Min-max inference for Possibilistic Rule-Based System - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Min-max inference for Possibilistic Rule-Based System

Résumé

In this paper, we explore the min-max inference mechanism of any rule-based system of n if-then possibilistic rules. We establish an additive formula for the output possibility distribution obtained by the inference. From this result, we deduce the corresponding possibility and necessity measures. Moreover, we give necessary and sufficient conditions for the normalization of the output possibility distribution. As application of our results, we tackle the case of a cascade of two if-then possibilistic rules sets and establish an input-output relation between the two min-max equation systems. Finally, we associate to the cascade construction an explicit min-max neural network.
Fichier principal
Vignette du fichier
article_IsmailBaaj_FUZZ_IEEE_2021_min_max_inference_for_possibilistic_rule_based_system.pdf (323.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03408909 , version 1 (19-04-2022)

Identifiants

Citer

Ismaïl Baaj, Jean-Philippe Poli, Wassila Ouerdane, Nicolas Maudet. Min-max inference for Possibilistic Rule-Based System. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul 2021, Luxembourg, Luxembourg. pp.9494506, ⟨10.1109/FUZZ45933.2021.9494506⟩. ⟨hal-03408909⟩
195 Consultations
105 Téléchargements

Altmetric

Partager

More