time, however, more elegant applications of the additive
drift theorem, e.g., in [Jäg08], and drift theorems capturing better particular
scenarios, e.g., the multiplicative drift theorem [DJW12a], paved the way to
drift analysis becoming perhaps the most powerful tool in the mathematical
analysis of EAs.

41

7.1 Three True Drift Theorems

To show the beauty, simplicity, and power of drift analysis, we now present
three central drift theorem. We call them true drift theorems to reflect that all
three translate information on the expected one-step progress into a hitting
time without further assumptions on the distribution of the one-step progress.
We state these theorems in their most basic version and trust that the reader
is able to derive seemingly more general, but equivalent versions via scaling,
shifting, or mirroring the random process.

7.1.1 Additive Drift.

From a deeper mathematical result of Hajek [Haj82], He and Yao [HY01] de-
rived the additive drift theorem and used it to prove several runtime bounds.

Theorem 2 (additive drift theorem). Let X0, X1, . . . be a sequence of ran-
dom variables taking values in some finite set S ⊆ R≥0 with 0 ∈ S. Let
T = inf{t | Xt = 0}.

• Assume that there is a δ > 0 such that for all t ≥ 0 and s ∈ S \ {0},
we have E[Xt −Xt+1 | Xt = s] ≥ δ. Then E[T | X0] ≤ X0

δ
.

• Assume that there is a δ > 0 such that for all t ≥ 0 and s ∈ S \ {0},
we have E[Xt −Xt+1 | Xt = s] ≤ δ. Then E[T | X0] ≥ X0

δ
.

Without going into details, we note that the assumptions can be weakened
slightly, e.g., one can replace the “point-wise drift requirement”, that is, the
conditioning on Xt = s, by an “average drift condition”, that is, conditioning
only on Xt > 0 [HY01]. Also, the first part is also true for arbitrary infinite
sets S ⊆ R≥0 and the second part is true also for bounded infinite sets S;
see [LS18], where also a short and elegant proof of this result is presented.

The additive drift theorem gives good results if there is a roughly uniform
progress regardless of time and state. In fact, as the two estimates together
show, the additive drift theorem gives an exact estimate for the hitting time
T when the expected progress is known to be exactly δ at all times before
hitting the target.

7.1.2 Multiplicative Drift.

For many natural optimization processes, the progress towards the optimum
slows down when getting closer to the optimum. To use the additive drift the-
orem in such situations, the natural distance measure has to be transformed
in such a way that the resulting expected progress is roughly uniform. Since

42

the expected transformed progress is usually not just the transformation of
the expected progress, such proofs can become technical and unintuitive.

Noting that a common situation is that the expected progress is roughly
proportional to the distance to the target, in [DJW12a] a multiplicative drift
theorem was derived from the additive drift theorem. With a simpler direct
proof, the following variant was later shown in [DG13]. According to [Len20],
the multiplicative drift theorem is the most often used drift theorem in the
theory of evolutionary algorithms.

Theorem 3 (multiplicative drift theorem). Let X0, X1, . . . be a sequence
of random variables over a state space S ⊆ {0} ∪ R≥1 with 0 ∈ S. Let
T = min{t | Xt = 0}. Assume that there is a δ > 0 such that for all t ≥ 0
and s ∈ S \ {0}, we have E[Xt+1 | Xt = s] ≤ (1 − δ)s. Then the following
estimates hold.

• E[T | X0] ≤ ln(X0)+1
δ

.

• For all λ > 0, we have Pr[T > ⌈ ln(X0)+λ
δ
⌉] ≤ exp(−λ).

7.1.3 Variable Drift.

While indeed very many processes occurring in the analysis of evolutionary
algorithms display an additive or multiplicative drift behavior, there remain
processes in which the drift is decreasing when approaching the target (so
that the additive drift theorem is hard to use), but not in a multiplicative
fashion (so that the multiplicative drift theorem is hard to use). For these,
so-called variable drift theorems can be applied. The first variable drift the-
orem for the analysis of evolutionary algorithms was proposed by Mitavskiy,
Rowe, and Cannings [MRC09], however, the independently developed result
of Johannsen [Joh10] appears to be used more often. The following is a
variant of Johannsen’s result avoiding the use of integrals.

Theorem 4 (variable drift theorem). Let X0, X1, . . . be a sequence of random
variables over a finite space S. Assume that S = {s0, . . . , sM} with 0 =
s0 < s1 < · · · < sM . Let T = min{t | Xt = 0}. Assume that there is
a monotonically non-decreasing function h : S \ {0} → R such that for all
t ≥ 0 and s ∈ S \ {0}, we have E[Xt − Xt+1 | Xt = s] ≥ h(s). Then
E[T | X0] ≤

∑X0

i=1
si−si−1

h(si)
.

The above are, most likely, the three most important drift theorems.
We mention that the only other real drift theorem (that is, not requir-
ing additional assumptions on the one-step distribution) we are aware of
is the following result proven in [DLO19]: Let a random process as in

43

the multiplicative drift theorem be given, but with the drift condition
E[Xt − Xt+1 | Xt = s] ≥ δs replaced by the slightly stronger condi-
tion E[Xt − Xt+1 | Xt = s] ≥ δs(logγ(s) + 1) for some γ > 1. Then

E[T | X0] ≤ 3+4 ln γ+max{0,2 log2 logγ X0}

δ
. We do not know if this result will

find other applications, so we state the result here mainly to demonstrate
that an only slightly stronger assumption on the drift – Ω(s log s) instead of
Ω(s) – can lead to a drastically smaller hitting time – O(log logX0) instead
of O(logX0).

7.2 Drift Results With Additional Requirements

The results presented in the previous section derive estimates for hitting times
solely from the expected one-step progress; however, with two important
restrictions: (i) except for the additive drift theorem, only upper bounds for
hitting times can be obtained, and (ii) only processes can be analyzed in
which there is a drift towards the target that can be uniformly bounded or
that decreases when approaching the target.

Consequently, these drift theorems fail to describe a large number of
behaviors of random processes that occur in the analysis of evolutionary
algorithms. In this section, we briefly describe such behaviors and what
solutions for their analysis exist. Unfortunately, and this is the reason why
we shall state no precise result, all these tools not only require information
on the expected one-step change, but also on the distribution of the one-
step change (typically, that the one-step change is concentrated around its
expectation). For all results, this is not a weakness of the result, but an
intrinsic necessity.

7.2.1 Lower Bounds for Hitting Times.

From classic algorithms theory we know that it is very valuable to also have
lower bounds on runtimes as these quantify how good our performance guar-
antees (upper bounds) are. If we have derived an upper bound from a certain
drift behavior, say additive, multiplicative, or a certain variable drift, then
the most natural approach would be to show a matching or near-matching
upper bound on the expected one-step progress and derive (via a suitable
drift theorem) from it a lower bound on the runtime. This works perfectly
for the additive drift theorem as it contains such matching upper and lower
bound results.

For multiplicative and variable drift, the theorems presented in the pre-
vious section are missing such matching results, and this for good reason,
namely because in general they are not true. As a simple example, consider

44

the process on the state space S = {0, n}, starting with probability one in
X0 = n, which leaves state n to 0 with probability 1/n and stays in n other-
wise. Apparently, we have E[Xt+1 | Xt = n] = n− 1 = (1− 1

n
)n, that is, we

have perfect multiplicative drift with δ = 1
n
. The multiplicative drift theorem

thus gives an estimate for the expected hitting time of E[T] = O(n logn).
This is best-possible in the sense that there are processes with multiplicative
drift with δ = 1

n
which indeed need Ω(n log n) time, but for this particular

process, the truth obviously is E[T] = n. This shows that a matching lower
bound cannot exist without additional assumptions.

The assumption that usually gives the desired behavior (and the desired
lower bounds) is that the one-step progress is concentrated around its expec-
tation, typically with some exponential tails or by forbidding large progresses
at all. We spare the details and point the reader to [Wit13, DDK18] for a mul-
tiplicative drift theorem for lower bounds and to [DFW11, GW18, DDY20]
for variable drift theorems for lower bounds.

7.2.2 Increasing Drift.

All three main drift theorems require that the one-step progress is not in-
creasing when approaching the target. This is a behavior often observed in
evolutionary computation: The better the current solutions are, the harder
it is to make progress. However, also the opposite behavior can be found,
for example, when we consider how a better individual takes over a popula-
tion. Here we would expect that the number of copies of the good individual
increases in a multiplicative fashion (of course, only up to the point that a
certain saturation is reached). Processes showing an increasing multiplica-
tive drift have been analyzed in several papers dealing with population-based
EAs, most notably in Lehre’s [Leh11] fitness-level approach to non-elitist al-
gorithms and in the so-called level-based theorem [CDEL18]. In both works,
however, the increasing drift is mostly visible in the mathematical proofs. An
explicit formulation of a drift result for increasing-drift processes was given
in [DK19]. Again, an expected multiplicative one-step progress is not enough,
but some additional concentration assumptions are necessary. Motivated by
the application to population processes, the additional assumption was made
that the one-step progress stochastically dominates a binomial distribution.

7.2.3 Negative Drift.

A different situation is that a process shows a drift away from the target
and that we want to argue that it takes a long time to reach this target.
Such a situation naturally arises again in lower-bound proofs. The first such

45

drift theorem was given by Oliveto and Witt [OW11, OW12]. Like many
results proven later, see again the survey [Len20], it shows that if there is
a constant negative expected progress in some interval of length ℓ and the
one-step changes have both-sided exponential tails, then with probability
1− exp(−Ω(ℓ)), the process takes time exponential in ℓ to reach the target.

A different approach to analyze a negative drift situation was taken
in [ADY19]. Instead of the true process Xt, one regards an exponential
transformation Yt = exp(c(Xt− d)) for suitable constants c, d, shows that Yt

has at most a constant additive drift, and then uses the lower bound part of
the additive drift theorem to derive the desired result. Depending on how
easy it is to compute the drift of the transformed process, this approach
might be technically simpler than using the existing negative-drift theorems.
Different from all existing negative-drift theorems, it allows one to derive
explicit constants in the exponent. As shown in [Doe20a], this approach can
also give super-exponential lower bounds.

Very recently, a negative drift theorem without additional constraints was
presented in [Doe20b]. At the moment, it is hard to foresee if it will find other
applications than those presented in [Doe20b].

7.3 Challenge: Finding the Right Potential Function

The results discussed so far show that we now have a decent number of
drift theorems, which cover many different random processes. While surely
new drift theorems will come up and existing ones will be polished, we are
optimistic that the drift theorems developed in the last twenty years allow
us to analyze most random processes occurring in the analysis of EAs.

What is less understood, and often still a challenge, is defining the right
random process. To be able to apply a drift theorem, we need to define a
random process (Xt) that describes some aspect of the run of our EA on some
problem. Formally speaking, we need a function g that maps the full state St

of the algorithm after iteration t into a real number Xt = g(St), and this in a
way that the process (Xt) still contains some relevant information of the run
of the EA (e.g., that a suitable hitting time of (Xt) corresponds to the time
when an optimum was first found) and in a way that a drift theorem can be
applied. While there are some generic solutions to this technical problem,
many questions are still open here and this might be the biggest challenge in
the future of drift analysis.

A natural way to define the potential function g is to take the fitness
distance of the current-best solution to the optimum. This works well when
there is a good correlation between the remaining optimization time and the
fitness distance as observed, e.g., for the simple benchmarks OneMax and

46

LeadingOnes (note that the classic analyses [DJW02] stem from the time
before drift analysis was introduced and hence use Wegener’s [Weg01] fitness
level method) or combinatorial problems such as the minimum spanning tree
problem (again, the classic proof [NW07] does not use drift, but the ex-
pected multiplicative weight decrease method) or the maximum satisfiability
problem with clauses of length 3 [DNS17].

An equally natural potential is the structural distance to the optimum,
e.g., the Hamming distance in the case of pseudo-Boolean optimization. This
was used, e.g., to show that the (1 + 1) EA with mutation rate c/n, c a
constant strictly between 0 and 1, optimizes any strictly monotonic function
in time O(n logn) [DJS+13].

Unfortunately, these two potentials do not suffice. The most famous
example for which neither the fitness distance nor the structural distance
work well is the linear functions problem, that is, the question how fast
the simple (1 + 1) EA optimizes a general linear pseudo-Boolean function
f(x) =

∑n
i=1 aixi. With a sequence of more powerful potential functions,

all different from fitness and structural distance, increasingly strong results
were obtained [DJW02, DJW12a, DG13, Wit13].2 Unfortunately, it remains
unclear how to easily derive such potential functions. In fact, the only result
regarding this question is a negative one, namely that to prove the results
for larger mutation rates such as [DG13, Wit13], it is not possible to use one
“universal” potential function for all linear functions, but the potential has
to be chosen depending on the problem instance [DJW12b].

In three particular directions, we currently see the greatest lack of under-
standing how to define potential functions to use drift analysis. These are
the following.

7.3.1 Drift Analysis for Representations Other Than Bit Strings.

Once a relatively compact analysis of the runtime of the (1 + 1) EA with
standard mutation rate 1/n on linear functions was found [DJW12a], the
question was raised how far these methods could be extended. One direction
are linear functions defined not on bit strings, but on higher-arity representa-
tions {0, . . . , r}n. While the O(n logn) runtime estimate could be shown for
the search space {0, 1, 2}n [DJS11], it was also shown in this work that there
is no universal potential function from r ≥ 43 on. With instance-specific
potential functions, an O(rn logn + r3n log log n) upper bound was shown
in [DP12]. This extends the O(rn logn) bound to all r = O((logn

log logn
)1/2),

but not beyond. It is an open problem whether larger r indeed lead to an

2We note that Jägersküpper with a clever averaging argument could also use the struc-
tural distance as potential function.

47

inferior runtime behavior or not. This example and the general shortage of
works analyzing EAs with representations different from bit strings via drift
analysis (we are only aware of [KLW15b, LW16, DDK18]) suggest that more
work is needed in this direction.

7.3.2 Drift Analysis for Population-based EAs.

All works described above, and in general the vast majority of runtime anal-
yses building on drift arguments, only regard very simple EAs such as the
(1 + 1) EA or, occasionally, the (1 + λ) EA or the (1 + (λ, λ)) GA. For such
EAs, a potential function only needs to estimate the quality of the single
parent individual. For EAs working with a non-trivial parent population,
it is much harder to define a suitable potential function. In fact, the main
work on lower bounds for such algorithms by Lehre [Leh10] used drift ar-
guments only in the ancestral lines of single individuals and captured the
effect of the whole population via family trees (see [Doe20b] for an alter-
native approach). Again for lower bound proofs, Neumann, Oliveto, and
Witt [NOW09] and later [OW15, ADY19] used

∑

x∈P cOneMax(x) as poten-
tial (to be maximized) of a population P in an algorithm maximizing the
OneMax benchmark, where c > 1 is a suitable constant. The main line
of works on upper bounds [Leh11, DL15b, CDEL18] defines an extremely
complicated potential function on the populations that is, most likely, not
easy to transfer to problems not covered by these results. While these results
show that drift analysis can be employed in the analysis of population-based
algorithms, more work seems necessary, in particular, on upper bounds anal-
yses, for drift analysis to replace the classic fitness level arguments more often
employed here, see, e.g., [Wit06, CHS+09, ADFH18].

7.3.3 Drift Analysis for Dynamic Parameters.

With the popularity of dynamic parameter choices both in theory (see also
Section 3.2) and practice, there is a strong need for mathematical methods
to analyze such algorithms. From the perspective of drift analysis, again
the challenge is to define a suitable potential function on the cross product
of populations (which in the simplest case are just single individuals) and
parameter values (or more generally, the full inner state of the algorithm).
So far, we are only aware of the five works [DDK18, AAG18, Row18, DWY21,
CL20] providing solutions to this problem. In the interest of brevity, we refer
to [DWY21, Section 1.3] for a more detailed discussion, and state here only
that our impression is that more work on this problem is necessary (and
desirable) to ease future analyses of dynamic parameter settings.

48

8 Final Words

We provided an overview on areas of research in the field of theory of evo-
lutionary computation in discrete search spaces that have gained significant
attention during the last 10 years. The survey tried to capture the most im-
portant aspects from the perspective of the authors. We refer to the recent
edited book [DN20b] for a more comprehensive overview, which also includes
other evolutionary computing techniques such as genetic programming and
artificial immune systems. For the true technical details, naturally, we invite
the reader to consult the original articles.

There are many areas where we see a lot of room for progress. Analyses
for constrained problems static, dynamic, or stochastic have just recently
been started and understanding the behavior of evolutionary algorithms for
linear functions even very special simple constraints is still a challenging
task [NPW19]. A first theoretical analysis of differential evolution in discrete
search spaces has been carried out in [ZYD18], however, indicating that our
current methods cannot cope well with the complicated stochastic dependen-
cies arising in this optimization process. The entropy compression method
has found a first application in evolutionary computation [LMS19], but other
applications of this powerful methods are not in sight. From a broader per-
spective, our understanding of the impact of populations, crossover operators,
and diversity mechanisms still lags behind their practical success and prov-
ing the usefulness of such modules of an evolutionary algorithm for complex
optimization problems is a challenging task.

We hope that the survey helps the readers to pursue their own research in
this area. Although tremendous progress has been made during the last 10
years, there are still a lot of open questions and problems, some of which have
been outlined in this article. We encourage the reader to make their own con-
tribution to this field of research and help to transfer theoretical knowledge
into the design of high performing evolutionary computing techniques.

Acknowledgements

Frank Neumann has been support by the Alexander von Humboldt Founda-
tion through a Humboldt Fellowship for Experienced Researchers and by the
Australian Research Council through grant FT200100536.

49

References

[AAG18] Youhei Akimoto, Anne Auger, and Tobias Glasmachers. Drift
theory in continuous search spaces: expected hitting time of the
(1 + 1)-ES with 1/5 success rule. In Genetic and Evolutionary
Computation Conference, GECCO 2018, pages 801–808. ACM,
2018.

[ABD20a] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Fast
mutation in crossover-based algorithms. In Genetic and Evo-
lutionary Computation Conference, GECCO 2020, pages 1268–
1276. ACM, 2020.

[ABD20b] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. First
steps towards a runtime analysis when starting with a good
solution. In Parallel Problem Solving From Nature, PPSN 2020,
Part II, pages 560–573. Springer, 2020.

[Ack87] David H. Ackley. A Connectionist Machine for Genetic Hill
Climbing. Kluwer, 1987.

[AD20] Denis Antipov and Benjamin Doerr. Runtime analysis of a
heavy-tailed (1 + (λ, λ)) genetic algorithm on jump functions.
In Parallel Problem Solving From Nature, PPSN 2020, Part II,
pages 545–559. Springer, 2020.

[ADFH18] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet.
Runtime analysis for the (µ+ λ) EA optimizing OneMax. In
Genetic and Evolutionary Computation Conference, GECCO
2018, pages 1459–1466. ACM, 2018.

[ADY19] Denis Antipov, Benjamin Doerr, and Quentin Yang. The effi-
ciency threshold for the offspring population size of the (µ, λ)
EA. In Genetic and Evolutionary Computation Conference,
GECCO 2019, pages 1461–1469. ACM, 2019.

[AF08] Nattapat Attiratanasunthron and Jittat Fakcharoenphol. A
running time analysis of an ant colony optimization algorithm
for shortest paths in directed acyclic graphs. Information Pro-
cessing Letters, 105:88–92, 2008.

[AHX+20] Hirad Assimi, Oscar Harper, Yue Xie, Aneta Neumann, and
Frank Neumann. Evolutionary bi-objective optimization for

50

the dynamic chance-constrained knapsack problem based on tail
bound objectives. In ECAI, volume 325 of Frontiers in Artificial
Intelligence and Applications, pages 307–314. IOS Press, 2020.

[Aro98] Sanjeev Arora. Polynomial time approximation schemes for eu-
clidean traveling salesman and other geometric problems. J.
ACM, 45(5):753–782, 1998.

[Bäc92] Thomas Bäck. Self-adaptation in genetic algorithms. In Euro-
pean Conference on Artifical Life, ECAL 1992, pages 263–271.
MIT Press, 1992.

[Bäc93] Thomas Bäck. Optimal mutation rates in genetic search. In
International Conference on Genetic Algorithms, ICGA 1993,
pages 2–8. Morgan Kaufmann, 1993.

[Bäc96] Thomas Bäck. Evolutionary Algorithms in Theory and Practice
– Evolution Strategies, Evolutionary Programming, Genetic Al-
gorithms. Oxford University Press, 1996.

[Bal94] Shumeet Baluja. Population-based incremental learning: A
method for integrating genetic search based function optimiza-
tion and competitive learning. Technical report, Carnegie Mel-
lon University, 1994.

[BD17] Maxim Buzdalov and Benjamin Doerr. Runtime analysis of the
(1 + (λ, λ)) genetic algorithm on random satisfiable 3-CNF for-
mulas. In Genetic and Evolutionary Computation Conference,
GECCO 2017, pages 1343–1350. ACM, 2017.

[BDDV20] Maxim Buzdalov, Benjamin Doerr, Carola Doerr, and Dmitry
Vinokurov. Fixed-target runtime analysis. In GECCO, pages
1295–1303. ACM, 2020.

[BDM15] Weiwei Bi, Graeme C. Dandy, and Holger R. Maier. Improved
genetic algorithm optimization of water distribution system
design by incorporating domain knowledge. Environ. Model.
Softw., 69:370–381, 2015.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Op-
timal fixed and adaptive mutation rates for the LeadingOnes
problem. In Parallel Problem Solving from Nature, PPSN 2010,
pages 1–10. Springer, 2010.

51

[BFH+09] Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian
Klein, Frank Neumann, and Eckart Zitzler. On the effects of
adding objectives to plateau functions. IEEE Trans. Evol. Com-
put., 13(3):591–603, 2009.

[BFM97] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz.
Handbook of Evolutionary Computation. IOP Publishing Ltd.,
1997.

[BFQY20] Chao Bian, Chao Feng, Chao Qian, and Yang Yu. An efficient
evolutionary algorithm for subset selection with general cost
constraints. In AAAI, pages 3267–3274. AAAI Press, 2020.

[BLM+20] Daniel Bertschinger, Johannes Lengler, Anders Martinsson,
Robert Meier, Angelika Steger, Milos Trujic, and Emo Welzl.
An optimal decentralized (δ + 1)-coloring algorithm. In Euro-
pean Symposium on Algorithms, ESA 2020, volume 173, pages
17:1–17:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

[BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbi-
ased black-box complexity of parallel search. In Parallel Prob-
lem Solving from Nature, PPSN 2014, pages 892–901. Springer,
2014.

[BM16] Mohammad Reza Bonyadi and Zbigniew Michalewicz. Evolu-
tionary computation for real-world problems. In Challenges in
Computational Statistics and Data Mining, volume 605 of Stud-
ies in Computational Intelligence, pages 1–24. Springer, 2016.

[BNPS20] Jakob Bossek, Frank Neumann, Pan Peng, and Dirk Sudholt.
More effective randomized search heuristics for graph coloring
through dynamic optimization. In GECCO, pages 1277–1285.
ACM, 2020.

[BNPS21] Jakob Bossek, Frank Neumann, Pan Peng, and Dirk Sud-
holt. Time complexity analysis of randomized search heuristics
for the dynamic graph coloring problem. Algorithmica, 2021.
doi:10.1007/s00453-021-00838-3.

[BP14] Thomas Bartz-Beielstein and Mike Preuss. Experimental
analysis of optimization algorithms: Tuning and beyond. In
Theory and Principled Methods for the Design of Metaheuris-
tics, Natural Computing Series, pages 205–245. Springer, 2014.

52

https://doi.org/10.1007/s00453-021-00838-3

[BQT18] Chao Bian, Chao Qian, and Ke Tang. Towards a running time
analysis of the (1+1)-EA for OneMax and LeadingOnes under
general bit-wise noise. In Parallel Problem Solving from Nature,
PPSN 2018, Part II, pages 165–177. Springer, 2018.

[Bra00] Jürgen Branke. Evolutionary optimization in dynamic environ-
ments. PhD thesis, Universität Karlsruhe, 2000.

[CC84] Michele Conforti and Gérard Cornuéjols. Submodular set func-
tions, matroids and the greedy algorithm: Tight worst-case
bounds and some generalizations of the rado-edmonds theorem.
Discrete Applied Mathematics, 7(3):251–274, 1984.

[CDEL18] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and
Per Kristian Lehre. Level-based analysis of genetic algorithms
and other search processes. IEEE Transactions on Evolutionary
Computation, 22:707–719, 2018.

[CHS+09] Tianshi Chen, Jun He, Guangzhong Sun, Guoliang Chen, and
Xin Yao. A new approach for analyzing average time complexity
of population-based evolutionary algorithms on unimodal prob-
lems. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 39:1092–1106, 2009.

[CL20] Brendan Case and Per Kristian Lehre. Self-adaptation in noneli-
tist evolutionary algorithms on discrete problems with unknown
structure. IEEE Transactions on Evolutionary Computation,
24:650–663, 2020.

[CLTY09] Tianshi Chen, Per Kristian Lehre, Ke Tang, and Xin Yao. When
is an estimation of distribution algorithm better than an evolu-
tionary algorithm? In Congress on Evolutionary Computation,
CEC 2009, pages 1470–1477. IEEE, 2009.

[CTCY10] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. Analysis
of computational time of simple estimation of distribution al-
gorithms. IEEE Transactions on Evolutionary Computation,
14:1–22, 2010.

[DD18] Benjamin Doerr and Carola Doerr. Optimal static and self-
adjusting parameter choices for the (1 + (λ, λ)) genetic algo-
rithm. Algorithmica, 80:1658–1709, 2018.

53

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-
box complexity to designing new genetic algorithms. Theoretical
Computer Science, 567:87–104, 2015.

[DDK18] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and
self-adjusting mutation strengths for multi-valued decision vari-
ables. Algorithmica, 80:1732–1768, 2018.

[DDK19] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Solving
problems with unknown solution length at almost no extra cost.
Algorithmica, 81:703–748, 2019.

[DDL19] Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-
adjusting mutation rates with provably optimal success rules.
In Genetic and Evolutionary Computation Conference, GECCO
2019, pages 1479–1487. ACM, 2019.

[DDN+20] Benjamin Doerr, Carola Doerr, Aneta Neumann, Frank Neu-
mann, and Andrew M. Sutton. Optimization of chance-
constrained submodular functions. In AAAI, pages 1460–1467.
AAAI Press, 2020.

[DDY16] Benjamin Doerr, Carola Doerr, and Jing Yang. k-bit mutation
with self-adjusting k outperforms standard bit mutation. In
Parallel Problem Solving from Nature, PPSN 2016, pages 824–
834. Springer, 2016.

[DDY20] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal param-
eter choices via precise black-box analysis. Theoretical Com-
puter Science, 801:1–34, 2020.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized
Complexity. Springer, 1999.

[DFW11] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Sharp
bounds by probability-generating functions and variable drift.
In Genetic and Evolutionary Computation Conference, GECCO
2011, pages 2083–2090. ACM, 2011.

[DG13] Benjamin Doerr and Leslie A. Goldberg. Adaptive drift
analysis. Algorithmica, 65:224–250, 2013.

[DGWY19] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing
Yang. The (1 + λ) evolutionary algorithm with self-adjusting
mutation rate. Algorithmica, 81:593–631, 2019.

54

[DHK12] Benjamin Doerr, Ashish Ranjan Hota, and Timo Kötzing. Ants
easily solve stochastic shortest path problems. In Genetic and
Evolutionary Computation Conference, GECCO 2012, pages
17–24. ACM, 2012.

[DHOW06] Vladimir G. Deineko, Michael Hoffmann, Yoshio Okamoto, and
Gerhard J. Woeginger. The traveling salesman problem with
few inner points. Oper. Res. Lett., 34(1):106–110, 2006.

[DJ07] Benjamin Doerr and Daniel Johannsen. Refined runtime
analysis of a basic ant colony optimization algorithm. In
Congress on Evolutionary Computation, CEC 2007, pages 501–
507. IEEE, 2007.

[DJ10] Benjamin Doerr and Daniel Johannsen. Edge-based represen-
tation beats vertex-based representation in shortest path prob-
lems. In Genetic and Evolutionary Computation Conference,
GECCO 2010, pages 759–766. ACM, 2010.

[DJL17] Duc-Cuong Dang, Thomas Jansen, and Per Kristian Lehre.
Populations can be essential in tracking dynamic optima. Algo-
rithmica, 78(2):660–680, 2017.

[DJS11] Benjamin Doerr, Daniel Johannsen, and Martin Schmidt. Run-
time analysis of the (1+1) evolutionary algorithm on strings
over finite alphabets. In Foundations of Genetic Algorithms,
FOGA 2011, pages 119–126. ACM, 2011.

[DJS+13] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen,
and Christine Zarges. Mutation rate matters even when opti-
mizing monotone functions. Evolutionary Computation, 21:1–
21, 2013.

[DJW00] Stefan Droste, Thomas Jansen, and Ingo Wegener. Dynamic pa-
rameter control in simple evolutionary algorithms. In Founda-
tions of Genetic Algorithms, FOGA 2000, pages 275–294. Mor-
gan Kaufmann, 2000.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the
analysis of the (1+1) evolutionary algorithm. Theoretical Com-
puter Science, 276:51–81, 2002.

[DJW12a] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Mul-
tiplicative drift analysis. Algorithmica, 64:673–697, 2012.

55

[DJW12b] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Non-
existence of linear universal drift functions. Theoretical Com-
puter Science, 436:71–86, 2012.

[DJWZ13] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine
Zarges. A method to derive fixed budget results from expected
optimisation times. In GECCO, pages 1581–1588. ACM, 2013.

[DK11] Abhimanyu Das and David Kempe. Submodular meets spec-
tral: Greedy algorithms for subset selection, sparse approxi-
mation and dictionary selection. In ICML, pages 1057–1064.
Omnipress, 2011.

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing linear
functions with the (1 + λ) evolutionary algorithm—different
asymptotic runtimes for different instances. Theoretical Com-
puter Science, 561:3–23, 2015.

[DK19] Benjamin Doerr and Timo Kötzing. Multiplicative up-drift. In
Genetic and Evolutionary Computation Conference, GECCO
2019, pages 1470–1478. ACM, 2019.

[DK20a] Benjamin Doerr and Martin S. Krejca. Bivariate estimation-
of-distribution algorithms can find an exponential number of
optima. In Genetic and Evolutionary Computation Conference,
GECCO 2020, pages 796–804. ACM, 2020.

[DK20b] Benjamin Doerr and Martin S. Krejca. Significance-based
estimation-of-distribution algorithms. IEEE Transactions on
Evolutionary Computation, 24:1025–1034, 2020.

[DK20c] Benjamin Doerr and Martin S. Krejca. The univariate marginal
distribution algorithm copes well with deception and epistasis.
In Evolutionary Computation in Combinatorial Optimization,
EvoCOP 2020, pages 51–66. Springer, 2020.

[DL15a] Duc-Cuong Dang and Per Kristian Lehre. Efficient optimisation
of noisy fitness functions with population-based evolutionary
algorithms. In FOGA, pages 62–68. ACM, 2015.

[DL15b] Duc-Cuong Dang and Per Kristian Lehre. Simplified runtime
analysis of estimation of distribution algorithms. In Genetic and
Evolutionary Computation Conference, GECCO 2015, pages
513–518. ACM, 2015.

56

[DL16] Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of
mutation rates in non-elitist populations. In Parallel Prob-
lem Solving from Nature, PPSN 2016, pages 803–813. Springer,
2016.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy
Nguyen. Fast genetic algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2017, pages 777–784. ACM,
2017.

[DLN19] Duc-Cuong Dang, Per Kristian Lehre, and Phan Trung Hai
Nguyen. Level-based analysis of the univariate marginal dis-
tribution algorithm. Algorithmica, 81:668–702, 2019.

[DLO19] Benjamin Doerr, Andrei Lissovoi, and Pietro Simone Oliveto.
Evolving boolean functions with conjunctions and disjunctions
via genetic programming. In Genetic and Evolutionary Com-
putation Conference, GECCO 2019, pages 1003–1011. ACM,
2019.

[DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and
John Alasdair Warwicker. On the runtime analysis of selection
hyper-heuristics with adaptive learning periods. In Genetic and
Evolutionary Computation Conference, GECCO 2018, pages
1015–1022. ACM, 2018.

[DN20a] Anh Viet Do and Frank Neumann. Maximizing submodular
or monotone functions under partition matroid constraints by
multi-objective evolutionary algorithms. In PPSN (2), volume
12270 of Lecture Notes in Computer Science, pages 588–603.
Springer, 2020.

[DN20b] Benjamin Doerr and Frank Neumann, editors. Theory of
Evolutionary Computation—Recent Developments in Dis-
crete Optimization. Springer, 2020. Also available at
https://cs.adelaide.edu.au/∼frank/papers/TheoryBook2019-selfarchived.pdf.

[DNDD+18] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gau-
tier Izacard, and Dorian Nogneng. A new analysis method for
evolutionary optimization of dynamic and noisy objective func-
tions. In Genetic and Evolutionary Computation Conference,
GECCO 2018, pages 1467–1474. ACM, 2018.

57

https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf

[DNS17] Benjamin Doerr, Frank Neumann, and Andrew M. Sutton.
Time complexity analysis of evolutionary algorithms on random
satisfiable k-CNF formulas. Algorithmica, 78:561–586, 2017.

[DNSW11] Benjamin Doerr, Frank Neumann, Dirk Sudholt, and Carsten
Witt. Runtime analysis of the 1-ANT ant colony optimizer.
Theoretical Computer Science, 412:1629–1644, 2011.

[Doe11] Benjamin Doerr. Drift analysis. In Genetic and Evolutionary
Computation Conference, GECCO 2011, Companion Material,
pages 1311–1320. ACM, 2011.

[Doe19a] Benjamin Doerr. Analyzing randomized search heuristics via
stochastic domination. Theoretical Computer Science, 773:115–
137, 2019.

[Doe19b] Benjamin Doerr. An exponential lower bound for the runtime of
the compact genetic algorithm on jump functions. In Founda-
tions of Genetic Algorithms, FOGA 2019, pages 25–33. ACM,
2019.

[Doe19c] Benjamin Doerr. A tight runtime analysis for the cGA on jump
functions: EDAs can cross fitness valleys at no extra cost. In
Genetic and Evolutionary Computation Conference, GECCO
2019, pages 1488–1496. ACM, 2019.

[Doe20a] Benjamin Doerr. Does comma selection help to cope with local
optima? In Genetic and Evolutionary Computation Conference,
GECCO 2020, pages 1304–1313. ACM, 2020.

[Doe20b] Benjamin Doerr. Lower bounds for non-elitist evolutionary al-
gorithms via negative multiplicative drift. In Parallel Prob-
lem Solving From Nature, PPSN 2020, Part II, pages 604–618.
Springer, 2020.

[Dos13] Martin Dostál. Evolutionary music composition. In Handbook
of Optimization, volume 38 of Intelligent Systems Reference Li-
brary, pages 935–964. Springer, 2013.

[DP12] Benjamin Doerr and Sebastian Pohl. Run-time analysis of the
(1+1) evolutionary algorithm optimizing linear functions over
a finite alphabet. In Genetic and Evolutionary Computation
Conference, GECCO 2012, pages 1317–1324. ACM, 2012.

58

[Dro02] Stefan Droste. Analysis of the (1+1) EA for a dynamically
changing OneMax-variant. In Congress on Evolutionary Com-
putation, CEC 2002, pages 55–60. IEEE, 2002.

[Dro03] Stefan Droste. Analysis of the (1+1) EA for a dynamically
bitwise changing onemax. In GECCO, volume 2723 of Lecture
Notes in Computer Science, pages 909–921. Springer, 2003.

[Dro04] Stefan Droste. Analysis of the (1+1) EA for a noisy onemax.
In GECCO (1), volume 3102 of Lecture Notes in Computer Sci-
ence, pages 1088–1099. Springer, 2004.

[Dro06] Stefan Droste. A rigorous analysis of the compact genetic algo-
rithm for linear functions. Natural Computing, 5:257–283, 2006.

[DWY21] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime
analysis for self-adaptive mutation rates. Algorithmica, 83:1012–
1053, 2021.

[DZ20a] Benjamin Doerr and Weijie Zheng. From understanding genetic
drift to a smart-restart parameter-less compact genetic algo-
rithm. In Genetic and Evolutionary Computation Conference,
GECCO 2020, pages 805–813. ACM, 2020.

[DZ20b] Benjamin Doerr and Weijie Zheng. Sharp bounds for genetic
drift in estimation-of-distribution algorithms. IEEE Transac-
tions on Evolutionary Computation, 24:1140–1149, 2020.

[EKM19] Hossein Esfandiari, Amin Karbasi, and Vahab S. Mirrokni.
Adaptivity in adaptive submodularity. CoRR, abs/1911.03620,
2019.

[FGN+19] Tobias Friedrich, Andreas Göbel, Frank Neumann, Francesco
Quinzan, and Ralf Rothenberger. Greedy maximization of
functions with bounded curvature under partition matroid con-
straints. In AAAI, pages 2272–2279. AAAI Press, 2019.

[FGQW18a] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and
Markus Wagner. Evolutionary algorithms and submodu-
lar functions: Benefits of heavy-tailed mutations. CoRR,
abs/1805.10902, 2018.

59

[FGQW18b] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and
Markus Wagner. Heavy-tailed mutation operators in single-
objective combinatorial optimization. In Parallel Problem Solv-
ing from Nature, PPSN 2018, Part I, pages 134–145. Springer,
2018.

[FHH+10] Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann,
and Carsten Witt. Approximating covering problems by ran-
domized search heuristics using multi-objective models. Evolu-
tionary Computation, 18:617–633, 2010.

[FK13] Matthias Feldmann and Timo Kötzing. Optimizing expected
path lengths with ant colony optimization using fitness propor-
tional update. In Foundations of Genetic Algorithms, FOGA
2013, pages 65–74. ACM, 2013.

[FKK16] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. EDAs
cannot be balanced and stable. In Genetic and Evolution-
ary Computation Conference, GECCO 2016, pages 1139–1146.
ACM, 2016.

[FKKS16] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and An-
drew M. Sutton. Robustness of ant colony optimization to noise.
Evolutionary Computation, 24:237–254, 2016.

[FKKS17] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and An-
drew M. Sutton. The compact genetic algorithm is efficient
under extreme Gaussian noise. IEEE Transactions on Evolu-
tionary Computation, 21:477–490, 2017.

[FKQS17] Tobias Friedrich, Timo Kötzing, Francesco Quinzan, and An-
drew M. Sutton. Resampling vs recombination: a statistical run
time estimation. In FOGA, pages 25–35. ACM, 2017.

[FN14] Tobias Friedrich and Frank Neumann. Maximizing submodular
functions under matroid constraints by multi-objective evolu-
tionary algorithms. In 13th International Conference on Parallel
Problem Solving from Nature (PPSN), volume 8672 of Lecture
Notes in Computer Science, pages 922–931. Springer, 2014.

[FQW18] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. Es-
caping large deceptive basins of attraction with heavy-tailed
mutation operators. In Genetic and Evolutionary Computation
Conference, GECCO 2018, pages 293–300. ACM, 2018.

60

[GK11] Daniel Golovin and Andreas Krause. Adaptive submodularity:
Theory and applications in active learning and stochastic opti-
mization. J. Artif. Intell. Res., 42:427–486, 2011.

[GK16] Christian Gießen and Timo Kötzing. Robustness of populations
in stochastic environments. Algorithmica, 75(3):462–489, 2016.

[GKK18] Andreas Göbel, Timo Kötzing, and Martin S. Krejca. Intu-
itive analyses via drift theory. CoRR, abs/1806.01919, 2018.
arXiv:1806.01919.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous
hitting times for binary mutations. Evolutionary Computation,
7:173–203, 1999.

[GL10] Oliver Giel and Per Kristian Lehre. On the effect of populations
in evolutionary multi-objective optimisation. Evol. Comput.,
18(3):335–356, 2010.

[GS08] Walter J. Gutjahr and Giovanni Sebastiani. Runtime analysis of
ant colony optimization with best-so-far reinforcement. Method-
ology and Computing in Applied Probability, 10:409–433, 2008.

[Gut00] Walter J. Gutjahr. A graph-based ant system and its con-
vergence. Future Generetation Computer Systems, 16:873–888,
2000.

[Gut02] Walter J. Gutjahr. ACO algorithms with guaranteed conver-
gence to the optimal solution. Information Processing Letters,
82:145–153, 2002.

[Gut03] Walter J. Gutjahr. A converging ACO algorithm for stochastic
combinatorial optimization. In Stochastic Algorithms: Foun-
dations and Applications, SAGA 2003, pages 10–25. Springer,
2003.

[Gut08] Walter J. Gutjahr. First steps to the runtime complexity
analysis of ant colony optimization. Computers & Operations
Research, 35:2711–2727, 2008.

[Gut11] Walter J. Gutjahr. Ant colony optimization: recent develop-
ments in theoretical analysis. In Anne Auger and Benjamin
Doerr, editors, Theory of Randomized Search Heuristics: Foun-
dations and Recent Developments, volume 1, pages 225–254.
World Scientific, 2011.

61

http://arxiv.org/abs/1806.01919

[GW17] Christian Gießen and Carsten Witt. The interplay of population
size and mutation probability in the (1 + λ) EA on OneMax.
Algorithmica, 78:587–609, 2017.

[GW18] Christian Gießen and Carsten Witt. Optimal mutation rates for
the (1 + λ) EA on OneMax through asymptotically tight drift
analysis. Algorithmica, 80:1710–1731, 2018.

[Haj82] Bruce Hajek. Hitting-time and occupation-time bounds implied
by drift analysis with applications. Advances in Applied Proba-
bility, 13:502–525, 1982.

[HLG99] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg.
The compact genetic algorithm. IEEE Transactions on Evolu-
tionary Computation, 3:287–297, 1999.

[HO07] Franklin Hanshar and Beatrice M. Ombuki-Berman. Dynamic
vehicle routing using genetic algorithms. Appl. Intell., 27(1):89–
99, 2007.

[HP11] Mark Hauschild and Martin Pelikan. An introduction and sur-
vey of estimation of distribution algorithms. Swarm and Evo-
lutionary Compututation, 1:111–128, 2011.

[HR97] Markus Hohfeld and Günter Rudolph. Towards a theory of
population-based incremental learning. In Conference on Evo-
lutionary Computation, pages 1–5. IEEE Press, 1997.

[HS17] Avinatan Hassidim and Yaron Singer. Submodular optimization
under noise. In COLT, volume 65 of Proceedings of Machine
Learning Research, pages 1069–1122. PMLR, 2017.

[HS18] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dy-
namics of the compact genetic algorithm on jump functions. In
Genetic and Evolutionary Computation Conference, GECCO
2018, pages 967–974. ACM, 2018.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity
of evolutionary algorithms. Artificial Intelligence, 127:51–81,
2001.

[Jäg08] Jens Jägersküpper. A blend of Markov-chain and drift analysis.
In Parallel Problem Solving From Nature, PPSN 2008, pages
41–51. Springer, 2008.

62

[Jan07] Thomas Jansen. On the brittleness of evolutionary algorithms.
In Foundations of Genetic Algorithms, FOGA 2007, pages 54–
69. Springer, 2007.

[JBS93] Ari Juels, Shumeet Baluja, and Alistair Sinclair. The equilib-
rium genetic algorithm and the role of crossover. Unpublished,
1993.

[Jen04] Mikkel T. Jensen. Helper-objectives: Using multi-objective evo-
lutionary algorithms for single-objective optimisation. J. Math.
Model. Algorithms, 3(4):323–347, 2004.

[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On
the choice of the offspring population size in evolutionary algo-
rithms. Evolutionary Computation, 13:413–440, 2005.

[Joh10] Daniel Johannsen. Random Combinatorial Structures and Ran-
domized Search Heuristics. PhD thesis, Universität des Saar-
landes, 2010.

[JOZ13] Thomas Jansen, Pietro Simone Oliveto, and Christine Zarges.
Approximating vertex cover using edge-based representations.
In FOGA, pages 87–96. ACM, 2013.

[JS07] Jens Jägersküpper and Tobias Storch. When the plus strategy
outperforms the comma strategy and when not. In Foundations
of Computational Intelligence, FOCI 2007, pages 25–32. IEEE,
2007.

[JW00] Thomas Jansen and Ingo Wegener. On the choice of the muta-
tion probability for the (1+1) EA. In Parallel Problem Solving
from Nature, PPSN 2000, pages 89–98. Springer, 2000.

[JW06] Thomas Jansen and IngoWegener. On the analysis of a dynamic
evolutionary algorithm. Journal of Discrete Algorithms, 4:181–
199, 2006.

[JZ12] Thomas Jansen and Christine Zarges. Fixed budget computa-
tions: a different perspective on run time analysis. In GECCO,
pages 1325–1332. ACM, 2012.

[JZ14a] Thomas Jansen and Christine Zarges. Performance analysis
of randomised search heuristics operating with a fixed budget.
Theor. Comput. Sci., 545:39–58, 2014.

63

[JZ14b] Thomas Jansen and Christine Zarges. Reevaluating immune-
inspired hypermutations using the fixed budget perspective.
IEEE Trans. Evol. Comput., 18(5):674–688, 2014.

[KG14] Andreas Krause and Daniel Golovin. Submodular function max-
imization. In Tractability, pages 71–104. Cambridge University
Press, 2014.

[KHE15] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E. Eiben.
Parameter control in evolutionary algorithms: trends and chal-
lenges. IEEE Transactions on Evolutionary Computation,
19:167–187, 2015.

[KLNO10a] Timo Kötzing, Per Kristian Lehre, Frank Neumann, and
Pietro S. Oliveto. Ant colony optimization and the minimum
cut problem. In Genetic and Evolutionary Computation Con-
ference, GECCO 2010, pages 1393–1400. ACM, 2010.

[KLNO10b] Stefan Kratsch, Per Kristian Lehre, Frank Neumann, and
Pietro Simone Oliveto. Fixed parameter evolutionary algo-
rithms and maximum leaf spanning trees: A matter of muta-
tion. In PPSN (1), volume 6238 of Lecture Notes in Computer
Science, pages 204–213. Springer, 2010.

[KLW15a] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. (1+1) EA
on generalized dynamic onemax. In FOGA, pages 40–51. ACM,
2015.

[KLW15b] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. (1+1)
EA on generalized dynamic OneMax. In Foundations of
Genetic Algorithms, FOGA 2015, pages 40–51. ACM, 2015.
doi:10.1145/2725494.2725502.

[KM12a] Timo Kötzing and Hendrik Molter. ACO beats EA on a dy-
namic pseudo-boolean function. In PPSN (1), volume 7491 of
Lecture Notes in Computer Science, pages 113–122. Springer,
2012.

[KM12b] Timo Kötzing and Hendrik Molter. ACO beats EA on a dy-
namic pseudo-boolean function. In Parallel Problem Solving
from Nature, PPSN 2012, Part I, pages 113–122. Springer,
2012.

64

https://doi.org/10.1145/2725494.2725502

[KMN99] Samir Khuller, Anna Moss, and Joseph Naor. The budgeted
maximum coverage problem. Inf. Process. Lett., 70(1):39–45,
1999.

[KN13] Stefan Kratsch and Frank Neumann. Fixed-parameter evolu-
tionary algorithms and the vertex cover problem. Algorithmica,
65(4):754–771, 2013.

[KNRW10] Timo Kötzing, Frank Neumann, Heiko Röglin, and Carsten
Witt. Theoretical properties of two ACO approaches for the
traveling salesman problem. In Swarm Intelligence, ANTS 2010,
pages 324–335. Springer, 2010.

[KP19] Pascal Kerschke and Mike Preuss. Exploratory landscape
analysis. In GECCO (Companion), pages 1137–1155. ACM,
2019.

[KU18] Adrian Kosowski and Przemyslaw Uznanski. Brief announce-
ment: Population protocols are fast. In Symposium on Prin-
ciples of Distributed Computing, PODC 2018, pages 475–477.
ACM, 2018.

[KW20a] Martin Krejca and Carsten Witt. Theory of estimation-
of-distribution algorithms. In Benjamin Doerr and
Frank Neumann, editors, Theory of Evolutionary Com-
putation: Recent Developments in Discrete Optimiza-
tion, pages 405–442. Springer, 2020. Also available at
https://arxiv.org/abs/1806.05392.

[KW20b] Martin S. Krejca and Carsten Witt. Lower bounds on the
run time of the Univariate Marginal Distribution Algorithm
on OneMax. Theoretical Computer Science, 832:143–165, 2020.
doi:10.1016/j.tcs.2018.06.004.

[Leh10] Per Kristian Lehre. Negative drift in populations. In Paral-
lel Problem Solving from Nature, PPSN 2010, pages 244–253.
Springer, 2010.

[Leh11] Per Kristian Lehre. Fitness-levels for non-elitist populations.
In Genetic and Evolutionary Computation Conference, GECCO
2011, pages 2075–2082. ACM, 2011.

[Len20] Johannes Lengler. Drift analysis. In Benjamin Do-
err and Frank Neumann, editors, Theory of Evolutionary

65

https://arxiv.org/abs/1806.05392
https://doi.org/10.1016/j.tcs.2018.06.004

Computation: Recent Developments in Discrete Optimiza-
tion, pages 89–131. Springer, 2020. Also available at
https://arxiv.org/abs/1712.00964.

[Lew08] Matthew R. Lewis. Evolutionary visual art and design. In The
Art of Artificial Evolution, Natural Computing Series, pages
3–37. Springer, 2008.

[LL02] Pedro Larrañaga and José Antonio Lozano, editors. Estimation
of Distribution Algorithms. Genetic Algorithms and Evolution-
ary Computation. Springer, 2002.

[LLM07] Fernando G. Lobo, Cláudio F. Lima, and Zbigniew Michalewicz,
editors. Parameter Setting in Evolutionary Algorithms.
Springer, 2007.

[LMNS09] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim
Sviridenko. Non-monotone submodular maximization under
matroid and knapsack constraints. In STOC, pages 323–332.
ACM, 2009.

[LMS19] Johannes Lengler, Anders Martinsson, and Angelika Steger.
When does hillclimbing fail on monotone functions: an entropy
compression argument. In Analytic Algorithmics and Combina-
torics, ANALCO 2019, pages 94–102. SIAM, 2019.

[LN17] Per Kristian Lehre and Phan Trung Hai Nguyen. Improved run-
time bounds for the univariate marginal distribution algorithm
via anti-concentration. In Genetic and Evolutionary Computa-
tion Conference, GECCO 2017, pages 1383–1390. ACM, 2017.

[LN19a] Per Kristian Lehre and Phan Trung Hai Nguyen. On the limita-
tions of the univariate marginal distribution algorithm to decep-
tion and where bivariate EDAs might help. In Foundations of
Genetic Algorithms, FOGA 2019, pages 154–168. ACM, 2019.

[LN19b] Per Kristian Lehre and Phan Trung Hai Nguyen. Runtime
analysis of the univariate marginal distribution algorithm under
low selective pressure and prior noise. In Genetic and Evolution-
ary Computation Conference, GECCO 2019, pages 1497–1505.
ACM, 2019.

66

https://arxiv.org/abs/1712.00964

[Lob07] Fernando G. Lobo. Lost gems of EC: The equilibrium genetic
algorithm and the role of crossover. SIGEVOlution, 2(2):14–15,
2007. URL: https://doi.org/10.1145/1329465.1329468.

[LS11] Jörg Lässig and Dirk Sudholt. Adaptive population models for
offspring populations and parallel evolutionary algorithms. In
Foundations of Genetic Algorithms, FOGA 2011, pages 181–
192. ACM, 2011.

[LS18] Johannes Lengler and Angelika Steger. Drift analysis and evo-
lutionary algorithms revisited. Combinatorics, Probability &
Computing, 27:643–666, 2018.

[LSW21] Johannes Lengler, Dirk Sudholt, and Carsten Witt. The com-
plex parameter landscape of the compact genetic algorithm. Al-
gorithmica, 83:1096–1137, 2021.

[LW15] Andrei Lissovoi and Carsten Witt. Runtime analysis of ant
colony optimization on dynamic shortest path problems. Theor.
Comput. Sci., 561:73–85, 2015.

[LW16] Andrei Lissovoi and Carsten Witt. MMAS versus population-
based EA on a family of dynamic fitness functions. Algorith-
mica, 75:554–576, 2016.

[LW18] Andrei Lissovoi and Carsten Witt. The impact of a sparse mi-
gration topology on the runtime of island models in dynamic
optimization. Algorithmica, 80(5):1634–1657, 2018.

[LY12] Per Kristian Lehre and Xin Yao. On the impact of mutation-
selection balance on the runtime of evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 16:225–241,
2012.

[MBT+13] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wag-
ner, Jakob Bossek, and Frank Neumann. A novel feature-based
approach to characterize algorithm performance for the travel-
ing salesperson problem. Ann. Math. Artif. Intell., 69(2):151–
182, 2013.

[MD10] Christie Myburgh and Kalyanmoy Deb. Evolutionary algo-
rithms in large-scale open pit mine scheduling. In GECCO,
pages 1155–1162. ACM, 2010.

67

https://doi.org/10.1145/1329465.1329468

[MGRD05] Roberto Montemanni, Luca Maria Gambardella, Andrea Emilio
Rizzoli, and Alberto V. Donati. Ant colony system for a dy-
namic vehicle routing problem. J. Comb. Optim., 10(4):327–
343, 2005.

[MKF+19] Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas
Krause, and Amin Karbasi. Adaptive sequence submodularity.
In NeurIPS, pages 5353–5364, 2019.

[MLY17] Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang.
A survey of swarm intelligence for dynamic optimization: Algo-
rithms and applications. Swarm Evol. Comput., 33:1–17, 2017.

[Mon20] Morteza Monemizadeh. Dynamic submodular maximization. In
NeurIPS, 2020.

[MP96] Heinz Mühlenbein and Gerhard Paass. From recombination of
genes to the estimation of distributions I. Binary parameters.
In Parallel Problem Solving from Nature, PPSN 1996, pages
178–187. Springer, 1996.

[MRC09] Boris Mitavskiy, Jonathan E. Rowe, and Chris Cannings. The-
oretical analysis of local search strategies to optimize network
communication subject to preserving the total number of links.
International Journal on Intelligent Computing and Cybernet-
ics, 2:243–284, 2009.

[MS15] Andrea Mambrini and Dirk Sudholt. Design and analysis of
schemes for adapting migration intervals in parallel evolutionary
algorithms. Evolutionary Computation, 23:559–582, 2015.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: muta-
tion and hillclimbing. In Parallel Problem Solving from Nature,
PPSN 1992, pages 15–26. Elsevier, 1992.

[NAN20] Aneta Neumann, Bradley Alexander, and Frank Neumann.
Evolutionary image transition and painting using random walks.
Evol. Comput., 28(4):643–675, 2020.

[NAW20] Mehdi Neshat, Bradley Alexander, and Markus Wagner. A hy-
brid cooperative co-evolution algorithm framework for optimis-
ing power take off and placements of wave energy converters.
Inf. Sci., 534:218–244, 2020.

68

[NN20] Aneta Neumann and Frank Neumann. Optimising monotone
chance-constrained submodular functions using evolutionary
multi-objective algorithms. In PPSN (1), volume 12269 of Lec-
ture Notes in Computer Science, pages 404–417. Springer, 2020.

[NOW09] Frank Neumann, Pietro S. Oliveto, and Carsten Witt. Theoret-
ical analysis of fitness-proportional selection: landscapes and
efficiency. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2009, pages 835–842. ACM, 2009.

[NPW19] Frank Neumann, Mojgan Pourhassan, and Carsten Witt. Im-
proved runtime results for simple randomised search heuristics
on linear functions with a uniform constraint. In GECCO, pages
1506–1514. ACM, 2019.

[NS19] Frank Neumann and Andrew M. Sutton. Runtime analysis of
the (1 + 1) evolutionary algorithm for the chance-constrained
knapsack problem. In FOGA, pages 147–153. ACM, 2019.

[NSN13a] Samadhi Nallaperuma, Andrew M. Sutton, and Frank Neu-
mann. Fixed-parameter evolutionary algorithms for the eu-
clidean traveling salesperson problem. In IEEE Congress on
Evolutionary Computation, pages 2037–2044. IEEE, 2013.

[NSN13b] Samadhi Nallaperuma, Andrew M. Sutton, and Frank Neu-
mann. Parameterized complexity analysis and more effective
construction methods for ACO algorithms and the euclidean
traveling salesperson problem. In IEEE Congress on Evolution-
ary Computation, pages 2045–2052. IEEE, 2013.

[NSW09] Frank Neumann, Dirk Sudholt, and Carsten Witt. Analysis of
different MMAS ACO algorithms on unimodal functions and
plateaus. Swarm Intelligence, 3:35–68, 2009.

[NSW10] Frank Neumann, Dirk Sudholt, and Carsten Witt. A few ants
are enough: ACO with iteration-best update. In Genetic and
Evolutionary Computation Conference, GECCO 2010, pages
63–70. ACM, 2010.

[NW06] Frank Neumann and Ingo Wegener. Minimum spanning trees
made easier via multi-objective optimization. Nat. Comput.,
5(3):305–319, 2006.

69

[NW07] Frank Neumann and Ingo Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning tree prob-
lem. Theoretical Computer Science, 378:32–40, 2007.

[NW09] Frank Neumann and Carsten Witt. Runtime analysis of a simple
ant colony optimization algorithm. Algorithmica, 54:243–255,
2009.

[NW10a] Frank Neumann and Carsten Witt. Ant colony optimization
and the minimum spanning tree problem. Theoretical Computer
Science, 411:2406–2413, 2010.

[NW10b] Frank Neumann and Carsten Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their Computa-
tional Complexity. Springer, 2010.

[NW15] Frank Neumann and Carsten Witt. On the runtime of ran-
domized local search and simple evolutionary algorithms for dy-
namic makespan scheduling. In IJCAI, pages 3742–3748. AAAI
Press, 2015.

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L.
Fisher. An analysis of approximations for maximizing submod-
ular set functions - I. Math. Program., 14(1):265–294, 1978.

[NWN15] Samadhi Nallaperuma, Markus Wagner, and Frank Neumann.
Analyzing the effects of instance features and algorithm parame-
ters for max-min ant system and the traveling salesperson prob-
lem. Frontiers Robotics AI, 2:18, 2015.

[NY12] T.T. Nguyen and X. Yao. Continuous dynamic con-
strained optimization: The challenges. IEEE Transac-
tions on Evolutionary Computation, 16(6):769–786, 2012.
doi:10.1109/TEVC.2011.2180533.

[NYB12] Trung Thanh Nguyen, Shengxiang Yang, and Jürgen Branke.
Evolutionary dynamic optimization: A survey of the state of
the art. Swarm Evol. Comput., 6:1–24, 2012.

[Och02] Gabriela Ochoa. Setting the mutation rate: scope and limita-
tions of the 1/L heuristic. In Genetic and Evolutionary Compu-
tation Conference, GECCO 2002, pages 495–502. Morgan Kauf-
mann, 2002.

70

https://doi.org/10.1109/TEVC.2011.2180533

[OE12] Adrian Ogierman and Robert Elsässer. The impact of the power
law exponent on the behavior of a dynamic epidemic type pro-
cess. In Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2012, pages 131–139. ACM, 2012.

[OV18] Gabriela Ochoa and Nadarajen Veerapen. Mapping the global
structure of TSP fitness landscapes. J. Heuristics, 24(3):265–
294, 2018.

[OW11] Pietro S. Oliveto and Carsten Witt. Simplified drift analysis
for proving lower bounds in evolutionary computation. Algo-
rithmica, 59:369–386, 2011.

[OW12] Pietro S. Oliveto and Carsten Witt. Erratum: Simplified drift
analysis for proving lower bounds in evolutionary computation.
CoRR, abs/1211.7184, 2012. arXiv:1211.7184.

[OW15] Pietro S. Oliveto and Carsten Witt. Improved time complexity
analysis of the simple genetic algorithm. Theoretical Computer
Science, 605:21–41, 2015.

[OWBM13] Yuki Osada, R. Lyndon While, Luigi Barone, and Zbigniew
Michalewicz. Multi-mine planning using a multi-objective evo-
lutionary algorithm. In IEEE Congress on Evolutionary Com-
putation, pages 2902–2909. IEEE, 2013.

[PA12] Erik Pitzer and Michael Affenzeller. A comprehensive survey
on fitness landscape analysis. In Recent Advances in Intelligent
Engineering Systems, volume 378 of Studies in Computational
Intelligence, pages 161–191. Springer, 2012.

[PGN15] Mojgan Pourhassan, Wanru Gao, and Frank Neumann. Main-
taining 2-approximations for the dynamic vertex cover prob-
lem using evolutionary algorithms. In GECCO, pages 903–910.
ACM, 2015.

[PHL15] Martin Pelikan, Mark Hauschild, and Fernando G. Lobo. Es-
timation of distribution algorithms. In Janusz Kacprzyk and
Witold Pedrycz, editors, Springer Handbook of Computational
Intelligence, pages 899–928. Springer, 2015.

[PRN20] Mojgan Pourhassan, Vahid Roostapour, and Frank Neumann.
Runtime analysis of RLS and (1+1) EA for the dynamic

71

http://arxiv.org/abs/1211.7184

weighted vertex cover problem. Theor. Comput. Sci., 832:20–41,
2020.

[Prü04] Adam Prügel-Bennett. When a genetic algorithm outperforms
hill-climbing. Theoretical Computer Science, 320:135–153, 2004.

[PSN19] Mojgan Pourhassan, Feng Shi, and Frank Neumann. Parame-
terized analysis of multiobjective evolutionary algorithms and
the weighted vertex cover problem. Evol. Comput., 27(4):559–
575, 2019.

[QBJT19] Chao Qian, Chao Bian, Wu Jiang, and Ke Tang. Running time
analysis of the (1 + 1)-EA for OneMax and LeadingOnes under
bit-wise noise. Algorithmica, 81:749–795, 2019.

[QSYT17] Chao Qian, Jing-Cheng Shi, Yang Yu, and Ke Tang. On subset
selection with general cost constraints. In Carles Sierra, edi-
tor, Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017, pages 2613–2619. ijcai.org, 2017.
doi:10.24963/ijcai.2017/364.

[QYT+19] Chao Qian, Yang Yu, Ke Tang, Xin Yao, and Zhi-Hua Zhou.
Maximizing submodular or monotone approximately submodu-
lar functions by multi-objective evolutionary algorithms. Artif.
Intell., 275:279–294, 2019.

[QYZ15] Chao Qian, Yang Yu, and Zhi-Hua Zhou. Subset selection by
pareto optimization. In NIPS, pages 1774–1782, 2015.

[Rec73] Ingo Rechenberg. Evolutionsstrategie. Friedrich Fromman Ver-
lag (Günther Holzboog KG), Stuttgart, 1973.

[RKD17] Pratyusha Rakshit, Amit Konar, and Swagatam Das. Noisy
evolutionary optimization algorithms - A comprehensive sur-
vey. Swarm and Evolutionary Computation, 33:18–45, 2017.
doi:10.1016/j.swevo.2016.09.002.

[RLY09] Philipp Rohlfshagen, Per Kristian Lehre, and Xin Yao. Dy-
namic evolutionary optimisation: an analysis of frequency and
magnitude of change. In GECCO, pages 1713–1720. ACM, 2009.

72

https://doi.org/10.24963/ijcai.2017/364
https://doi.org/10.1016/j.swevo.2016.09.002

[RNN18] Vahid Roostapour, Aneta Neumann, and Frank Neumann. On
the performance of baseline evolutionary algorithms on the dy-
namic knapsack problem. In PPSN (1), volume 11101 of Lecture
Notes in Computer Science, pages 158–169. Springer, 2018.

[RNN20] Vahid Roostapour, Aneta Neumann, and Frank Neumann. Evo-
lutionary multi-objective optimization for the dynamic knap-
sack problem. CoRR, abs/2004.12574, 2020. Conference version
appeared at PPSN 2018.

[RNNF18] Vahid Roostapour, Aneta Neumann, Frank Neumann, and To-
bias Friedrich. Pareto optimization for subset selection with
dynamic cost constraints. CoRR, abs/1811.07806, 2018.

[RNNF19] Vahid Roostapour, Aneta Neumann, Frank Neumann, and To-
bias Friedrich. Pareto optimization for subset selection with
dynamic cost constraints. In AAAI, pages 2354–2361. AAAI
Press, 2019.

[RNRN21] William Reid, Aneta Neumann, Simon Ratcliffe, and Frank
Neumann. Advanced ore mine optimisation under uncertainty
using evolution. CoRR, abs/2102.05235, 2021.

[Row18] Jonathan E. Rowe. Linear multi-objective drift analysis. The-
oretical Computer Science, 736:25–40, 2018.

[RP13] Ulrike Ritzinger and Jakob Puchinger. Hybrid metaheuristics
for dynamic and stochastic vehicle routing. In Hybrid Meta-
heuristics, volume 434 of Studies in Computational Intelligence,
pages 77–95. Springer, 2013.

[RPN18] Vahid Roostapour, Mojgan Pourhassan, and Frank Neumann.
Analysis of evolutionary algorithms in dynamic and stochastic
environments. CoRR, abs/1806.08547, 2018.

[RS14] Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring
population size in the (1, λ) evolutionary algorithm. Theoretical
Computer Science, 545:20–38, 2014.

[Rud97] Günter Rudolph. Convergence properties of evolutionary algo-
rithms. Kovac, 1997.

[RW20] Amirhossein Rajabi and Carsten Witt. Self-adjusting evolution-
ary algorithms for multimodal optimization. In Genetic and

73

Evolutionary Computation Conference, GECCO 2020, pages
1314–1322. ACM, 2020.

[SD02] Thomas Stützle and Marco Dorigo. A short convergence proof
for a class of ant colony optimization algorithms. IEEE Trans-
actions on Evolutionary Compututation, 6:358–365, 2002.

[SFAM18] Moshe Sipper, Weixuan Fu, Karuna Ahuja, and Jason H.
Moore. Investigating the parameter space of evolutionary al-
gorithms. BioData Min., 11(1):2:1–2:14, 2018.

[Sha02] Jonathan L. Shapiro. The sensitivity of PBIL to its learning
rate, and how detailed balance can remove it. In Foundations
of Genetic Algorithms, FOGA 2002, pages 115–132. Morgan
Kaufmann, 2002.

[Sha05] Jonathan L. Shapiro. Drift and scaling in estimation of distri-
bution algorithms. Evolutionary Computing, 13:99–123, 2005.

[Sha06] Jonathan L. Shapiro. Diversity loss in general estimation of dis-
tribution algorithms. In Parallel Problem Solving from Nature,
PPSN 2006, pages 92–101. Springer, 2006.

[SN12] Andrew M. Sutton and Frank Neumann. A parameterized run-
time analysis of evolutionary algorithms for the Euclidean trav-
eling salesperson problem. In Proceedings of the Twenty-Sixth
Conference on Artificial Intelligence (AAAI’12), pages 1105–
1111. AAAI Press, 2012.

[SNN14] Andrew M. Sutton, Frank Neumann, and Samadhi Nallape-
ruma. Parameterized runtime analyses of evolutionary algo-
rithms for the planar euclidean traveling salesperson problem.
Evol. Comput., 22(4):595–628, 2014.

[SSF+19] Feng Shi, Martin Schirneck, Tobias Friedrich, Timo Kötzing,
and Frank Neumann. Reoptimization time analysis of evolu-
tionary algorithms on linear functions under dynamic uniform
constraints. Algorithmica, 81(2):828–857, 2019.

[ST05] Giovanni Sebastiani and Giovanni Luca Torrisi. An extended
ant colony algorithm and its convergence analysis. Methodology
and Computing in Applied Probability, 7:249–263, 2005.

74

[ST12] Dirk Sudholt and Christian Thyssen. A simple ant colony op-
timizer for stochastic shortest path problems. Algorithmica,
64:643–672, 2012.

[Sto06] Tobias Storch. How randomized search heuristics find maximum
cliques in planar graphs. In GECCO, pages 567–574. ACM,
2006.

[Sto07] Tobias Storch. Finding large cliques in sparse semi-
random graphs by simple randomized search heuris-
tics. Theor. Comput. Sci., 386(1-2):114–131, 2007.
doi:10.1016/j.tcs.2007.06.008.

[STW04] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The
analysis of evolutionary algorithms on sorting and shortest
paths problems. Journal of Mathematical Modelling and Al-
gorithms, 3:349–366, 2004.

[Sud13] Dirk Sudholt. A new method for lower bounds on the running
time of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation, 17:418–435, 2013.

[Sud18] Dirk Sudholt. On the robustness of evolutionary algorithms to
noise: refined results and an example where noise helps. In
Genetic and Evolutionary Computation Conference, GECCO
2018, pages 1523–1530. ACM, 2018.

[SvH11] Kate Smith-Miles and Jano I. van Hemert. Discovering the
suitability of optimisation algorithms by learning from evolved
instances. Ann. Math. Artif. Intell., 61(2):87–104, 2011.

[SW19] Dirk Sudholt and Carsten Witt. On the choice of the update
strength in estimation-of-distribution algorithms and ant colony
optimization. Algorithmica, 81:1450–1489, 2019.

[Sys93] Gilbert Syswerda. Simulated crossover in genetic algorithms.
In Foundations of Genetic Algorithms, FOGA 1992, pages 239–
255. Morgan Kaufmann, 1993.

[The09] Madeleine Theile. Exact solutions to the traveling salesperson
problem by a population-based evolutionary algorithm. In Evo-
lutionary Computation in Combinatorial Optimization, Evo-
COP 2009, pages 145–155. Springer, 2009.

75

https://doi.org/10.1016/j.tcs.2007.06.008

[TWD+13] Raymond Tran, Junhua Wu, Christopher Denison, Thomas
Ackling, Markus Wagner, and Frank Neumann. Fast and ef-
fective multi-objective optimisation of wind turbine placement.
In GECCO, pages 1381–1388. ACM, 2013.

[Von10] Jan Vondrák. Submodularity and curvature: The optimal algo-
rithm. RIMS Kôkyûroku Bessatsu, B23:253—-266, 2010.

[Weg01] Ingo Wegener. Theoretical aspects of evolutionary algorithms.
In Automata, Languages and Programming, ICALP 2001, pages
64–78. Springer, 2001.

[Wit06] Carsten Witt. Runtime analysis of the (µ + 1) EA on simple
pseudo-Boolean functions. Evolutionary Computation, 14:65–
86, 2006.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a ran-
domized search heuristic on linear functions. Combinatorics,
Probability & Computing, 22:294–318, 2013.

[Wit19] Carsten Witt. Upper bounds on the running time of the univari-
ate marginal distribution algorithm on OneMax. Algorithmica,
81:632–667, 2019.

[WQT18] Mengxi Wu, Chao Qian, and Ke Tang. Dynamic mutation based
Pareto optimization for subset selection. In Intelligent Comput-
ing Methodologies, ICIC 2018, Part III, pages 25–35. Springer,
2018.

[WSOC14] L. Darrell Whitley, Andrew M. Sutton, Gabriela Ochoa, and
Francisco Chicano. The component model for elementary land-
scapes and partial neighborhoods. Theor. Comput. Sci., 545:59–
75, 2014.

[XHA+19] Yue Xie, Oscar Harper, Hirad Assimi, Aneta Neumann, and
Frank Neumann. Evolutionary algorithms for the chance-
constrained knapsack problem. In GECCO, pages 338–346.
ACM, 2019.

[XNN20] Yue Xie, Aneta Neumann, and Frank Neumann. Specific single-
and multi-objective evolutionary algorithms for the chance-
constrained knapsack problem. In GECCO, pages 271–279.
ACM, 2020.

76

[XNN21] Yue Xie, Aneta Neumann, and Frank Neumann. Heuristic
strategies for solving complex interacting stockpile blending
problem with chance constraints. In GECCO, pages 1079–1087.
ACM, 2021.

[XNNS21] Yue Xie, Aneta Neumann, Frank Neumann, and Andrew M.
Sutton. Runtime analysis of RLS and the (1+1) EA for the
chance-constrained knapsack problem with correlated uniform
weights. In GECCO, pages 1187–1194. ACM, 2021.

[Zho09] Yuren Zhou. Runtime analysis of an ant colony optimization al-
gorithm for TSP instances. IEEE Transactions on Evolutionary
Computation, 13:1083–1092, 2009.

[ZV16] Haifeng Zhang and Yevgeniy Vorobeychik. Submodular opti-
mization with routing constraints. In Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence, AAAI 2016,
pages 819–826. AAAI Press, 2016.

[ZYD18] Weijie Zheng, Guangwen Yang, and Benjamin Doerr. Working
principles of binary differential evolution. In Genetic and Evo-
lutionary Computation Conference, GECCO 2018, pages 1103–
1110. ACM, 2018.

[ZYQ19] Zhi-Hua Zhou, Yang Yu, and Chao Qian. Evolutionary Learn-
ing: Advances in Theories and Algorithms. Springer, 2019.
doi:10.1007/978-981-13-5956-9.

77

https://doi.org/10.1007/978-981-13-5956-9

	1 Introduction
	2 Fine-grained Runtime Analysis of Randomized Search Heuristics
	2.1 Fixed Budget and Fixed Target Analysis
	2.2 Parameterized Analysis
	2.2.1 Results for Minimum Vertex Cover
	2.2.2 Results for the Euclidean Traveling Salesperson Problem
	2.2.3 Further Results for Combinatorial Optimization Problems

	2.3 Future work

	3 Setting the Parameters of Evolutionary Algorithms
	3.1 Finding Optimal Static Parameter Values (Parameter Tuning)
	3.2 Dynamic Parameter Settings (Parameter Control)
	3.3 The Future of Parameter Research

	4 Analysis of Evolutionary Algorithms in Dynamic and Stochastic Environments
	4.1 Dynamic Benchmark Functions
	4.2 Dynamic Combinatorial Optimization Problems
	4.3 Noisy Problems
	4.4 Combinatorial Optimization Problems with Dynamic and Stochastic Constraints
	4.5 Future work

	5 Submodular optimization
	5.1 Monotone Submodular Functions
	5.2 Non-monotone Submodular Functions
	5.3 Submodular Functions with Dynamic and Stochastic Constraints
	5.4 Future work

	6 Theory of Estimation-of-Distribution Algorithms
	6.1 The Compact Genetic Algorithm
	6.2 Central Results
	6.2.1 EDAs Can Cope Well with Noise
	6.2.2 EDAs Can Cope Well with Local Optima
	6.2.3 Genetic Drift and Optimal Parameter Choices

	6.3 Open Problems
	6.3.1 Runtime Results in the Regime with Genetic Drift
	6.3.2 Multivariate EDAs

	7 Drift Analysis
	7.1 Three True Drift Theorems
	7.1.1 Additive Drift.
	7.1.2 Multiplicative Drift.
	7.1.3 Variable Drift.

	7.2 Drift Results With Additional Requirements
	7.2.1 Lower Bounds for Hitting Times.
	7.2.2 Increasing Drift.
	7.2.3 Negative Drift.

	7.3 Challenge: Finding the Right Potential Function
	7.3.1 Drift Analysis for Representations Other Than Bit Strings.
	7.3.2 Drift Analysis for Population-based EAs.
	7.3.3 Drift Analysis for Dynamic Parameters.

	8 Final Words

