
HAL Id: hal-03408912
https://hal.science/hal-03408912v1

Preprint submitted on 4 Nov 2021 (v1), last revised 5 May 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gradient based block coordinate descent algorithms for
joint approximate diagonalization of matrices

Jianze Li, Konstantin Usevich, Pierre Comon

To cite this version:
Jianze Li, Konstantin Usevich, Pierre Comon. Gradient based block coordinate descent algorithms
for joint approximate diagonalization of matrices. 2020. �hal-03408912v1�

https://hal.science/hal-03408912v1
https://hal.archives-ouvertes.fr

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS

FOR JOINT APPROXIMATE DIAGONALIZATION OF MATRICES

JIANZE LI†, KONSTANTIN USEVICH‡, AND PIERRE COMON\

Abstract. In this paper, we propose a gradient based block coordinate descent (BCD-G)

framework to solve the joint approximate diagonalization of matrices defined on the product

of the complex Stiefel manifold and the special linear group. Instead of the cyclic fashion,

we choose the block for optimization in a way based on the Riemannian gradient. To update

the first block variable in the complex Stiefel manifold, we use the well-known line search

descent method. To update the second block variable in the special linear group, based on

four different kinds of elementary transformations, we construct three classes: GLU, GQU

and GU, and then get three BCD-G algorithms: BCD-GLU, BCD-GQU and BCD-GU. We

establish the global convergence and weak convergence of these three algorithms using the

 Lojasiewicz gradient inequality under the assumption that the iterates are bounded. We also

propose a gradient based Jacobi-type framework to solve the joint approximate diagonalization

of matrices defined on the special linear group. Similar as in the BCD-G case, using the GLU

and GQU classes of elementary transformations, we focus on the Jacobi-GLU and Jacobi-

GQU algorithms, and establish their global convergence and weak convergence as well. All the

algorithms and convergence results in this paper also apply to the real case.

1. Introduction

1.1. Problem formulation. Let 1 ≤ m ≤ n. For a matrix X ∈ Cn×m, we denote by XT,

X∗ and XH its transpose, conjugate and conjugate transpose, respectively. We shall also use

(·)� to denote either (·)T or (·)H. Let {A(`)}1≤`≤L ⊆ Cn×m be a set of complex matrices, and

µ` ∈ R+ for 1 ≤ ` ≤ L. It is well-known that the blind source separation (BSS) [16, 17, 35, 42]

can be formulated as finding a full column rank matrix Z ∈ Cn×m to make the matrices

W (`) = Z�A(`)Z ∈ Cm×m simultaneously as diagonal as possible. This is to solve the joint

approximate diagonalization of matrices (JADM) problem, which consists in minimizing the

cost function

f(Z) =

L∑
`=1

µ`‖ offdiag{W (`)}‖2, (1)

2010 Mathematics Subject Classification. 49M30, 65F99, 90C30, 15A23.

Key words and phrases. blind source separation, joint approximate diagonalization of matrices, block coordi-

nate descent, Jacobi-G algorithm, convergence analysis, manifold optimization.

† Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China (li-

jianze@gmail.com).

‡ Université de Lorraine, CNRS, CRAN, Nancy, France (konstantin.usevich@univ-lorraine.fr).

\ Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, France (pierre.comon@gipsa-lab.fr).

This work was supported in part by the National Natural Science Foundation of China (No. 11601371) and

the GuangDong Basic and Applied Basic Research Foundation (No. 2021A1515010232).

1

2 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

where offdiag{·} is the zero diagonal operator, which sets all the diagonal elements of a square

matrix in Cm×m to zero.

Note that, if Z ∈ Cn×m is of full column rank and λ ∈ C is nonzero, then λZ is still of full

column rank and the function f in (1) satisfies f(λZ) = |λ|2f(Z). Therefore, the optimization

problem of minimizing f on the set of full column rank matrices is not well defined. To tackle

this issue, one approach is to introduce new cost functions. For example, several cost functions

with the scale and permutation invariance property are introduced in [4, 48]. In this paper, we

still use the function (1), while restricting the variable Z in a smaller set RSL(m,n,C), which

will be defined in (2).

Let GLm(C)
def
= {X ∈ Cm×m,det(X) 6= 0} be the general linear group, and SLm(C)

def
=

{X ∈ GLm(C),det(X) = 1} be the special linear group. We define the rectangular special

linear set as

RSL(m,n,C)
def
= {X ∈ Cn×m,XHX ∈ SLm(C)}. (2)

In this paper, we mainly study the JADM problem on RSL(m,n,C), which is to minimize the

cost function

f(Z) =

L∑
`=1

µ`‖ offdiag{W (`)}‖2, (3)

where Z ∈ RSL(m,n,C).

1.2. Two equivalent reformulations.

1.2.1. First reformulation on St(m,n,C) × SLm(C). Let St(m,n,C)
def
= {Y ∈ Cn×m,Y HY =

Im} be the complex Stiefel manifold. We have the following relationship1:

RSL(m,n,C) = St(m,n,C)× SLm(C). (4)

By equation (4), problem (3) is equivalent to minimizing the cost function

f : St(m,n,C)× SLm(C)→ R+, (Y ,X) 7→
L∑
`=1

µ`‖ offdiag{W (`)}‖2, (5)

where W (`) = (Y X)�A(`)(Y X) ∈ Cm×m.

1.2.2. Second reformulation on SLm(C). In problem (5), it is often possible to find a solution

Y ∗ ∈ St(m,n,C) in advance by some other method, e.g. PCA [15, 16, 17]. This well-known

procedure allows to reduce the space dimension by projection onto the dominant subspace, and

at the same time to reduce the noise level. Let B(`) = Y �
∗A

(`)Y ∗ for 1 ≤ ` ≤ L. Then the cost

function (5) becomes

g : SLm(C)→ R+, X 7→ g(X) =

L∑
`=1

µ`‖ offdiag{W (`)}‖2, (6)

1This equation means that a complex matrix Z ∈ RSL(m,n,C) if and only if there exist Y ∈ St(m,n,C)

and X ∈ SLm(C) such that Z = Y X. It is the same case with equations (11), (12), (13), (15) and (16).

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 3

where W (`) = X�B(`)X ∈ Cm×m. A complex matrix B ∈ Cm×m is called Hermitian if

BH = B. It is called complex symmetric if BT = B. Problem (6) has the following well-known

special cases:

• joint approximate diagonalization of Hermitian matrices (JADM-H)[41, 35]: (·)� = (·)H,

B(`) is Hermitian and µ` = 1 for 1 ≤ ` ≤ L;

• joint approximate diagonalization of complex symmetric matrices (JADM-CS) [35]:

(·)� = (·)T, B(`) is complex symmetric and µ` = 1 for 1 ≤ ` ≤ L;

• joint approximate diagonalization of real symmetric matrices (JADM-RS) [4, 5]: on the

real field R, (·)� = (·)T, B(`) is real symmetric and µ` = 1 for 1 ≤ ` ≤ L.

These three problems have been widely used in the BSS and Independent component analysis

(ICA) [13, 17, 4, 6]. Compared with the joint approximate diagonalization by orthogonal

transformations [11, 12, 16, 24, 27, 25, 26, 44], the non-orthogonal joint diagonalizer in (6)

does not require prewhitening and may less suffer from noise. However, since SLm(C) is not

compact, solving this problem is much more difficult.

To solve the JADM-RS problem, Jacobi-type algorithms were introduced based on the LU and

QR decompositions in [5], and based on the Givens transformations, hyperbolic transformations

and diagonal transformations in [42, Eq. (9)]. To solve the JADM-H problem, Jacobi-type

algorithms were proposed based on the LU decomposition in [35, 36], and based on the QL

decomposition in [41]. To solve the JADM-CS problem, a Jacobi-type algorithm was proposed

based on the LU decomposition in [34, 35]. However, to our knowledge, there was no theoretical

result about the convergence of these Jacobi-type algorithms in the literature.

1.3. Block coordinate descent. Suppose that {Mi}1≤i≤d is a set of smooth manifolds. To

minimize the following smooth function

f : M1 ×M2 × · · · ×Md −→ R+, (7)

a popular approach is the block coordinate descent (BCD) [8, 31, 32, 46, 47, 28]. In this method,

only one block variable is updated at each iteration, while other block variables are fixed. Then

problem (7) is decomposed to a sequence of lower-dimensional optimization problems, similar

as the subproblems in Jacobi-type algorithms. In BCD algorithm, there are different ways to

choose blocks for optimization, including the essentially cyclic, cyclic, random fashions [46, 47]

and the so-called maximum block improvement (MBI) method [14, 29].

1.4. BCD-G algorithm for the first reformulation on St(m,n,C) × SLm(C). Suppose

that

f : St(m,n,C)× SLm(C)→ R+ (8)

is an abstract smooth function, which includes the cost function (5) as a special case. For

ω = (Y ,X) ∈ St(m,n,C)× SLm(C), we define

f1,X : Y 7→ f(Y ,X), f2,Y : X 7→ f(Y ,X), (9)

as the restricted functions. For simplicity, we denote the Riemannian gradient2 grad f1(ω)
def
=

grad f1,X(Y) and grad f2(ω)
def
= grad f2,Y (X). Let ωk

def
= (Y k,Xk) for k ≥ 0. Now we propose

2See [3, Section 3.6] for a detailed definition.

4 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

the following gradient based block coordinate descent (BCD-G) algorithm to minimize the cost

function (8). It is easy to see that, in Algorithm 1, we can always choose tk = 1 or 2 such that

the inequality (10) is satisfied3.

Algorithm 1: BCD-G algorithm

1: Input: A starting point ω0, 0 < υ <
√

2
2 .

2: Output: Sequence of iterates ωk.

3: for k = 1, 2, · · · , do

4: Choose tk = 1 or 2 such that

‖ grad ftk(ωk−1)‖ ≥ υ‖ grad f(ωk−1)‖; (10)

5: if tk = 1 then

6: Update Uk using the line search descent method (cf. Equation (31) in Section 3);

7: Set Xk = Xk−1;

8: else

9: Set Uk = Uk−1;

10: Update Xk using the elementary transformations (cf. Subalgorithm 1a to 1c in

Section 4);

11: end if

12: end for

Now we need to recall some Lie groups before introducing further details about Algorithm 1.

A matrix X ∈ Cm×m is said to be upper triangular if Xij = 0 for i > j. Let UTm(C) ⊆ GLm(C)

be the upper triangular subgroup, that is

UTm(C)
def
= {X ∈ GLm(C),X is upper triangular}.

Let EUTm(C) = UTm(C)∩SLm(C), i.e., the set of upper triangular matrices with determinant

equal to 1. Similarly, we let LTm(C) ⊆ Cm×m be the lower triangular subgroup and ELTm(C) =

LTm(C) ∩ SLm(C). Let Um ⊆ Cm×m be the unitary group, and SUm ⊆ Um be the special

unitary group.

In Algorithm 1, to update Uk, we choose the line search descent method [3], which will be

presented in Section 3. To update Xk, using the Givens plane, plane upper triangular, plane

lower triangular and plane diagonal transformations4, which will be introduced in Section 4,

we construct three classes of elementary transformations: GLU, GQU and GU.

• Any matrix X ∈ SLm(C) has the LU decomposition [18] X = LU with L ∈ LTm(C)

and U ∈ UTm(C). The first class GLU is inspired by the following relationship

RSL(m,n,C) = St(m,n,C)×ELTm(C)×EUTm(C), (11)

3The inequality (10) can be seen as a block coordinate analogue of [20, Eq. (3.3)] and [24, Eq. (10)].
4The reason why we use plane diagonal transformations will be shown in Section 4

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 5

which follows from equation (4) and the LU decomposition, and it includes the plane

lower triangular, plane upper triangular and plane diagonal transformations (Subalgo-

rithm 1a). In this case, we call Algorithm 1 the BCD-GLU algorithm.

• Any matrix X ∈ SLm(C) has the the QU decomposition X = QU with Q ∈ SUm and

U ∈ UTm(C). The second class GQU is inspired by the following relationship

RSL(m,n,C) = St(m,n,C)× SUm ×EUTm(C), (12)

which follows from equation (4) and the QU decomposition, and it includes the Givens

plane, plane upper triangular and plane diagonal transformations (Subalgorithm 1b).

In this case, we call Algorithm 1 the BCD-GQU algorithm.

• Note that the equation (12) can be further written as

RSL(m,n,C) = St(m,n,C)× SUm ×EUTm(C) = St(m,n,C)×EUTm(C). (13)

We construct the third class GU, which only includes the plane upper triangular and

plane diagonal transformations (Subalgorithm 1c). In this case, we call Algorithm 1 the

BCD-GU algorithm.

1.5. Jacobi-G algorithm for the second reformulation on SLm(C). Suppose that

g : SLm(C)→ R+ (14)

is an abstract smooth function, which includes the cost function (6) as a special case. To

minimize the cost function (14), using the Givens plane, plane upper triangular, plane lower

triangular and plane diagonal transformations, which will be introduced in Section 4, we will

propose two types of gradient-based Jacobi-type algorithms: Jacobi-GLU and Jacobi-GQU,

which will be detailedly formulated in Section 7.3.1. Now we only show the motivations of

these two algorithms. Jacobi-GLU is inspired by the LU decomposition

SLm(C) = ELTm(C)×EUTm(C), (15)

and it uses the GLU class. Jacobi-GQU is inspired by the QU decomposition

SLm(C) = SUm ×EUTm(C), (16)

and it uses the GQU class.

1.6. Contributions. The main contributions of this paper can be summarized as follows:

• To solve problem (5), we propose the BCD-G framework (Algorithm 1), which chooses

the block for optimization in a way based on the Riemannian gradient. This is similar

to the gradient-based way of choosing index pairs in Jacobi-G algorithms [20, 24, 44].

• To update the first block variable Y , we adopt the well-known line search descent

method. To update the second block variable X, based on four kinds of elementary

transformations, we construct three classes (GLU, GQU and GU), and then get three

BCD-G algorithms: BCD-GLU, BCD-GQU and BCD-GU.

6 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

• We establish the global convergence5 and weak convergence6 of BCD-GLU, BCD-GQU

and BCD-GU algorithms using the Lojasiewicz gradient inequality, under the assump-

tion that the iterates are bounded, that is, there exists Mω > 0 such that

‖ωk‖ ≤ Mω (17)

always holds.

• To solve problem (6), we propose two types of gradient based Jacobi-type algorithms

(Jacobi-GLU and Jacobi-GQU) on SLm(C), which can be seen as non-orthogonal ana-

logues of the Jacobi-G algorithm on orthogonal or unitary group [20, 24, 44].

• We establish the global convergence and weak convergence of Jacobi-GLU and Jacobi-

GQU algorithms using the Lojasiewicz gradient inequality, under the assumption that

the iterates are bounded, that is, there exists MX > 0 such that

‖Xk‖ ≤ MX (18)

always holds. To our knowledge, this is the first time that the theoretical convergence

is established for the Jacobi-type algorithms on SLm(C).

• These algorithms and convergence results are summarized in Table 1.

Table 1. A summary of the proposed algorithms

Model
Proposed

algorithms
Position

Elementary

functions

Global

convergence

Weak

convergence

First reformulation (5)

on St(m,n,C)× SLm(C)

BCD-GLU Algorithm 1&Subalgorithm 1a ϕ,ψ, ρ
Theorem 7.1 Theorem 7.2

BCD-GQU Algorithm 1&Subalgorithm 1b h, ϕ, ρ

BCD-GU Algorithm 1&Subalgorithm 1c ϕ, ρ Theorem 7.3 Theorem 7.4

Second reformulation (6)

on SLm(C)

Jacobi-GLU Algorithm 2 ϕ,ψ, ρ
Theorem 7.5 Theorem 7.6

Jacobi-GQU Algorithm 3 h, ϕ, ρ

Remark 1.1. This paper is based on the complex matrices, complex Stiefel manifold St(m,n,C)

and complex special linear group SLm(C). In fact, all the algorithms and convergence results

described in this paper also apply to the real case.

1.7. Organization. The paper is organized as follows. In Section 2, we recall the basics of

first order geometries on the Stiefel manifold St(m,n,C) and special linear group SLm(C), as

well as the Lojasiewicz gradient inequality. In Section 3, we show the details of how to use line

search descent method to update the first block variable in St(m,n,C). In Section 4, using four

kinds of elementary transformations, we construct three classes of elementary transformations

to update the second block variable in SLm(C), which induce three BCD-G algorithms (BCD-

GLU, BCD-GQU and BCD-GU) to solve problem (5). In Section 5 and Section 6, we present

the details of these four kinds of elementary transformations. In Section 7, we prove our main

results about the global and weak convergence of BCD-G algorithms. We also present two

5For any starting point, the iterates converge as a whole sequence.
6Every accumulation point is a stationary point.

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 7

gradient based Jacobi-type algorithms (Jacobi-GLU and Jacobi-GQU) to solve problem (6),

and prove their global and weak convergence as well. In Section 8, some experiments are

conducted to show the efficiency of the proposed algorithms. Section 9 concludes this paper

with some final remarks and possible future work.

2. Geometries on St(m,n,C) and SLm(C)

2.1. Notations. Let 1 ≤ m ≤ n. For a complex matrix X ∈ Cn×m and a complex number

z ∈ C, we write the real and imaginary parts as X = X< + iX= and z = <(z) + i=(z),

respectively. For X,Y ∈ Cn×m, we introduce the following real-valued inner product

〈X,Y 〉 def= 〈X<,Y <〉+ 〈X=,Y =〉 = <
(

tr(XHY)
)
, (19)

which makes Cn×m a real Euclidean space of dimension 2nm. Let h : Cn×m → R be a dif-

ferentiable function and X ∈ Cn×m. We denote by ∂h
∂X<

, ∂h
∂X=

∈ Rn×m the matrix Euclidean

derivatives of h with respect to real and imaginary parts of X. The Wirtinger derivatives

[1, 10, 22] are defined as

∂h

∂X∗
:=

1

2

(
∂h

∂X<
+ i

∂h

∂X=

)
,

∂h

∂X
:=

1

2

(
∂h

∂X<
− i ∂h

∂X=

)
.

Then the Euclidean gradient of h with respect to the inner product (19) becomes

∇h(X) =
∂h

∂X<
+ i

∂h

∂X=
= 2

∂h

∂X∗
. (20)

For real matrices X,Y ∈ Rn×m, we see that (19) becomes the standard inner product, and

(20) becomes the standard Euclidean gradient. We denote by Sn−1 ⊆ Rn the unit sphere.

2.2. Riemannian gradient on St(m,n,C). For X ∈ Cm×m, we denote

sym (X) =
1

2

(
X + XH

)
, skew(X) =

1

2

(
X −XH

)
.

Let TUSt(m,n,C) be the tangent space to St(m,n,C) at a point U . Let U⊥ ∈ Cn×(n−m) be an

orthogonal complement of U , that is, [U ,U⊥] ∈ Cn×n is a unitary matrix. By [33, Definition

6], we know that

TUSt(m,n,C) = {Z ∈ Cn×m,Z = UA + U⊥B,A ∈ Cm×m,AH + A = 0,B ∈ C(n−m)×m},

which is a (2nm −m2)-dimensional vector space. The orthogonal projection of ξ ∈ Cn×m to

TUSt(m,n,C) is

ProjUξ = (In −UUH)ξ + U skew(UHξ) = ξ −U sym
(
UHξ

)
. (21)

We denote Proj⊥Uξ
def
= ξ − ProjUξ. Note that St(m,n,C) is an embedded submanifold of the

Euclidean space Cn×m. By (21), we have the Riemannian gradient of h at U as:

gradh(U) = ProjU∇h(U) = ∇h(U)−U sym
(
UH∇h(U)

)
. (22)

8 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

By [3, Example 5.4.2], the exponential map at U is defined as

ExpU : TUSt(m,n,C) −→ St(m,n,C)

Z 7−→ [U ,Z]exp

([
UHZ −ZHZ

Im UHZ

])[
exp

(
−UHZ

)
0m×m

]
.

2.3. Matrix groups. Let slm(C)
def
= {X ∈ Cm×m, tr(X) = 0}. Then the tangent space to

SLm(C) at a point X ∈ SLm(C) can be constructed [7, Eq. (3.7),(3.8)] by TXSLm(C) =

{XΩ,Ω ∈ slm(C)}. Let SUm ⊆ Cm×m be the special unitary group. Let

sum(C)
def
= {X ∈ Cm×m,XH = −X, tr(X) = 0}.

Then the tangent space to SUm at a point X ∈ SUm can be constructed [7, Eq. (3.15)] by

TXSUm = {XΩ,Ω ∈ slm(C)}.
A matrix X ∈ Cm×m is said to be upper triangular if Xij = 0 for i > j. An upper triangular

matrix X is said to be unipotent if it satisfies Xii = 1 for 1 ≤ i ≤ m. Let UTm(C) ⊆ GLm(C)

be the upper triangular subgroup, that is

UTm(C)
def
= {X ∈ GLm(C),X is upper triangular}.

Let SUTm(C) ⊆ GLm(C) be the upper unipotent subgroup, that is

SUTm(C)
def
= {X ∈ GLm(C),X is upper triangular and unipotent}.

A matrix X ∈ Cm×m is said to be strictly upper triangular if Xij = 0 for i ≥ j. Let sutm(C) ⊆
Cm×m be the set of strictly upper triangular matrices. Then the tangent space to SUTm(C) at

a point X ∈ SUTm(C) can be constructed [7, Eq. (3.11)], [4, Section 6.4] by TXSUTm(C) =

{XΩ,Ω ∈ sutm(C)}. For the case n = 2,

SUT2(C) =

{[
1 z

0 1

]
, z ∈ C

}
, sut2(C) =

{[
0 z

0 0

]
, z ∈ C

}
.

Similary, we let LTm(C) ⊆ Cm×m be the lower triangular subgroup, SLTm(C) ⊆ Cm×m be

the lower unipotent subgroup, and sltn(C) ⊆ Cm×m be the set of strictly lower triangular

matrices. Then the tangent space to SLTm(C) at a point X ∈ SLTm(C) can be constructed

by TXSLTm(C) = {XΩ,Ω ∈ sltm(C)}.
A diagonal matrix X ∈ Cm×m is said to be a diagonal transformation if the product of all the

diagonal elements is equal to 1. Let Dm(C) ⊆ GLm(C) be the set of diagonal transformation

matrices. Let dm(C) ⊆ Cm×m be the set of diagonal traceless matrices. Then the tangent space

to Dm(C) at a point X ∈ Dm(C) can be constructed by TXDm(C) = {XΩ,Ω ∈ dm(C)}. For

the case n = 2,

D2(C) =

{[
z 0

0 1
z

]
, z ∈ C∗

}
, d2(C) =

{[
z 0

0 −z

]
, z ∈ C

}
.

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 9

2.4. Riemannian gradient on SLm(C). For tangent vectors ξ, η ∈ TXSLm(C), we use the

left invariant [3], [4, Eq. (6.2)] Riemannian metric

〈ξ, η〉X
def
=
〈
X−1ξ,X−1η

〉
= <

(
tr(ξH(XXH)−1η)

)
.

Let g : SLm(C) −→ R+ be a differentiable cost function. Then the Riemannian gradient of g

at X ∈ SLm(C) is the orthogonal projection [4, Lemma 6.2] of its Euclidian gradient ∇g(X)

to TXSLm(C), that is,

grad g(X) = X

(
XH∇g(X)− tr(XH∇g(X))

n
In

)
. (23)

We denote Λ(X)
def
= X−1 grad g(X) ∈ slm(C) for X ∈ SLm(C), which will be frequently used

in this paper.

In what follows, we will use the following exponential map

ExpX : TXSLm(C)→ SLm(C), XΩ 7→X exp(Ω∗) exp(Ω− Ω∗),

where exp(Ω) is the matrix exponential function [3, 7, 19]. For any ∆ ∈ TXSLm(C), we have

the following relationship between ExpX and the Riemannian gradient

〈∆, grad g(X)〉X =

(
d

dt
g(ExpX(t∆))

)∣∣∣∣
t=0

. (24)

2.5. Conditions for convergence analysis.

2.5.1. Lojasiewicz gradient inequality. In this subsection, we present some results about the

 Lojasiewicz gradient inequality [23, 30, 2, 43]. These results were used in [25, 44] to prove the

global convergence of Jacobi-G algorithms on the orthogonal and unitary groups.

Definition 2.1 ([40, Definition 2.1]). Let M ⊆ Rn be a Riemannian submanifold, and f :

M→ R be a differentiable function. The function f :M→ R is said to satisfy a Lojasiewicz

gradient inequality at x ∈ M, if there exist σ > 0, ζ ∈ (0, 1
2] and a neighborhood U in M of x

such that for all y ∈ U , it follows that

|f(y)− f(x)|1−ζ ≤ σ‖ grad f(y)‖. (25)

Lemma 2.2 ([40, Proposition 2.2]). LetM⊆ Rn be an analytic submanifold7 and f :M→ R
be a real analytic function. Then for any x ∈ M, f satisfies a Lojasiewicz gradient inequality

(25) in the δ-neighborhood of x, for some8 δ, σ > 0 and ζ ∈ (0, 1
2].

Theorem 2.3 ([40, Theorem 2.3]). LetM⊆ Rn be an analytic submanifold and {xk}k≥1 ⊆M.

Suppose that f is real analytic and, for large enough k,

(i) there exists σ > 0 such that

f(xk+1)− f(xk) ≥ σ‖ grad f(xk)‖‖xk+1 − xk‖;

(ii) grad f(xk) = 0 implies that xk+1 = xk.

Then any accumulation point x∗ of {xk}k≥1 must be the only limit point.

7See [21, Definition 2.7.1] or [25, Definition 5.1] for a definition of an analytic submanifold.
8The values of δ, σ, ζ depend on the specific point in question.

10 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

2.5.2. Conditions for global convergence. The following result about the global convergence of

Algorithm 1 is a direct consequence of Theorem 2.3 and condition (10).

Proposition 2.4. Suppose that the function f in (8) is real analytic and the sequence {ωk}k≥1

produced by Algorithm 1 satisfies that, for large enough k,

(i) there exists σ > 0 such that

ftk(ωk−1)− ftk(ωk) ≥ σ‖ grad ftk(ωk−1)‖‖ωk − ωk−1‖; (26)

(ii) grad ftk(ωk−1) = 0 implies that ωk = ωk−1.

Then any accumulation point ω∗ of the sequence {ωk}k≥1 must be the only limit point.

2.5.3. Conditions for weak convergence. Since the special linear group SLm(C) is not compact,

the iterates {ωk}k≥1 produced by Algorithm 1 may have no accumulation point. However, if

there exists an accumulation point, we have the following result about its weak convergence,

which can be proved easily by condition (10) and the fact that f(ω) ≥ 0.

Lemma 2.5. In Algorithm 1 for cost function (8), if there exists η > 0 such that

f(ωk−1)− f(ωk) ≥ η‖ grad ftk(ωk−1)‖2 (27)

always holds, then limk→∞ grad f(ωk−1) = 0. In particular, if ω∗ is an accumulation point of

the iterates {ωk}k≥1, then ω∗ is a stationary point of f .

3. Line search descent method on St(m,n,C)

Let f be the cost function (5). Let ωk−1 = (Uk−1,Xk−1) and p = f1,Xk−1
be the first

restricted function. Denote X = Xk−1 for simplicity. Then p can be expressed as

p : St(m,n,C)→ R+, U 7→
L∑
`=1

µ`‖ offdiag{W (`)}‖2, (28)

where W (`) = X�U�A(`)UX.

3.1. Riemannian gradient. We first present a lemma, which can be obtained by direct cal-

culations. This result will help us to obtain the Riemannian gradient of p in (28).

Lemma 3.1. Let A ∈ Cn×n and the function p̃ be defined as

p̃ : Cn×m → R+, Y 7→ ‖ offdiag{W }‖2,

where W = Y �AY . Let V = AY = [v1, · · · ,vm] and V
′

= A�Y = [v
′
1, · · · ,v

′
m]. Denote

Y = [y1, · · · ,ym]. Then the Euclidean gradient is

∇p̃(Y) = 2

∑
j 6=1

vjv
H
j y1, · · · ,

∑
j 6=m

vjv
H
j ym

+ 2

∑
j 6=1

v
′
j(v

′
j)

Hy1, · · · ,
∑
j 6=m

v
′
j(v

′
j)

Hym

 .

In particular, it satisfies

Y Y H∇p̃(Y) = 2Y Υ(W), (29)

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 11

where

Υ(W)
def
=

{
W offdiag{W }H + WH offdiag{W }, if (·)� = (·)H;

W ∗ offdiag{W }T + WH offdiag{W }, if (·)� = (·)T.

Lemma 3.2. Let W (`) and the function p be as in (28). Then the Euclidean gradient satisfies

UH∇p(U) = 2(XH)−1
L∑
`=1

µ`Υ(W (`))XH. (30)

Proof. By the product rule, we see that ∇p(U) = ∇p̃(UX)XH. Then, by (29), we have

XXHUH∇p(U) = UHUX(UX)H∇p̃(UX)XH = 2UHUX

L∑
`=1

µ`Υ(W (`))XH.

Note that X is invertible. The proof is complete. �

Now, by (30) and (22), we see that the Riemannian gradient of p in (28) satisfies

UH grad p(U) = (XH)−1
L∑
`=1

µ`Υ(W (`))XH −X
L∑
`=1

µ`Υ(W (`))HX−1.

3.2. Line search descent method. In this paper, we adopt the line search descent method

[2, 3, 37, 38, 39] on St(m,n,C) to find Uk for the cost function (28). More precisely, we set

Uk = ExpUk−1
(tk−1Zk−1), (31)

where Zk−1 is the search direction and tk−1 is the step size. We always choose Zk−1 such that

〈grad p(Uk−1),Zk−1〉Uk−1
≤ −δs‖ grad p(Uk−1)‖‖Zk−1‖, (32)

with 0 < δs < 1. We say that tk−1 satisfies the Armijo condition9, if

p(Uk) ≤ p(Uk−1) + δwtk−1〈grad p(Uk−1),Zk−1〉Uk−1
, (33)

with 0 < δw < 1. We say that tk−1 satisfies the curvature condition, if

〈grad p(Uk),DExpUk−1
(tk−1Zk−1)[Zk−1]〉Uk

≥ c2〈grad p(Uk−1),Zk−1〉Uk−1
, (34)

with δw < c2 < 1. The conditions (33) and (34) are known collectively as the Wolfe conditions.

As in the Euclidean space case [37, Lemma 3.1], it was shown [38, 39] that we can always choose

tk−1 such that the conditions (33) and (34) are both satisfied. It is not difficult to see that

there exists Me > 0 such that

‖ExpU (Z1)− ExpU (Z2)‖ ≤ Me‖Z1 −Z2‖,

for any U ∈ St(m,n,C) and Z1,Z2 ∈ TUSt(m,n,C). Then the next result follows directly.

Lemma 3.3. If we set Uk as in (31) such that the conditions (32) and (33) are both satisfied,

then we have

p(Uk−1)− p(Uk) ≥ δsδw‖ grad p(Uk−1)‖‖tk−1Zk−1‖ ≥ σp‖ grad p(Uk−1)‖‖Uk −Uk−1‖,

where σp = δsδw
Me

.

9It is also known as the first Wolfe condition in the literature.

12 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

Moreover, we have the next result, which is a simple corollary of the proof in [38, Theorem

2].

Lemma 3.4. If we set Uk as in (31) such that the conditions (32), (33) and (34) are all satisfied,

then we have

p(Uk−1)− p(Uk) ≥ ηp‖ grad p(Uk−1)‖2, (35)

where ηp > 0 is fixed.

4. GLU, GQU and GU classes of transformations on SLm(C)

4.1. Elementary functions. Let (i, j) be a pair of indices with 1 ≤ i < j ≤ n. Define a

projection operator Pi,j : Cm×m → C2×2 which extracts a submatrix of X ∈ Cm×m as follows:

Pi,j(X) =

[
Xii Xij

Xji Xjj

]
. (36)

Conversely, we introduce an operator

Ei,j : C2×2 → Cm×m, Ψ 7→ Ei,j(Ψ)

where Ei,j(Ψ) is the identity matrix Im except that Pi,j(Ei,j(Ψ)) = Ψ. Now we define the

following four elementary transformations in SLm(C).

• G(i,j,Ψ) def
= Ei,j(Ψ): Givens plane transformation for a matrix Ψ ∈ SU2.

• U (i,j,Ψ) def
= Ei,j(Ψ): plane upper triangular transformation for a matrix Ψ ∈ SUT2(C).

• L(i,j,Ψ) def
= Ei,j(Ψ): plane lower triangular transformation for a matrix Ψ ∈ SLT2(C).

• D(i,j,Ψ) def
= Ei,j(Ψ): plane diagonal transformation for a matrix Ψ ∈ D2(C).

Remark 4.1. These four elementary transformations have all been used in the literature. The

Givens plane transformation G(i,j,Ψ) was used very often in Jacobi-type algorithms for joint

approximate diagonalization of matrices or tensors by orthogonal or non-orthogonal trans-

formations [17, 24, 44, 4, 5, 41]. Plane triangular transformations U (i,j,Ψ) and L(i,j,Ψ) also

appeared many times in the Jacobi-type algorithms on special linear group SLm(C) or SLm(R)

[4, 5, 34, 35, 36]. In the real case, the diagonal transform D(i,j,Ψ) was used in [42]. In this paper,

using these four elementary transformations, we will construct three classes (GLU, GQU and

GU) in Sections 4.3 and 4.4, such that a gradient inequality (38) is always satisfied to establish

the global convergence of Algorithm 1 in Section 7.

In this paper, as in [17, 44], we parameterize Ψ ∈ SU2 as

Ψ = Ψ(c, s1, s2) =

[
c −s
s∗ c

]
=

[
c −(s1 + is2)

s1 − is2 c

]
=

[
cos θ − sin θeiφ

sin θe−iφ cos θ

]
,

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 13

where (c, s1, s2) ∈ S2 and (θ, φ) ∈ R2. Let g : SLm(C) → R+ be a smooth function. Let

X ∈ SLm(C) and z = x+ iy. We define the following elementary functions:

h(i,j),X(c, s1, s2) = h(i,j),X(θ, φ) = h(i,j),X(Ψ)
def
= g(XG(i,j,Ψ)), (c, s1, s2) ∈ S2;

ϕ(i,j),X(x, y) = ϕ(i,j),X(Ψ)
def
= g(XU (i,j,Ψ)), z ∈ C;

ψ(i,j),X(x, y) = ψ(i,j),X(Ψ)
def
= g(XL(i,j,Ψ)), z ∈ C;

ρ(i,j),X(x, y) = ρ(i,j),X(Ψ)
def
= g(XD(i,j,Ψ)), z ∈ C∗.

4.2. Derivatives of elementary functions. Denote Λ = Λ(X), which is defined as in Sec-

tion 2.4. Let PT
i,j : C2×2 → Cm×m be the adjoint operator of projection operator Pi,j defined

in (36), i.e.,

PT
i,j(Ψ) =

i j

0
...

... 0

i · · · Ψii Ψij

j · · · Ψji Ψjj

0 0

for Ψ ∈ C2×2.

Lemma 4.2. The Riemannian gradients of the elementary functions defined in Section 4.1 at

the identity matrix I2 can be expressed as follows:

• gradh(i,j),X(I2) =

[
i
2
= (Λii −Λjj)

1
2
< (Λij −Λji) + i

2
= (Λij + Λji)

− 1
2
< (Λij −Λji) + i

2
= (Λij + Λji) − i

2
= (Λii −Λjj)

]
;

• gradϕ(i,j),X(I2) =

[
0 Λij

0 0

]
;

• gradψ(i,j),X(I2) =

[
0 0

Λji 0

]
;

• grad ρ(i,j),X(I2) =

[
< (Λii −Λjj) 0

0 = (Λii −Λjj)

]
.

Proof. We only prove the case of h(i,j),X . Other cases are similar. For any ∆ ∈ su2(C) =

TI2SU2, by equation (24), we have

〈∆, gradh(i,j),X(I2)〉I2 =

(
d

dt
h(i,j),X(ExpI2

(t∆))

)∣∣∣∣
t=0

=

(
d

dt
f(XG(i,j,ExpI2

(∆t)))

)∣∣∣∣
t=0

=

(
d

dt
f(ExpX(XPT

i,j(∆)t))

)∣∣∣∣
t=0

= 〈XPT
i,j(∆), grad f(X)〉X = 〈∆,Pi,j(Λ)〉I2 .

The proof is complete. �

The following lemma can be easily obtained by Lemma 4.2.

14 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

Lemma 4.3. The partial derivatives of the elementary functions defined in Section 4.1 satisfy

• ∂h(i,j),X(I2)
def
= ∂h(i,j),X(1, 0, 0) = [0, −< (Λij −Λji) , −= (Λij + Λji)]

T;

• ∂ϕ(i,j),X(I2)
def
= ∂ϕ(i,j),X(0, 0) = [< (Λij) , = (Λij)]

T;

• ∂ψ(i,j),X(I2)
def
= ∂ψ(i,j),X(0, 0) = [< (Λji) , = (Λji)]

T;

• ∂ρ(i,j),X(I2)
def
= ∂ρ(i,j),X(0, 0) = [< (Λii −Λjj) , = (Λii −Λjj)]

T.

4.3. GLU and GQU classes of transformations. Let ωk−1 = (Uk−1,Xk−1) be the (k−1)-

th iterate produced by Algorithm 1, and g : SLm(C) → R be the restricted function f2,Uk−1

defined as in (9). Let (ik, jk) be a pair of indices with 1 ≤ ik < jk ≤ m. We denote that

hk = h(ik,jk),Xk−1
, ϕk = ϕ(ik,jk),Xk−1

, ψk = ψ(ik,jk),Xk−1
, ρk = ρ(ik,jk),Xk−1

. (37)

Inspired by the equations (11), (12) and a similar idea as in [20, 24, 44], we now propose

two classes of elementary transformations on SLm(C). We call them the GLU (based on

LU decomposition) and GQU (based on QU decomposition) transformations10, respectively.

Based on these two classes of elementary transformations, the subalgorithms to update Xk in

Algorithm 1 are summarized in Subalgorithm 1a and Subalgorithm 1b, respectively.

Subalgorithm 1a: The subalgorithm to update Xk based on GLU transformations

1: Input: A fixed positive constant 0 < ε <
√

2
3m(m−1) .

2: Output: New iterate Xk.

3: Choose the index pair (ik, jk) and νk such that

‖∂νk(I2)‖ ≥ ε‖Λ(Xk−1)‖, (38)

where νk = ϕk, ψk or ρk;

4: Compute Ψ∗k that minimizes the function νk;

5: Update Xk = Xk−1V k, where V k = U (ik,jk,Ψ
∗
k),L(ik,jk,Ψ

∗
k) or D(ik,jk,Ψ

∗
k).

Subalgorithm 1b: The subalgorithm to update Xk based on GQU transformations

1: Input: A fixed positive constant 0 < ε <
√

3+
√

5
3m(m−1) .

2: Output: New iterate Xk.

3: Choose the index pair (ik, jk) and νk satisfying (38), where νk = hk, ϕk or ρk;

4: Compute Ψ∗k that minimizes the function νk;

5: Update Xk = Xk−1V k, where V k = G(ik,jk,Ψ
∗
k),U (ik,jk,Ψ

∗
k) or D(ik,jk,Ψ

∗
k).

Proposition 4.4. In Subalgorithm 1a and Subalgorithm 1b, we can always choose an index

pair (ik, jk) and an elementary function νk(x) such that the inequality (38) is satisfied.

We need a simple lemma before the proof of Proposition 4.4.

10The inequality (38) can be seen as a non-orthogonal analogue of [20, Eq. (3.3)] and [24, Eq. (10)].

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 15

Lemma 4.5. (i) Let z1, z2 ∈ C. Then

|z1 − z2|2 + |z2|2 ≥
3−
√

5

2
(|z1|2 + |z2|2).

(ii) Let {zi}1≤i≤m ⊆ C satisfy that
∑

1≤i≤m zi = 0. Then∑
1≤i<j≤m

|zi − zj |2 = m
∑

1≤i≤m
|zi|2.

Proof of Proposition 4.4. We first prove the existence of such an index pair (ik, jk) and elemen-

tary function νk in Subalgorithm 1a. By Lemma 4.3, Lemma 4.5 and Λ = Λ(Xk−1) ∈ slm(C),

we get that ∑
1≤ik<jk≤m

(
‖∂ϕk(I2)‖2 + ‖∂ψk(I2)‖2 + ‖∂ρk(I2)‖2

)
=

∑
1≤ik<jk≤m

(
|Λikjk |

2 + |Λjkik |
2
)

+m
∑

1≤ik≤m
|Λikik |

2 ≥ ‖Λ‖2.

Therefore, there exist an index pair (ik, jk) and νk(x) such that

3

2
m(m− 1)|‖∂ψk(I2)‖2 ≥ ‖Λ‖2.

Next, we prove the existence in Subalgorithm 1b. Similarly, we get that∑
1≤ik<jk≤m

(
‖∂hk(I2)‖2 + ‖∂ϕk(I2)‖2 + ‖∂ρk(I2)‖2

)
=

∑
1≤ik<jk≤m

(
|Λ∗ikjk − Λjkik |

2 + |Λikjk |
2 + |Λikik − Λjkjk |

2
)

≥ 3−
√

5

2

∑
1≤ik<jk≤m

(
|Λikjk |

2 + |Λjkik |
2
)

+m
∑

1≤ik≤m
|Λikik |

2 ≥ 3−
√

5

2
‖Λ‖2.

Therefore, there exists an index pair (ik, jk) and νk(x) such that

3

3 +
√

5
m(m− 1)‖∂νk(I2)‖2 ≥ ‖Λ‖2.

The proof is complete. �

4.4. GU class of transformations. Inspired by the equation (13), we now propose the third

class of elementary transformations: GU, which includes the plane upper triangular and plane

diagonal transformations. In this case, we call Algorithm 1 the BCD-GU algorithm, in which

we choose a starting point X0 ∈ EUTm(C). Based on this class of elementary transformations,

the subalgorithm to update Xk in Algorithm 1 is summarized in Subalgorithm 1c.

Let eutm(C) ⊆ Cm×m be the set of upper triangular matrices with trace equal to 0. Then

the tangent space to EUTm(C) at a point X ∈ EUTm(C) can be constructed [7, 4] by

TXEUTm(C) = {XΩ,Ω ∈ eutm(C)}.

Proposition 4.6. In Subalgorithm 1c, we can always choose an index pair (ik, jk) and an

elementary function νk(x) such that the inequality (38) is satisfied.

16 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

Subalgorithm 1c: The subalgorithm to update Xk based on GU transformations

1: Input: A fixed positive constant 0 < ε <
√

2
m(m+1) .

2: Output: New iterate Xk.

3: Choose the index pair (ik, jk) and νk satisfying (38), where νk = ϕk or ρk;

4: Compute Ψ∗k that minimizes the function νk;

5: Update Xk = Xk−1V k, where V k = U (ik,jk,Ψ
∗
k) or D(ik,jk,Ψ

∗
k).

Proof. Note that X0 ∈ EUTm(C) in Subalgorithm 1c. We see that Xk ∈ EUTm(C) for all

k ∈ N. By Lemma 4.3, Lemma 4.5 and Λ = Λ(Xk−1) ∈ eutm(C), we get that∑
1≤ik<jk≤m

(
‖∂ϕk(I2)‖2 + ‖∂ρk(I2)‖2

)
=

∑
1≤ik<jk≤m

(
|Λikjk |

2 + |Λikik − Λjkjk |
2
)

=
∑

1≤ik<jk≤m
|Λikjk |

2 +m
∑

1≤ik≤m
|Λikik |

2 ≥ ‖Λ‖2.

Therefore, there exists an index pair (ik, jk) and νk(x) such that

m(m+ 1)

2
‖∂νk(I2)‖2 ≥ ‖Λ‖2.

The proof is complete. �

5. Triangular and diagonal transformations for JADM problem

Let f be the cost function (5). Let ωk−1 = (Uk−1,Xk−1) and g : SLm(C) → R be the

restricted function f2,Uk−1
as in Section 4.3. Denote B(`) = U�

k−1A
(`)Uk−1. Then g can be

expressed as

g : SLm(C)→ R+, X 7→
L∑
`=1

µ`‖ offdiag{W (`)}‖2, (39)

where W (`) = X�B(`)X. In this section, we will first calculate the Riemannian gradient of

g in (39), and the partial derivatives of elementary functions ϕk, ψk and ρk in (37). Then,

we will prove that conditions (26) and (27) are both satisfied in the triangular and diagonal

transformations.

5.1. Riemannian gradient. Let W (`) and g be as in (39). Then, by (29) and (23), we have

∇g(X) = 2(XH)−1
L∑
`=1

µ`Υ(W (`)), (40)

grad g(X) = 2X

L∑
`=1

µ`

(
Υ(W (`))− tr(Υ(W (`)))

n
In

)
. (41)

Remark 5.1. In the real case, the Euclidean gradient in (40) was earlier derived in [4, Eq.

(6.3)] and [9, Section 2.3]. In this paper, we extend it to problem (39) in the complex case, and

calculate the Riemannian gradieent (41) as well.

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 17

5.2. Elementary functions. Let W (`) = X�
k−1B

(`)Xk−1. Let

% =

{
1, if (·)� = (·)H;

−1, if (·)� = (·)T.

Denote (i, j) = (ik, jk) for simpliciy. Now we make the following notations:

• α1
def
=

L∑
`=1

∑
p 6=j

µ`

(
|W(`)

ip |
2 + |W(`)

pi |
2
)
,

α2
def
=

L∑
`=1

∑
p 6=j

µ`

(
W

(`,<)
ip W

(`,<)
jp + W

(`,=)
ip W

(`,=)
jp + W

(`,<)
pi W

(`,<)
pj + W

(`,=)
pi W

(`,=)
pj

)
,

α3
def
=

L∑
`=1

∑
p 6=j

µ`

(
%
(

W
(`,=)
ip W

(`,<)
jp −W

(`,<)
ip W

(`,=)
jp

)
+ W

(`,<)
pi W

(`,=)
pj −W

(`,=)
pi W

(`,<)
pj

)
.

• β1
def
=

L∑
`=1

∑
p 6=i

µ`

(
|W(`)

jp |
2 + |W(`)

pj |
2
)
,

β2
def
=

L∑
`=1

∑
p 6=i

µ`

(
W

(`,<)
ip W

(`,<)
jp + W

(`,=)
ip W

(`,=)
jp + W

(`,<)
pi W

(`,<)
pj + W

(`,=)
pi W

(`,=)
pj

)
,

β3
def
=

L∑
`=1

∑
p 6=i

µ`

(
%
(

W
(`,<)
ip W

(`,=)
jp −W

(`,=)
ip W

(`,<)
jp

)
+ W

(`,=)
pi W

(`,<)
pj −W

(`,<)
pi W

(`,=)
pj

)
.

• γ1
def
=

L∑
`=1

∑
p 6=i,j

µ`

(
|W(`)

ip |
2 + |W(`)

pi |
2
)
, γ2

def
=

L∑
`=1

∑
p 6=i,j

µ`

(
|W(`)

jp |
2 + |W(`)

pj |
2
)
.

Then we can get the following results by direct calculations.

Lemma 5.2. Let the function g be as in (39). Then

(i) the elementary function ϕk in (37) satisfies

ϕk(x, y)− ϕk(0, 0) = α1x
2 + 2α2x+ α1y

2 + 2α3y,

ϕk(x
∗
k, y
∗
k)− ϕk(0, 0) = − 1

α1

(
α2

2 + α2
3

)
, (42)

∂ϕk(0, 0) = 2[α2, α3]T.

(ii) the elementary function ψk in (37) satisfies

ψk(x, y)− ψk(0, 0) = β1x
2 + 2β2x+ β1y

2 + 2β3y,

ψk(x
∗
k, y
∗
k)− ψk(0, 0) = − 1

β1

(
β2

2 + β2
3

)
,

∂ψk(0, 0) = 2[β2, β3]T.

18 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

(iii) the elementary function ρk in (37) satisfies

ρk(x, y)− ρk(1, 0) = γ1(x2 + y2) + γ2
1

x2 + y2
− γ1 − γ2,

ρk(x
∗
k, y
∗
k)− ρk(1, 0) = − (

√
γ1 −

√
γ2)2 ,

∂ρk(1, 0) = 2[γ1 − γ2, 0]T.

Remark 5.3. In the complex case, the solution z∗k = x∗k + iy∗k in (42) was earlier derived in

[45, Eq. (8)]. In the real case, the solution x∗k in (42) was earlier derived in [5, Eq. (7)].

Setting 5.4. In Algorithm 1 for cost function (5), when νk = ϕk, we see that x∗k = 0 if α1 6= 0

and α2 = 0. It is not possible that α1 = 0 and α2 6= 0. If α1 = α2 = 0, we set x∗k = 0. In the

case of νk = ψk, we make the similar settings for the value of y∗k.

Setting 5.5. Let 0 < ς < 1
4 be a small positive constant. In Algorithm 1 for cost function (5),

if νk = ρk, we always set y∗k = 0. Moreover, we determine x∗k based on the following rules.

• If γ1 = γ2 = 0, we set x∗k = 0.

• Let $
def
= γ2

γ1
. If $ ∈ [0, ς), we set x∗k = 1

2 . If $ ∈ (1
ς ,+∞], we set x∗k = 2.

• Otherwise, if $ ∈ [ς, 1
ς], we set x∗k =

4√
$, which is the minimum point.

5.3. Condition (26) for global convergence. It will be seen that f(ωk) ≤ f(ωk−1) always

holds in Algorithm 1. In Algorithm 1 for cost function (5), we denote M0
def
= f(ω0). Then we

have that γ1 + γ2 ≤ M0 = f(ω0).

Lemma 5.6. In Algorithm 1 for cost function (5), there exists ιρ > 0 such that

g(Xk−1)− g(Xk) ≥ ιρ‖Λ(Xk−1)‖‖Ψ∗k − I2‖, (43)

whenever νk = ρk.

Proof. We now prove the inequality (43) by Lemma 5.2(iii) in three different cases shown in

Setting 5.5.

• If γ1 = γ2 = 0, it is clear that the inequality (43) is satisfied for any ιρ > 0.

• If $ ∈ [0, ς), we get that

ρk(1, 0)− ρk(x∗k, y∗k) =
3

2
γ1(1− 4$) =

3(1− 4$)

8(1−$)
|∂ρk(1, 0)| ≥ 3(1− 4$)ε

8(1−$)
‖Λ(Xk−1)‖

≥ 3(1− 4$)ε

4
√

5(1−$)

√
5

2
‖Λ(Xk−1)‖ ≥ 3(1− 4$)ε

4
√

5(1−$)
‖Λ(Xk−1)‖‖Ψ∗k − I2‖

≥ 3(1− 4ς)ε

4
√

5
‖Λ(Xk−1)‖‖Ψ∗k − I2‖.

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 19

• If $ ∈ (1
ς ,+∞], we similarly get that

ρk(1, 0)− ρk(x∗k, y∗k) =
3

2
γ2(1− 4

$
) =

3(1− 4
$)

8(1− 1
$)
|∂ρk(1, 0)| ≥

3(1− 4
$)ε

8(1− 1
$)
‖Λ(Xk−1)‖

≥
3(1− 4

$)ε

4
√

5(1− 1
$)

√
5

2
‖Λ(Xk−1)‖ ≥

3(1− 4
$)ε

4
√

5(1− 1
$)
‖Λ(Xk−1)‖‖Ψ∗k − I2‖

≥ 3(1− 4ς)ε

4
√

5
‖Λ(Xk−1)‖‖Ψ∗k − I2‖.

• If $ ∈ [ς, 1
ς], it is easy to verify that

4√
γ1γ2 ≥

4√
ς

2
(
√
γ1 +

√
γ2) . (44)

Then, we get that

ρk(1, 0)− ρk(x∗k, y∗k) = 2 (
√
γ1 −

√
γ2)2 =

1

2
|∂ρk(1, 0)|

∣∣√γ1 −
√
γ2

∣∣
√
γ1 +

√
γ2

≥ ε
4√
ς

4
‖Λ(Xk−1)‖

∣∣√γ1 −
√
γ2

∣∣
4√γ1γ2

(by equation (44))

≥ ε
4√
ς

4
‖Λ(Xk−1)‖

∣∣ 4√γ1 − 4√γ2

∣∣ (√γ1 +
√
γ2

)1/2
4√γ1γ2

≥ ε
4√
ς

4
‖Λ(Xk−1)‖|x∗k|

√
1 +

1

(1 + x∗k)
2
≥ ε

4√
ς

4
‖Λ(Xk−1)‖‖Ψ∗k − I2‖.

Now we set ιρ = min(3(1−4ς)ε

4
√

5
,
ε

4√
ς

4). The proof is complete. �

Note that ‖Xk −Xk−1‖ ≤ ‖Ψ∗k − I2‖‖Xk−1‖ and ‖ grad g(Xk−1)‖ ≤ ‖Λ(Xk−1)‖‖Xk−1‖.
Let ιρ be as in (43) and σρ =

ιρ
M2
ω
> 0. Then the next result follows directly from Lemma 5.6.

Corollary 5.7. In Algorithm 1 for cost function (5), if the condition (17) is satisfied, then

g(Xk−1)− g(Xk) ≥ σρ‖ grad g(Xk−1)‖‖Xk −Xk−1‖, (45)

whenever νk = ρk.

Lemma 5.8. In Algorithm 1 for cost function (5), there exists ιϕ > 0 such that

g(Xk−1)− g(Xk) ≥ ιϕ‖Λ(Xk−1)‖‖Ψ∗k − I2‖, (46)

whenever νk = ϕk or ψk.

Proof. We prove that the inequality (46) is satisfied in two cases.

• If νk = ϕk, by Lemma 5.2(i), we see that

g(Xk−1)− g(Xk) = ϕk(0, 0)− ϕk(x∗k, y∗k) = 2

(
(α2)2

α1
+

(α3)2

α1

)
=

1

2
‖∂ϕk(0, 0)‖‖(x∗k, y∗k)‖ ≥

ε

2
‖Λ(Xk−1)‖‖Ψ∗k − I2‖.

20 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

• If νk = ψk, by Lemma 5.2(ii), we see that

g(Xk−1)− g(Xk) = ψk(0, 0)− ψk(x∗k, y∗k) = 2

(
(β2)2

β1
+

(β3)2

β1

)
=

1

2
‖∂ψk(0, 0)‖‖(x∗k, y∗k)‖ ≥

ε

2
‖Λ(Xk−1)‖‖Ψ∗k − I2‖.

Now we set ιϕ = ε
2 . The proof is complete. �

Let ιϕ be as in (46) and σϕ =
ιϕ

M2
ω
> 0. Similar as for Corollary 5.7, the next result follows

directly from Lemma 5.8.

Corollary 5.9. In Algorithm 1 for cost function (5), if the condition (17) is satisfied, then

g(Xk−1)− g(Xk) ≥ σϕ‖ grad g(Xk−1)‖‖Xk −Xk−1‖,

whenever νk = ϕk or ψk.

5.4. Condition (27) for weak convergence.

Lemma 5.10. In Algorithm 1 for cost function (5), if the condition (17) is satisfied, then there

exists κρ > 0 such that

‖Ψ∗k − I2‖ ≥ κρ‖Λ(Xk−1)‖,
whenever νk = ρk, ϕk or ψk.

Proof. If νk = ϕk, we have

‖Ψ∗k − I2‖2 =
α2

2 + α2
3

α2
1

≥ ‖∂ϕk(0, 0)‖2

4M2
2

≥ ε2

4M2
2

‖Λ(Xk−1)‖2.

The case νk = ψk is similar. Now we prove the νk = ρk case. If $ ∈ [0, ς), we have

‖Ψ∗k − I2‖2 =
5

4
≥ 5

4

1

8(γ2
1 + γ2

2)
‖∂ρk(1, 0)‖2 ≥ 5

4

ε2

16M2
ω

‖Λ(Xk−1)‖2.

The case $ ∈ (1
ς ,+∞] is similar. If $ ∈ [ς, 1

ς], we have

‖Ψ∗k − I2‖2 ≥ (1− x∗k)2 ≥ 1

M2
ωM2

3

γ2
1(1−$)2 =

1

4M2
ωM2

3

‖∂ρk(1, 0)‖2 ≥ ε2

4M2
ωM2

3

‖Λ(Xk−1)‖2.

We only need to set κ2
ρ = min(ε2

4M2
2
, 5

4
ε2

16M2
ω
, ε2

4M2
ωM2

3
). The proof is complete. �

By Lemma 5.6, Lemma 5.8 and Lemma 5.10, we can easily get the following results by setting

ηρ = σρκρ and ηϕ = σϕκρ.

Corollary 5.11. In Algorithm 1 for cost function (5), if the condition (17) is satisfied, then

g(Xk−1)− g(Xk) ≥ ηρ‖ grad g(Xk−1)‖2 (47)

whenever νk = ρk.

Corollary 5.12. In Algorithm 1 for cost function (5), if the condition (17) is satisfied, then

g(Xk−1)− g(Xk) ≥ ηϕ‖ grad g(Xk−1)‖2

whenever νk = ϕk or ψk.

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 21

6. Givens plane transformations for JADM problem

Let g be as in (39). Let W (`) and % be as in Section 5.2. Denote (i, j) = (ik, jk) for simpliciy.

Define

Γ(i,j,Xk−1) def
=
%

2

L∑
`=1

µ`<
(
zi,j(W

(`))zH
i,j(W

(`))
)
,

where

zi,j(W)
def
=

[
Wjj −Wii Wij + Wji −i(Wij −Wji)

]T
, if (·)� = (·)H;[

Wij + Wji Wii −Wjj i(Wii + Wjj)
]T
, if (·)� = (·)T.

Let

c0 =

1
2

∑L
`=1 µ`

∣∣∣W(`)
jj −W

(`)
ii

∣∣∣2 , if (·)� = (·)H;

−1
2

∑L
`=1 µ`

∣∣∣W(`)
ij + W

(`)
ji

∣∣∣2 , if (·)� = (·)T.

6.1. Elementary function. As in [44, Eq. (4.4)], we let

r = r(c, s1, s2)
def
=
[
2c2 − 1, −2cs1, −2cs2

]T
= [cos 2θ, − sin 2θ cosφ, − sin 2θ sinφ]T . (48)

Then we can get the following result11 by direct calculations.

Lemma 6.1. In Algorithm 1 for cost function (5), the elementary function hk satisfies

hk(c, s1, s2)− hk(1, 0, 0) = −
(
rTΓ(i,j,Xk−1)r − c0

)
. (49)

Now we denote Γ = Γ(i,j,Xk−1) for simplicity. It follows by (48) and (49) that

hk(c, s1, s2)− hk(1, 0, 0) = − (q(θ, φ)− c0) , (50)

where

q(θ, φ)
def
=

1

2

(
Γ11 − Γ22 cos2 φ− Γ33 sin2 φ− Γ23 sin(2φ)

)
cos(4θ)

− (Γ12 cosφ+ Γ13 sinφ) sin(4θ) +
1

2

(
Γ11 + Γ22 cos2 φ+ Γ33 sin2 φ+ Γ23 sin(2φ)

)
. (51)

Note that, by Lemma 6.1 and (48), we have

∂hk(I2) = −4[0 Γ12 Γ13]T. (52)

Remark 6.2. By equation (50), we see that hk(θ+ π
2 , φ) = hk(θ, φ) for any θ, φ ∈ R. Therefore,

we can always choose θ∗ ∈ [−π
4 ,

π
4].

Setting 6.3. In Algorithm 1 for cost function (5), we set a positive constant ε > 0. If νk = hk,

we find the eigenvector u of Γ corresponding to the largest eigenvalue. Define two vectors

vi,j
def
= [Γ12 Γ13]T ∈ R2 and wi,j

def
= [u2 u3]T ∈ R2.

• If it holds that

|〈vi,j ,wi,j〉| ≥ ε‖vi,j‖‖wi,j‖, (53)

then we find φ∗ and θ∗ by setting r = u, and Ψ∗k = Ψ(θ∗, φ∗);

• Otherwise, we set [cosφ∗ sinφ∗]
T =

vi,j
‖vi,j‖ and then determine the best θ∗ based on φ∗.

11In the (·)� = (·)H case, this expression was first formulated in [12].

22 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

6.2. Condition (26) for global convergence. We first present a lemma, which will help us

to prove Lemma 6.5.

Lemma 6.4. Let α, β ∈ R be two constants. For θ ∈ [−π
4 ,

π
4], we define

p(θ)
def
= α cos(4θ) + β sin(4θ).

If p(θ∗) = max p(θ), we have

p(θ∗)− p(0) ≥ 2
√

2|β|| sin(
θ∗
2

)|.

Lemma 6.5. Let the function q(θ, φ) be as in (51). Suppose that φ∗ and θ∗ are determined as

in Setting 6.3. Then we have

q(θ∗, φ∗)− q(0, 0) ≥ 2
√

2ε| sin(
θ∗
2

)|‖vi,j‖.

Proof. By Setting 6.3, we see that

|〈vi,j , [cosφ∗ sinφ∗]
T〉| ≥ ε‖vi,j‖ (54)

always holds. By Lemma 6.4 and (54), we get that

q(θ∗, φ∗)− q(0, 0) = q(θ∗, φ∗)− q(0, φ∗) ≥ 2
√

2| sin(
θ∗
2

)||Γ12 cosφ∗ + Γ13 sinφ∗|

≥ 2
√

2ε| sin(
θ∗
2

)|‖vi,j‖.

The proof is complete. �

Lemma 6.6. In Algorithm 1 for cost function (5), there exists ιh > 0 such that

g(Xk−1)− g(Xk) ≥ ιh‖Λ(Xk−1)‖‖Ψ∗k − I2‖, (55)

whenever νk = hk.

Proof. We only prove the (·)� = (·)H case. The other case is similar. By Lemma 6.5 and (52),

we get that

hk(0, 0)− hk(θ∗, φ∗) ≥ 2
√

2ε| sin(
θ∗
2

)|‖vi,j‖ =
ε

4
2
√

2| sin(
θ∗
2

)|‖∂hk(I2)‖

≥ εε

4
‖G(i,j,Ψ∗k) − Im‖‖Λ(Xk−1)‖.

We can set ιh = εε
4 . The proof is complete. �

Let ιh be as in (55) and σh = ιh
M2
ω
> 0. Similar as for Corollary 5.7, the next result follows

directly from Lemma 6.6.

Corollary 6.7. In Algorithm 1 for cost function (5), if the condition (17) is always satisfied,

then

g(Xk−1)− g(Xk) ≥ σh‖ grad g(Xk−1)‖‖Xk −Xk−1‖,

whenever νk = hk.

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 23

6.3. Condition (27) for weak convergence. If the condition (17) is satisfied, it is easy to

see that there exists MΓ > 0 such that ‖Γ(i,j,Xk−1)‖ ≤ MΓ always hods.

Lemma 6.8. In Algorithm 1 for cost function (5), if the condition (17) is satisfied, then there

exists κh > 0 such that

‖Ψ∗k − I2‖ ≥ κh‖Λ(Xk−1)‖, (56)

whenever νk = hk.

Proof. If vi,j and wi,j satisfy the condition (53), then the inequality (56) can be proved by a

similar method as for [44, Lemma 7.2]. Otherwise, if we set [cosφ∗ sinφ∗]
T =

vi,j
‖vi,j‖ and find

θ∗ based on φ∗, then

| sin(4θ∗)| =
|Γ12 cosφ∗ + Γ13 sinφ∗|√

(Γ12 cosφ∗ + Γ13 sinφ∗)
2 + 1

4

(
Γ11 − Γ22 cos2 φ∗ − Γ33 sin2 φ∗ − Γ23 sin(2φ∗)

)2
≥
√

Γ2
12 + Γ2

13

2
√

5MΓ

=
‖∂hk(I2)‖

8
√

5MΓ

≥ ε

8
√

5MΓ

‖Λ(Xk−1)‖.

Note that

‖Ψ∗k − I2‖ = 2
√

2| sin(
θ∗
2

)| ≥
√

2

4
| sin(4θ∗)|.

We only need to set κh =
√

2ε
32
√

5MΓ
in this case. The proof is complete. �

Then, by Lemma 6.6 and Lemma 6.8, we can easily get the following result by setting

ηh = σhκh.

Corollary 6.9. In Algorithm 1 for cost function (5), if the condition (17) is satisfied, then

g(Xk−1)− g(Xk) ≥ ηh‖ grad g(Xk−1)‖2

whenever νk = hk.

7. Convergence analysis

7.1. Convergence analysis of BCD-GLU and BCD-GQU algorithms.

7.1.1. Global convergence. We first prove the following result about the global convergence of

BCD-GLU and BCD-GQU algorithms for cost function (5).

Theorem 7.1. In BCD-GLU and BCD-GQU algorithms for cost function (5), if the condition

(17) is satisfied, then the iterates {ωk}k≥1 produced by BCD-GLU and BCD-GQU algorithms

converge to a point ω∗.

Proof. By Lemma 3.3, Corollary 5.7, Corollary 5.9 and Corollary 6.7, we see that the condition

(26) is always satisfied in BCD-GLU and BCD-GQU algorithms for cost function (5), if we set

σ = min(σp, σρ, σϕ, σh). Then the proof is complete by Proposition 2.4. �

24 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

7.1.2. Weak convergence. Now we prove the following result about the weak convergence of

BCD-GLU and BCD-GQU algorithms for cost function (5).

Theorem 7.2. In BCD-GLU and BCD-GQU algorithms for cost function (5), if condition

(17) is always satisfied, and ω∗ is an accumulation point of the iterates {ωk}k≥1, then ω∗ is a

stationary point of the cost function (5).

Proof. By Equation (35), Corollary 5.11, Corollary 5.12 and Corollary 6.9, we see that the

condition (27) is always satisfied in BCD-GLU and BCD-GQU algorithms for cost function (5),

if we set η = min(ηp, ηρ, ηϕ, ηh). Then the proof is complete by Lemma 2.5. �

7.2. Convergence analysis of BCD-GU algorithm.

7.2.1. Global convergence. Similar as in Section 7.1, we have the following result about the

global convergence of BCD-GU algorithm for cost function (5).

Theorem 7.3. In BCD-GU algorithm for cost function (5), if the condition (17) is satisfied,

then the iterates {ωk}k≥1 produced by BCD-GU algorithm converge to a point ω∗.

7.2.2. Weak convergence. We also have the following result about the weak convergence of

BCD-GU algorithm for cost function (5).

Theorem 7.4. In BCD-GU algorithm for cost function (5), if condition (17) is always satisfied,

and ω∗ is an accumulation point of the iterates {ωk}k≥1, then ω∗ is a stationary point of the

cost function (5).

7.3. Jacobi-type algorithms and their convergence analysis.

7.3.1. Jacobi-GLU and Jacobi-GQU algorithms on SLm(C). Let n = m in the cost function

(8) and fix Uk = U0 for k ≥ 1 in Algorithm 1. In other words, we keep the first block variable

unchanged and only update the second block variable Xk in SLm(C) using GLU and GQU

transformations12 in Section 4.3. Then we get the Jacobi-GLU and Jacobi-GQU algorithms13

to minimize the restricted function

g : SLm(C)→ R+, X 7→ f(U0,X).

7.3.2. Special cases: Jacobi-GLU-M and Jacobi-GQU-M algorithms. In this subsection, we pro-

pose two natural variants of Jacobi-GLU and Jacobi-GQU algorithms, which will be called

Jacobi-GLU-M and Jacobi-GQU-M algorithms, respectively. In these two algorithms, in each

iteration, among all the index pairs (ik, jk) and elementary functions νk satisfying (57), we

choose (ik, jk) and νk such that the cost function obtains the largest reduction.

7.3.3. Global convergence. Similar as in Section 7.1, we have the following result about the

global convergence of Jacobi-GLU and Jacobi-GQU algorithms for cost function (6). It is clear

that Theorem 7.5 also applies to Jacobi-GLU-M and Jacobi-GQU-M algorithms.

Theorem 7.5. In Algorithm 2 and Algorithm 3 for cost function (6), if condition (18) is always

satisfied, then the iterates {Xk}k≥1 converge to a point X∗.

12In this case, we do not consider the GU class of transformations.
13These algorithms are based on the similar ideas as the Jacobi-G type algorithms in [20, 24, 44].

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 25

Algorithm 2: Jacobi-GLU

1: Input: A starting point X0, a positive constant 0 < ε <
√

2
3m(m−1) .

2: Output: Sequence of iterates {Xk}k≥1.

3: for k = 1, 2, · · · , do

4: Choose the index pair (ik, jk) and νk such that

‖∂νk(I2)‖ ≥ ε‖Λ(Xk−1)‖, (57)

where νk = ϕk, ψk or ρk;

5: Compute Ψ∗k that minimizes the function νk;

6: Update Xk = Xk−1V k, where V k = U (ik,jk,Ψ
∗
k),L(ik,jk,Ψ

∗
k) or D(ik,jk,Ψ

∗
k).

7: end for

Algorithm 3: Jacobi-GQU

1: Input: A starting point X0, a positive constant 0 < ε <
√

3+
√

5
3m(m−1) .

2: Output: Sequence of iterates {Xk}k≥1.

3: for k = 1, 2, · · · , do

4: Choose the index pair (ik, jk) and νk satisfying (57), where νk = hk, ψk or ρk;

5: Compute Ψ∗k that minimizes the function νk;

6: Update Xk = Xk−1V k, where V k = G(ik,jk,Ψ
∗
k),L(ik,jk,Ψ

∗
k) or D(ik,jk,Ψ

∗
k).

7: end for

7.3.4. Weak convergence. We also have the following result about the weak convergence of

Jacobi-GLU and Jacobi-GQU algorithms for cost function (6).

Theorem 7.6. In Algorithm 2 and Algorithm 3 for cost function (6), if condition (18) is always

satisfied, and X∗ is an accumulation point of the iterates {Xk}k≥1, then X∗ is a stationary

point of the cost function (6).

Remark 7.7. In Algorithm 2 and Algorithm 3, a more natural way of choosing the index pair

(ik, jk) is according to a cyclic ordering. In fact, this cyclic way has been often used in the

literature [35, 41, 45]. In this case, we call them the Jacobi-CLU (based on LU decomposition)

and Jacobi-CQU (based on QU decomposition) algorithms, respectively. To our knowledge,

there has been no theoretical result about the convergence of Jacobi-CLU and Jacobi-CQU

algorithms in the literature. In this paper, we propose Jacobi-GLU and Jacobi-GQU algorithms,

and establish their convergence. It may be also interesting to study how to establish the

convergence of Jacobi-CLU and Jacobi-CQU algorithms.

8. Experiments

In this section, we conduct some numerical experiments to compare the performances of

Jacobi-GLU in Algorithm 2, Jacobi-GLU-M in Section 7.3.2, Jacobi-CLU in Remark 7.7, Jacobi-

GQU in Algorithm 3, Jacobi-GQU-M in Section 7.3.2, Jacobi-CQU in Remark 7.7, Jacobi-GQ

and Jacobi-CQ algorithms. Here, we denote by Jacobi-GQ the gradient based Jacobi-type

26 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

algorithm on unitary group proposed in [44], and by Jacobi-CQ the Jacobi-type algorithm on

unitary group with a cyclic ordering. Note that Jacobi-GQ and Jacobi-CQ find the iterations

only in Un, not in SLn(C). All the algorithms stop after 1000 iterations.

Example 8.1. For the following sets of complex matrices, we set µ` = 1 and (·)� = (·)H in the

cost function (6), and run the eight Jacobi-type algorithms to minimize it. The values of cost

function (6) in the iterations are shown in Figure 1.

(i) We randomly generate two complex matrices {A`}1≤`≤2 ⊆ C5×5.

(ii) We randomly generate a complex matrix X ∈ C10×10, and set A(`) = XH(I10 + eT` e`)X

for 1 ≤ ` ≤ 10.

(iii) We randomly generate a complex upper triangular matrix X ∈ UT10(C), complex diagonal

matrices {D`}1≤`≤10 ⊆ C10×10, and set A(`) = XHD`X for 1 ≤ ` ≤ 10.

(iv) We randomly generate a complex nonsingular matrix X ∈ SL10(C), complex diagonal

matrices {D`}1≤`≤10 ⊆ C10×10, and set A(`) = XHD`X for 1 ≤ ` ≤ 10.

Example 8.2. Let {A`}1≤`≤L ⊆ Cn×n be randomly generated with different n and L values

as shown in Table 2. Let µ` = 1 and (·)� = (·)H in the cost function (6). We run the eight

Jacobi-type algorithms to minimize it, and get the final values of cost function (6) in Table 2.

In this table, the numbers appearing in bold indicate that this number is the best result in the

row where it lies.

Table 2. Cost function values in Example 8.2

GLU-M GLU CLU GQU-M GQU CQU GQ CQ

n = 5 L = 1 0.0670 0.0133 0.0000 0.0229 0.0921 0.0692 0.8098 0.8098

n = 5 L = 2 1.1933 1.8995 1.9069 2.0520 2.1803 2.3514 3.3850 3.3850

n = 5 L = 5 11.3882 11.3908 11.3967 11.3880 11.3883 11.4016 13.3835 13.3835

n = 10 L = 1 0.3070 0.2220 0.3229 0.6100 0.6640 1.5259 3.2546 3.2546

n = 10 L = 5 47.5993 48.5667 50.2540 47.6150 48.3432 48.1588 54.0629 53.8712

n = 10 L = 10 119.0841 120.8933 121.9417 115.7748 117.8872 119.3527 123.2703 123.2546

From these experimental results, we can see that, compared with the Jacobi-GQ and Jacobi-

CQ algorithms on unitary group, the Jacobi-type algorithms on SLm(C) considered in this

paper always obtain smaller cost function values, and they need more iterations to attain the

best cost functions values. Moreover, compared with the QU decomposition based Jacobi-type

algorithms, the LU decomposition based ones obtain better experimental results in most cases.

9. Conclusions

In this paper, to solve JADM problem (3), which is important in blind source separation,

we formulate two different equivalent formulations, i.e. problem (5) defined on St(m,n,C) ×
SLm(C), and problem (6) defined on SLm(C). Then, for these two approaches, we propose three

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 27

0 100 200 300 400 500 600 700 800 900 1000

Iterations

10
0

10
1

10
2

Cost function values

GLU-M 0.5

GLU 0.5

CLU

GQU-M 0.5

GQU 0.5

CQU

GQ 0.5

CQ

(i)

0 100 200 300 400 500 600 700 800 900 1000

Iterations

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Cost function values

GLU-M 0.5

GLU 0.5

CLU

GQU-M 0.5

GQU 0.5

CQU

GQ 0.5

CQ

(ii)

0 100 200 300 400 500 600 700 800 900 1000

Iterations

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Cost function values

GLU-M 0.5

GLU 0.5

CLU

GQU-M 0.5

GQU 0.5

CQU

GQ 0.5

CQ

(iii)

0 100 200 300 400 500 600 700 800 900 1000

Iterations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

Cost function values

GLU-M 0.5

GLU 0.5

CLU

GQU-M 0.5

GQU 0.5

CQU

GQ 0.5

CQ

(iv)

Figure 1. Cost function values in Example 8.1.

BCD-G algorithms and two Jacobi-type algorithms, and establish their global and weak con-

vergence. In the future work, it may be interesting to extend these algorithms and convergence

results to the higher order tensor cases.

References

[1] T. E. Abrudan, J. Eriksson, and V. Koivunen, Steepest descent algorithms for optimization under

unitary matrix constraint, IEEE Transactions on Signal Processing, 56 (2008), pp. 1134–1147.

[2] P.-A. Absil, R. Mahony, and B. Andrews, Convergence of the iterates of descent methods for analytic

cost functions, SIAM Journal on Optimization, 16 (2005), pp. 531–547.

[3] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton

University Press, 2009.

[4] B. Afsari, Gradient flow-based matrix joint diagonalization for independent component analysis, University

of Maryland, College Park, 2004.

28 JIANZE LI, KONSTANTIN USEVICH, AND PIERRE COMON

[5] B. Afsari, Simple LU and QR based non-orthogonal matrix joint diagonalization, in International Confer-

ence on Independent Component Analysis and Signal Separation, Springer, 2006, pp. 1–7.

[6] R. André, X. Luciani, and E. Moreau, A new class of block coordinate algorithms for the joint eigenvalue

decomposition of complex matrices, Signal Processing, 145 (2018), pp. 78–90.

[7] A. Baker, Matrix groups: An introduction to Lie group theory, Springer Science & Business Media, 2012.

[8] D. P. Bertsekas, Nonlinear programming, Athena Scientific, second ed., 1999.

[9] F. Bouchard, B. Afsari, J. Malick, and M. Congedo, Approximate joint diagonalization with Rie-

mannian optimization on the general linear group, SIAM Journal on Matrix Analysis and Applications, 41

(2020), pp. 152–170.

[10] D. Brandwood, A complex gradient operator and its application in adaptive array theory, IEE Proceedings

H-Microwaves, Optics and Antennas, 130 (1983), pp. 11–16.

[11] J. Cardoso and A. Souloumiac, Blind beamforming for non-gaussian signals, IEE Proceedings F (Radar

and Signal Processing), 6 (1993), pp. 362–370.

[12] J.-F. Cardoso and A. Souloumiac, Jacobi angles for simultaneous diagonalization, SIAM Journal on

Matrix Analysis and Applications, 17 (1996), pp. 161–164.

[13] G. Chabriel, M. Kleinsteuber, E. Moreau, H. Shen, P. Tichavsky, and A. Yeredor, Joint matrices

decompositions and blind source separation: A survey of methods, identification, and applications, IEEE

Signal Processing Magazine, 31 (2014), pp. 34–43.

[14] B. Chen, S. He, Z. Li, and S. Zhang, Maximum block improvement and polynomial optimization, SIAM

Journal on Optimization, 22 (2012), pp. 87–107.

[15] P. Comon, Independent Component Analysis, in Higher Order Statistics, J.-L. Lacoume, ed., Elsevier,

Amsterdam, London, 1992, pp. 29–38.

[16] P. Comon, Independent component analysis, a new concept?, Signal Processing, 36 (1994), pp. 287–314.

[17] P. Comon and C. Jutten, eds., Handbook of Blind Source Separation, Academic Press, Oxford, 2010.

[18] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, third ed., 1996.

[19] B. Hall, Lie groups, Lie algebras, and representations: an elementary introduction, vol. 222, Springer,

2015.

[20] M. Ishteva, P.-A. Absil, and P. Van Dooren, Jacobi algorithm for the best low multilinear rank approx-

imation of symmetric tensors, SIAM Journal on Matrix Analysis and Applications, 2 (2013), pp. 651–672.

[21] S. Krantz and H. Parks, A Primer of Real Analytic Functions, Birkhäuser Boston, 2002.

[22] S. G. Krantz, Function theory of several complex variables, vol. 340, American Mathematical Soc., 2001.

[23] S. law Lojasiewicz, Ensembles semi-analytiques, IHES notes, (1965).

[24] J. Li, K. Usevich, and P. Comon, Globally convergent Jacobi-type algorithms for simultaneous orthogonal

symmetric tensor diagonalization, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 1–22.

[25] J. Li, K. Usevich, and P. Comon, On approximate diagonalization of third order symmetric tensors by

orthogonal transformations, Linear Algebra and its Applications, 576 (2019), pp. 324–351.

[26] J. Li, K. Usevich, and P. Comon, On the convergence of jacobi-type algorithms for independent component

analysis, in 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), IEEE, 2020,

pp. 1–5.

[27] J. Li, K. Usevich, and P. Comon, Jacobi-type algorithm for low rank orthogonal approximation of sym-

metric tensors and its convergence analysis, Pacific Journal of Optimization, 17 (2021), pp. 357–379.

[28] J. Li and S. Zhang, Polar decomposition based algorithms on the product of Stiefel manifolds with appli-

cations in tensor approximation, arXiv:1912.10390v2, (2020).

[29] Z. Li, A. Uschmajew, and S. Zhang, On convergence of the maximum block improvement method, SIAM

Journal on Optimization, 25 (2015), pp. 210–233.

[30] S. Lojasiewicz, Sur la géométrie semi- et sous-analytique, Annales de l’institut Fourier, 43 (1993), pp. 1575–

1595.

[31] Z.-Q. Luo and P. Tseng, On the convergence of the coordinate descent method for convex differentiable

minimization, Journal of Optimization Theory and Applications, 72 (1992), pp. 7–35.

GRADIENT BASED BLOCK COORDINATE DESCENT ALGORITHMS 29

[32] Z.-Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: a general

approach, Annals of Operations Research, 46 (1993), pp. 157–178.

[33] J. H. Manton, Modified steepest descent and Newton algorithms for orthogonally constrained optimisa-

tion. part i. the complex Stiefel manifold, in Proceedings of the Sixth International Symposium on Signal

Processing and its Applications, vol. 1, IEEE, 2001, pp. 80–83.

[34] V. Maurandi, C. De Luigi, and E. Moreau, Fast jacobi like algorithms for joint diagonalization of

complex symmetric matrices, in 21st European Signal Processing Conference (EUSIPCO 2013), IEEE, 2013,

pp. 1–5.

[35] V. Maurandi and E. Moreau, A decoupled Jacobi-like algorithm for non-unitary joint diagonalization of

complex-valued matrices, IEEE Signal Processing Letters, 21 (2014), pp. 1453–1456.

[36] V. Maurandi, E. Moreau, and C. De Luigi, Jacobi like algorithm for non-orthogonal joint diagonalization

of hermitian matrices, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), IEEE, 2014, pp. 6196–6200.

[37] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media, 2006.

[38] W. Ring and B. Wirth, Optimization methods on Riemannian manifolds and their application to shape

space, SIAM Journal on Optimization, 22 (2012), pp. 596–627.

[39] H. Sato and T. Iwai, A new, globally convergent Riemannian conjugate gradient method, Optimization,

64 (2015), pp. 1011–1031.

[40] R. Schneider and A. Uschmajew, Convergence results for projected line-search methods on varieties of

low-rank matrices via lojasiewicz inequality, SIAM Journal on Optimization, 25 (2015), pp. 622–646.

[41] M. Sørensen, P. Comon, S. Icart, and L. Deneire, Approximate tensor diagonalization by invertible

transforms, in 2009 17th European Signal Processing Conference, IEEE, 2009, pp. 500–504.

[42] A. Souloumiac, Nonorthogonal joint diagonalization by combining givens and hyperbolic rotations, IEEE

Transactions on Signal Processing, 57 (2009), pp. 2222–2231.

[43] A. Uschmajew, A new convergence proof for the higher-order power method and generalizations, Pacific

Journal of Optimization, 11 (2015), pp. 309–321.

[44] K. Usevich, J. Li, and P. Comon, Approximate matrix and tensor diagonalization by unitary transfor-

mations: convergence of jacobi-type algorithms, SIAM Journal on Optimization, 30 (2020), pp. 2998–3028.

[45] K. Wang, X.-F. Gong, and Q.-H. Lin, Complex non-orthogonal joint diagonalization based on LU and LQ

decompositions, in International Conference on Latent Variable Analysis and Signal Separation, Springer,

2012, pp. 50–57.

[46] S. J. Wright, Coordinate descent algorithms, Mathematical Programming, 151 (2015), pp. 3–34.

[47] Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with ap-

plications to nonnegative tensor factorization and completion, SIAM Journal on Imaging Sciences, 6 (2013),

pp. 1758–1789.

[48] A. Yeredor, Non-orthogonal joint diagonalization in the least-squares sense with application in blind source

separation, IEEE Transactions on Signal Processing, 50 (2002), pp. 1545–1553.

	1. Introduction
	1.1. Problem formulation
	1.2. Two equivalent reformulations
	1.3. Block coordinate descent
	1.4. BCD-G algorithm for the first reformulation on St(m,n,C)SLm(C)
	1.5. Jacobi-G algorithm for the second reformulation on SLm(C)
	1.6. Contributions
	1.7. Organization

	2. Geometries on St(m,n,C) and SLm(C)
	2.1. Notations
	2.2. Riemannian gradient on St(m,n,C)
	2.3. Matrix groups
	2.4. Riemannian gradient on SLm(C)
	2.5. Conditions for convergence analysis

	3. Line search descent method on St(m,n,C)
	3.1. Riemannian gradient
	3.2. Line search descent method

	4. GLU, GQU and GU classes of transformations on SLm(C)
	4.1. Elementary functions
	4.2. Derivatives of elementary functions
	4.3. GLU and GQU classes of transformations
	4.4. GU class of transformations

	5. Triangular and diagonal transformations for JADM problem
	5.1. Riemannian gradient
	5.2. Elementary functions
	5.3. Condition (26) for global convergence
	5.4. Condition (27) for weak convergence

	6. Givens plane transformations for JADM problem
	6.1. Elementary function
	6.2. Condition (26) for global convergence
	6.3. Condition (27) for weak convergence

	7. Convergence analysis
	7.1. Convergence analysis of BCD-GLU and BCD-GQU algorithms
	7.2. Convergence analysis of BCD-GU algorithm
	7.3. Jacobi-type algorithms and their convergence analysis

	8. Experiments
	9. Conclusions
	References

