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ORIGINAL ARTICLE
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Artificial intelligence is nowadays used for cell detection
and classification in optical microscopy during post-acquisition
analysis. The microscopes are now fully automated and
next expected to be smart by making acquisition decisions
based on the images. It calls for analysing them on the
fly. Biology further imposes training on a reduced dataset
due to cost and time to prepare the samples and have the
datasets annotated by experts. We propose a real-time im-
age processing that is compliant with these specifications
by balancing accurate detection and execution performance.
We characterised the images using a generic, high-dimensional
feature extractor. We then classified the images using ma-
chine learning to understand the contribution of each fea-
ture in decision and execution time. We found that the non-
linear-classifier random forests outperformed Fisher’s lin-
ear discriminant. More importantly, the most discriminant
and time-consuming features could be excluded without
significant accuracy loss, offering a substantial gain in ex-
ecution time. It suggests a feature-group redundancy likely

related to the biology of the observed cells. We offer a
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method to select fast and discriminant features. In our as-
say, a 79.6+2.4 % accurate classification of a cell took 68.7 +
3.5ms (mean + SD, 5-fold cross-validation nested in 10 boot-
strap repeats), corresponding to 14 cells per second, dis-
patched into 8 phases of the cell cycle using 12 feature-
groups and operating a consumer market ARM-based em-
bedded system. A simple neural network offered similar
performances paving the way to faster training and classifi-
cation, using parallel execution on a general-purpose graphic
processing unit. Finally, this strategy is also usable for deep
neural networks paving the way to optimising these algo-

rithms for smart microscopy.

KEYWORDS
Machine vision and scene understanding, Cell biology, Image

processing, Embedded system, Microscopy

1 | INTRODUCTION

The optical microscope, after centuries as an advanced optical device, underwent significant evolutions during the
last decades to become the motorised system now controlled by electronic signals. Its variegated modalities make
it an unparalleled tool to investigate the living [1]. Beyond academic research, it can automatically image samples in
large series, together with the appropriate robots, paving the way to live-cell high content screening (HCS) based on
phenotypes [2][3]/4]5]. However, the analysis of this data flood is performed posteriorly to the acquisition, limiting the
information extracted [6]. A smart microscope, able to modify the imaging strategy in real-time by analysing images
on the fly, is required to increase the number of images interesting for the biological question (so-called qualified
images)|7Z]. By autonomously acquiring rare objects and elusive events, it will not only ease basic-research imaging
by saving fastidious searching and waiting for a cell of interest at the right stage. It will also increase the content of
interest in HCS by selecting qualified images, up to become a standard tool of precision medicine similarly to next-
generation sequencing [8] (9] [10] [11]. The current systems that perform imaging and analysis in tandem alternate
acquiring images and analysing them [12] [13]. We recently achieved efficient microscope driving [14}[15] and here
investigate how to perform the real-time object’s classification to feedback to it.

Searching for rare and brief events is a booming field beyond sole microscopy. They often carry significant infor-
mation about normal or abnormal processes in a broad range of applications [16}[17]. Radiologists use such algorithms
to assist the medical-doctor diagnosis interactively, calling for reduced image processing delay [18]. Along a line more
demanding of real-time processing, video can be processed to recognise the human activities, in particular, risky or
abnormal situations like intrusions or dangerous behaviours [19} 20} [21]. Similarly, it can support detecting and di-
agnosing faults in construction or process industries [22] 23]. These situations may result in costly damages, human
injuries and require rapid detection through real-time analysis. We here used a similar approach to detect rare and
transient events in living biological samples.

The anaphase of cell division is very archetypal to these events when the sister chromatids are separated to be
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equally distributed to each daughter cell. In human cells, it lasts a few minutes or less in contrast with a cycle of 15
to 30 hours (the repetition time of mitosis) [24]. Cell division has received strong attention in fundamental research
as its mechanisms are only partially known, and in applied research in particular to develop cancer therapies [25] 26}
27,128/ 129]. Indeed, the spindle assembly checkpoint (SAC) secures the transition to anaphase by ensuring a correct
attachment of the chromosomes, essential to their equal partitioning to daughter cells. However, this checkpoint may
fail to detect errors or slip, paving the way to cancer [30,[31]. Unfortunately, the current techniques to investigate
these phenomena are invasive, as blocking cultured (human) cells for a few hours at the entry in mitosis by drugs
similar to antimitotic ones used in cancer therapies [32]. Doing so lets most of the cells reach the threshold of mitosis
before the experimenter releases the block to observe all cells undergoing mitosis in a synchronised fashion. Although
instrumental, this technique is perturbative, and we propose to leap towards superseding it by detecting mitosis
when they occur rather than triggering them artificially. Along an applied line, targeting mitosis is a cornerstone to
designing drugs used in chemotherapy [25]. It implies the ability to fast screen across a library of compounds and
quickly assess defects in mitosis and particularly deadlocked mitosis due to unsatisfied SAC [27]. Along a medical line,
detecting mitosis in patient tissues is classically used for diagnosis as in breast cancer [33} 34} 35]. Overall, it makes

the automated detection of early anaphasic cells a highly relevant application case.

Beyond these applications, both fundamental and applied cell microscopy would need an approach to detect rare
and short events to instruct the microscope some specific acquisition conditions. Such a system should exhibit three
main specifications: perform fast enough to achieve real-time detection; being adaptive to a wide variety of problems
(cell types, labellings or events of interest, e.g.) without re-programming or re-optimising; achieve this adapting (train-
ing) over a reduced exemplar dataset. While some dedicated image processings allow post-processing of the data and
identifying the hits in high content screening [36} 37} 138], each application resulted from a dedicated development.
Furthermore, suitable performance often requires a detailed and long optimisation of the specific program. In partic-
ular, algorithms were developed to classify mitotic cells in distinct stages, along time and in live samples [39} 40} [12].
However, these classifiers may turn to be too slow for real-time since we aimed to acquire and classify images on
the fly concurrently. Furthermore, these algorithms are specialised to a given biological situation while we aim at
developing a single software adapted to a broad range of applications, i.e. generic. These latter approaches had used
to result in poor classification as they involved one or a few generic features [4]. In the last decades, the emergence
of machine learning has been a real game-changer and allowed both generic and accurate analysis and paved the way
to new experiments [41]142] 6 143| 4} [1]. Along that line, we here used a wide variety of features found in the library
WND-CHARM [44]. The key to performing accurate and fast detecting was to select a subset of these features and
combine them into an efficient discriminator. It enabled to optimise the code once and for all, without editing it again.
The specifics of the application were encoded into a statistical model. Machine learning approaches addressed this
need and could be trained easily to each application through numerical optimising onto a set of labelled images. In
contrast to deep learning, it enabled identifying important features and even manually manipulating their selected
subset to improve execution time. We then embedded this classifier and adapted it to the case through its training to
ensure real-time execution, paving the way to the autonomous microscope [45]. This article proposed a strategy to
optimise the selection of features of interest under the constraint of both accurate classification and fast performance.
It implies to selecting features both quick to execute and discriminant. Amazingly, we found that highly discriminant
features could be excluded, provided enough other features were available, without any loss in classification accuracy

and with a strong gain in execution time on an ARM embedded system.
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2 | MATERIALS AND METHODS

2.1 | Image database

We built a first image database (termed CellCognition) from the CellCognition [40] software demonstration images. It
comprises of wide-field fluorescence time-lapses of human Hela Kyoto cells, expressing histone H2B and a-tubulin
markers, which revealed the chromosomes and the microtubules, respectively. Images are acquired at three different
positions with a 20x dry objective and taken with a time interval of 4.6 min. Each field contained 206 images of
1392 x 1040 pixels, including multiple cells. The corresponding annotations classified the cells between 8 classes,
including the six mitotic phases and indicated the centre of the object[40]. We built a database of 71 x 71 pixels
vignettes corresponding to classified cells extracted from the fields. Cells exemplary of each class are presented in Fig.
[Tp. We removed multiple instances of the same cell appearing at different stages and thus in distinct classes. We also
discarded randomly chosen vignettes to equilibrate the dataset. We obtained 159 vignettes altogether, specifically
20 per class, except apoptosis showing 19 vignettes. This low number of cells was in line with our application in cell
biology since large training sets are not achievable for experimental reasons.

To demonstrate that our classification method is generic, we used a second database, termed mitocheck [46].
Compared to this paper, we significantly increased the number of samples in each class. In addition, we added a second
artefact class: "Focus". For annotation, we preselected experiments that showed phenotypes according to the analysis
in [46], and we manually annotated individual nuclei in these movies without looking at the initial classification. For
the dynamic phenotypes, such as prometaphase and metaphase, we sometimes used the time information to decide,
according to the procedure in [46]. In total, we annotated 5151 nuclei. It was composed of wide-field fluorescence
time-lapses of Hela Kyoto cells, expressing chromatin GFP marker but no a-tubulin, acquired with a 10x dry objective
on Olympus ScanR. Several mitotic phases and defect phenotypes were observed. After equilibration, we obtained
1100 vignettes of 64 x 64 pixels dispatched up into 11 classes (100 per class) (see Fig. ).

2.2 | Feature extraction

WND-CHARM is a multi-purpose image classifier developed in C++, generating a high-dimension features-vector
and using Weighted Neighbour Distances for classification [44]. We used it to extract edges and objects statistics,
multi-scale histograms, four first moments on images subdivision, polynomial decompositions (Chebyshev, Chebyshev-
Fourier and Zernike), texture information (Haralick, Tamura and Gabor textures) and Radon transform statistics. In a
first step, a transform like Fourier or wavelet could be applied to the raw vignettes to produce a so-called feature
precursor, which is an image (Fig. [2k, right), on which statistics are extracted (Fig. [2, left). Technically speaking, we
gather in these statistics some computations that could involve the image (Otsu thresholding for Otsu object statistics
case, e.g.) before computing scalar values as statistics (the bright segmented region area in Otsu statistics, e.g.). All
features were scalar and were gathered in a 1025-valued vector. Importantly, we performed some optimisation of
the WND-CHARM library to reduce its execution time.

2.3 | Estimating the computing time of features extraction

To estimate the computing time of a single WND-CHARM feature, we computed it over the single-cell vignettes
obtained, for instance, from CellCognition database, running on an NVIDIA Jetson AGX Xavier embedded system.

We then averaged the results over the vignettes of the whole dataset. In particular, we ensured that the execution
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FIGURE 1 Datasets used during numerical experiments. (a) Exemplar vignettes upon 71 x 71 pixels cropping
images from the CellCognition database. (b) Exemplar vignettes similarly cropped and extracted from the mitocheck
database. Class names were abbreviated and written in black font, while the full name appeared in grey. They
correspond either to cell division phases or specific defects: cells whose nucleus display an elongated, polylobed or
grapefruit-like shape, and nuclei reminiscent of apoptotic cells, binucleated ones (usually following a cytokinesis
defect) or cells having an issue in aligning the chromosomes during metaphase, usually due to lagging chromosomes
or multipolar spindles. A scale bar indicates 10 um in the first frame, and all vignettes within a dataset are on the
same scale.

was sequential on the CPU of the embedded system without using parallelism. When estimating the computing time
of multiple features, we noticed that the features were not independent. Indeed, within a given group of features,
they all correspond to statistics computed from the same feature precursor. This latter was either the raw image or a
transform computed from it. Several image-transforms could be composed together successively (Fig. ). Notably,
the major part of computing time was spent in getting such feature precursors. We thus considered that features
were computed by group deriving from the same precursor. We summed up the execution times of all of them within
a group to get the group execution-time. For instance, in the case of the features based on the Haralick texture, the

feature-precursor computation took 90% to 99% of the whole computing time (Fig. [2h).
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Feature statistics Abbrev.  Transformed image (T/) Abbrev.
Chebyshev-Fourier Statistics ChFS(T/) None (raw image) im
Chebyshev Statistics ChS(Tl)  Fourier Transform FT(im)
Zernike Polynomials ZerP(Tl)  Chebyshev Transform ChT(im)
Edge Statistics EdgeS(Tl) Wavelet Transform WT(im)
Gabor Textures GabT(T/) Chebyshev of ChT(FT(im))
Otsu Object Statistics ObjS(TI) Fourier Transforms
First Four Moments Comb(Tl) Wavelet of WT(FT(im))
Haralick Textures HarT(T/) Fourier Transforms
Multi-scale Histogram MsH(TI)
Tamura Textures TamT(TI)

Radon Transform Statistics RadS(T7)

FIGURE 2 Feature-groups execution time and Fisher’s score. (a) Execution time summed up over feature
groups, estimated on an NVIDIA Jetson AGX Xavier embedded system, and (b) the corresponding Fisher'’s score
averaged over the same feature groups (see Methods, and . (c) (left) Depicts the feature groups by
statistics, computed over (right) various feature precursors, i.e. the raw image or its transform. Red bars highlight the
feature groups displaying an execution time greater than 20 ms. A red line depicts this threshold time in panel (a).
Feature-group labels written with colour depict the ones kept for assay using Fisher’s linear discriminant (see ,
specifically the purple and dark blue when considering all feature-groups and the dark and light blue when excluding
computationally intensive groups. When excluding computationally intensive features, the blue ones are also used
to complement to 7 groups. CellCognition dataset was used (see Methods .

2.4 | Estimating the fisher score of features and feature-groups

The contribution of a feature to the classification was estimated using Fisher’s score [44}[47]. For the feature groups

as defined above (see §2.3), we averaged the score of the features over the whole group. Because various statistics
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within a group might display different scores, such an averaging strategy will favour groups with a majority of well-
discriminant features.

3 | RESULTS

3.1 | Classifying based on a single feature was not accurate enough.

We set to automatise the microscope by processing images on the fly and feeding the analysis result back to the mi-
crocontroller that drove the microscope and its attached devices. We embedded the processing on a microcontroller
to ensure real-time processing as it was designed to execute only one or a few dedicated functions, with real-time
constraints, by opposition to a general-purpose computer. It is widely used in fields requiring real-time applications
and machine learning algorithms are now available on these platforms. To support the development, we set to clas-
sify mitotic images within 8 classes using the CellCognition example set [40] 48] (see Methods . We especially
detected the transition from metaphase to anaphase. We reckoned that the choice of the features could be essential
for performance and precision. Therefore, we used the WND-CHARM framework that encompassed a large variety
of features [44]. First, aiming at fast processing, we asked whether a single feature could be sufficient. We com-
puted Fisher’s score of each feature (see Methods and found that the most discriminant one was the area of the
segmented image with an Otsu static threshold [49]. The area of Otsu object was highly efficient to discriminate inter-
phase from mitosis. However, this feature was unable to correctly detect anaphase onset since it was most sensitive
to the surface of the bright objects (Fig. . It called for a multi-feature approach.

3.2 | Selecting an optimal set of feature-groups using Fisher’s linear discriminant.

Computing all the features offered by the WND-CHARM library for a 71 x 71 vignette on the ARM microcontroller
was too computationally intensive for several features (Fig. ), thus incompatible with real-time analysis. We fore-
saw that a few features could be combined into a discriminant score, sufficient to discriminate the different mitotic
stages. To do so, we opted for a machine learning approach to help to delineate important features rather than a deep
learning approach. Such an a priori choice appeared the most suited to our lack of a large training set and the need
for fast computation. Indeed, deep-learning-network convolutional layers are computationally intensive, and while
optimisation strategies are available for embedded instances like pruning or quantisation [50} [51], it requires a large
training set. We first opted for a linear machine-learning algorithm, specifically Fisher's linear discriminant [52][53].
Indeed such a kernel method, because linear, promised short execution times and was successful in similar problems
[54] 1551156} 157].

We tested Fisher’s linear-discriminant classification using the CellCognition dataset (see Methods , in particu-
lar, 80% of the vignettes for training and 20% for testing through a k-fold cross-validation process (k = 5). We ranked
the feature groups by decreasing Fisher’s score (see Methods . To avoid overfitting, we limited the number of
features considered to less than the number of training images. We included the feature-groups in descending fisher
score up to that limit. It led to the 7 feature-groups (named in purple and dark blue Fig. ) 581159} 160]. To find an
optimal number of features, we further pruned the feature groups by removing the least discriminant one iteratively
until it harmed the overall classification. In further detail, we assessed the classification quality through the area under
the ROC curves (AUC) averaged over the eight classes of our dataset, a classical metric in machine learning [61]. We
measured the maximum AUC when removing the groups and conserved as many groups as needed so that the AUC

is not decreased by more than 0.005 from its maximum. It could be achieved without re-training, taking advantage of
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the linearity (Fig. @). Such a reduction of the feature-groups number, beyond performance consideration, is essential
to cope with the scarcity of labelled images, a commonplace in microscopy for biology and medicine. We obtained
the best classification by considering only 2 groups, Gabor textures and Haralick calculated from wavelet transform
ones (Fig.|2b, Fig. Ela, red curve and arrowhead). While the classification could be satisfactory with a global accuracy
of 78.0% (Fig. [3k and[34), the execution time, 890 ms, was incompatible with the on-the-fly classification (Fig. [3p).
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FIGURE 3 Classification using Fisher’s linear discriminant. (a) Area Under Curve (AUC) averaged over the
classes and (b) execution time for extracting the feature-groups included in the classification, both versus the
number of feature-groups used in classification, including (red curve) all available features or (blue curve) only groups
with an execution time below 20 ms (not computationally intensive). Arrowheads of the corresponding colour depict
their optimal number (see §3.2). (c) and (e) report the corresponding confusion matrix for these two-groups (Gabor
textures and Haralick over wavelet transform ones), and three-groups (multi-scale histograms over raw vignettes,
multi-scale histograms over wavelet transform, and Tamura textures over wavelet transform) optimal cases,
respectively, and (d) and (f) are the corresponding ROC curves. Class names are abbreviated after Fig. . We used
the 5-fold cross-validation over the CellCognition dataset (see Methods .
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We noticed that the most discriminant feature-groups displayed a score neatly larger than the others (Fig. ).
However, the two most discriminant groups used for optimal classification were too computationally intensive for
our application. We reckoned that they could be removed, keeping a reasonable classification accuracy. In a broader
take, we censored all the feature groups, which required more than 20 ms to be computed (Fig. , red line). We again
considered 7 feature-groups to prevent overfitting (named in light and dark blue Fig.[2b). As explained above, we then
selected a subset of the groups, by excluding the least discriminant ones. We obtained the best classification using
3 feature groups (Fig. , blue curve): multi-scale histograms calculated from raw vignettes, multi-scale histograms
from wavelet transform of the vignettes, and Tamura textures from wavelet transform. However, while the transition
from metaphase to anaphase was still correctly detected, the confusion matrix and the ROC curves, on early and late
mitotic phases, showed a clear degradation of the classification (compare Fig. f with Fig. d). Overall, the accuracy
read 52.2% and class-averaged AUC 0.842 for the three-groups case, compared to 78% and 0.954, respectively,
for the two-groups case including the computationally-intensive features. Using three non-computationally-intensive
feature-groups only partially compensated for the lack of the two most-discriminant groups and resulted in inaccurate
classification that could not fit our applicative needs. The feature extraction took only 9 ms in the three-groups case,
compared to 890 ms in the two-groups one, in line with embedded on-the-fly processing.

Overall, using multiple feature-groups in classification needed a tedious balance between accuracy and execution
time, unworkable by a linear machine learning approach. We observed a partial redundancy of the features in distinct
groups and that classifying itself took a negligible time, provided that the features were already computed. It called

for using the non-linear classification method.

3.3 | Revealing the feature-groups redundancy using random forests.

We pursued searching for a feature-group subset, fast enough to be used in our real-time application by using a non-
linear classifier. We set to use a decision-tree based method as it copes well with the large number of features coupled
to the reduced training dataset. We specifically chose the random forests algorithm [62]63]. It is a machine learning
algorithm based on an ensemble of decision trees that internally selects the most discriminant features, in line with
our goal of using a subset of feature groups. Compared to other non-linear methods, random forests, by this selection
process, better avoids over-fitting problems. Practically, we trained 300 decision trees using the curvature test to
select the best split predictor [64], and we validated this model using k-fold cross-validation with k = 5. We empirically
determined the number of trees, measuring that more than 300 trees would not improve the classification accuracy
(Fig. [62). We first performed the classification using all the 1025 features, and the algorithm training converged.
The global accuracy read 81.8% and AUC 0.974, slightly better than Fisher’s linear discriminant. All the classes were
recovered at least as accurately or better by the random forests (Fig. . This result confirmed the suitability of the
random forests to our problem. However, extracting all the features from the image remained too computationally
intensive for our application.

The random forests offer a mechanism to assess the importance of each feature in the decision [63]. In a nutshell,
it corresponds to the difference of the misclassification rate of the "out-of-bag" samples (i.e. the labelled images
not used for training a given tree because of the internal bootstrap mechanism) when randomly shuffling the values
of a given feature. Hence, the importance of features is directly related to the performed classification, in contrast
to Fisher’s discriminant criterion used above. We summarised the feature importances as previously, by taking the
average over their values within a group. We then averaged over the five forests generated in the k-fold validation
process (Fig. [4).

To perform a fast classification, we removed the least important feature groups again, computed the random-
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FIGURE 4 Random forests using all the 1025 features was trained and tested over 20% of the dataset, and we
retrieved the importance of each feature-group (see main text). Red bars highlight the feature groups displaying an
execution time greater than 20 ms. The execution times are reported in Fig. |Zh The feature groups are described in

Fig. EF

forests importances again over the training vignettes, and averaged over 5-fold cross-validation. Unlike the case of
Fisher’s discriminant, the approach was iterative, requiring a re-training upon each change of the feature-group subset.
The classification quality, measured by the mean AUC, decreased when using less than 8 groups (Fig. , red curve).
These 8 groups represented 147 features out of 1025. The global accuracy obtained with 8 groups was 75.5% and
the mean AUC 0.970, so very close to the results obtained with all features, suggesting that we could reduce the
execution time by excluding features, without decreasing the classification quality (Fig. .

When applying random forests to on-the-fly classification, we noticed that some computationally intensive feature
groups (red in Fig. ED displayed large importance like Gabor-on-raw-image and Haralick-on-wavelet-transform textures.
Based on the trend obtained using Fisher’s linear discriminant, we excluded the groups with execution time greater
than 20 ms. We then iteratively removed the least-important features until it degraded the classification (Fig., blue
curve). It showed an optimum with 12 feature groups (264 features out of 1025). In that case, AUC read 0.977 and
global accuracy 83.6%, which was again very similar to the case using all 1025 features. We also obtained a similar
confusion matrix and the ROC curves (Fig. d), but the execution time was considerably reduced (divided by more
than 50). This result validated the feasibility of our embedded classification by reducing the number of features and
censoring the computationally intensive ones (Fig. ).

We then looked at the feature importance when reducing the number of features to get clues of this compensating
mechanism. We compared the importance of the 12 feature-groups used in the optimised classification with the
importance of the same groups upon classifying over all the features (Fig. ). We observed that the importance
of these groups increased. It suggests redundancy of the features, at least in the measurements computed on the
present images. Indeed, the random forests could spread the importance among the redundant features and thus
compensate for removed redundant features [62] [65]. With the proposed feature-groups selection, such an ability

could ensure fast execution on an embedded system and automated microscope.
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corresponding colour depict their optimal number (see §3.3). (c) Random forests importance (blue) in the
twelve-groups case, optimal when excluding computationally intensive feature-groups, and (brown) the
all-feature-case (non optimised, reported Fig.@and. We averaged over the 5-fold cross-validation and used the
CellCognition dataset (see Methods . (d) The confusion matrix and (e) the ROC curves averaged using the 5-fold
cross-validation in the optimal case of the twelve-feature-groups without computationally intensive ones using the
CellCognition dataset (see . Class names are abbreviated after Fig. .

We reckoned that these results represented one particular instance of database equilibration (see §2.7). To test
the generality of our approach, we used bootstrap to randomly split data into balanced datasets without replacement
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(no duplicated image). We performed ten bootstrap iterations. Within each of them, we performed a 5-fold validation
and repeated the optimisation process as described above, excluding computationally intensive feature-groups. On
average, 12 feature-groups were the optimal balance between performance and accuracy (precisely 11.6+2.4, mean +
standard deviation), as found previously, although the optimum might vary by a few units. We observed a 79.6 +2.4 %
accurate classification lasting overall (feature extracting and vignette classification) 68.7 + 3.5ms. Furthermore, the
variations of classification accuracy and total execution time between bootstrap-iterations were reduced (Fig. .
The slight changes in the set of selected feature-groups in each bootstrap iteration could account for such a variation.
11 feature-groups were present in all bootstrap instances, and the last one was drawn among 4 feature-groups (black
and blue text, Tab. . We overall suggest that our method offers reproducibility upon using different training subsets.

Feature groups  Inniter. Feature groups In niter.
EdgeS(im) 10 MsH(ChT(im)) 10
MsH(WT(im)) 10 MsH(im) 10
ObjS(im) 10 TamT(ChT(FT(im))) 10
TamT(ChT(im)) 10 TamT(FT(im)) 10
TamT(WT(im)) 10 TamT(im) 10

ZerP(FT(im)) 10

HarT(FT(im)) 5 MsH(ChT(FT(im))) 3
MsH(FT(im)) 1 ZerP(im) 1

TABLE 1 Bootstrapping random forests optimal feature-groups-number classification over the CellCognition
dataset. (black) 11/12 groups were always present in the 10 bootstrap iterations while (blue) the last group was
taken among four other groups. The feature groups appearing only in the optimal cases using this dataset (and not
when using mitocheck) were italicised (Tab. . The feature groups are described in Fig. .

While an 80% accurate classification appeared suitable for automated microscopy, we investigated the reason
for misclassifying some images. Firstly, the cell goes through cell division and interphase following a continuous
evolution split into phases (Fig , note the order of the phases). Between late interphase, prophase and even the
beginning of prometaphase, the nucleus looked similar, leading to some confusion (Fig green frames). Similarly,
late metaphase and the beginning of early anaphase could be confused when the two sets of sister chromatids are
not clearly separated, i.e. no dark region in-between was visible (Fig blue frames). The proximity of other cells in
a different stage was also a common source of misclassification (Fig purple triangles). These limitations are more
experimental than classifier-related, either due to either the continuous transition between classes or multiple cells
in an image. We attributed the 5 remaining misclassified images to the variability of biological cells, which could lead

to confusion between distant but related-looking classes as metaphase and telophase.

To further confirm this result, we repeated the approach using the second dataset, mitocheck (see . In this
case, images were classified between 11 classes, with 100 vignettes per class. We followed the same method as
above: we performed a k-fold validation process (k = 5) followed by ten bootstrap iterations, randomly splitting
data into balanced datasets without replacement (no duplicated image). Eight feature groups, excluding those whose
execution time exceeded 20 ms, were enough to achieve an optimal classification (Fig. Ehb). All classes were correctly
recovered (Fig. Ekd). The feature-groups finally used in classification vary in the different instances of the bootstrap as

with the CellCognition dataset without considerably impacting the execution time and the classification quality (Fig.
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@. It confirmed the robustness of the above procedure used to speed up image processing.

Feature groups Inniter.  Feature groups Inniter.
MsH(ChT(im) 10 MsH(im) 10
MsH(WT(im)) 10 ObjS(im) 10
TamT(ChT(im)) 10 TamT(WT(im)) 10
MsH(WT(FT(im))) 6 HarT(FT(im)) 4
MsH(ChT(FT(im))) 4 MsH(FT(im) 4
TamT(WT(FT(im))) 2

TABLE 2 Bootstrapping random forests optimal feature-groups-number classification over the mitocheck
dataset. (black) 6/8 groups were always present in the 10 bootstrap iterations while (blue) the two other groups
were taken among five other groups. The feature groups appearing only in the optimal cases using this dataset (and
not when using CellCognition) were italicised (Tab. . The feature groups are described in Fig. .

We wondered how the set of selected features is linked to the very problem solved, or in other words, how generic
is the trained network to select cells in different states. We tested using the two above databases, whose classes differ
(Fig . It is noteworthy that the selected feature groups differ between (Tablesand . We tested the classification
of mitocheck images with the network trained over CellCognition. We scaled and padded the images to get a similar
resolution and size across databases. We kept all the features (no selection) to facilitate the task having in mind that
random forests are not prone to overfitting. We obtained poor results, a 36% accuracy and AUC reading 0.47. The
converse experiment, using a mitocheck-trained network to classify CellCognition images, was not better, displaying
a 42% accuracy and AUC equals to 0.50. We concluded that the proposed strategy, by optimising execution time,
prevent a direct application of a trained network to an other problem involving cells looking different and only-related
classes.

In the perspective of classifying vignettes on the fly, we had focused on the feature-extraction time by analogy
to Fisher’s linear discriminant, where this task took the vast majority of the execution time. We set to assess the
classification time upon embedding the random forests. Indeed, the decision trees at the core of this algorithm could
perform slowly. To do so, we used the RTrees module using the OpenCV library [64]. For the sake of simplicity,
in a proof-of-concept perspective, we trained the algorithm using OpenCV on the embedded system. One could
train on a general-purpose computer and embed only the classification. We assessed the classification performance
using 32 test vignettes (20% of the whole CellCognition dataset) in the optimal twelve-feature-groups case, excluding
computationally intensive ones. With 300 trees, the execution time to classify these vignettes read 89 +20 ps (mean +
standard deviation), extrapolated to 27 + 6 ms for a 300 cells picture. It should be compared to feature extraction over
the same picture, lasting 21.6s. Because feature extraction is performed independently on each vignette, this latter
time could be scaled down by parallelising the features extraction since the NVIDIA Jetson AGX Xavier that we used
here had 8 CPU cores. Finally, segmenting the image on one CPU core to extract the vignettes took a not noticeable
time, about 132+ 5 ms (mean + standard deviation) for the whole picture, in comparison to features extracting. Overall,
the classification itself took a lightweight time compared to the feature extraction.

To conclude, we showed that using a non-linear method allowed us to find a much better time-performance
compromise than the linear method, to ensure fast and accurate classification. We could envision using our feature-
group optimised random forests together with the WND-CHARM features to enslave microscope driving to image

classification.
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FIGURE 6 Bootstrapping optimised random forests over mitocheck dataset. (a) The Area Under Curve (AUC)
was averaged over the classes, and (b) execution time for extracting the feature-groups included in classification was
assessed (dependent of the selected feature-groups mildly variable between bootstrap iterations, see . Both
quantities are plotted versus the number of feature-groups used in classification and were computed in the 5-fold
cross-validation repeats. This approach was repeated 10 times in the bootstrap approach, where the vignettes
included in the balanced dataset were selected differently (see Methods §2.1). We thus obtained the standard
deviations reported by the error bars. Arrowheads depict the 8 feature groups optimal case. (c) The confusion matrix
and (d) the ROC curves over the 5-fold cross-validation in a single bootstrap iteration.
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3.4 | Neural-network classification also benefits from feature-groups redundancy.

Deep learning is the current paradigm in biological images analysis [42] 41]. We wondered whether the proposed
approach discarding highly discriminant features for the sake of rapidity keeping accuracy could be used in that con-
text to classify images faster. Indeed, fundamental research applications are more demanding about performances,
requiring faster imaging frame-rate. Indeed, when studying mitotic events like metaphase-anaphase transition, the
component dynamics are on the second- or even the tenth-of-a-second-scale [67]. To reach such fast processing, we
could speed up the feature extraction through GPU-parallelisation, although it was out of the scope of the present
paper. The time spent in the classification itself could also be improved. However, because of the high usage of
conditional structures in such decision-tree-based methods, parallelising the random forests appeared difficult. We
addressed this question in two steps: first, using a neural network as a classifier and second, extracting the features
through the convolutional layers of a deep network classifier. However, these methods are more prone to overfit-
ting [62]168]. This issue is worsened by the large number of features, besides non-independent, correlated or poorly

informative for some.

In the first case, we selected the optimal feature groups using random forests and used the neural network in
"production context” to perform classification to safeguard against overfitting. In particular, we trained a one-hidden-
layer network with 64 neurons, using the gradient descent backpropagation algorithm with an adaptative learning
rate starting from 0.01, a momentum of 0.1 and a mean squared error (MSE) loss function. An L2 regularisation
parameter was added to the loss function with a 0.1 ratio to avoid over-fitting,. These training parameters have
been experimentally determined. We divided the dataset into three parts: training (70%), validation (20%) and test
(10%). The validation subset allowed to stop training when the neural network started to overfit. We used again
bootstrap to randomly split the whole data into a balanced dataset, without replacement (no duplicated image) (see
. We performed twenty bootstrap iterations. Within each of them, we used k-fold cross-validation, with k =
10. For each instance of the k-fold process, the network’s weights and biases were initialised to the same values.
Using the random forests, we determined that 15 non-computationally-intentive feature-groups allowed an optimal
classification. Training and testing the neural network resulted in comparable accuracy with random forests (Fig. d),
reading an AUC of 0.979 and global accuracy of 83.0 %. However, the quality was more variable than with random
forests (Fig. ) across the twenty bootstrap iterations. In a broader take, it validated the possibility of using a simple

neural network with equal classification quality despite the small training set and many features.

We embedded our neural network using activation functions provided by the OpenCV library. After proper train-
ing, we executed the classification of 32 test vignettes. The execution time read 92 + 15 s, extrapolated to 28 + 4ms
for an image containing 300 cells, comparable to the above random forests. The neural network could be further ac-
celerated using GPU parallelisation. However, these times remained small compared to the ones needed for feature
extraction §(see. Notably, neural networks used more features groups to perform classification with similar quality
than random forests (15 versus 12), which can diminish neural networks interest for execution-time optimisation (Fig.
). Conversely, Random forests were much slower than the neural network to be trained: training 300 decision trees
using Random forests with 127 samples (80 % of the whole dataset) and 264 features (the 12 best feature-groups)
took 21 s on Matlab using one CPU while training our neural network needed between 1 to 6s. The need for random
forests to rank feature-groups by importance for each new category of images mitigated this advantage of the neu-
ral networks. Overall, the neural networks are more promising, but feature extraction will have to be parallelised to

realise this pledge.
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FIGURE 7 Bootstrapping optimised neural network over CellCognition dataset. (a) The Area Under Curve (AUC)
was averaged over the classes, and (b) execution time for extracting the feature-groups included in the classification
was assessed. Both quantities are plotted versus the number of feature-groups used in classification and were
computed in the 5-fold cross-validation repeats. This approach was repeated 20 times in the bootstrap approach,
where the vignettes included in the balanced dataset were selected differently (see Methods §2.1). We thus
obtained the standard deviations reported by the error bars. Arrowheads depict the fifteen-feature-groups optimal
case. (c) The confusion matrix and (d) the ROC curves over the 5-fold cross-validation in a single bootstrap iteration.
Note that no error bar can be computed on execution time as the features are always ranked in the same order of
importance (see main text .
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3.5 | Features extracted through a convolutional neural network also show redundancy.

We finally assessed whether the observed redundancy of biological images could be used to discard discriminant
features in a deep neural network context. To do so, we built a simple convolutional neural network, including 3
convolutional layers separated by relu activation layers and trained it on the CellCognition images using Keras. We
kept the same division of the dataset into three parts. We trained this network on the cell cognition dataset using a
gradient descent optimiser with a 0.001 learning rate, a batch size of 8 and over 100 epochs. We retrieved the outputs
of the last layer before the fully-connected one and used them as pseudo-features. They are 5184, and we classified
them using a 1000-trees random forests algorithm. We again performed 5-fold cross-validation followed by ten
bootstrap iterations, randomly splitting data into balanced datasets without replacement (no duplicated image). We
first included all the pseudo-features and iteratively reduced the number of features by discarding the less important
ones. We obtained an optimal classification with 88 + 48 pseudo-features (mean + standard deviation) (Fig. , red
curve). We observed a larger variability of the pseudo-features included in the set among the bootstrap iterations. We
might attribute it to observing single pseudo-features rather than groups; grouping would require a detailed analysis
of the network out of the scope of this study. Consistently, among 275 pseudo-features appearing in one optimal
set at least out of the ten bootstrap iterations, 18 are present in all sets and 71 in half of them at least. Overall, the
optimal classification showed comparable accuracy with random forests, reading an averaged AUC of 0.948 + 0.006
and global accuracy of 72 + 2 %.

We then tested whether the compensating mechanism previously observed was applicable here. We suppressed
the 100 most discriminant pseudo-features, i.e. reported as the most important by the random forests and selected in
the optimal pseudo-feature set in at least 4/10 bootstrap iterations above. We repeated a similar analysis and obtained
an optimal classification with 108 + 124 pseudo-features (Fig. , blue curve). We observed an equivalent variability
of pseudo-features included compared to the all-pseudo-feature case: among 303 pseudo-features appearing in one
optimal set, at least out of the ten bootstrap iterations, 22 are present in all sets and 91 in half of them at least. The
optimal classification also displayed a similar accuracy (Fig. , compare red and blue curve tails and optimal pseudo-
feature number marked by the arrowheads). In further detail, we found an averaged AUC of 0.945 + 0.005 and global
accuracy of 71 +2 %; the class-wise precisions were similar to the one obtained by classifying WND-CHARM features
with random forests (Fig. c). We concluded that pseudo-features based on deep-neural-networks convolutional
layers were also redundant, allowing the most discriminant ones to be discarded. It proves that such a network could

be pruned for the sake of computing time, disregarding the importance of the nodes in classification.

Throughout this study, we adopted a machine learning approach. We asked how the result compared to the one of
a deep network. We compared classification results using the entire deep network described above with the approach
combining WND-CHARM and random forests, namely an average AUC of 0.95 + 0.01 and global accuracy somewhat
lower, 72+4 % over the 5-fold cross-validation (Fig. . We embedded this network on an NVIDIA Jetson AGX Xavier,
in a similar fashion as the neural network. The classification time, averaged over the testing images across the 5-fold
cross-validation, read 1.8 ms per vignette, which is about twenty times longer compared to optimised WND-CHARM
and random forests. Indeed, the use of the entire deep network was equivalent to use all the features. This lukewarm
result was furthermore obtained with a simple network. However, numerous recent developments aimed at making

deep learning faster [69] and such limitations could be released in the future.
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FIGURE 8 Random forests classification extracting pseudo-features through a convolutional neural network
and optimising the pseudo-feature number over the CellCognition dataset. (a) Area Under Curve (AUC) averaged
over the classes versus the number of pseudo-features used in classification, including (red curve) all available
pseudo-features or (blue curve) discarding the 100 most significant ones. Arrowheads of the corresponding colour
depict their optimal number. (b) The confusion matrix and (c) the ROC curves averaged over the 5-fold
cross-validation and ten bootstrap iterations, randomly splitting data into balanced datasets without duplicates (see
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4 | DISCUSSION AND CONCLUSION

In this study, we proposed a method to embed and execute cell-image classification in real-time as an essential module
to create an automated microscope used for cell biology at large. In line with the reduced number of images available
for training, a peculiar trait of our envisioned application, we used an existing general-purpose image feature extractor
coupled with a machine learning algorithm. We analysed the contribution in the classifying decision of each feature,
grouped by the image transforms from which they are computed. We took advantage of the machine learning algo-
rithm that was able to report the feature importances. Doing so, we selected a subset of features best discriminating
the various mitotic phases. Interestingly, censoring the most computationally intensive features did not degrade the
classification upon re-training and selecting a new feature-subset. We could obtain excellent accuracy, suitable for
the targeted application, by using a non-linear machine leaning method, combined with high execution performance
on an embedded system to ensure analysis on the fly. In our example, we could classify about 14 cells per second
into 8 phases of the cell cycle, with an accuracy greater than 80% using random forests classification. Using almost
the same subset of features, we can train a small neural network and reach similar performances benefiting from a
classifier easy to embed and optimise on GPU. Importantly, this approach is transferable to deep learning networks
commonly used nowadays.

Despite machine learning acts somewhat like a "black box", one could speculate on the use of each selected
feature-group to perform the classification. For cell cognition database, the EdgeS (edge statistics) feature-group
likely detected objects with clear border as in metaphase or telophase compared to dimmer objects in classes before
or after in mitotic phases order (Table . The ObjS (object statistic) feature group is sensitive to the objects’ intensity
variations and helped distinguishing metaphase from telophase. However, most of the involved feature-groups cor-
respond to texture analysis. They likely allowed to distinguish for instance, the patchy isotropic texture at prophase,
when chromatid was still not fully condensed, from the one displaying lines at the next phase (prometaphase), when
chromosomes arms became visible. Although one can speculate a posteriori on the use of each selected feature group,
a manual selection of the feature-groups appears hardly possible.

Why suppressing the most discriminative features, for the sake of the execution time, did not degrade the clas-
sification accuracy? Although they be- long to different groups and use a distinct strategy, the various features act
likely redundantly. It involved a non-linear combination of the available features, as suggested by the better accuracy
achieved when using random forests. Thus, replacing features is non-intuitive and likely not easily accessible by direct
programming outside of statistical modelling. Indeed, a large set of features as the one offered by WND-CHARM
are expected to be redundant, and the use of decision trees appears well appropriate to decrease this redundancy
[621/68]. This redundancy is unlikely to be mathematical, i.e. the different feature-groups do not rely on the same com-
putations. Beyond this aspect, biological processes might also link some features by correlating different details of
the images. For instance, metaphasic chromosomes organisation causes sharply defined filaments because of conden-
sation (detected by edge statistics); these are brighter (object statistics) and mostly parallelly aligned (texture-related
features).

In a broader take, using deep learning and larger image datasets, Nagao and co-authors found that additional
markers on top of chromosomes did not improve the classification between the mitotic phases [42]. Indeed, the
mitotic-phase changes involve numerous modifications of the sub-cellular structures, all under the control of the cell
cycle regulation. It translates into various feature evolutions [70]. Along a similar line, measuring the mitotic spindle
- the essential structure tasked to dispatch the chromosomes to daughter cells correctly - suggested that various
features are correlated [71]. Likewise, we recently analysed the mitotic-spindle length: we found that only three

components, out of a principal component analysis, are enough to account for 95% of inter-individual variability across
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more than 100 conditions obtained by involved protein depletion (Y. Le Cunff et al., data to be published). Overall,
the variegated appearances of the sub-cellular structures as revealed by fluorescence microscopy are controlled by
few master regulators. Such a biological-originated correlation, modelled by our machine learning approach, further
supports our strategy of reducing redundant features. While we used cell division in this study, a similar situation
likely happens in other cell-biology processes.

From an automatic microscope’s perspective, an 80% success rate is enough as it guarantees to retrieve most of
the events of interest. For instance, we may wish to capture anaphasic cells at a high frame rate and with various
wavelengths corresponding to different labelled proteins. The classification described here will instruct the micro-
scope automaton where and when to perform these more in-depth acquisitions [45]. We can trigger it upon detecting
metaphasic cells. We consider the class of interest as the most probable one in the machine learning classification,
ensuring a balance between false-positive and false-negative. As an alternative, the envisaged automaton architec-
ture leave room for adjusting the minimal probability for a class (metaphase, e.g.) to trigger in-depth acquisition and
reduce the false positive at the expense of larger false negative. In a broader take, our 80% success rate corresponds
to the expectation for such an autonomous microscope in the field and will outperform human selection as mostly
reported in medical imaging [72}(73]174]75].

We opted for machine learning in the present work, although it required computing the features separately com-
pared to deep learning. The WND-CHARM library contains a broad range of features, and we believe that most of the
problems analysing biological images will find some appropriate. The approach proposed here will contribute to select
them. We furthermore showed that the exact list of features used is flexible as we managed to remove the more com-
putationally intensive without degrading classification. Therefore, machine learning appeared advantageous for three
reasons: ((i) rather than using anonymous pseudo-features as in deep learning, we had meaningful ones. it allowed
us to claim for compensating features across distinct groups using non-related algorithms. (ii) Performances were an
essential aspect as we expect on-the-fly classifying of microscopy images. Indeed, the convolutional layers at the
core of feature extracting in the deep networks are the most time-demanding. To remedy to this drawback, various
approaches to prune and optimise a deep network were proposed [69]. However, it remains tedious, and in contrast,
the approach appeared much simpler. For instance, the classical U-net, developed with performance in mind, required
about 1s to classify a 512x512 px frame [74], or recently YOLOv2 achieved about 5 frames per second embedded
on a Jetson TX2, but with a 416 x 416 pixels frame [74]. In contrast, an automatic microscope should classify 10-30
frames per second with 2048 x 2048 pixels, broken into subframes. (iii) The low number of training images is a strin-
gent constraint in applying our work to automated microscopy in biology, as annotating is highly time-consuming for
experimenters. Deep networks often require a larger training dataset and are prone to overfitting [77], while random
forests are robust to that issue by their design. Overall, future work may qualify the use of deep learning for auto-
mated microscopy, but it appeared interesting to demonstrate this compensating mechanism at first, using "classical"

machine learning.

The proposed methodology was developed keeping in mind that it should apply to small datasets, a constraint in
application to biomedical science [58]59}160]. Indeed, images are long to be produced and annotated. Furthermore,
in biological research, each experiment corresponds to a particular dataset: training with images from a distinct exper-
iment (labelling other structures, e.g.) appears a poor option. As a result, only small datasets are available for training.
It is a constraint shared with all experimental sciences and engineering, leading to reduced numbers of degrees of
freedom in the model, i.e. the number of used features and nodes in neural networks [78}79}158//60]. The major risk
is overtraining, leading the statistical model to learn details of the training set, failing to extract the general aspects,
and in fine causing low accuracy on real-data classification (testing). Decision-tree forests, particularly random forests,

are known to cope well with this issue in the first place[63][80]. Once this model is correctly trained, it helps to se-
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lect features. Indeed, reducing the number of features, discarding the poorly-informative ones not only improves the
execution time but also limits the risk of overfitting [81]. In conclusion, our approach offers both a feature selection
strategy enabling us to directly decide the balance between execution time and accuracy, and enables us to use a
neural network in a second time when in the production set-up.

We obtained the presented results using machine learning. We also showed that removing the most significant
pseudo-features of a deep neural network, i.e. the nodes of the last layer before the fully connected one, does not
preclude an accurate classification. On this ground, one can envision using deep learning, in particular, pruning the
networks as we know that an optimal number of features could be found [51]. It will also benefit from the nowadays
standard GPU acceleration of convolutional networks. By enabling accurate classification under the constraint of real-
time execution, the proposed method paves the way towards smart microscopy. On top of making experiments on rare
and brief phenomena achievable, this novel instrument will extend the HCS towards High Throughput Experimenting
beyond the bare observation of the sample. It will enable deeper imaging and, in the future, photo-perturbations. For
example, this will enable challenging the effect of drugs by investigating much more intimate cell processes. Finally,
and in the shorter term, medicine and biology are currently restricted to analyse data a posteriori, requiring to acquire
a huge amount of images to sort them afterwards because most of them are information-scarce. Smart microscopy

promises a more parsimonious approach.
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FIGURE S1 Classification using a single feature (Otsu-segmented-region area) resulted in a poor confusion
matrix. Class names are abbreviated after Fig. . CellCognition dataset was used (see Methods .
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FIGURE S2 Selecting the number of trees in random forests classifier by plotting the out-of-bag error versus

the number of trees. The black, blue and red lines depict the average, minimum and maximum out-of-bag errors,
respectively, over the 5-fold iterations of the cross-validation. CellCognition dataset was used (see Methods .
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(a) the confusion matrix and (b) the ROC curves over the 5-fold cross-validation using the CellCognition dataset (see

Methods . Class names are abbreviated after Fig. .
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feature-groups. (a) The Area Under Curve (AUC) was averaged over the classes, and (b) execution time for extracting
the feature-groups included in the classification was assessed. Both quantities are plotted versus the number of
feature-groups used in classification and were computed in the 5-fold cross-validation repeats. This approach was
repeated 10 times in the bootstrap approach, where the vignettes included in the balanced dataset were selected
differently from the CellCognition (see Methods . We thus obtained the standard deviations reported by the
error bars. Fig.[Bhb report results in the same conditions for a single bootstrap iteration. Arrowheads depict the 12
feature groups optimal case.
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FIGURE S6 Classification using Deep learning. (a) Confusion matrix and (B) corresponding ROC curves,
averaged over the 5-fold cross-validation for the classification over the CellCognition dataset (see Methods §2.1).

Class names are abbreviated after Fig. EP
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misclassified were reported for the 5-fold cross-validation over the CellCognition dataset (see Methods . The
table mimics the confusion matrix (Fig. ). Rows correspond to true classes while columns to predicted classes.
Green and blue frames highlight images misclassified to the class just before or after the real one in the order of the
cycle or mitotic phases. Purple triangles depict frames where neighbouring cells appear, likely confusing the
classifier. Class names are abbreviated after Fig. Ela
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