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Min-max inference for Possibilistic Rule-Based System

In this paper, we explore the min-max inference mechanism of any rule-based system of n if-then possibilistic rules. We establish an additive formula for the output possibility distribution obtained by the inference. From this result, we deduce the corresponding possibility and necessity measures. Moreover, we give necessary and sufficient conditions for the normalization of the output possibility distribution.

As application of our results, we tackle the case of a cascade of two ifthen possibilistic rules sets and establish an input-output relation between the two min-max equation systems. Finally, we associate to the cascade construction an explicit min-max neural network.

Introduction

Possibility Theory is a well-known framework for the representation of incomplete or imprecise information [START_REF] Dubois | Possibility theory : an approach to computerized processing of uncertainty[END_REF][START_REF]Possibility theory and its applications: Where do we stand?[END_REF] that has recently been emphasized as an interesting setting for the development of consistent interfaces between learning and reasoning [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF]. Initially introduced by Zadeh [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] and considerably developed by Dubois and Prade, Possibility Theory is a natural complement of fuzzy theory which provides computable methods for modelling linguistically stated 1 information, but does not handle uncertainty, which is rather due to a lack of precise (or complete) information. Basically, in Possibility Theory, uncertainty is modelised by two dual measures called possibility and necessity, which allow to distinguish between what is possible without being certain at all and what is certain to some extent. In the 80's, possibilistic handling of rule-based systems was developed [START_REF] Farreny | Default and inexact reasoning with possibility degrees[END_REF][START_REF] Farreny | Approximate reasoning in a rule-based expert system using possibility theory: A case study[END_REF]. Then, in [START_REF] Farreny | Positive and negative explanations of uncertain reasoning in the framework of possibility theory[END_REF], the authors proposed an approach for the explanatory capabilities of possibilistic rule-based systems that relies on a min-max equation system. They used this equation system for performing a sensitivity analysis and illustrated it by an example of a system composed of three if-then possibilistic rules. These topics have recently been studied by [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF] for developing possibilistic learning methods that would be consistent with if-then rule-based reasoning. The authors of [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF] think that taking advantage of the min-max equation system of [START_REF] Farreny | Positive and negative explanations of uncertain reasoning in the framework of possibility theory[END_REF] may lead to the development of possibilistic learning methods. In particular, they highlighted the importance of the equation system for a cascade i.e., when a possibilistic rule-based system uses two sets of if-then possibilistic rules consecutively, the rules of the second set being chained with those of the first set.

In this paper, we address a number of questions or issues mentioned or raised in [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF][START_REF] Farreny | Positive and negative explanations of uncertain reasoning in the framework of possibility theory[END_REF] by providing an in-depth study of the min-max equation system of a possibilistic rule-based system. We start by reminding the possibilistic rulebased systems and their underlying equation systems in section 2. In the case of n if-then possibilistic rules, we then give a canonical construction for the matrices of the equation system (section 3). This enables us to establish an additive formula for the output possibility distribution (section 4). The output possibility distribution must be normalized for the consistency of the rules and to deal with a cascade. Using the additive formula and the equation system, we give a necessary and sufficient condition for the output possibility distribution to be normalized (section 4). We also determine minimal input solutions for the normalization, when it is possible. In section 5, we calculate explicitly the measures of possibility and necessity of any subset of the output attribute domain. All these works allow us to deal with a cascade (section 6) and we associate to the cascade construction a min-max neural network that describes it. We end by giving a concrete example, and some perspectives (section 7).

Background

Before introducing our work, we present a possibilistic rule-based system given by a set of if-then possibilistic rules. Then, we study the case of a cascade and remind the equation system introduced by [START_REF] Farreny | Positive and negative explanations of uncertain reasoning in the framework of possibility theory[END_REF]. Some notations are also given.

Possibilistic rule-based system

We consider a possibilistic rule-based system with a set of n if-then possibilistic rules R 1 , R 2 , • • • , R n . Each R i is a rule of the form: "if p i then q i " and has its uncertainty propagation matrix π(q

i |p i ) π(q i |¬p i ) π(¬q i |p i ) π(¬q i |¬p i ) = 1 s i r i 1 .
A non-compounded premise p i is a proposition of the form "a i (x) ∈ P i ". The attribute a i is applied to an item x. Its information is represented by a possibility distribution π ai(x) : D ai → [0, 1] defined on its domain D ai , which is supposed to be normalized i.e., ∃u ∈ D ai such that π ai(x) (u) = 1. The possibility degree of p i and that of its negation are computed using the possibility measure Π by π(p i ) = Π(P i ) = sup u∈Pi π ai(x) (u) and π(¬p i ) = Π(P i ) = sup u∈Pi π ai(x) (u) respectively, where P i is a subset of D ai and P i its complement. They are noted respectively λ i and ρ i . In the case of a compounded premise

p i = p 1,i ∧• • •∧p k,i ,
we take λ i = min k j=1 π(p j,i ) and ρ i = max k j=1 π(¬p j,i ) [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF]. The conclusion q i represents "b(x) ∈ Q i ", where Q i is a subset of D b , the domain of the attribute b. The possibility degree of q i and that of its negation are respectively noted α i and β i and are given by

π(q i ) π(¬q i ) = 1 s i r i 1 max min λ i ρ i . The
operator max min uses min as the product and max as the addition. Taking into account the normalization of p i i.e., max(λ i , ρ i ) = 1, we have α i = max(s i , λ i ) and β i = max(r i , ρ i ). Finally, the possibility distribution of the attribute b associated with R i is:

π * i b(x) (u) = α i µ Qi (u) + β i µ Qi (u) for any u ∈ D b .
With n rules, the possibility distribution of b is obtained by a min-based conjunctive combination:

π * b(x) (u) = min(π * 1 b(x) (u), π * 2 b(x) (u), • • • , π * n b(x) (u)). (1) 

Cascade

In this case, a possibilistic rule-based system relies on

R 1 , R 2 , • • • , R n and a new set of m if-then possibilistic rules R 1 , R 2 , • • • , R m ,
where the same attribute is used in both the conclusions of the R i and the premises of the R j . In fact, each rule R j is of the form "if p j then q j " where p j is a proposition "b(x) ∈ Q j ", Q j being a subset of D b . The conclusion q j is of the form "c(x) ∈ Q c " where Q c is a subset of D c , the domain of the attribute c. The possibility degrees associated with R j are calculated in the same way as those of the rules R i : λ j = π(p j ) and ρ j = π(¬p j ) as p j is a proposition. Similarly, R j has an uncertainty propagation matrix with its associated parameters s j , r j .

Equation system

In [START_REF] Farreny | Positive and negative explanations of uncertain reasoning in the framework of possibility theory[END_REF], an equation system denoted OV = MR IV was formulated, where OV and IV are respectively named the output and the input vectors. For an example of a system of three if-then possibilistic rules, the authors showed that the equation system describes the output possibility distribution and proposed to use it to perform a sensitivity analysis. In [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF], the equation system for the case of two rules R 1 and R 2 is given:

    Π(Q 1 ∩ Q 2 ) Π(Q 1 ∩ Q 2 ) Π(Q 1 ∩ Q 2 ) Π(Q 1 ∩ Q 2 )     =     s 1 1 s 2 1 s 1 1 1 r 2 1 r 1 s 2 1 1 r 1 1 r 2     min max     λ 1 ρ 1 λ 2 ρ 2     . (2) 
The operator min max uses max as the product and min as the addition. By performing the min-max products, the authors obtain Π(

Q 1 ∩ Q 2 ) = min(α 1 , α 2 ), Π(Q 1 ∩ Q 2 ) = min(α 1 , β 2 ), Π(Q 1 ∩ Q 2 ) = min(β 1 , α 2 ) and Π(Q 1 ∩ Q 2 ) = min(β 1 , β 2 )
. The four sets used form a partition of D b constructed from the sets Q 1 , Q 2 used in the conclusions q 1 , q 2 of R 1 and R 2 , and their complements.

Notations

In our work, all the matrices have their coefficients in [0, 1]. To any matrix A = [a ij ], we associate the matrix

A • = [1 -a ij ]. We have the following property: (A • ) • = A.
Let A and B be matrices of respective size (n, m) and (m, p). The transformation A → A • switches the two matrix products in the following sense:

(A min max B) • = A • max min B • and (A max min B) • = A • min max B • .
Finally, we introduce an operator denoted min that takes the mininum of the coefficients of each row in a matrix.

Generalized equation system

In this section, we use a possibilistic rule-based system with a set of n if-then

possibilistic rules R 1 , R 2 , • • • , R n .
We introduce the generalized equation system, which we note:

O n = M n min max I n .
For n = 2, our construction is equivalent to the construction previously recalled, see [START_REF]Possibility theory and its applications: Where do we stand?[END_REF]. To understand the output vector O n of the equation system, we introduce an explicit partition of D b . Moreover, this partition is directly linked to a matrix B n that we construct inductively with respect to the number of rules.

Partition and settings

From the sets Q 1 , Q 2 , • • • , Q n used
in the conclusions of the rules and their complements,

for each i = 1, 2, • • • , n, we define (E (i) k ) 1≤k≤2 i a partition of D b
by the following two conditions:

• E (1) 1 = Q 1 and E (1) 2 = Q 1 (3a)
and for i > 1:

• E (i) k = E (i-1) k ∩ Q i if 1 ≤ k ≤ 2 i-1 E (i-1) k-2 i-1 ∩ Q i if 2 i-1 < k ≤ 2 i . ( 3b 
) For i = 1, 2, • • • , n,
we define matrices M i , I i and B i according to:

• the sequences s 1 , s 2 , • • • , s i and r 1 , r 2 , • • • , r i for M i , • the sequences λ 1 , λ 2 , • • • , λ i and ρ 1 , ρ 2 , • • • , ρ i for I i , • the sequences α 1 , α 2 , • • • , α i and β 1 , β 2 , • • • , β i for B i .

Construction of M i

For i = 1, we take

M 1 = s 1 1 1 r 1 . For i > 1, we define M i of size (2 i , 2i
) by the following block matrix construction:

M i = M i-1 S i M i-1 R i where S i =      s i 1 s i 1 . . . . . . s i 1      and R i =      1 r i 1 r i . . . . . . 1 r i      are of size (2 i-1 , 2). We note N 1 , N 2 , • • • , N 2 i the rows of M i .

Construction of I i

For i = 1, we take I 1 = λ 1 ρ 1 . For i > 1, we define I i of size (2i, 1):

I i =   I i-1 λ i ρ i   =    θ 1 . . . θ 2i   
where θ 2j-1 = λ j and θ 2j = ρ j for j = 1, 2, • • • , i.

Construction of B i

For i = 1, we take B 1 = α 1 β 1 . For i > 1, we define B i of size (2 i , i) by the following block matrix construction with B i-1 :

B i =               B i-1 α i α i . . . α i B i-1 β i β i . . . β i               .
We note that the rows

L 1 , L 2 , • • • , L 2 i of B i are related to the rows L 1 , L 2 , • • • , L 2 i-1 of B i-1
by the following result:

L k = (L k , α i ) if 1 ≤ k ≤ 2 i-1 (L k-2 i-1 , β i ) if 2 i-1 < k ≤ 2 i . (4) 
We can recover the matrix M i from the matrix B i in an explicit way.

Relation between B i and the partition

For k ∈ {1, 2, • • • , 2 i }, let L k = (γ 1 , γ 2 , • • • , γ i
) be any row of the matrix B i with γ ∈ {α, β}. Then the corresponding set

E (i)
k of the partition is equal to:

E (i) k = T 1 ∩ T 2 • • • ∩ T i with T j = Q j if γ j = α j Q j if γ j = β j . ( 5 
)
As it is clear for i = 1, this result is deduced from the description of the rows of B i by the rows of B i-1 , see (4).

Coefficients of min B i

For any i = 1, 2, • • • , n, we set:

min B i = [o (i) k ] 1≤k≤2 i . For any k ∈ {1, 2, • • • , 2 i },
we can deduce the following relations between the coefficients of min B i and those of min B i-1 :

o (i) k = min(o (i-1) k , α i ) if 1 ≤ k ≤ 2 i-1 min(o (i-1) k-2 i-1 , β i ) if 2 i-1 < k ≤ 2 i . ( 6 
)
This result is directly deduced from (4) and the associativity of the min function. Finally, we obtain: Theorem 1 The min-max matrix product of M i by the matrix-column I i is obtained by applying the operator min to the matrix B i :

M i min max I i = min B i (7) 
The abridged proof of this result goes as follows. It is clear for i = 1. Starting from the assumption (7) for i -1, we show that each coefficient o

(i) k of min B i is equal to N k min max I i , N k being the k-th row of M i .

Equation system properties

In this section, we study the properties of the equation system by first establishing an additive formula for π * b(x) from the partition (E

(i) k ) 1≤k≤2 i .
We give a necessary and sufficient condition for the normalization of π * b(x) . Then we show that, by deleting the empty sets of the partition and the corresponding rows of O i , M i and B i , we get matrices O i , M i and B i with a reasonable number of rows. We also study the solutions for the normalization and how to rebuild the equation system if we remove a rule.

Additive formula for π

* b(x)
We use the coefficients of O i = min B i , see [START_REF] Farreny | Positive and negative explanations of uncertain reasoning in the framework of possibility theory[END_REF], and introduce the characteristic functions µ

E (i) 1 , µ E (i) 2 , • • • , µ E (i) 2 i of the sets E (i) 1 , E (i) 2 , • • • , E (i) 2 i . Theorem 2
The output possibility distribution π * b(x),i associated to the first i rules is:

π * b(x),i = 1≤k≤2 i o (i) k µ E (i) k . (8) 
We prove this result by recurrence on i, using (3), [START_REF] Farreny | Approximate reasoning in a rule-based expert system using possibility theory: A case study[END_REF], and the associativity of the min function.

As a consequence, ∀u ∈ D b , there is a unique index k 0 such that u ∈ E

(i) k0 and π * b(x),i (u) = o (i) k0 .
From this, we deduce that π * b(x),i is normalized if and only if:

∃k ∈ {1, 2, • • • , 2 i } such that E (i) k = ∅ and o (i) k = 1. (9) 
Moreover, from (8), we deduce that the possibility measure of each non-empty set

E (i) k of the partition is equal to o (i) k .
It is then natural to introduce:

J = k ∈ {1, 2, • • • , 2 i } E (i) k = ∅ and ω = card(J).
Considering card(D b ) = d, we have ω ≤ min(d, 2 i ). We may arrange the elements of J as a strictly increasing sequence:

1 ≤ k 1 < k 2 < • • • < k ω ≤ 2 i . We have: [Π(E (i) k )] k∈J = [o (i) k ] k∈J .
Thus, in what follows, we note O i , M i and B i , the matrices obtained from O i , M i and B i respectively, by deleting each row whose index is not in J.

Solutions for π

* b(x),i (u) = 1
In the following, we study how to get π * b(x),i (u) = 1 for a value u ∈ D b . Combining ( 7) and ( 8), we have π * b(x),i (u) = N min max I i , where N is a row of M i . Let us note:

N = [t 1 , t 2 , • • • , t 2i-1 , t 2i
] where t j ∈ {1, r * , s * }.

Then we have π * b(x),i (u) = min 1≤j≤2i max(t j , θ j ). So π * b(x),i (u) = 1 is equivalent to ∀j ∈ E, θ j = 1, where E = {j ∈ {1, 2, . . . , 2i} | t j < 1}. Thus, the normalization of the possibility distribution of b can be established by the resolution of an equation system with ω min-max equations, where the second member of at least one equation has to be equal to 1. Therefore, it is interesting to study if there are extremal solutions I i to get π * b(x),i (u) = 1, as suggested in [START_REF] Farreny | Positive and negative explanations of uncertain reasoning in the framework of possibility theory[END_REF]. In what follows, we will look for an input vector column X = [x j ] 1≤j≤2i , with the normalization hypothesis of its components: ∀k ∈ {1, 2, • • • , i}: max(x 2k-1 , x 2k ) = 1, that satisfies the following equation:

N min max X = 1. ( 10 
)
We introduce the following order relation for solutions

X = [x j ] 1≤j≤2i and X = [x j ] 1≤j≤2i : X ≤ X , if only if ∀j ∈ {1, 2, • • • , 2i} : x j ≤ x j .
This allows us to look for a unique minimal solution that we note S min or a maximal one S max , if they exist. Obviously, S max = [θ * j ] where θ * j = 1 for each j = 1, 2, • • • , 2i. For this maximal solution S max , we notice that ∀k ∈ {1, 2, • • • , i}, (λ k , ρ k ) = (1, 1): for each rule, the premise is considered as unknown [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF]. Let us look for a unique minimal solution:

• If we have:

∃k ∈ {1, 2, • • • , i} such that (t 2k-1 , t 2k ) = (1, 1), (11) 
then equation (10) does not admit a minimal solution.

• If we suppose that:

∀k ∈ {1, 2, • • • , i} we have (t 2k-1 , t 2k ) = (1, 1), ( 12 
)
then there is a unique minimal solution

S min = [θ * j ] 1≤j≤2i where (θ * 2k-1 , θ * 2k ) = (1, 0) if t 2k = 1 (0, 1) if t 2k-1 = 1
. So, with the hypothesis (12), we give a sufficient condition for the normalization of π * b(x),i .

Rebuild the equation system with a deleted rule

Let us delete a rule R z from R 1 , R 2 , • • • , R i and study the corresponding equation system. We denote by B z i the matrix associated to this system of i -1 rules by the construction of subsection D of 3. We assert that the matrix B z i , which is of size (2 i-1 , i-1), can be obtained from the matrix B i by the following practical rule:

1. We delete the z-th column of B i . Then, we obtain a matrix of size (2 i , i-1),

where each row is repeated once and only once.

2. In the resulting matrix, we delete the rows L k within all the pairs of rows (L k , L k ) where L k = L k and k < k .

After these two operations, we get B z i . Then, one can deduce the partition (E z k ) 1≤k≤2 i-1 of D b from B z i by using the relation [START_REF] Farreny | Default and inexact reasoning with possibility degrees[END_REF]. Its sets can also be determined directly from the partition (E

(i) k ) 1≤k≤2 i . In fact, for any k ∈ {1, 2, • • • , 2 i-1 }, we can find two indices k , k ∈ {1, 2, • • • , 2 i } such that: E z k = E (i) k ∪ E (i) k (13)
where, with respect to the notations of ( 5), E

k and

E (i)
k differ only on the component T z , e.g.

T z = Q z for E (i) k , and T z = Q z for E (i) k . If E z k = ∅, the decomposition (13) is unique, where E (i) k and E (i)
k still satisfy the above assumption. These two sets can be easily determined algorithmically. Finally, we deduce from (13), that ω z ≤ ω, where ω z = card(J z ) and

J z = k ∈ {1, 2, • • • , 2 i-1 } E z k = ∅ .
The partition (E z k ) k∈J z and the matrix B z i are particularly interesting for performing a sensitivity analysis. We illustrate the construction of B z i for the case i = 3 and z = 2:

α1 α2 α3 β1 α2 α3 α1 β2 α3 β1 β2 α3 α1 α2 β3 β1 α2 β3 α1 β2 β3 β1 β2 β3                                   α1 α3 β1 α3 α1 α3 β1 α3 α1 β3 β1 β3 α1 β3 β1 β3                                   α1 α3 β1 α3 α1 β3 β1 β3               = B z 3 .

Measures of possibility and necessity of any subset of the output attribute domain

In this section, we study the case of a rule-based system of n if-then possibilistic rules with its associated equation system, and denote by π * b(x) the output possibility distribution of b. Remind that the possibility measure Π * and the necessity measure N * associated to π * b(x) are defined by [START_REF] Dubois | Possibility theory : an approach to computerized processing of uncertainty[END_REF]:

Π * : P(D b ) → [0, 1] : Q → Π * (Q) = max u∈Q π * b(x) (u), N * : P(D b ) → [0, 1] : Q → N * (Q) = 1 -Π * (Q).
For a proposition p: "b(x) ∈ Q", the possibility degree π(p) and its degree of necessity n(p) are given by [START_REF] Dubois | Possibility theory : an approach to computerized processing of uncertainty[END_REF]:

π(p) = Π * (Q) and n(p) = 1 -π(¬p) = N * (Q).
In what follows, we deduce explicit formulas for Π * (Q) and N * (Q) from ( 8), where we use a function ε, which checks if a set is not empty:

ε(T ) = 1 si T = ∅ 0 if T = ∅ .

Possibility measure

For any subset

Q ⊆ D b , we have Q = 1≤i≤ω E (n) ki ∩ Q, and we know that ∀u ∈ E (n) ki we have π * b(x) (u) = o (n)
ki . So we get the possibility measure of Q by:

Π * (Q) = max u∈Q π * b(x) (u) = max 1≤i≤ω s.t E (n) k i ∩Q =∅ o (n) ki .
Therefore we can restate this result as:

Π * (Q) = max 1≤i≤ω ε(E (n) ki ∩ Q) • o (n) ki = max 1≤i≤ω min(ε(E (n) ki ∩ Q), o (n) ki ). ( 14 
)
Let ∆ Q be the matrix of size (1, ω) defined by:

∆ Q = ε(E (n) k1 ∩ Q) ε(E (n) k2 ∩ Q) • • • ε(E (n) kω ∩ Q) .
Then, equality ( 14) is exactly:

Π * (Q) = ∆ Q max min O n . (15) 

Necessity measure

Using (15), we have for Q:

Π * (Q) = ∆ Q max min O n .
The necessity measure is then:

N * (Q) = 1 -Π * (Q) = (Π * (Q)) • .
By the correspondences between min max and max min we obtain:

N * (Q) = (∆ Q max min O n ) • = ∆ Q • min max O n • . (16) 6 Cascade 
In this section, we use two sets of if-then possibilistic rules: the ) k∈J have respective size ω and ω . In what follows, we establish an input-output relation between the two equation systems and associate to such cascade construction a min-max neural network.

n rules R 1 , R 2 , • • • , R n and the m rules R 1 , R 2 , • • • , R m .

I m and O m results

Each premise p j of a rule R j is a proposition of the form "b(x) ∈ Q j ". Therefore, we get λ j and ρ j by the calculation of the possibility measures of Q j and Q j :

λ j = Π * (Q j ) and ρ j = Π * (Q j ).
By the equality (15), we define the input vector I m of size (2m, 1), as a max-min product between a matrix ∆ = [δ t,k ] 1≤t≤2m,1≤k≤ω , and O n of size (ω, 1):

I m = ∆ max min O n . (17) 
The coefficients of ∆ are 1 or 0, and are obtained as follows:

δ t,k = ε(E (n) k ∩ Q j ) if t = 2j -1 and 1 ≤ j ≤ m ε(E (n) k ∩ Q j ) if t = 2j and 1 ≤ j ≤ m . We note S 1 , S 2 , • • • , S 2m the rows of ∆. Each row of ∆ is in fact ∆ Q associated to some set Q ⊆ D b as in (15): ∆ =        ∆ Q 1 ∆ Q 1 . . . ∆ Q m ∆ Q m        .
Thus, it establishes an input-output relation between the two equation systems. This yields the output vector O m of the second system from the first system, ∆ and M m :

O m = M m min max I m = M m min max (∆ max min O n ) = M m min max (∆ max min (M n min max I n )).

Representation by a min-max neural network

In [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF], the authors suggested that the system that can be built from a cascade would have a structural resemblance with a min-max neural network. We show that there is such a neural network, which gives an explicit representation of the cascade construction.

With the help of the matrices I n • , M n • and M m • , we can express the equations involved in the cascade using only the operator (A max min B)

• : O n = (M n • max min I n • ) • , I m • = (∆ max min O n ) • and O m = (M m • max min I m • )
• . We define the four-layer min-max neural network as follows:

• the layer 1 has 2n input neurons:

i 1 , i 2 , • • • , i 2n with z i1 , z i2 , • • • , z i2n being
their respective output values,

• the layer 2 has ω hidden neurons: h 1 , h In this neural network, for each neuron, we obtain its input value with the operator (A max min B)

• . Its output value is given by the activation function which is f We explicit its architecture (Figure 1) and define the following edges by:

(x) = x. x1 x2 • • • x2n i1 i2 • • • i2n h1 h2 • • • hω v (1) 1,1 v (1) 2,1 v (1) 2n,1 h 1 h 2 • • • h 2m v (2) 1,1 v (2) 2,1 v (2) ω,1 o 1 o 2 • • • o ω v (3) 1,1 v (3) 2,1 v (3) 2m,1
• x j = 1 -θ j , a coefficient of I n • with 1 ≤ j ≤ 2n, • v (1) i,j = 1 -t j,i , a coefficient of M n • with 1 ≤ j ≤ ω and 1 ≤ i ≤ 2n, • v (2) 
i,j = δ j,i , a coefficient of ∆ with 1 ≤ j ≤ 2m and 1 ≤ i ≤ ω,

• v (3) i,j = 1 -t j,i , a coefficient of M m • with 1 ≤ j ≤ ω and 1 ≤ i ≤ 2m.
The output value of an input neuron i k is z

i k = f (x k ) = 1 -θ k . For each hidden neuron h k , its output value z h k = f (I h k ) = I h k is a coefficient of O n , as I h k is obtained using a row N k of M n : I h k = 1 -max 1≤j≤2n min(v (1) 
j,k , z ij ) = N k min max I n .
Each output value of a hidden neuron h k is a coefficient of I m • . We use the row S k of ∆ to obtain I h k :

I h k = 1 -max 1≤j≤ω min(v (2) j,k , z hj ) = (S k max min O n ) • .
We have

z h k = f (I h k ) = I h k . Finally, I o k corresponding to the output neuron o k is obtained using the row N k of M m : I o k = 1 -max 1≤j≤2m min(v (3) j,k , z h j ) = N k min max I m .
We get the output value of o k with

z o k = f (I o k ) = I o k . So z o 1 , z o 2 , • • • , z o ω are the coefficients of O m .
As characteristics, we notice that each edge v

i,j has a value equal to 0 or 1 with respect to the relation (17), while the values of the others are in [0, 1]. Furthermore, it has some resemblance with an hybrid fuzzy neural network [START_REF] Buckley | Fuzzy neural networks: A survey[END_REF], where the t-norm min and its associated t-conorm max are used to get the input value of a neuron. By using more layers, we can extend this min-max neural network to take into account the λ, ρ calculations when the premises are compounded.

• R 2 : if a person is an engineer, a lawyer or an architect, her salary is average or high,

• R 3 : if a person is a business man or a doctor, then her salary is high.

For the attribute salary, the sets E

(3)

k1 = {high}, E (3) 
k2 = {average} and E 

k3 ) = 1. Such cascade is represented by a min-max neural network (see 6.2).

Conclusion

In this paper, we gave a canonical construction for the matrices governing a min-max equation system associated to a possibilistic rule-based system. As consequences of this construction, we obtained an additive formula for the output possibility distribution that allowed us to tackle the normalization problem of it and the case of a cascade. We showed that the equation system for a cascade is a nesting of max-min products of matrices and represented such construction by a min-max neural network. Therefore, the cascade is represented by a graph, which offers interesting perspectives for tasks such as sensitivity analysis. This possibilistic neuro-symbolic method allows to glimpse how possibilistic learning can have a consistent correspondence with possibilistic rule-based systems.

  We form O n = M n min max I n for the first set of rules and O m = M m min max I m for the second one, where we consider that their associated partition of non-empty sets (E (n) k ) k∈J and (E (m) k

Figure 1 :

 1 Figure 1: Min-max neural network architecture

.

  form the partition of its domain. So O m , M m and B m have three rows. Using the partition of the first system and the sets within the propositions p 1 , p 2 and p 3 of the three rules R 1 , R 2 and R 3 respectively, we get ∆ and then I m : We arbitrarily set s 1 = 1, r 1 = 0.7, s 2 = 0.8, r 2 = 0.2, s 3 = 0.6 and r 3 = 0.4. Thus, we now form O m = M m min max I m :

  2 , • • • , h ω where I h1 , I h2 , • • • , I hω are their respective input values and z h1 , z h2 , • • • , z hω their respective output values,• the layer 3 has 2m hidden neurons:h 1 , h 2 , • • • , h 2m where I h 1 , I h 2 , • • • , I h 2mare their respective input values andz h 1 , z h 2 , • • • , z h 2mtheir respective output values, • the layer 4 has ω output neurons: o 1 , o 2 , • • • , o ω where I o 1 , I o 2 , • • • , I o ω are their respective input values and z o 1 , z o 2 , • • • , z o ω their respective output values.

Example

To illustrate the cascade, we use the example of [START_REF]From possibilistic rule-based systems to machine learning -a discussion paper[END_REF], previously introduced in the french version of [START_REF] Farreny | Positive and negative explanations of uncertain reasoning in the framework of possibility theory[END_REF]. It is a possibilistic rule-based system which suggests to people professions with an associated salaries, based on their tastes and interests using two sets of if-then possibilistic rules. Firstly, the inference of three possibilistic rules determine which professions can be suggested to a person, according to her characteristics. For this set of rules, an equation system is formed, where O n has five coefficients. In fact, the height possible professions are in five non-empty disjoint sets which form a partition: Then, based on this result, the system determines the salary she can expect according to her profession, using three rules:

• R 1 : if a person is a professor or a researcher, then her salary is rather low,