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Introduction

Deciding whether a real function only takes non-negative values is a fundamental question in real algebraic geometry. Non-negativity certificates and optimization approaches are tightly related to each other by observing that the infimum f * of a function f : R n → R can be expressed as the largest λ ∈ R for which f -λ is non-negative on R n :

f * = inf{f (x) : x ∈ R n } = sup{λ ∈ R : f -λ is non-negative on R n }.
Both in the context of polynomials and in the broader context of exponential sums, the last years have seen strong interest in non-negativity certificates and optimization techniques based on the arithmetic mean/geometric mean-inequality (AM/GM inequality). More precisely, an exponential sum (or signomial ) supported on a finite subset T ⊂ R n is a linear combination α∈T c α exp( α, x ) with real coefficients c α . In particular cases, the non-negativity of the real function defined by an exponential sum can be decided via the arithmetic-geometric mean inequality. For example, for support points α 0 , . . . , α m ∈ R n and coefficients λ = (λ 1 , . . . , λ m ) ∈ R n + satisfying m i=1 λ i = 1 and m i=1 λ i α i = α 0 , the exponential sum m i=1 λ i exp( α i , x ) -exp( α 0 , x ) is non-negative on R n as a consequence of the weighted arithmetic-geometric mean inequality, namely m i=1 λ i exp( α i , x ) m i=1 (exp( α i , x )) λ i . Clearly, sums of such exponential sums are non-negative as well. Note that exponential sums can be seen as a generalization of polynomials: when T ⊂ N n , the transformation x i = ln y i gives polynomial functions y → α∈T c α y α on R n >0 . These AM/GM-based certificates appear to be particularly useful in sparse settings. In the specialized situation of polynomials, they can be seen as an alternative to nonnegativity certificates based on sums of squares. The ideas of these approaches go back to Reznick [START_REF] Reznick | Forms derived from the arithmetic-geometric inequality[END_REF] and have been recently brought back into the focus of the developments by Pantea, Koeppl, and Craciun [START_REF] Pantea | Global injectivity and multiple equilibria in uni-and bimolecular reaction networks[END_REF], Chandrasekaran and Shah [START_REF] Chandrasekaran | Relative entropy relaxations for signomial optimization[END_REF] ("SAGE " cone: sums of arithmetic-geometric exponentials) and Iliman and de Wolff [START_REF] Iliman | Amoebas, nonnegative polynomials and sums of squares supported on circuits[END_REF] ("SONC " cone: sums of non-negative circuit polynomials), see also [START_REF] Katthän | A unified framework of SAGE and SONC polynomials and its duality theory[END_REF] for a generalized, uniform framework. The AM/GM certificates can be effectively obtained by relative entropy programming (see [START_REF] Chandrasekaran | Relative entropy relaxations for signomial optimization[END_REF][START_REF] Chandrasekaran | Relative entropy optimization and its applications[END_REF]), and in restricted settings these relative entropy programs become geometric programs [START_REF] Iliman | Lower bounds for polynomials with simplex Newton polytopes based on geometric programming[END_REF]. These techniques have been extended to cover constrained situations, prominently by the work of Murray, Chandrasekaran and Wierman based on partial dualization [START_REF] Murray | Signomial and polynomial optimization via relative entropy and partial dualization[END_REF]. This method can also be approached from sublinear circuits, see [START_REF] Murray | Sublinear circuits and the constrained signomial optimization problem[END_REF]. Furthermore, in the setting of polynomials, the AM/GM-based approaches can be combined with sums of squares [START_REF] Karaca | The REPOP toolbox: Tackling polynomial optimization using relative entropy relaxations[END_REF]. Other recent approaches to sparse polynomials besides the ones based on the AM/GM inequality can be found in the sparse moment hierarchies [START_REF] Wang | Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension[END_REF][START_REF] Wang | TSSOS: a moment-SOS hierarchy that exploits term sparsity[END_REF].

From an algebraic point of view, a problem is symmetric when it is invariant under some group action. Symmetries are ubiquitous in the context of polynomials and optimization, since they manifest both in the problem formulation and the solution set. This often allows to reduce the complexity of the corresponding algorithmic questions. Regarding the set of solutions, it was observed by Terquem as early as in 1840 that a symmetric polynomial does not always have a fully symmetric minimizer (see also Waterhouse's survey [START_REF] Waterhouse | Do symmetric problems have symmetric solutions?[END_REF]). However, in many instances, the set of minimizers contains highly symmetric points (see [START_REF] Friedl | Reflection groups, reflection arrangements, and invariant real varieties[END_REF][START_REF] Moustrou | Symmetric ideals, Specht polynomials and solutions to symmetric systems of equations[END_REF][START_REF] Riener | On the degree and half-degree principle for symmetric polynomials[END_REF][START_REF] Timofte | On the positivity of symmetric polynomial functions[END_REF]). With respect to problem formulations, symmetry reduction has provided essential advances in many situations (see, for example, [START_REF] Bachoc | New upper bounds for kissing numbers from semidefinite programming[END_REF][START_REF] De Klerk | Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem[END_REF][START_REF] Dobre | Exploiting symmetry in copositive programs via semidefinite hierarchies[END_REF]), especially in the context of sums of squares (see [START_REF] Bachoc | Invariant semidefinite programs[END_REF][START_REF] Blekherman | Symmetric non-negative forms and sums of squares[END_REF][START_REF] Debus | Reflection groups and cones of sums of squares[END_REF][START_REF] Gatermann | Symmetry groups, semidefinite programs, and sums of squares[END_REF][START_REF] Heaton | Symmetry adapted Gram spectrahedra[END_REF][START_REF] Raymond | Symmetric sums of squares over k-subset hypercubes[END_REF][START_REF] Riener | Exploiting symmetries in SDPrelaxations for polynomial optimization[END_REF]).

The current paper departs from the question to which extent symmetries can be exploited in AM/GM-based optimization assuming that the problem affords symmetries. We provide a first systematic study of the AM/GM-based approaches in G-invariant situations under the action of a group G. Our focus is on symmetry-adapted representation theorems, and algorithmic symmetry reduction techniques.

Our contributions. 1. We prove a symmetry-adapted decomposition theorem and develop a symmetry-adapted relative entropy formulation SAGE exponentials in a general G-invariant setting.

2. This adaption reduces the size of the resulting relative entropy programs or geometric programs, see Theorem 3.1, Theorem 4.1 and Corollary 4.3. As revealed by these statements, the gain depends on the orbit structure of the group action.

3. In the case of the symmetric group, we use combinatorial aspects of the representation theory of the symmetric group in order to measure the size of the resulting relative entropy program. In particular, we identify situations in which the size of the symmetry adapted relative entropy program stabilizes with respect to the number of variables.

4. We evaluate the structural results in the paper in terms of computations. In situations with strong symmetry structure, the number of variables and the number of equations and inequalities becomes substantially smaller. Accordingly, the interior-point solvers underlying the computation of SAGE bounds then show strong reductions of computation time. In various cases, the symmetry-adapted computation succeeds when the conventional SAGE computation fails.

We mostly concentrate on the unconstrained optimization, but the techniques can generally also be extended to the constrained case. See, for example, Theorem 4.5.

The paper is structured as follows. After collecting relevant notions and concepts in Section 2, we provide in Section 3 a specific way of writing sums of arithmetic-geometric exponentials in the presence of a group symmetry. In Section 4, we study how to characterize and to decide whether a G-symmetric exponential sum is contained in the SAGE cone with reduced relative entropy programs. The case of the symmetric group is treated in Section 5, while Section 6 provides experimental results of an implementation of the symmetry reduction techniques. We conclude the paper in Section 7.
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Preliminaries

Throughout the article, we use the notation N = {0, 1, 2, 3, . . .}. For a finite subset T ⊂ R n , let R T be the set of |T |-tuples whose components are indexed by the set T . We denote by •, • the standard Euclidean inner product in R n .

The SAGE cone. For a given non-empty finite set T , we consider exponential sums supported on T as defined in the Introduction. For finite T ⊂ R n , the SAGE cone C SAGE (T ) is defined as

C SAGE (T ) := β∈T C AGE (T \ {β}, β),
where for A := T \ {β}

C AGE (A, β) := f = α∈A c α e α,x + c β e β,x : c α 0 for α ∈ A, c β ∈ R, f (x) 0 on R n
denotes the non-negative exponential sums which may only have a negative coefficient in the term indexed by β (see [START_REF] Chandrasekaran | Relative entropy relaxations for signomial optimization[END_REF]). The elements in these cones are called SAGE signomials and AGE signomials, respectively. The cone C SAGE (T ) is a closed convex cone in R T (see [START_REF] Katthän | A unified framework of SAGE and SONC polynomials and its duality theory[END_REF]Proposition 2.10]).

Membership to this convex cone can be decided in terms of relative entropy programming. For a finite set

∅ = A ⊂ R n , denote by D : R A >0 × R A >0 → R, D(ν, γ) = α∈A ν α ln ν α γ α
the relative entropy function, which can be extended to R A + × R A + → R ∪ {∞} via the conventions 0 • ln 0 y = 0 for y 0 and y • ln y 0 = ∞ for y > 0. To decide membership of a given signomial f supported on T to the SAGE cone, assume that f is written in the form f = 

C SAGE (A, B) := β∈B C AGE (A ∪ B \ {β}, β)
the signed SAGE cone, which allows negative coefficients only in a certain subset B of the support A ∪ B. This a common notation in optimization viewpoints [START_REF] Dressler | Global optimization via the dual SONC cone and linear programming[END_REF][START_REF] Dressler | An approach to constrained polynomial optimization via nonnegative circuit polynomials and geometric programming[END_REF][START_REF] Iliman | Lower bounds for polynomials with simplex Newton polytopes based on geometric programming[END_REF][START_REF] Murray | Newton polytopes and relative entropy optimization[END_REF][START_REF] Murray | Signomial and polynomial optimization via relative entropy and partial dualization[END_REF].

Proposition 2.1 ([20]). A signomial f belongs to C SAGE (A, B) if and only if for every β ∈ B there exist c (β) ∈ R A + and ν (β) ∈ R A + such that α∈A ν (β) α α = ( α∈A ν (β) α )β for β ∈ B, D(ν (β) , e • c (β) ) c β for β ∈ B, β∈B c (β) α c α for α ∈ A.
Note that this proposition reflects the statement of Murray, Chandrasekaran and Wierman [START_REF] Murray | Newton polytopes and relative entropy optimization[END_REF] that every SAGE signomial can be decomposed into AGE signomials in such a way that every term with a negative coefficient only appears in a single AGE signomial.

Optimizing over the SAGE cone. Since the SAGE cone is contained in the cone of non-negative signomials, relaxing to the SAGE cone gives an approximation of the global infimum f * of a signomial f supported on T :

f SAGE = sup{λ ∈ R : f -λ ∈ C SAGE (T )} satisfying f SAGE f * .
Constrained versions. While many aspects of this article are devoted to the unconstrained situation, we briefly collect the extension of SAGE certificates to the constrained situation. Let K be a convex and closed subset of R n . For a convex set K ⊂ R n and a non-empty finite set T ⊂ R n , the K-SAGE cone C K (T ) is defined (see [START_REF] Murray | Signomial and polynomial optimization via relative entropy and partial dualization[END_REF]) as

C K (T ) := β∈T C K (T \ {β}, β),
where for A := T \ {β},

C K (A, β) := f = α∈A c α e α,x + c β e β,x : c α 0 for α ∈ A, c β ∈ R, f (x) 0 on K .
Moreover, (2.1) can be generalized by defining, for disjoint sets

∅ = A ⊂ R n and B ⊂ R n , the signed K-SAGE cone C K (A, B) := β∈B C K (A, β).
This is the set of K-SAGE signomials, where negative coefficients are only possible in a certain subset B of the support A ∪ B. The following decomposition result holds.

Theorem 2.2 ([21], Corollary 5). If f ∈ C K (A, B) with c α > 0 for all α ∈ A and c β < 0 for all β ∈ B = ∅, then there exist K-AGE signomials f β ∈ C K (A, β) for β ∈ B such that f = β∈B f β .
For the constrained approach, a similar result to Proposition 2.1 is known.

Proposition 2.3 ([21]). f ∈ C K (A∪B) if and only if for every β ∈ B there exist c (β) ∈ R A + and ν (β) ∈ R A + such that D(ν (β) , e • c (β) ) + sup x∈K - α∈A ν (β) α (α -β), x c β for β ∈ B, β∈B c (β) α c α for α ∈ A.

Orbit decompositions of symmetric exponential sums

In this section, we provide a structural result on the decomposition of symmetric SAGE exponentials as sums of orbits of (non-symmetric) AGE exponentials.

Let G be a finite group acting linearly on R n on the left, namely we have a group homomorphism ϕ :

G → GL n (R) σ → ϕ(σ) .
For σ ∈ G and x ∈ R n , we denote by σ • x the image of x through ϕ(σ). In order to get a left action on the set of functions defined on R n , we need to take

(3.1) (σ * f )(x) = f (σ -1 • x) = f (ϕ(σ -1 )(x)).
For a signomial f (x) = α c α exp( α, x ), we see an exponent vector α as an element of the dual space. Then, the dual action of G on the exponent vectors is given by

σ ⊥ α := ϕ(σ -1 ) # (α),
where A # denotes the adjoint operator of A. Note that this is a left action as well. Therefore, even if the exponents and the variables lie in isomorphic spaces, the actions of G on these spaces are different and dual to each other, and satisfy

α, σ • x = α, ϕ(σ)(x) = ϕ(σ) # (α), x = σ -1 ⊥ α, x
and furthermore, for a signomial f ,

(3.2) (σ * f )(x) = f (σ -1 • x) = α c α exp( α, σ -1 • x ) = α c α exp( σ ⊥ α, x ).
From now on, in order to keep notations as light as possible, with a slight abuse of notations, we write σ(x) = σ • x for the action on the variables, σf = σ * f for the action on functions, and σ(α) = σ ⊥ α for the dual action. Even if the actions are different, the context should clarify the correspondence. For a set S ⊂ R n of exponent vectors, the orbit of S under G is

G • S = {σ(s) : s ∈ S, σ ∈ G}.
We call a subset Ŝ ⊂ S a set of orbit representatives for S if Ŝ is an inclusion-minimal set with (G • Ŝ) = S. Moreover, let Stab β := {σ ∈ G : σ(β) = β} denote the stabilizer of an exponent vector β.

In the following statements, we consider G-invariant signomials f . It is convenient to write f here in the form

(3.3) f = α∈A c α exp( α, x ) + β∈B c β exp( β, x )
with c α > 0 for α ∈ A and c β < 0 for β ∈ B, i.e., f is an element of the signed SAGE cone C SAGE (A, B) introduced in Section 2. As already mentioned, in this notation, the overall support set of

f is A ∪ B. Theorem 3.1. Let K ⊂ R n be convex and G-invariant, let f be a G-invariant signomial of the form (3.3) and B be a set of orbit representatives for B. Then f ∈ C K (A, B) if and only if for every β ∈ B, there exists a K-AGE signomial h β ∈ C K (A, β) such that (3.4) f = β∈ B ρ∈G/ Stab( β) ρh β .
The functions h β can be chosen to be invariant under the action of Stab( β).

Here, ρ ∈ G/ Stab( β) shortly denotes that ρ runs over a set of representatives of the left quotient space G/ Stab( β), which is defined through the left cosets {σ Stab( β) : σ ∈ G}. We will also use the right quotient space, denoted by Stab( β)\G, further below.

Proof. Since it is clear that a signomial f of the form (3.4) is non-negative, we only have to show the converse direction. Let

f ∈ C K (A, B). By Theorem 2.2, there exist K-AGE signomials f β ∈ C K (A, β) for β ∈ B, such that f = β∈B f β . The G-invariance of f gives (3.5) f = 1 |G| σ∈G σf = 1 |G| σ∈G β∈B σf β .
The idea is to group in this sum all the σf β that have the same "possibly negative" term.

According to (3.2), the possibly negative term of σf β is given by σ(β). For any β ∈ B, the signomial

h β = 1 |G| σ∈G σf σ -1 (β) is a sum of K-AGE signomials in C K (A, β), hence it is contained in C K (A, β) as well.
Moreover, (3.5) can be expressed as Remark 3.2. Note that the previous results extend naturally to compact/reductive groups, since they mainly rely on the existence of a Reynolds operator. For the sake of simplicity, we presented them for finite groups, where the Reynolds operator corresponds to a finite average over the group.

f = 1 |G| σ∈G β∈B σf β = 1 |G| σ∈G γ∈B σf σ -1 (γ) = γ∈B h γ . Let β ∈ B and β ∈ B be the representative of its orbit in B. If σ, τ ∈ G are such that σ( β) = τ ( β) = β, then τ -1 σ ∈ Stab( β) and τ = σ in G/ Stab( β). Hence, f = β∈ B ρ∈G/ Stab β h ρ( β) . (3.6) Now observe that h ρ(β) = ρh β for every β ∈ B and ρ ∈ G, because |G|ρh β = σ∈G ρσf σ -1 (β) = τ ∈G τ f τ -1 ρ(β) = |G|h ρ(β) . ( 3 

Symmetry reduction in relative entropy programming

Building upon the previous decomposition theorem, we provide a symmetry-adapted relative entropy formulation for containment in the SAGE cone. 

D(ν ( β) , e • c ( β) ) c β for every β ∈ B, (4.2) β∈ B σ∈Stab ( β)\G c ( β) σ(α) c α for every α ∈ A. (4.3)
Remark 4.2. The right coset condition (4.3) can equivalently be expressed in terms of the left cosets, 

β∈ B σ∈G/ Stab β c ( β) σ -1 (α) c α for every α ∈ A. Namely, if β ∈ B, β ∈ B and σ, τ ∈ G are such that σ -1 ( β) = τ -1 ( β) = β, then τ σ -1 ∈ Stab( β)
f = β∈ B ρ∈G/ Stab( β) ρh β .
Writing h β in the form

h β = α∈A c ( β) α exp( α, x ) + c β exp( β, x ) with coefficients c ( β)
α and c β for α ∈ A and β ∈ B, the two conditions (4.1) and (4.2) follow from the property h β ∈ C SAGE (A, β). For (4.3), we observe that for α ∈ A, the coefficient

of exp( α, x ) in ρh β is c ( β)
ρ -1 (α) . We obtain inequality (4.3), even with equality, by setting σ := ρ -1 and summing over β ∈ B and over σ ∈ Stab( β)\G, following Remark 4.2. Moreover, the Stab(h β )-invariance of h β implies the Stab( β)-invariance of c ( β) . In order to make ν ( β) invariant under Stab( β), we can replace it with

µ ( β) α = 1 | Stab( β)| σ∈Stab( β) ν ( β) σ(α) .
Obviously, this has no influence on (4.3). For (4.1), we have

| Stab( β)| α∈A µ ( β) α (α -β) = α∈A σ∈Stab( β) ν ( β) σ(α) (α -β) = σ∈Stab( β) σ -1 α∈A ν ( β) σ(α) (σ(α) -σ( β)) = σ∈Stab( β) σ -1 α∈A ν ( β) α (α -β)) = 0.
Finally, for (4.2), using c

( β) α = c ( β)
σ(α) for σ ∈ Stab( β) and applying Jensen's inequality on the convex function x → x ln x gives, for all α ∈ A,

µ ( β) α ln µ ( β) α c ( β) α =   1 | Stab( β)| σ∈Stab( β) ν ( β) σ(α)   ln 1 | Stab( β)| σ∈Stab( β) ν ( β) σ(α) c ( β) α = c ( β) α   σ∈Stab( β) ν ( β) σ(α) /c ( β) σ(α) | Stab( β)| ln σ∈Stab( β) ν ( β) σ(α) /c ( β) σ(α) | Stab( β)|   c ( β) α   1 | Stab( β)| σ∈Stab( β) ν ( β) σ(α) c ( β) σ(α) ln ν ( β) σ(α) c ( β) σ(α)   .
Using again the Stab( β)-invariance of c ( β) and the precondition then yields

α∈A µ ( β) α ln µ ( β) α ec ( β) α 1 | Stab( β)| σ∈Stab( β) α∈A ν ( β) σ(α) ln ν ( β) σ(α) ec ( β) σ(α) 1 | Stab( β)| σ∈Stab( β) c β = c β .
Conversely, assume that c ( β) and ν ( β) , invariant under the action of Stab( β), satisfy (4.1)-( 4 

τ (α) = c ( β) σ(α) , ν ( β) τ (α) = ν ( β) σ(α) for α ∈ A.
Thus we can define

c (β) α = c ( β) σ(α) , ν (β) α = ν ( β) σ(α) for α ∈ A, which is independent of σ such that σ(β) = β. As a consequence, if τ ∈ Stab( β)\G, then c (τ -1 ( β)) α = c ( β)
τ (α) is well defined. To see that the first conditions of Proposition 2.1 are satisfied, let

β ∈ B and σ ∈ G such that σ(β) = β. Then α∈A ν (β) α (α -β) = α∈A ν ( β) σ(α) (α -σ -1 ( β)) = σ -1 α∈A ν ( β) σ(α) (σ(α) -β) = σ -1 α∈A ν ( β) α (α -β) = 0 and D(ν (β) , ec (β) ) = D(ν ( β) , ec ( β) ) c β = c β .
For the third condition of Proposition 2.1, we obtain

β∈B c (β) α = β∈ B τ ∈Stab( β)\G c (τ -1 ( β)) α = β∈ B τ ∈Stab( β)\G c ( β) τ (α) c α ,
which altogether shows that f ∈ C SAGE (A, B).

The following consequence of Theorem 4.1 further reduces the number of variables in the relative entropy program, since a certain number of c 

ν ( β) α α ∈Stab( β)•α (α -β) = 0 for every β ∈ B, (4.4) α∈A/ Stab( β) Stab( β) • α ν ( β) α ln ν ( β) α ec ( β) α c β for every β ∈ B, (4.5) β∈ B | Stab(α)| | Stab( β)| γ∈(G•α)/ Stab( β) Stab( β) • γ c ( β) γ c α for every α ∈ Â. (4.6)
Proof. For (4.4) and (4.5), equivalence to their versions in Theorem 4.1 is straightforward to check. For (4.6), equivalence to (4.3) follows by observing that for every α ∈ A

σ∈Stab( β)\G c ( β) σ(α) = σ∈Stab( β)\G 1 | Stab( β)| τ ∈Stab( β) c ( β) τ (σ(α)) = 1 | Stab( β)| ρ∈G c ( β) ρ(α) = | Stab(α)| | Stab( β)| γ∈G•α c ( β) γ = | Stab(α)| | Stab( β)| γ∈(G•α)/ Stab( β) Stab( β) • γ c ( β) γ ,
and the last expression only depends on the orbit G • α rather than on α itself.

Remark 4.4. Note that we cannot simply assume c

(β) α = c (β)
α for some α ∈ G • α and, similarly, we cannot simply assume ν

(β) α = ν (β)
α for some α ∈ G•α, for instance due to (2.1). Namely, if an element β lies in conv A with barycentric coordinates λ, say β = α∈A λ α α, then for any σ ∈ G, we have

σ(β) = σ α∈A λ α α = α∈A σ(λ α α) = α∈A λ α σ(α) rather than σ(β) = σ( α∈A λ α α) = α∈A λ σ(α) σ(α).
Of course, this caveat does not occur whenever there is a single inner term.

For symmetric constraint sets K, a constrained version of Theorem 4.1 (and similarly, of Corollary 4.3) can be given as well. The proof is similar. 

( β) ∈ R A + such that D(ν ( β) , e • c ( β) ) + sup x∈K - α∈A ν ( β) α (α -β) , x c β for every β ∈ B, β∈ B σ∈Stab β\G c ( β) σ(α)
c α for every α ∈ A.

To close this section we discuss the resulting complexity reduction: Note that the initial relative entropy formulation which does not take the symmetry into consideration will involve 2|B||A| variables. Furthermore, since every vector equality in (4.4) brings n scalar equalities, it will consist of |B|n + |B| + |A| (in)equalities.

In 

| Stab(α)\G/ Stab( β)| = 1 | Stab(α)|| Stab( β)| σ∈Stab( α) τ ∈Stab( β) |G σ,τ |,
where |G σ,τ | is the number of elements of G fixed under the action of (σ, τ ). From another point of view, this number can be interpreted in terms of representation theory as follows:

It is given by the inner product of the two characters corresponding to the representations induced respectively by the trivial representations of Stab(α) and Stab( β) on G (see [START_REF] Stanley | Enumerative Combinatorics[END_REF]Exercise 7.77.a.] for more details). Furthermore, (4.4) amounts to | Â| + | B| inequalities, together with one vector equality for every element of B. We observe that for a given β, this vector is invariant by Stab( β) and therefore is contained in (R n ) Stab( β) , the subspace of R n of points fixed by Stab( β). Thus, by projecting onto this subspace the number of resulting equations reduces to dim (R n ) Stab( β) . As a conclusion, we obtain: 

The case of the symmetric group

In this section, we focus our attention to the case of the Symmetric group S n acting on R n by permutation of the coordinates:

for σ ∈ S n , x ∈ R n , σ(x) = (x σ -1 (1) , . . . , x σ -1 (n) ).
Note that because the action is orthogonal, the dual action on the exponent vectors is the same. Optimization problems invariant under this action can arise in different contexts naturally, for example, in the context of graph homomorphisms ( [START_REF] Blekherman | Simple graph density inequalities with no sum of squares proofs[END_REF]). This action is very natural, and the theory of representation of the symmetric group is very well understood, and affords strong connections with combinatorics. This connection has been successfully used in several instances to reduce the sizes of optimization problems. In particular it was shown in [START_REF] Riener | Exploiting symmetries in SDPrelaxations for polynomial optimization[END_REF]Theorem 4.7 ] (see also [START_REF] Debus | Reflection groups and cones of sums of squares[END_REF]Theorem 3.21]) that the size of a semi-definite program which certifies if a given symmetric polynomial is a sum of squares is stabilizing once the number of variables is big enough. Similarly to these results we show in Theorem 5.2 an analogous result in the AM/GM setup. This result mainly stems from the fact that the cardinalities appearing in Theorem 4.6 have a combinatorial interpretation in the context of symmetric group actions.

First, up to permutation, every α ∈ R n is of the form

α = (α 1 , . . . , α 1 λ 1 , α 2 , . . . , α 2 λ 2 , . . . , α k , . . . , α k λ k ),
with λ 1 λ 2 . . . λ k > 0 and thus its stabilizer Stab(α) is, up to conjugation, of the form

S λ 1 × • • • × S λ k , so that | Stab(α)| = λ 1 ! • • • λ k !.
The corresponding partition λ = (λ 1 , . . . , λ k ) of n is called the orbit type Λ(α) of α. We then denote by len(α) the length of this partition, namely len(α) = k. Consequently, for β ∈ B, the dimension n β of the fixed subspace (R n ) Stab( β) is precisely len( β). Furthermore, let α ∈ Â of orbit type Λ(α) = (λ 1 , . . . , λ k ), and β ∈ B of orbit type Λ(β) = (µ 1 , . . . , µ ). Then, the interpretation of α(S n ) β as the inner product of characters gives a combinatorial understanding of the number α(S n

) β = | Stab(α)\S n / Stab( β)|: it is given by the number N Λ(α),Λ(β) = |M Λ(α),Λ(β) |, where M Λ(α),Λ(β)
is the set of matrices of size k × with non-negative integer coefficients such that, for 1 i k the elements of the ith row sum up to λ i , and for 1 j the elements of the jth column sum up to µ j . This quantity can be alternatively computed by using the so-called Kostka numbers defined for pairs of partitions. More precisely, we have

α(S n ) β = N Λ(α),Λ(β) = µ K µ,Λ(α) K µ,Λ(β) ,
where µ runs through the partitions of n. For more details about these interpretations, see [START_REF] Stanley | Enumerative Combinatorics[END_REF]Chapter 7], in particular Corollary 7.12.3 therein. Now we illustrate the potential gain of this reduction, already in a very small example:

Example 5.1. Consider the support set {α 0 , . . . , α 7 } = {(0, 0, 0) T , (7, 0, 0) T , (0, 7, 0) T , (0, 0, 7) T , (1, 1, 2) T , (1, 2, 1) T , (2, 1, 1) T , (2, 2, 2) T } and let G := S 3 be the symmetric group on three elements. In order to avoid too heavy notation, we will write c (i) 

j instead of c (α i ) α j and ν (i) j instead of ν (α i ) α j . Consider a signomial f (x 1 , x 2 , x 3 ) = 7 i=0 c i e α i ,(x 1 ,x 2 ,x 3 ) , with c 0 , c 1 , c 2 ,
3 ), ν (4) = (ν

(4) 0 , ν (4) 1 , ν (4) 
3 ),

In the context of the symmetric group it is natural to consider situations in which the number of variables grows. Such situations were studied for example in the context of sums of squares relaxations. Several examples were observed in which the complexity of the symmetry-adapted semi-definite program is independent of the number of variables. Analogously, we now describe natural sequences of signomials where the size of the relative entropy program stabilizes when the number of variables is large enough.

Fix n 0 ∈ N and start with a signomial f n 0 in n 0 variables, represented by the orbit representatives of the exponent vectors  and B, as well as the corresponding coefficients. For each of these exponents α, we denote by Λ(α) the orbit type of α where we forget about the 0 entries. For instance, when n 0 = 3,  = {α} = {(1, 1, 2)} and B = { β} = {(0, 0, 1)}, then Λ(α) = (2, 1) while Λ( β) = (1). Note that these sequences do not have to be partitions of n, we therefore introduce wt

(α) = λ∈ Λ(α) λ,
counting the number of non-zero coordinates of α, and refer to it as the weight of α. Hence wt(1, 1, 2) = 3, while wt(0, 0, 1) = 1. Now, for every n n 0 , we can see α as an exponent in R n , by adding n -n 0 zeroes. This procedure does not affect Λ(α) and wt(α). In this way, we can define for every n > n 0 , the unique S n -invariant signomial f n whose support is made of the S n -orbits of  and B with the corresponding coefficients. Clearly, in this situation, the number of constraints C n in Corollary 4. Then, for every n 2m, V n = V 2m .

Proof. We shall show by induction that for every n 2m, V n = V 2m . The initial step being obvious, assume n > 2m. The definition of m ensures that for n ≥ 2m, for every α in  ∪ B, the coordinate occurring the most in α is 0, and therefore

Λ(α) = (n -wt(α), λ 1 , . . . , λ k ),
where (λ 1 , . . . , λ k ) = Λ(α). Remember that the number of variables is given by

V n = 2 α∈ Â, β∈ B N n Λ( α),Λ( β) ,
where, if Λ(α) = (n-wt(α), λ 1 , . . . , λ k ) and Λ( β) = (n-wt( β), µ 1 , . . . , µ ), the quantity N n Λ( α),Λ( β) counts the number of matrices of size (k + 1) × ( + 1) with non-negative integer coefficients of the form (5.1)

n -wt( β) µ 1 µ 2 . . . µ         • • • . . . • n -wt(α) • • • . . . • λ 1 . . . . . . . . . . . . . . . . . . • • • . . . • λ k
where the labels give the sum of the coefficients in the corresponding row/column. Since  and B keep the same number of elements, we only need to show that for every α ∈ Â, β ∈ B, then

N n Λ( α),Λ( β) = N n-1 Λ( α),Λ ( β) 
. If we start with a matrix of the form (5.2)

n -1 -wt( β) µ 1 µ 2 . . . µ         • • • . . . • n -1 -wt(α) • • • . . . • λ 1 . . . . . . . . . . . . . . . . . . • • • . . . • λ k
, adding 1 to the top left coefficients provides a matrix of the form (5.1), wich proves

N n Λ( α),Λ ( β) 
N n-1 Λ( α),Λ( β) . In order to show the reverse inequality, we claim that the top left coefficient in (5.1) cannot be 0. Indeed, if it is 0, then the sum of the coefficients in the first row is at most

µ 1 + µ 2 + . . . + µ = wt( β).
This implies n -wt(α) wt( β), which forces n 2m and gives a contradiction. Now, if the top left coefficient is a positive integer, substracting 1 to this coefficient provides a matrix of the form (5.2), which proves N n Λ( α),Λ( β)

N n-1 Λ( α),Λ( β) , and hence

V n = V n-1 .
Building on this, we can actually show that for a large class of problems we have a stabilization. for every α, β satisfying the conditions of the theorem. This will be done in two steps. First, we show that if λ = (λ 1 , . . . , λ t , 1) is a partition, and λ = (λ 1 , λ 2 , . . . , λ t-1 , λ t + 1), then for every partition µ, we have

N λ ,µ N λ,µ and N µ,λ N µ,λ .
Indeed, there is a surjection from the set M λ ,µ onto M λ,µ . Namely let (x 1 , . . . , x k ) denote the t-th line of an element in M λ,µ . Let s be such that x s > 0. Replacing the t-th line of this element by (x 1 , . . . , x s-1 , x s -1, x s+1 , . . . x k ) and inserting (0, . . . , 0, 1, 0, . . . , 0) as the (t + 1)-th line we get an element in N λ ,µ . By applying this procedure recursively for rows and columns we get the inequality in (5.3).

To show the equality in (5.3), observe that the top-left element of N (n-w,1 w ),(n-w,1 w ) has to be an integer k between n -2w and n -w. For every such choice, we have to distribute n-w-k ones in the first row and first column. This gives w n-w-k 2 possibilities. Restricted to the w × w lower right submatrix, these selected lines and columns contain only 0. For each of these possibilities, after removing these chosen lines and columns, we get an (n -k) × (n -k) matrix which contains exactly one 1 per line and column. There are (n -k)! such matrices. By a change of the index variable, we get the desired result:

V n =2 α∈ Â β∈ B α(S n ) β = 2 α∈ Â β∈ B N Λ(α),Λ(β) ≤ 2lku(w).
We conclude this section by giving explicit estimates on the signomials where | B| = 1, and  = {0, α}. We have chosen four different classes of examples that show the influence of the sizes of the orbits on the numbers of variables and constraints. These classes represent extremal situations, namely when the orbits are either very large or very small. In these situations, we can actually compute the exact number of variables and constraints in both cases according to the previous discussions. Note that the last case falls into the framework of Theorem 5.2, where wt(α) = wt( β) = 1. There is also a stabilization in the first sequence: when len( β) = 1, for every α ∈ Â, the number of variables α(S n ) β is equal to 1. The subsequent table summarizes our analysis. Specific signomials realizing the cases are given in Examples 6.1-6.4 in the next section.

Standard method

Symmetric method

|S n • β| |S n • α| V n C n V n C n Example 1 n! 2n! + 3 n! + n + 2 5 4 6.1 n! n 2(n + 1)n! + 1 (n + 1)(n! + 1) 2n + 3 n + 3 6.2 n! n! 2(n! + 1)n! + 1 n!(n + 2) + 1 2n! + 3 n + 3 6.3 n n 2n(n + 1) + 1 (n + 1) 2 7 5 6.4
Table 1. Comparison of the parameters when  = {0, α} and B = { β}.

Numerical experiments

To illustrate the previous considerations, we present in this section classes of examples that spotlight the computational gains by the comparison of calculation times in the case of the symmetric group. For these computations, we used the ECOS solver and Python 3.7 on an Intel(R) Xeon(R) Platinum 8168 CPU with 2.7 GHz and 768 GB of RAM under CentOS Linux release 7.9.2009. Keeping the previous notation, for the standard method, that is the method that does not exploit the symmetries, the input consists of A, B as well as the coefficients, while for the symmetry-adapted version, the input is Â, B and the coefficients. This difference of input is mainly due to practical considerations and does not in itself influence the comparison of the time used by the solver. When both methods give an answer, the bounds coincide.

In all the tables in the sequel, dim is the dimension, V n and C n are the number of variables and constraints of the program, while t s and t r denote the solver time and the overall running time (including the building of the optimization program) in seconds. While it might happen that the standard method is slightly faster for very small instances, the size growth of the program in the standard method makes it quickly unsolvable. In that case this is represented by "-" in the table. The symmetric approach allows however to go further, and we give all the results until the solver warns about a possible inaccuracy. In this case, we mark the bound with " * ".

The first four examples give numerical results for each of the classes discussed in Table 1. We tried to choose the coefficients in a way that avoids numerical issues, namely preventing the bound to be either too small or too large. 

n .

Example 6.2. Consider now the signomial

f (2) n = (n -1)! n i=1 exp(n 2 x i ) - σ∈Sn σ exp( β, x ),
where β = (1, 2, . . . , n) (and α = (n 2 , 0, . . . , 0)). The numerical results are shown in Table 3. 

Standard method Symmetric method

dim bound V n C n t s t r V n C n t s t r 2 -
n .

Example 6.4. Finally, we consider the case where both orbits are small. Let 5. 

Standard method

n .

Example 6.5. Finally, we give an example where A and B consist of two orbits each: Â = {(n 2 , 0, . . . , 0), (1, 4, . . . , n 2 )} and B = {(1, . . . , 1), (1, 2, . . . , n)}.

In this case, we are still able to compute the number of constraints and the number of variables. With the standard approach, V n = 2(n! + n + 1)(n! + 1) + 1, C n = (n! + 1)(n + 2) + n, while using symmetries, V n = 2n! + 2n + 9, C n = n + 6. 

Conclusion and open questions

We have developed techniques to exploit symmetries in AM/GM-based optimization and confirmed their benefit in terms of computational results. In particular, in the case of symmetric signomials, we showed that both theoretically as well as practically our orbit reduction allow for substantial computational gains. This motivates a theoretical study of the strength of the AM/GM bounds in this framework. In particular, it encourages the comparison of the symmetric SAGE cones with respect to the cone of symmetric non-negative signomials.

α∈A c α

  exp( α, x ) + β∈B c β exp( β, x ) with c α > 0 for α ∈ A and c β < 0 for β ∈ B. In this notation, the overall support set of f is T = A ∪ B. Accordingly, for disjoint sets ∅ = A ⊂ R n and B ⊂ R n , it is convenient to denote by (2.1)

. 7 )

 7 Substituting (3.7) into (3.6) gives f = β∈ B ρ∈G/ Stab β ρh β as desired. Moreover, the Stab( β)-invariance of h β for β ∈ B follows from (3.7).

Theorem 4 . 1 .

 41 Let B be a set of orbit representatives for B. A G-invariant signomial f of the form (3.3) is contained in C SAGE (A, B) if and only if for every β ∈ B there exist c ( β) ∈ R A + and ν ( β) ∈ R A + , invariant under the action of Stab( β), such that α∈A ν ( β) α (α -β) = 0 for every β ∈ B, (4.1)

  and τ = σ in the right quotient space Stab( β)\G. Proof of Theorem 4.1. If f is G-symmetric, then, by Theorem 3.1, there exist Stab( β)invariant AGE signomials h β ∈ C SAGE (A, β) for every β ∈ B such that

  .3). Let β ∈ B and β ∈ B be the representative of its orbit in B. If σ, τ ∈ G are such that σ(β) = τ (β) = β, then τ σ -1 ∈ Stab( β) and τ = σ in Stab( β)\G. Since c ( β) and ν ( β) are invariant under Stab( β), we have c ( β)

α.Corollary 4 . 3 .

 43 are actually equal, and we can take each c ( β) , ν( β) in the ground set R A/ Stab( β) + Let  and B be a set of orbit representatives for A and B. A G-invariant signomial f of the form (3.3) is contained in C SAGE (A, B) if and only if for every β ∈ B there exist c ( β) ∈ R A/ Stab( β) + and ν ( β) ∈ R A/ Stab( β) + such that α∈A/ Stab( β)

Corollary 4 . 5 .

 45 Let K ⊂ R n be convex and G-invariant. A G-invariant signomial f of the form (3.3) is contained in C K (A, B) if and only if for every β ∈ B there exist c ( β) ∈ R A + and ν

  contrast, let us analyze the number of variables and constraints involved in the relative entropy program in Corollary 4.3. Observe that A/ Stab( β) is the disjoint union of the G • α/ Stab( β) where α runs through Â. It follows that for every pair β ∈ B, α ∈ Â, we have exactly 2|(G • α)/ Stab( β)| variables c ( β) γ and ν ( β) γ . By definition, |(G • α)/ Stab( β)| is the number of Stab( β)-orbits in G • α. Since G • α is in bijection with Stab α\G we get a bijection between (G • α)/ Stab( β) and the set of double cosets Stab(α)\G/ Stab( β). Therefore, the number of orbits in question equals | Stab(α)\G/ Stab( β)|, satisfying, according to Burnside's Lemma (see for instance [28, Lemma 7.24.5]):

Theorem 4 . 6 .

 46 Let  and B be a set of orbit representatives for A and B. For α ∈ Â, β ∈ B, denote by αG β the cardinality | Stab(α)\G/ Stab( β)|, and by n β the dimension of the fixed subspace (R n ) Stab( β) . Then, the relative entropy program in Corollary 4.3 consists of 2 α∈  β∈ B αG β variables, β∈ B n β scalar equalities, and | Â| + | B| inequalities.

c 3 >

 3 0 and c 4 , c 5 , c 6 , c 7 < 0, i.e., set A = {α 0 , . . . , α 3 }, B = {α 4 , . . . , α 7 }. Then  = {α 0 , α 1 } and B = {α 4 , α 7 } are sets of orbit representatives. The corresponding partitions are Λ(α 0 ) = Λ(α 7 ) = (3), and Λ(α 1 ) = Λ(α 4 ) = (2, 1). Then, by Corollary 4.3, f ∈ C SAGE (A, B) if and only there exist c (4) = (c

  3 does not depend on n, since it only involves | B|, | Â|, and the length of the elements in B, which does not change when n n 0 + 1. In this framework, a similar phenomenon holds for the number of variables: Theorem 5.2. Let n 0 ∈ N, and Â, B be finite orbit representatives of exponent vectors in R n 0 . Consider, for n n 0 , the signomial f n previously defined, and denote by V n the number of variables in the symmetry-adapted relative entropy program in Corollary 4.3. Let m = max{wt(α) : α ∈ Â ∪ B}.

Theorem 5 . 3 .

 53 Let k, l, w ∈ N be fixed. Then for every integer n 2w and every S ninvariant signomial f ∈ C(A, B) with | Â| k, | B| l, and max γ∈ Â∪ B wt(γ) w, the number of constraints and the number of variables of the symmetry adapted program are bounded by constants only depending on k, l and w: C n k + l + l(w + 1) and V n 2lku(w), Let us begin with the number of constraints. This follows from Theorem 5.2, because | Â| k, | B| l and n β w + 1, since wt( β) w. As in the previous proof, we have Λ(α) 1 = n -wt(α) and similarly for β. For the number of variables, we will show that (5.3) N Λ( α),Λ( β) N (n-w,1 w ),(n-w,1 w ) = u(w)

Example 6 . 1 .σ

 61 Consider first the signomial f exp( α, x ) -exp( β, x ), where β = (1, . . . , 1) and α = (1, 2, . . . , n). The numerical results are shown in

  n -1)(x 1 + • • • + x n ) + x i ),(β = (n, n -1, n -1, . . . , n -1) and α = (n 2 , 0, . . . , 0)). The numerical results are shown in Table

Table 2 .

 2 

				Standard method		Symmetric method
	dim bound	V n	C n	t s	t r	V n C n	t s	t r
	2	-0.1481	7	6	0.0113	0.0121 5 4 0.0147 0.0158
	3	-0.2499	15	11	0.0148	0.0160 5 4 0.0149
	4	-0.3257	51	30	0.0304	0.0337 5 4 0.0139 0.0147
	5	-0.3849	243	127	-	-	5 4 0.0140 0.0147
	6	-0.4327	1443 728	-	-	5 4 0.0136 0.0144
	7 -0.4724 * 10083 5049	-	-	5 4 0.0211 0.0222

Table 2 .

 2 Numerical results for f

Table 3 .

 3 Numerical results for f Example 6.3. Next, we consider the case where both orbits are of maximal size. Let = (1, 2, . . . , n) and α = (2, 8, . . . , 2n 2 ).The numerical results are shown in Table4.

		0.2109	13	9	0.0173	0.0185 7 5 0.0297 0.0311
	3 -0.8888	49	28	0.0427	0.0454 9 6 0.0248 0.0264
	4	-4.111	241	125	0.152	0.1701 11 7 0.0296 0.0318
	5	-22.30	1441	726	0.7888	0.8433 13 8 0.0356 0.0384
	6	-141.0	10081	5047	5.422	5.843	15 9 0.0423 0.0458
	7	-1024	80641	40328	57.26	66.67	17 10 0.0491 0.0538
	8	-8418	725761	362889 1514	2211	19 11 0.0568 0.0626
	9	-77355 7257601 3628810	-	-	21 12 0.0661 0.0835
	10		79833601 39916811	-	-	23 13	-	-
						(2)	

n .

Table 4 .

 4 Numerical results for f

Table 5 .

 5 Numerical results for f

	Symmetric method

Table 6

 6 shows the numerical results for the signomials = (1, 4, . . . , n 2 ) and β = (1, 2, . . . , n).

	g n =	1 n	n i=1	exp(n 2 x i ) +	1 n		
							Standard method	Symmetric method
	dim bound	V n		C n	t s	t r	V n C n	t s	t r
	2 -0.1918	31		14	0.0272	0.0292	17	8 0.0738 0.0776
	3 -0.5223	141		38	0.0679	0.0727	27	9 0.0623 0.0663
	4		-2.118	1451		154	-	-	65 10 0.1436 0.1539
	5		-10.45	30493	852	-	-	259 11 0.5856 0.6320
	6				1048335 5774	-	-	1461 12	-	-

σ∈Sn σ exp( α, x ) -exp(x 1 + • • • + x n ) -1 n σ∈Sn σ exp( β, x )

for α

Table 6 .

 6 Numerical results for g n .

+ 1 + 2 + 2 = 7 linear constraints, against 2 • 4 • 4 =

variables and 4 • 3 + 4 + 4 = 20 linear constraints forgetting about symmetries.

c (7) = (c [START_REF] De Klerk | Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem[END_REF] 0 , c [START_REF] De Klerk | Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem[END_REF] 1 ) and ν (7) = (ν [START_REF] De Klerk | Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem[END_REF] 0 , ν [START_REF] De Klerk | Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem[END_REF] 1 ) satisfying the conditions ν

Note that here len(α 4 ) = 2 and len(α 7 ) = 1 so that the two vectorial equations bring together 2 + 1 scalar equations. In total, we get 2(1 + 1 + 2 + 1) = 10 variables and