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Abstract

In this paper, we explore the min-max inference mechanism of any
rule-based system of n if-then possibilistic rules. We establish an additive
formula for the output possibility distribution obtained by the inference.
From this result, we deduce the corresponding possibility and necessity
measures. Moreover, we give necessary and sufficient conditions for the
normalization of the output possibility distribution.

As application of our results, we tackle the case of a cascade of two if-
then possibilistic rules sets and establish an input-output relation between
the two min-max equation systems. Finally, we associate to the cascade
construction an explicit min-max neural network.

1 Introduction

Possibility Theory is a well-known framework for the representation of incom-
plete or imprecise information [1, 2] that has recently been emphasized as an
interesting setting for the development of consistent interfaces between learning
and reasoning [3]. Initially introduced by Zadeh [4] and considerably devel-
oped by Dubois and Prade, Possibility Theory is a natural complement of fuzzy
theory which provides computable methods for modelling linguistically stated
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information, but does not handle uncertainty, which is rather due to a lack of
precise (or complete) information. Basically, in Possibility Theory, uncertainty
is modelised by two dual measures called possibility and necessity, which allow
to distinguish between what is possible without being certain at all and what is
certain to some extent.
In the 80’s, possibilistic handling of rule-based systems was developed [5, 6].
Then, in [7], the authors proposed an approach for the explanatory capabilities
of possibilistic rule-based systems that relies on a min-max equation system.
They used this equation system for performing a sensitivity analysis and il-
lustrated it by an example of a system composed of three if-then possibilistic
rules. These topics have recently been studied by [3] for developing possibilistic
learning methods that would be consistent with if-then rule-based reasoning.
The authors of [3] think that taking advantage of the min-max equation system
of [7] may lead to the development of possibilistic learning methods. In partic-
ular, they highlighted the importance of the equation system for a cascade i.e.,
when a possibilistic rule-based system uses two sets of if-then possibilistic rules
consecutively, the rules of the second set being chained with those of the first
set.
In this paper, we address a number of questions or issues mentioned or raised
in [3, 7] by providing an in-depth study of the min-max equation system of a
possibilistic rule-based system. We start by reminding the possibilistic rule-
based systems and their underlying equation systems in section 2. In the case
of n if-then possibilistic rules, we then give a canonical construction for the
matrices of the equation system (section 3). This enables us to establish an
additive formula for the output possibility distribution (section 4).
The output possibility distribution must be normalized for the consistency of the
rules and to deal with a cascade. Using the additive formula and the equation
system, we give a necessary and sufficient condition for the output possibility
distribution to be normalized (section 4). We also determine minimal input
solutions for the normalization, when it is possible.
In section 5, we calculate explicitly the measures of possibility and necessity of
any subset of the output attribute domain. All these works allow us to deal with
a cascade (section 6) and we associate to the cascade construction a min-max
neural network that describes it. We end by giving a concrete example, and
some perspectives (section 7).

2 Background

Before introducing our work, we present a possibilistic rule-based system given
by a set of if-then possibilistic rules. Then, we study the case of a cascade and
remind the equation system introduced by [7]. Some notations are also given.
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2.1 Possibilistic rule-based system

We consider a possibilistic rule-based system with a set of n if-then possibilistic
rules R1, R2, · · · , Rn. Each Ri is a rule of the form: “if pi then qi” and has its

uncertainty propagation matrix

[
π(qi|pi) π(qi|¬pi)
π(¬qi|pi) π(¬qi|¬pi)

]
=

[
1 si
ri 1

]
.

A non-compounded premise pi is a proposition of the form “ai(x) ∈ Pi”. The
attribute ai is applied to an item x. Its information is represented by a possibility
distribution πai(x) : Dai → [0, 1] defined on its domain Dai , which is supposed
to be normalized i.e., ∃u ∈ Dai such that πai(x)(u) = 1. The possibility degree
of pi and that of its negation are computed using the possibility measure Π
by π(pi) = Π(Pi) = supu∈Pi

πai(x)(u) and π(¬pi) = Π(Pi) = supu∈Pi
πai(x)(u)

respectively, where Pi is a subset of Dai and Pi its complement. They are noted
respectively λi and ρi. In the case of a compounded premise pi = p1,i∧· · ·∧pk,i,
we take λi = minkj=1 π(pj,i) and ρi = maxkj=1 π(¬pj,i) [3].
The conclusion qi represents “b(x) ∈ Qi”, where Qi is a subset of Db, the domain
of the attribute b. The possibility degree of qi and that of its negation are respec-

tively noted αi and βi and are given by

[
π(qi)
π(¬qi)

]
=

[
1 si
ri 1

]
�max

min

[
λi
ρi

]
. The

operator �max
min uses min as the product and max as the addition. Taking into

account the normalization of pi i.e., max(λi, ρi) = 1, we have αi = max(si, λi)
and βi = max(ri, ρi). Finally, the possibility distribution of the attribute b
associated with Ri is: π∗ib(x)(u) = αiµQi(u) + βiµQi

(u) for any u ∈ Db. With
n rules, the possibility distribution of b is obtained by a min-based conjunctive
combination:

π∗b(x)(u) = min(π∗1b(x)(u), π∗2b(x)(u), · · · , π∗nb(x)(u)). (1)

2.2 Cascade

In this case, a possibilistic rule-based system relies on R1, R2, · · · , Rn and a new
set of m if-then possibilistic rules R′1, R′2, · · · , R′m, where the same attribute is
used in both the conclusions of the Ri and the premises of the R′j . In fact, each
rule R′j is of the form “if p′j then q′j” where p′j is a proposition “b(x) ∈ Q′j”, Q′j
being a subset of Db. The conclusion q′j is of the form “c(x) ∈ Q′′c ” where Q′′c is
a subset of Dc, the domain of the attribute c. The possibility degrees associated
with R′j are calculated in the same way as those of the rules Ri: λ′j = π(p′j) and

ρ′j = π(¬p′j) as p′j is a proposition. Similarly, R′j has an uncertainty propagation
matrix with its associated parameters s′j , r

′
j .

2.3 Equation system

In [7], an equation system denoted OV = MR IV was formulated, where
OV and IV are respectively named the output and the input vectors. For an
example of a system of three if-then possibilistic rules, the authors showed that
the equation system describes the output possibility distribution and proposed
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to use it to perform a sensitivity analysis. In [3], the equation system for the
case of two rules R1 and R2 is given:

Π(Q1 ∩Q2)
Π(Q1 ∩Q2)
Π(Q1 ∩Q2)
Π(Q1 ∩Q2)

 =


s1 1 s2 1
s1 1 1 r2
1 r1 s2 1
1 r1 1 r2

�min
max


λ1
ρ1
λ2
ρ2

 . (2)

The operator �min
max uses max as the product and min as the addition. By per-

forming the min-max products, the authors obtain Π(Q1 ∩Q2) = min(α1, α2),
Π(Q1 ∩ Q2) = min(α1, β2), Π(Q1 ∩ Q2) = min(β1, α2) and Π(Q1 ∩ Q2) =
min(β1, β2). The four sets used form a partition of Db constructed from the
sets Q1, Q2 used in the conclusions q1, q2 of R1 and R2, and their complements.

2.4 Notations

In our work, all the matrices have their coefficients in [0, 1]. To any matrix
A = [aij ], we associate the matrix A◦ = [1 − aij ]. We have the following
property: (A◦)◦ = A.
LetA andB be matrices of respective size (n,m) and (m, p). The transformation
A 7→ A◦ switches the two matrix products in the following sense:

(A�min
maxB)◦ = A◦�max

minB
◦ and (A�max

minB)◦ = A◦�min
maxB

◦.

Finally, we introduce an operator denoted �min that takes the mininum of the
coefficients of each row in a matrix.

3 Generalized equation system

In this section, we use a possibilistic rule-based system with a set of n if-then
possibilistic rules R1, R2, · · · , Rn. We introduce the generalized equation sys-
tem, which we note:

On = Mn�
min
maxIn.

For n = 2, our construction is equivalent to the construction previously recalled,
see (2). To understand the output vector On of the equation system, we intro-
duce an explicit partition of Db. Moreover, this partition is directly linked to a
matrix Bn that we construct inductively with respect to the number of rules.

3.1 Partition and settings

From the sets Q1, Q2, · · · , Qn used in the conclusions of the rules and their

complements, for each i = 1, 2, · · · , n, we define (E
(i)
k )1≤k≤2i a partition of Db
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by the following two conditions:

•E(1)
1 = Q1 and E

(1)
2 = Q1 (3a)

and for i > 1:

•E(i)
k =

{
E

(i−1)
k ∩Qi if 1 ≤ k ≤ 2i−1

E
(i−1)
k−2i−1 ∩Qi if 2i−1 < k ≤ 2i

. (3b)

For i = 1, 2, · · · , n, we define matrices Mi, Ii and Bi according to:

• the sequences s1, s2, · · · , si and r1, r2, · · · , ri for Mi,

• the sequences λ1, λ2, · · · , λi and ρ1, ρ2, · · · , ρi for Ii,

• the sequences α1, α2, · · · , αi and β1, β2, · · · , βi for Bi.

3.2 Construction of Mi

For i = 1, we take M1 =

[
s1 1
1 r1

]
. For i > 1, we define Mi of size (2i, 2i) by

the following block matrix construction:

Mi =

[
Mi−1 Si
Mi−1 Ri

]

where Si =


si 1
si 1
...

...
si 1

 and Ri =


1 ri
1 ri
...

...
1 ri

 are of size (2i−1, 2).

We note N1, N2, · · · , N2i the rows of Mi.

3.3 Construction of Ii

For i = 1, we take I1 =

[
λ1
ρ1

]
. For i > 1, we define Ii of size (2i, 1):

Ii =

Ii−1λi
ρi

 =

 θ1...
θ2i


where θ2j−1 = λj and θ2j = ρj for j = 1, 2, · · · , i.
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3.4 Construction of Bi

For i = 1, we take B1 =

[
α1

β1

]
. For i > 1, we define Bi of size (2i, i) by the

following block matrix construction with Bi−1:

Bi =



Bi−1

αi
αi
...
αi

Bi−1

βi
βi
...
βi


.

We note that the rows L1, L2, · · · , L2i ofBi are related to the rows L′1, L
′
2, · · · , L′2i−1

of Bi−1 by the following result:

Lk =

{
(L′k, αi) if 1 ≤ k ≤ 2i−1

(L′k−2i−1 , βi) if 2i−1 < k ≤ 2i
. (4)

We can recover the matrix Mi from the matrix Bi in an explicit way.

3.5 Relation between Bi and the partition

For k ∈ {1, 2, · · · , 2i}, let Lk = (γ1, γ2, · · · , γi) be any row of the matrix Bi
with γ ∈ {α, β}. Then the corresponding set E

(i)
k of the partition is equal to:

E
(i)
k = T1 ∩ T2 · · · ∩ Ti with Tj =

{
Qj if γj = αj

Qj if γj = βj
. (5)

As it is clear for i = 1, this result is deduced from the description of the rows
of Bi by the rows of Bi−1, see (4).

3.6 Coefficients of �minBi

For any i = 1, 2, · · · , n, we set:

�minBi = [o
(i)
k ]1≤k≤2i .

For any k ∈ {1, 2, · · · , 2i}, we can deduce the following relations between the
coefficients of �minBi and those of �minBi−1:

o
(i)
k =

{
min(o

(i−1)
k , αi) if 1 ≤ k ≤ 2i−1

min(o
(i−1)
k−2i−1 , βi) if 2i−1 < k ≤ 2i

. (6)

This result is directly deduced from (4) and the associativity of the min function.
Finally, we obtain:
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Theorem 1 The min-max matrix product of Mi by the matrix-column Ii is
obtained by applying the operator �min to the matrix Bi:

Mi�
min
maxIi = �minBi (7)

The abridged proof of this result goes as follows. It is clear for i = 1. Starting

from the assumption (7) for i− 1, we show that each coefficient o
(i)
k of �minBi

is equal to Nk�min
maxIi, Nk being the k-th row of Mi.

4 Equation system properties

In this section, we study the properties of the equation system by first estab-

lishing an additive formula for π∗b(x) from the partition (E
(i)
k )1≤k≤2i . We give a

necessary and sufficient condition for the normalization of π∗b(x). Then we show
that, by deleting the empty sets of the partition and the corresponding rows of
Oi, Mi and Bi, we get matrices Oi, Mi and Bi with a reasonable number of
rows. We also study the solutions for the normalization and how to rebuild the
equation system if we remove a rule.

4.1 Additive formula for π∗b(x)

We use the coefficients of Oi = �minBi, see (7), and introduce the characteristic

functions µ
E

(i)
1
, µ
E

(i)
2
, · · · , µ

E
(i)

2i
of the sets E

(i)
1 , E

(i)
2 , · · · , E(i)

2i .

Theorem 2 The output possibility distribution π∗b(x),i associated to the first i
rules is:

π∗b(x),i =
∑

1≤k≤2i
o
(i)
k µ

E
(i)
k

. (8)

We prove this result by recurrence on i, using (3), (6), and the associativity of
the min function.
As a consequence, ∀u ∈ Db, there is a unique index k0 such that u ∈ E(i)

k0
and

π∗b(x),i(u) = o
(i)
k0

. From this, we deduce that π∗b(x),i is normalized if and only if:

∃k ∈ {1, 2, · · · , 2i} such that E
(i)
k 6= ∅ and o

(i)
k = 1. (9)

Moreover, from (8), we deduce that the possibility measure of each non-empty

set E
(i)
k of the partition is equal to o

(i)
k . It is then natural to introduce:

J =
{
k ∈ {1, 2, · · · , 2i}

∣∣ E(i)
k 6= ∅

}
and ω = card(J).

Considering card(Db) = d, we have ω ≤ min(d, 2i). We may arrange the ele-
ments of J as a strictly increasing sequence: 1 ≤ k1 < k2 < · · · < kω ≤ 2i. We
have:

[Π(E
(i)
k )]k∈J = [o

(i)
k ]k∈J .

Thus, in what follows, we note Oi, Mi and Bi, the matrices obtained from Oi,
Mi and Bi respectively, by deleting each row whose index is not in J .
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4.2 Solutions for π∗b(x),i(u) = 1

In the following, we study how to get π∗b(x),i(u) = 1 for a value u ∈ Db. Com-

bining (7) and (8), we have π∗b(x),i(u) = N�min
maxIi, where N is a row ofMi. Let

us note:
N = [t1, t2, · · · , t2i−1, t2i] where tj ∈ {1, r∗, s∗}.

Then we have π∗b(x),i(u) = min1≤j≤2i max(tj , θj). So π∗b(x),i(u) = 1 is equivalent

to ∀j ∈ E, θj = 1, where E = {j ∈ {1, 2, . . . , 2i} | tj < 1}. Thus, the normal-
ization of the possibility distribution of b can be established by the resolution
of an equation system with ω min-max equations, where the second member of
at least one equation has to be equal to 1. Therefore, it is interesting to study
if there are extremal solutions Ii to get π∗b(x),i(u) = 1, as suggested in [7].

In what follows, we will look for an input vector column X = [xj ]1≤j≤2i, with the
normalization hypothesis of its components: ∀k ∈ {1, 2, · · · , i}: max(x2k−1, x2k) =
1, that satisfies the following equation:

N�min
maxX = 1. (10)

We introduce the following order relation for solutions X = [xj ]1≤j≤2i and
X ′ = [x′j ]1≤j≤2i:

X ≤ X ′, if only if ∀j ∈ {1, 2, · · · , 2i} : xj ≤ x′j .

This allows us to look for a unique minimal solution that we note Smin or a
maximal one Smax, if they exist.
Obviously, Smax = [θ∗j ] where θ∗j = 1 for each j = 1, 2, · · · , 2i. For this maximal
solution Smax, we notice that ∀k ∈ {1, 2, · · · , i}, (λk, ρk) = (1, 1): for each rule,
the premise is considered as unknown [3].
Let us look for a unique minimal solution:
• If we have:

∃k ∈ {1, 2, · · · , i} such that (t2k−1, t2k) = (1, 1), (11)

then equation (10) does not admit a minimal solution.
• If we suppose that:

∀k ∈ {1, 2, · · · , i} we have (t2k−1, t2k) 6= (1, 1), (12)

then there is a unique minimal solution Smin = [θ∗j ]1≤j≤2i where (θ∗2k−1, θ
∗
2k) ={

(1, 0) if t2k = 1

(0, 1) if t2k−1 = 1
. So, with the hypothesis (12), we give a sufficient condi-

tion for the normalization of π∗b(x),i.

4.3 Rebuild the equation system with a deleted rule

Let us delete a rule Rz from R1, R2, · · · , Ri and study the corresponding equa-
tion system. We denote by Bzi the matrix associated to this system of i − 1
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rules by the construction of subsection D of 3. We assert that the matrix Bzi ,
which is of size (2i−1, i−1), can be obtained from the matrix Bi by the following
practical rule:

1. We delete the z-th column ofBi. Then, we obtain a matrix of size (2i, i−1),
where each row is repeated once and only once.

2. In the resulting matrix, we delete the rows Lk′ within all the pairs of rows
(Lk, Lk′) where Lk = Lk′ and k < k′.

After these two operations, we get Bzi . Then, one can deduce the partition
(Ezk)1≤k≤2i−1 of Db from Bzi by using the relation (5). Its sets can also be

determined directly from the partition (E
(i)
k )1≤k≤2i . In fact, for any k ∈

{1, 2, · · · , 2i−1}, we can find two indices k′, k′′ ∈ {1, 2, · · · , 2i} such that:

Ezk = E
(i)
k′ ∪ E

(i)
k′′ (13)

where, with respect to the notations of (5), E
(i)
k′ and E

(i)
k′′ differ only on the

component Tz, e.g. Tz = Qz for E
(i)
k′ , and Tz = Qz for E

(i)
k′′ . If Ezk 6= ∅,

the decomposition (13) is unique, where E
(i)
k′ and E

(i)
k′′ still satisfy the above

assumption. These two sets can be easily determined algorithmically.
Finally, we deduce from (13), that ωz ≤ ω, where ωz = card(Jz) and Jz ={
k ∈ {1, 2, · · · , 2i−1}

∣∣ Ezk 6= ∅}. The partition (Ezk)k∈Jz and the matrix Bzi are
particularly interesting for performing a sensitivity analysis. We illustrate the
construction of Bzi for the case i = 3 and z = 2:

α1 α2 α3

β1 α2 α3

α1 β2 α3

β1 β2 α3

α1 α2 β3

β1 α2 β3

α1 β2 β3

β1 β2 β3





y

α1 α3

β1 α3

α1 α3

β1 α3

α1 β3

β1 β3

α1 β3

β1 β3





y

α1 α3

β1 α3

α1 β3

β1 β3



 = Bz3 .

5 Measures of possibility and necessity of any
subset of the output attribute domain

In this section, we study the case of a rule-based system of n if-then possibilis-
tic rules with its associated equation system, and denote by π∗b(x) the output
possibility distribution of b.
Remind that the possibility measure Π∗ and the necessity measureN∗ associated
to π∗b(x) are defined by [1]:

Π∗ : P(Db)→ [0, 1] : Q 7→ Π∗(Q) = max
u∈Q

π∗b(x)(u),

N∗ : P(Db)→ [0, 1] : Q 7→ N∗(Q) = 1−Π∗(Q).
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For a proposition p: “b(x) ∈ Q”, the possibility degree π(p) and its degree of
necessity n(p) are given by [1]:

π(p) = Π∗(Q) and n(p) = 1− π(¬p) = N∗(Q).

In what follows, we deduce explicit formulas for Π∗(Q) and N∗(Q) from (8),
where we use a function ε, which checks if a set is not empty:

ε(T ) =

{
1 si T 6= ∅
0 if T = ∅

.

5.1 Possibility measure

For any subset Q ⊆ Db, we have Q =
⋃

1≤i≤ω E
(n)
ki
∩ Q, and we know that

∀u ∈ E(n)
ki

we have π∗b(x)(u) = o
(n)
ki

. So we get the possibility measure of Q by:

Π∗(Q) = max
u∈Q

π∗b(x)(u) = max
1≤i≤ω s.t E

(n)
ki
∩Q6=∅

o
(n)
ki
.

Therefore we can restate this result as:

Π∗(Q) = max
1≤i≤ω

ε(E
(n)
ki
∩Q) · o(n)ki

= max
1≤i≤ω

min(ε(E
(n)
ki
∩Q), o

(n)
ki

). (14)

Let ∆Q be the matrix of size (1, ω) defined by:

∆Q =
[
ε(E

(n)
k1
∩Q) ε(E

(n)
k2
∩Q) · · · ε(E

(n)
kω
∩Q)

]
.

Then, equality (14) is exactly:

Π∗(Q) = ∆Q�
max
minOn. (15)

5.2 Necessity measure

Using (15), we have for Q:

Π∗(Q) = ∆Q�
max
minOn.

The necessity measure is then:

N∗(Q) = 1−Π∗(Q) = (Π∗(Q))◦.

By the correspondences between �min
max and �max

min we obtain:

N∗(Q) = (∆Q�
max
minOn)◦ = ∆Q

◦�min
maxOn

◦. (16)
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6 Cascade

In this section, we use two sets of if-then possibilistic rules: the n rulesR1, R2, · · · , Rn
and the m rules R′1, R′2, · · · , R′m. We form On =Mn�min

maxIn for the first set
of rules and O′m = M′m�min

maxI
′
m for the second one, where we consider that

their associated partition of non-empty sets (E
(n)
k )k∈J and (E

′(m)
k )k∈J′ have re-

spective size ω and ω′. In what follows, we establish an input-output relation
between the two equation systems and associate to such cascade construction a
min-max neural network.

6.1 I ′m and O′m results

Each premise p′j of a rule R′j is a proposition of the form “b(x) ∈ Q′j”. Therefore,

we get λ′j and ρ′j by the calculation of the possibility measures of Q′j and Q′j :

λ′j = Π∗(Q′j) and ρ′j = Π∗(Q′j).

By the equality (15), we define the input vector I ′m of size (2m, 1), as a max-min
product between a matrix ∆ = [δt,k]1≤t≤2m,1≤k≤ω, and On of size (ω, 1):

I ′m = ∆�maxminOn. (17)

The coefficients of ∆ are 1 or 0, and are obtained as follows:

δt,k =

{
ε(E

(n)
k ∩Q′j) if t = 2j − 1 and 1 ≤ j ≤ m

ε(E
(n)
k ∩Q′j) if t = 2j and 1 ≤ j ≤ m

.

We note S1, S2, · · · , S2m the rows of ∆. Each row of ∆ is in fact ∆Q′ associated
to some set Q′ ⊆ Db as in (15):

∆ =


∆Q′1
∆Q′1

...
∆Q′m
∆Q′m

 .

Thus, it establishes an input-output relation between the two equation systems.
This yields the output vector O′m of the second system from the first system, ∆
and M′m:

O′m =M′m�min
maxI

′
m

=M′m�min
max(∆�max

minOn)

=M′m�min
max(∆�max

min (Mn�
min
maxIn)).

11



6.2 Representation by a min-max neural network

In [3], the authors suggested that the system that can be built from a cascade
would have a structural resemblance with a min-max neural network. We show
that there is such a neural network, which gives an explicit representation of
the cascade construction.
With the help of the matrices In

◦,Mn
◦ andM′m

◦
, we can express the equations

involved in the cascade using only the operator (A�max
minB)

◦
: On = (Mn

◦�max
min In

◦)◦,
I ′m
◦

= (∆�max
minOn)◦ and O′m = (M′m

◦�max
min I

′
m
◦
)◦.

We define the four-layer min-max neural network as follows:

• the layer 1 has 2n input neurons: i1, i2, · · · , i2n with zi1 , zi2 , · · · , zi2n being
their respective output values,

• the layer 2 has ω hidden neurons: h1, h2, · · · , hω where Ih1
, Ih2

, · · · , Ihω

are their respective input values and zh1
, zh2

, · · · , zhω
their respective out-

put values,

• the layer 3 has 2m hidden neurons: h′1, h
′
2, · · · , h′2m where Ih′1 , Ih′2 , · · · , Ih′2m

are their respective input values and zh′1 , zh′2 , · · · , zh′2m their respective
output values,

• the layer 4 has ω′ output neurons: o′1, o
′
2, · · · , o′ω′ where Io′1 , Io′2 , · · · , Io′ω′

are their respective input values and zo′1 , zo′2 , · · · , zo′ω′ their respective out-
put values.

In this neural network, for each neuron, we obtain its input value with the
operator (A�max

minB)
◦
. Its output value is given by the activation function which

is f(x) = x.

x1

x2

· · ·

x2n

i1

i2

· · ·

i2n

h1

h2

· · ·

hω

v
(1)
1,1

v
(1)
2,1

v
(1)
2n,1

h′1

h′2

· · ·

h′2m

v
(2)
1,1

v
(2)
2,1

v
(2)
ω,1

o′1

o′2

· · ·

o′
ω′

v
(3)
1,1

v
(3)
2,1

v
(3)
2m,1

Figure 1: Min-max neural network architecture

We explicit its architecture (Figure 1) and define the following edges by:

• xj = 1− θj , a coefficient of In
◦ with 1 ≤ j ≤ 2n,

• v
(1)
i,j = 1− tj,i, a coefficient of Mn

◦ with 1 ≤ j ≤ ω and 1 ≤ i ≤ 2n,

• v
(2)
i,j = δj,i, a coefficient of ∆ with 1 ≤ j ≤ 2m and 1 ≤ i ≤ ω,

• v
(3)
i,j = 1− t′j,i, a coefficient of M′m

◦
with 1 ≤ j ≤ ω′ and 1 ≤ i ≤ 2m.
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The output value of an input neuron ik is zik = f(xk) = 1−θk. For each hidden
neuron hk, its output value zhk

= f(Ihk
) = Ihk

is a coefficient of On, as Ihk
is

obtained using a row Nk of Mn:

Ihk
= 1− max

1≤j≤2n
min(v

(1)
j,k , zij ) = Nk�

min
maxIn.

Each output value of a hidden neuron h′k is a coefficient of I ′m
◦
. We use the row

Sk of ∆ to obtain Ih′k :

Ih′k = 1− max
1≤j≤ω

min(v
(2)
j,k , zhj

) = (Sk�
max
minOn)

◦
.

We have zh′k = f(Ih′k) = Ih′k . Finally, Io′k corresponding to the output neuron
o′k is obtained using the row N ′k of M′m:

Io′k = 1− max
1≤j≤2m

min(v
(3)
j,k , zh′j ) = N ′k�

min
maxI

′
m.

We get the output value of o′k with zo′k = f(Io′k) = Io′k . So zo′1 , zo′2 , · · · , zo′ω′ are

the coefficients of O′m.

As characteristics, we notice that each edge v
(2)
i,j has a value equal to 0 or 1

with respect to the relation (17), while the values of the others are in [0, 1].
Furthermore, it has some resemblance with an hybrid fuzzy neural network [8],
where the t-norm min and its associated t-conorm max are used to get the
input value of a neuron. By using more layers, we can extend this min-max
neural network to take into account the λ, ρ calculations when the premises are
compounded.

6.3 Example

To illustrate the cascade, we use the example of [3], previously introduced in
the french version of [7]. It is a possibilistic rule-based system which suggests to
people professions with an associated salaries, based on their tastes and interests
using two sets of if-then possibilistic rules.
Firstly, the inference of three possibilistic rules determine which professions
can be suggested to a person, according to her characteristics. For this set of
rules, an equation system is formed, where On has five coefficients. In fact, the
height possible professions are in five non-empty disjoint sets which form a par-

tition: E
(3)
k1

= {researcher}, E(3)
k2

= {professor}, E(3)
k3

= {engineer, architect},
E

(3)
k4

= {business man, lawyer,doctor} and E
(3)
k5

= {others}. With the pos-

sibility distributions of the input attributes of [7], we get: Π(E
(3)
k1

) = 0.2,

Π(E
(3)
k2

) = 1, Π(E
(3)
k3

) = 0.2, Π(E
(3)
k4

) = 0.6 and Π(E
(3)
k5

) = 0.5.
Then, based on this result, the system determines the salary she can expect
according to her profession, using three rules:

• R′1: if a person is a professor or a researcher, then her salary is rather
low,
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• R′2: if a person is an engineer, a lawyer or an architect, her salary is
average or high,

• R′3: if a person is a business man or a doctor, then her salary is high.

For the attribute salary, the sets E
′(3)
k1

= {high}, E
′(3)
k2

= {average} and E
′(3)
k3

=
{low} form the partition of its domain. So O′m, M′m and B′m have three rows.
Using the partition of the first system and the sets within the propositions p′1, p

′
2

and p′3 of the three rules R′1, R
′
2 and R′3 respectively, we get ∆ and then I ′m:

∆ =


11000
00111
00110
11011
00010
11111

 and I ′m =


1

0.6
0.6
1

0.6
1

 .

We arbitrarily set s′1 = 1, r′1 = 0.7, s′2 = 0.8, r′2 = 0.2, s′3 = 0.6 and r′3 = 0.4.
Thus, we now form O′m =M′m�min

maxI
′
m:

Π(E
′(3)
k1

)

Π(E
′(3)
k2

)

Π(E
′(3)
k3

)

 =

1 0.7 0.8 1 0.6 1
1 0.7 0.8 1 1 0.4
1 1 1 0.2 1 0.4

�min
max


1

0.6
0.6
1

0.6
1

 .

and get: Π(E
′(3)
k1

) = 0.6,Π(E
′(3)
k2

) = 0.7 and Π(E
′(3)
k3

) = 1. Such cascade is
represented by a min-max neural network (see 6.2).

7 Conclusion

In this paper, we gave a canonical construction for the matrices governing a
min-max equation system associated to a possibilistic rule-based system. As
consequences of this construction, we obtained an additive formula for the out-
put possibility distribution that allowed us to tackle the normalization problem
of it and the case of a cascade. We showed that the equation system for a cascade
is a nesting of max-min products of matrices and represented such construction
by a min-max neural network. Therefore, the cascade is represented by a graph,
which offers interesting perspectives for tasks such as sensitivity analysis. This
possibilistic neuro-symbolic method allows to glimpse how possibilistic learning
can have a consistent correspondence with possibilistic rule-based systems.
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