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SYMMETRY REDUCTION IN AM/GM-BASED OPTIMIZATION

PHILIPPE MOUSTROU, HELEN NAUMANN, CORDIAN RIENER, THORSTEN THEOBALD,
AND HUGUES VERDURE

Abstract. The arithmetic mean/geometric mean-inequality (AM/GM-inequality) fa-
cilitates classes of non-negativity certificates and of relaxation techniques for polynomials
and, more generally, for exponential sums. Here, we present a first systematic study of
the AM/GM-based techniques in the presence of symmetries under the linear action of
a finite group. We prove a symmetry-adapted representation theorem and develop tech-
niques to reduce the size of the resulting relative entropy programs. We study in more
detail the complexity gain in the case of the symmetric group. In this setup, we can show
in particular certain stabilization results. We exhibit several sequences of examples in
growing dimensions where the size of the problem stabilizes. Finally, we provide some
numerical results, emphasizing the computational speed-up.

1. Introduction

Deciding whether a real function only takes non-negative values is a fundamental ques-
tion in real algebraic geometry. Non-negativity certificates and optimization approaches
are tightly related to each other by observing that the infimum f ∗ of a function f : Rn → R
can be expressed as the largest λ ∈ R for which f − λ is non-negative on Rn:

f ∗ = inf{f(x) : x ∈ Rn} = sup{λ ∈ R : f − λ is non-negative on Rn}.
Both in the context of polynomials and in the broader context of exponential sums, the

last years have seen strong interest in non-negativity certificates and optimization tech-
niques based on the arithmetic mean/geometric mean-inequality (AM/GM inequality).
More precisely, an exponential sum (or signomial) supported on a finite subset T ⊂ Rn is
a linear combination

∑
α∈T cα exp(〈α, x〉) with real coefficients cα. In particular cases, the

non-negativity of the real function defined by an exponential sum can be decided via the
arithmetic-geometric mean inequality. For example, for support points α0, . . . , αm ∈ Rn

and coefficients λ = (λ1, . . . , λm) ∈ Rn
+ satisfying

∑m
i=1 λi = 1 and

∑m
i=1 λiαi = α0, the

exponential sum
m∑
i=1

λi exp(〈αi, x〉)− exp(〈α0, x〉)

is non-negative on Rn as a consequence of the weighted arithmetic-geometric mean inequal-
ity, namely

∑m
i=1 λi exp(〈αi, x〉) >

∏m
i=1(exp(〈αi, x〉))λi . Clearly, sums of such exponential

sums are non-negative as well. Note that exponential sums can be seen as a generalization
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of polynomials: when T ⊂ Nn, the transformation xi = ln yi gives polynomial functions
y 7→

∑
α∈T cαy

α on Rn
>0.

These AM/GM-based certificates appear to be particularly useful in sparse settings.
In the specialized situation of polynomials, they can be seen as an alternative to non-
negativity certificates based on sums of squares. The ideas of these approaches go back to
Reznick [25] and have been recently brought back into the focus of the developments by
Pantea, Koeppl, and Craciun [23], Chandrasekaran and Shah [5] (“SAGE” cone: sums of
arithmetic-geometric exponentials) and Iliman and de Wolff [15] (“SONC ” cone: sums of
non-negative circuit polynomials), see also [18] for a generalized, uniform framework. The
AM/GM certificates can be effectively obtained by relative entropy programming (see [5,
6]), and in restricted settings these relative entropy programs become geometric programs
[16]. These techniques have been extended to cover constrained situations, prominently
by the work of Murray, Chandrasekaran and Wierman based on partial dualization [21].
This method can also be approached from sublinear circuits, see [22]. Furthermore, in
the setting of polynomials, the AM/GM-based approaches can be combined with sums of
squares [17]. Other recent approaches to sparse polynomials besides the ones based on the
AM/GM inequality can be found in the sparse moment hierarchies [30, 31].

From an algebraic point of view, a problem is symmetric when it is invariant under some
group action. Symmetries are ubiquitous in the context of polynomials and optimization,
since they manifest both in the problem formulation and the solution set. This often allows
to reduce the complexity of the corresponding algorithmic questions. Regarding the set of
solutions, it was observed by Terquem as early as in 1840 that a symmetric polynomial
does not always have a fully symmetric minimizer (see also Waterhouse’s survey [32]).
However, in many instances, the set of minimizers contains highly symmetric points (see
[12, 19, 26, 29]). With respect to problem formulations, symmetry reduction has provided
essential advances in many situations (see, for example, [2, 7, 9]), especially in the context
of sums of squares (see [1, 4, 8, 13, 14, 24, 27]).

The current paper departs from the question to which extent symmetries can be ex-
ploited in AM/GM-based optimization assuming that the problem affords symmetries.
We provide a first systematic study of the AM/GM-based approaches in G-invariant sit-
uations under the action of a group G. Our focus is on symmetry-adapted representation
theorems, and algorithmic symmetry reduction techniques.

Our contributions. 1. We prove a symmetry-adapted decomposition theorem and
develop a symmetry-adapted relative entropy formulation SAGE exponentials in a general
G-invariant setting.

2. This adaption reduces the size of the resulting relative entropy programs or geo-
metric programs, see Theorem 3.1, Theorem 4.1 and Corollary 4.3. As revealed by these
statements, the gain depends on the orbit structure of the group action.

3. In the case of the symmetric group, we use combinatorial aspects of the representation
theory of the symmetric group in order to measure the size of the resulting relative entropy
program. In particular, we identify situations in which the size of the symmetry adapted
relative entropy program stabilizes with respect to the number of variables.



SYMMETRY REDUCTION IN AM/GM-BASED OPTIMIZATION 3

4. We evaluate the structural results in the paper in terms of computations. In situations
with strong symmetry structure, the number of variables and the number of equations and
inequalities becomes substantially smaller. Accordingly, the interior-point solvers underly-
ing the computation of SAGE bounds then show strong reductions of computation time. In
various cases, the symmetry-adapted computation succeeds when the conventional SAGE
computation fails.

We mostly concentrate on the unconstrained optimization, but the techniques can gen-
erally also be extended to the constrained case. See, for example, Theorem 4.5.

The paper is structured as follows. After collecting relevant notions and concepts in
Section 2, we provide in Section 3 a specific way of writing sums of arithmetic-geometric
exponentials in the presence of a group symmetry. In Section 4, we study how to charac-
terize and to decide whether a G-symmetric exponential sum is contained in the SAGE
cone with reduced relative entropy programs. The case of the symmetric group is treated
in Section 5, while Section 6 provides experimental results of an implementation of the
symmetry reduction techniques. We conclude the paper in Section 7.

Acknowledgement. The authors gratefully acknowledge partial support through the
project “Real Algebraic Geometry and Optimization” jointly funded by the German Aca-
demic Exchange Service DAAD and the Research Council of Norway RCN, and through
the Tromsø Research foundation grant agreement 17matteCR.

2. Preliminaries

Throughout the article, we use the notation N = {0, 1, 2, 3, . . .}. For a finite subset
T ⊂ Rn, let RT be the set of |T |-tuples whose components are indexed by the set T . We
denote by 〈·, ·〉 the standard Euclidean inner product in Rn.

The SAGE cone. For a given non-empty finite set T , we consider exponential sums sup-
ported on T as defined in the Introduction. For finite T ⊂ Rn, the SAGE cone CSAGE(T )
is defined as

CSAGE(T ) :=
∑
β∈T

CAGE(T \ {β}, β),

where for A := T \ {β}

CAGE(A, β) :=
{
f =

∑
α∈A

cαe
〈α,x〉 + cβe

〈β,x〉 : cα > 0 for α ∈ A, cβ ∈ R, f(x) > 0 on Rn
}

denotes the non-negative exponential sums which may only have a negative coefficient in
the term indexed by β (see [5]). The elements in these cones are called SAGE signomials
and AGE signomials, respectively. The cone CSAGE(T ) is a closed convex cone in RT
(see [18, Proposition 2.10]).

Membership to this convex cone can be decided in terms of relative entropy program-
ming. For a finite set ∅ 6= A ⊂ Rn, denote by D : RA>0 × RA>0 → R,

D(ν, γ) =
∑
α∈A

να ln

(
να
γα

)
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the relative entropy function, which can be extended to RA+ × RA+ → R ∪ {∞} via the
conventions 0 · ln 0

y
= 0 for y > 0 and y · ln y

0
= ∞ for y > 0. To decide membership of

a given signomial f supported on T to the SAGE cone, assume that f is written in the
form

f =
∑
α∈A

cα exp(〈α, x〉) +
∑
β∈B

cβ exp(〈β, x〉)

with cα > 0 for α ∈ A and cβ < 0 for β ∈ B. In this notation, the overall support set of f
is T = A ∪ B. Accordingly, for disjoint sets ∅ 6= A ⊂ Rn and B ⊂ Rn, it is convenient to
denote by

(2.1) CSAGE(A,B) :=
∑
β∈B

CAGE(A ∪ B \ {β}, β)

the signed SAGE cone, which allows negative coefficients only in a certain subset B of the
support A ∪ B. This a common notation in optimization viewpoints [10, 11, 16, 20, 21].

Proposition 2.1 ([20]). A signomial f belongs to CSAGE(A,B) if and only if for every
β ∈ B there exist c(β) ∈ RA+ and ν(β) ∈ RA+ such that∑

α∈A
ν

(β)
α α = (

∑
α∈A

ν
(β)
α )β for β ∈ B,

D(ν(β), e · c(β)) 6 cβ for β ∈ B,∑
β∈B

c
(β)
α 6 cα for α ∈ A.

Note that this proposition reflects the statement of Murray, Chandrasekaran and Wier-
man [20] that every SAGE signomial can be decomposed into AGE signomials in such a
way that every term with a negative coefficient only appears in a single AGE signomial.

Optimizing over the SAGE cone. Since the SAGE cone is contained in the cone of
non-negative signomials, relaxing to the SAGE cone gives an approximation of the global
infimum f ∗ of a signomial f supported on T :

fSAGE = sup{λ ∈ R : f − λ ∈ CSAGE(T )}
satisfying fSAGE 6 f ∗.

Constrained versions. While many aspects of this article are devoted to the uncon-
strained situation, we briefly collect the extension of SAGE certificates to the constrained
situation. Let K be a convex and closed subset of Rn. For a convex set K ⊂ Rn and a
non-empty finite set T ⊂ Rn, the K-SAGE cone CK(T ) is defined (see [21]) as

CK(T ) :=
∑
β∈T

CK(T \ {β}, β),

where for A := T \ {β},

CK(A, β) :=
{
f =

∑
α∈A

cαe
〈α,x〉 + cβe

〈β,x〉 : cα > 0 for α ∈ A, cβ ∈ R, f(x) > 0 on K
}
.
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Moreover, (2.1) can be generalized by defining, for disjoint sets ∅ 6= A ⊂ Rn and B ⊂ Rn,
the signed K-SAGE cone

CK(A,B) :=
∑
β∈B

CK(A, β).

This is the set of K-SAGE signomials, where negative coefficients are only possible in a
certain subset B of the support A ∪ B. The following decomposition result holds.

Theorem 2.2 ([21], Corollary 5). If f ∈ CK(A,B) with cα > 0 for all α ∈ A and cβ < 0
for all β ∈ B 6= ∅, then there exist K-AGE signomials fβ ∈ CK(A, β) for β ∈ B such that
f =

∑
β∈B fβ.

For the constrained approach, a similar result to Proposition 2.1 is known.

Proposition 2.3 ([21]). f ∈ CK(A∪B) if and only if for every β ∈ B there exist c(β) ∈ RA+
and ν(β) ∈ RA+ such that

D(ν(β), e · c(β)) + sup
x∈K
〈−
∑
α∈A

ν
(β)
α (α− β), x〉 6 cβ for β ∈ B,∑

β∈B
c

(β)
α 6 cα for α ∈ A.

3. Orbit decompositions of symmetric exponential sums

In this section, we provide a structural result on the decomposition of symmetric SAGE
exponentials as sums of orbits of (non-symmetric) AGE exponentials.

Let G be a finite group acting linearly on Rn on the left, namely we have a group
homomorphism

ϕ : G → GLn(R)
σ 7→ ϕ(σ)

.

For σ ∈ G and x ∈ Rn, we denote by σ · x the image of x through ϕ(σ). In order to get a
left action on the set of functions defined on Rn, we need to take

(3.1) (σ ∗ f)(x) = f(σ−1 · x) = f(ϕ(σ−1)(x)).

For a signomial f(x) =
∑

α cα exp(〈α, x〉), we see an exponent vector α as an element of
the dual space. Then, the dual action of G on the exponent vectors is given by

σ ⊥ α := ϕ(σ−1)#(α),

where A# denotes the adjoint operator of A. Note that this is a left action as well.
Therefore, even if the exponents and the variables lie in isomorphic spaces, the actions of
G on these spaces are different and dual to each other, and satisfy

〈α, σ · x〉 = 〈α, ϕ(σ)(x)〉 = 〈ϕ(σ)#(α), x〉 = 〈σ−1 ⊥ α, x〉
and furthermore, for a signomial f ,

(3.2) (σ ∗ f)(x) = f(σ−1 · x) =
∑
α

cα exp(〈α, σ−1 · x〉) =
∑
α

cα exp(〈σ ⊥ α, x〉).

From now on, in order to keep notations as light as possible, with a slight abuse of
notations, we write σ(x) = σ · x for the action on the variables, σf = σ ∗ f for the action
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on functions, and σ(α) = σ ⊥ α for the dual action. Even if the actions are different, the
context should clarify the correspondence.

For a set S ⊂ Rn of exponent vectors, the orbit of S under G is

G · S = {σ(s) : s ∈ S, σ ∈ G}.
We call a subset Ŝ ⊂ S a set of orbit representatives for S if Ŝ is an inclusion-minimal
set with (G · Ŝ) = S. Moreover, let Stab β := {σ ∈ G : σ(β) = β} denote the stabilizer
of an exponent vector β.

In the following statements, we consider G-invariant signomials f . It is convenient to
write f here in the form

(3.3) f =
∑
α∈A

cα exp(〈α, x〉) +
∑
β∈B

cβ exp(〈β, x〉)

with cα > 0 for α ∈ A and cβ < 0 for β ∈ B, i.e., f is an element of the signed SAGE cone
CSAGE(A,B) introduced in Section 2. As already mentioned, in this notation, the overall
support set of f is A ∪ B.

Theorem 3.1. Let K ⊂ Rn be convex and G-invariant, let f be a G-invariant signomial
of the form (3.3) and B̂ be a set of orbit representatives for B. Then f ∈ CK(A,B) if and

only if for every β̂ ∈ B̂, there exists a K-AGE signomial hβ̂ ∈ CK(A, β̂) such that

(3.4) f =
∑
β̂∈B̂

∑
ρ∈G/Stab(β̂)

ρhβ̂.

The functions hβ̂ can be chosen to be invariant under the action of Stab(β̂).

Here, ρ ∈ G/ Stab(β̂) shortly denotes that ρ runs over a set of representatives of the left

quotient space G/ Stab(β̂), which is defined through the left cosets {σ Stab(β̂) : σ ∈ G}.
We will also use the right quotient space, denoted by Stab(β̂)\G, further below.

Proof. Since it is clear that a signomial f of the form (3.4) is non-negative, we only have
to show the converse direction. Let f ∈ CK(A,B). By Theorem 2.2, there exist K-AGE
signomials fβ ∈ CK(A, β) for β ∈ B, such that f =

∑
β∈B fβ. The G-invariance of f gives

(3.5) f =
1

|G|
∑
σ∈G

σf =
1

|G|
∑
σ∈G

∑
β∈B

σfβ.

The idea is to group in this sum all the σfβ that have the same “possibly negative” term.
According to (3.2), the possibly negative term of σfβ is given by σ(β). For any β ∈ B,
the signomial

hβ =
1

|G|
∑
σ∈G

σfσ−1(β)

is a sum of K-AGE signomials in CK(A, β), hence it is contained in CK(A, β) as well.
Moreover, (3.5) can be expressed as

f =
1

|G|
∑
σ∈G

∑
β∈B

σfβ =
1

|G|
∑
σ∈G

∑
γ∈B

σfσ−1(γ) =
∑
γ∈B

hγ.
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Let β ∈ B and β̂ ∈ B̂ be the representative of its orbit in B̂. If σ, τ ∈ G are such that
σ(β̂) = τ(β̂) = β, then τ−1σ ∈ Stab(β̂) and τ = σ in G/ Stab(β̂). Hence,

f =
∑
β̂∈B̂

∑
ρ∈G/ Stab β̂

hρ(β̂).(3.6)

Now observe that hρ(β) = ρhβ for every β ∈ B and ρ ∈ G, because

|G|ρhβ =
∑
σ∈G

ρσfσ−1(β) =
∑
τ∈G

τfτ−1ρ(β) = |G|hρ(β).(3.7)

Substituting (3.7) into (3.6) gives f =
∑

β̂∈B̂
∑

ρ∈G/Stab β̂ ρhβ̂ as desired. Moreover, the

Stab(β̂)-invariance of hβ̂ for β̂ ∈ B̂ follows from (3.7). �

Remark 3.2. Note that the previous results extend naturally to compact/reductive
groups, since they mainly rely on the existence of a Reynolds operator. For the sake of
simplicity, we presented them for finite groups, where the Reynolds operator corresponds
to a finite average over the group.

4. Symmetry reduction in relative entropy programming

Building upon the previous decomposition theorem, we provide a symmetry-adapted
relative entropy formulation for containment in the SAGE cone.

Theorem 4.1. Let B̂ be a set of orbit representatives for B. A G-invariant signomial f
of the form (3.3) is contained in CSAGE(A,B) if and only if for every β̂ ∈ B̂ there exist

c(β̂) ∈ RA+ and ν(β̂) ∈ RA+ , invariant under the action of Stab(β̂), such that∑
α∈A

ν(β̂)
α (α− β̂) = 0 for every β̂ ∈ B̂,(4.1)

D(ν(β̂), e · c(β̂)) 6 cβ̂ for every β̂ ∈ B̂,(4.2) ∑
β̂∈B̂

∑
σ∈Stab (β̂)\G

c
(β̂)
σ(α) 6 cα for every α ∈ A.(4.3)

Remark 4.2. The right coset condition (4.3) can equivalently be expressed in terms of
the left cosets, ∑

β̂∈B̂

∑
σ∈G/Stab β̂

c
(β̂)

σ−1(α) 6 cα for every α ∈ A.

Namely, if β ∈ B, β̂ ∈ B̂ and σ, τ ∈ G are such that σ−1(β̂) = τ−1(β̂) = β, then

τσ−1 ∈ Stab(β̂) and τ = σ in the right quotient space Stab(β̂)\G.

Proof of Theorem 4.1. If f is G-symmetric, then, by Theorem 3.1, there exist Stab(β̂)-

invariant AGE signomials hβ̂ ∈ CSAGE(A, β̂) for every β̂ ∈ B̂ such that

f =
∑
β̂∈B̂

∑
ρ∈G/Stab(β̂)

ρhβ̂.
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Writing hβ̂ in the form

hβ̂ =
∑
α∈A

c(β̂)
α exp(〈α, x〉) + cβ̂ exp(〈β̂, x〉)

with coefficients c
(β̂)
α and cβ̂ for α ∈ A and β̂ ∈ B̂, the two conditions (4.1) and (4.2) follow

from the property hβ̂ ∈ CSAGE(A, β̂). For (4.3), we observe that for α ∈ A, the coefficient

of exp(〈α, x〉) in ρhβ̂ is c
(β̂)

ρ−1(α). We obtain inequality (4.3), even with equality, by setting

σ := ρ−1 and summing over β̂ ∈ B̂ and over σ ∈ Stab(β̂)\G, following Remark 4.2.

Moreover, the Stab(hβ̂)-invariance of hβ̂ implies the Stab(β̂)-invariance of c(β̂). In order

to make ν(β̂) invariant under Stab(β̂), we can replace it with

µ(β̂)
α =

1

| Stab(β̂)|

∑
σ∈Stab(β̂)

ν
(β̂)
σ(α).

Obviously, this has no influence on (4.3). For (4.1), we have

| Stab(β̂)|
∑
α∈A

µ(β̂)
α (α− β̂) =

∑
α∈A

∑
σ∈Stab(β̂)

ν
(β̂)
σ(α)(α− β̂)

=
∑

σ∈Stab(β̂)

σ−1
∑
α∈A

ν
(β̂)
σ(α)(σ(α)− σ(β̂))

=
∑

σ∈Stab(β̂)

σ−1
∑
α∈A

ν(β̂)
α (α− β̂)) = 0.

Finally, for (4.2), using c
(β̂)
α = c

(β̂)
σ(α) for σ ∈ Stab(β̂) and applying Jensen’s inequality on

the convex function x 7→ x lnx gives, for all α ∈ A,

µ(β̂)
α ln

µ
(β̂)
α

c
(β̂)
α

=

 1

| Stab(β̂)|

∑
σ∈Stab(β̂)

ν
(β̂)
σ(α)

 ln

1

|Stab(β̂)|

∑
σ∈Stab(β̂) ν

(β̂)
σ(α)

c
(β̂)
α

= c(β̂)
α

∑σ∈Stab(β̂) ν
(β̂)
σ(α)/c

(β̂)
σ(α)

| Stab(β̂)|
ln

∑
σ∈Stab(β̂) ν

(β̂)
σ(α)/c

(β̂)
σ(α)

| Stab(β̂)|


6 c(β̂)

α

 1

| Stab(β̂)|

∑
σ∈Stab(β̂)

ν
(β̂)
σ(α)

c
(β̂)
σ(α)

ln
ν

(β̂)
σ(α)

c
(β̂)
σ(α)

 .

Using again the Stab(β̂)-invariance of c(β̂) and the precondition then yields

∑
α∈A

µ(β̂)
α ln

µ
(β̂)
α

ec
(β̂)
α

6
1

| Stab(β̂)|

∑
σ∈Stab(β̂)

∑
α∈A

ν
(β̂)
σ(α) ln

ν
(β̂)
σ(α)

ec
(β̂)
σ(α)

6
1

| Stab(β̂)|

∑
σ∈Stab(β̂)

cβ̂ = cβ̂.
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Conversely, assume that c(β̂) and ν(β̂), invariant under the action of Stab(β̂), sat-

isfy (4.1)–(4.3). Let β ∈ B and β̂ ∈ B̂ be the representative of its orbit in B̂. If σ, τ ∈ G
are such that σ(β) = τ(β) = β̂, then τσ−1 ∈ Stab(β̂) and τ = σ in Stab(β̂)\G. Since c(β̂)

and ν(β̂) are invariant under Stab(β̂), we have

c
(β̂)
τ(α) = c

(β̂)
σ(α), ν

(β̂)
τ(α) = ν

(β̂)
σ(α) for α ∈ A.

Thus we can define

c(β)
α = c

(β̂)
σ(α), ν(β)

α = ν
(β̂)
σ(α) for α ∈ A,

which is independent of σ such that σ(β) = β̂. As a consequence, if τ ∈ Stab(β̂)\G, then

c
(τ−1(β̂))
α = c

(β̂)
τ(α) is well defined.

To see that the first conditions of Proposition 2.1 are satisfied, let β ∈ B and σ ∈ G
such that σ(β) = β̂. Then∑

α∈A

ν(β)
α (α− β) =

∑
α∈A

ν
(β̂)
σ(α)(α− σ

−1(β̂))

= σ−1
∑
α∈A

ν
(β̂)
σ(α)(σ(α)− β̂) = σ−1

∑
α∈A

ν(β̂)
α (α− β̂) = 0

and D(ν(β), ec(β)) = D(ν(β̂), ec(β̂)) 6 cβ̂ = cβ.

For the third condition of Proposition 2.1, we obtain∑
β∈B

c(β)
α =

∑
β̂∈B̂

∑
τ∈Stab(β̂)\G

c(τ−1(β̂))
α =

∑
β̂∈B̂

∑
τ∈Stab(β̂)\G

c
(β̂)
τ(α) 6 cα,

which altogether shows that f ∈ CSAGE(A,B).
�

The following consequence of Theorem 4.1 further reduces the number of variables in

the relative entropy program, since a certain number of c
(β̂)
α and ν

(β̂)
α are actually equal,

and we can take each c(β̂), ν(β̂) in the ground set RA/Stab(β̂)
+ .

Corollary 4.3. Let Â and B̂ be a set of orbit representatives for A and B. A G-invariant
signomial f of the form (3.3) is contained in CSAGE(A,B) if and only if for every β̂ ∈ B̂
there exist c(β̂) ∈ RA/ Stab(β̂)

+ and ν(β̂) ∈ RA/Stab(β̂)
+ such that∑

α∈A/ Stab(β̂)

ν(β̂)
α

∑
α′∈Stab(β̂)·α

(α′ − β̂) = 0 for every β̂ ∈ B̂,(4.4)

∑
α∈A/ Stab(β̂)

∣∣∣Stab(β̂) · α
∣∣∣ ν(β̂)

α ln
ν

(β̂)
α

ec
(β̂)
α

6 cβ̂ for every β̂ ∈ B̂,(4.5)

∑
β̂∈B̂

| Stab(α)|
| Stab(β̂)|

∑
γ∈(G·α)/Stab(β̂)

∣∣∣Stab(β̂) · γ
∣∣∣ c(β̂)
γ 6 cα for every α ∈ Â.(4.6)
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Proof. For (4.4) and (4.5), equivalence to their versions in Theorem 4.1 is straightforward
to check. For (4.6), equivalence to (4.3) follows by observing that for every α ∈ A∑

σ∈Stab(β̂)\G

c
(β̂)
σ(α) =

∑
σ∈Stab(β̂)\G

1

| Stab(β̂)|

∑
τ∈Stab(β̂)

c
(β̂)
τ(σ(α)) =

1

| Stab(β̂)|

∑
ρ∈G

c
(β̂)
ρ(α)

=
| Stab(α)|
| Stab(β̂)|

∑
γ∈G·α

c(β̂)
γ =

| Stab(α)|
| Stab(β̂)|

∑
γ∈(G·α)/ Stab(β̂)

∣∣∣Stab(β̂) · γ
∣∣∣ c(β̂)
γ ,

and the last expression only depends on the orbit G · α rather than on α itself. �

Remark 4.4. Note that we cannot simply assume c
(β)
α = c

(β)
α′ for some α′ ∈ G · α and,

similarly, we cannot simply assume ν
(β)
α = ν

(β)
α′ for some α′ ∈ G·α, for instance due to (2.1).

Namely, if an element β lies in convA with barycentric coordinates λ, say β =
∑

α∈A λαα,
then for any σ ∈ G, we have

σ(β) = σ

(∑
α∈A

λαα

)
=
∑
α∈A

σ(λαα) =
∑
α∈A

λασ(α)

rather than σ(β) = σ(
∑

α∈A λαα) =
∑

α∈A λσ(α)σ(α). Of course, this caveat does not
occur whenever there is a single inner term.

For symmetric constraint sets K, a constrained version of Theorem 4.1 (and similarly,
of Corollary 4.3) can be given as well. The proof is similar.

Corollary 4.5. Let K ⊂ Rn be convex and G-invariant. A G-invariant signomial f of the

form (3.3) is contained in CK(A,B) if and only if for every β̂ ∈ B̂ there exist c(β̂) ∈ RA+
and ν(β̂) ∈ RA+ such that

D(ν(β̂), e · c(β̂)) + supx∈K〈
(
−
∑
α∈A

ν
(β̂)
α (α− β̂)

)
, x〉 6 cβ̂ for every β̂ ∈ B̂,∑̂

β∈B̂

∑
σ∈Stab β̂\G

c
(β̂)
σ(α) 6 cα for every α ∈ A.

To close this section we discuss the resulting complexity reduction:

Note that the initial relative entropy formulation which does not take the symmetry
into consideration will involve 2|B||A| variables. Furthermore, since every vector equality
in (4.4) brings n scalar equalities, it will consist of |B|n+ |B|+ |A| (in)equalities.

In contrast, let us analyze the number of variables and constraints involved in the
relative entropy program in Corollary 4.3. Observe that A/ Stab(β̂) is the disjoint union

of the G · α̂/ Stab(β̂) where α̂ runs through Â. It follows that for every pair β̂ ∈ B̂, α̂ ∈ Â,

we have exactly 2|(G · α̂)/ Stab(β̂)| variables c
(β̂)
γ and ν

(β̂)
γ .

By definition, |(G · α̂)/ Stab(β̂)| is the number of Stab(β̂)-orbits in G · α̂. Since G · α̂
is in bijection with Stab α̂\G we get a bijection between (G · α̂)/ Stab(β̂) and the set

of double cosets Stab(α̂)\G/ Stab(β̂). Therefore, the number of orbits in question equals
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| Stab(α̂)\G/ Stab(β̂)|, satisfying, according to Burnside’s Lemma (see for instance [28,
Lemma 7.24.5]):

| Stab(α̂)\G/ Stab(β̂)| = 1

| Stab(α̂)|| Stab(β̂)|

∑
σ∈Stab(α̂)

τ∈Stab(β̂)

|Gσ,τ |,

where |Gσ,τ | is the number of elements of G fixed under the action of (σ, τ). From another
point of view, this number can be interpreted in terms of representation theory as follows:
It is given by the inner product of the two characters corresponding to the representations
induced respectively by the trivial representations of Stab(α̂) and Stab(β̂) on G (see [28,
Exercise 7.77.a.] for more details).

Furthermore, (4.4) amounts to |Â|+ |B̂| inequalities, together with one vector equality

for every element of B̂. We observe that for a given β̂, this vector is invariant by Stab(β̂)

and therefore is contained in (Rn)Stab(β̂), the subspace of Rn of points fixed by Stab(β̂).
Thus, by projecting onto this subspace the number of resulting equations reduces to

dim
(

(Rn)Stab(β̂)
)

. As a conclusion, we obtain:

Theorem 4.6. Let Â and B̂ be a set of orbit representatives for A and B. For α̂ ∈ Â,
β̂ ∈ B̂, denote by α̂Gβ̂ the cardinality | Stab(α̂)\G/ Stab(β̂)|, and by nβ̂ the dimension of

the fixed subspace (Rn)Stab(β̂). Then, the relative entropy program in Corollary 4.3 consists
of

2
∑
α̂∈Â
β̂∈B̂

α̂Gβ̂ variables,
∑
β̂∈B̂

nβ̂ scalar equalities, and |Â|+ |B̂| inequalities.

5. The case of the symmetric group

In this section, we focus our attention to the case of the Symmetric group Sn acting on
Rn by permutation of the coordinates: for σ ∈ Sn, x ∈ Rn,

σ(x) = (xσ−1(1), . . . , xσ−1(n)).

Note that because the action is orthogonal, the dual action on the exponent vectors is the
same. Optimization problems invariant under this action can arise in different contexts
naturally, for example, in the context of graph homomorphisms ([3]). This action is very
natural, and the theory of representation of the symmetric group is very well understood,
and affords strong connections with combinatorics. This connection has been successfully
used in several instances to reduce the sizes of optimization problems. In particular it was
shown in [27, Theorem 4.7 ] (see also [8, Theorem 3.21]) that the size of a semi-definite
program which certifies if a given symmetric polynomial is a sum of squares is stabilizing
once the number of variables is big enough. Similarly to these results we show in Theorem
5.2 an analogous result in the AM/GM setup. This result mainly stems from the fact
that the cardinalities appearing in Theorem 4.6 have a combinatorial interpretation in
the context of symmetric group actions.
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First, up to permutation, every α ∈ Rn is of the form

α = (α1, . . . , α1︸ ︷︷ ︸
λ1

, α2, . . . , α2︸ ︷︷ ︸
λ2

, . . . , αk, . . . , αk︸ ︷︷ ︸
λk

),

with λ1 > λ2 . . . > λk > 0 and thus its stabilizer Stab(α) is, up to conjugation, of the
form

Sλ1 × · · · × Sλk ,

so that | Stab(α)| = λ1! · · ·λk!. The corresponding partition λ = (λ1, . . . , λk) of n is called
the orbit type Λ(α) of α. We then denote by len(α) the length of this partition, namely

len(α) = k. Consequently, for β̂ ∈ B̂, the dimension nβ̂ of the fixed subspace (Rn)Stab(β̂) is

precisely len(β̂).

Furthermore, let α ∈ Â of orbit type Λ(α) = (λ1, . . . , λk), and β ∈ B̂ of orbit type
Λ(β) = (µ1, . . . , µ`). Then, the interpretation of α̂(Sn)β̂ as the inner product of characters

gives a combinatorial understanding of the number α̂(Sn)β̂ = | Stab(α̂)\Sn/ Stab(β̂)|: it is

given by the number NΛ(α),Λ(β) = |MΛ(α),Λ(β)|, where MΛ(α),Λ(β) is the set of matrices of
size k × ` with non-negative integer coefficients such that, for 1 6 i 6 k the elements of
the ith row sum up to λi, and for 1 6 j 6 ` the elements of the jth column sum up to
µj. This quantity can be alternatively computed by using the so-called Kostka numbers
defined for pairs of partitions. More precisely, we have

α̂(Sn)β̂ = NΛ(α),Λ(β) =
∑
µ

Kµ,Λ(α)Kµ,Λ(β),

where µ runs through the partitions of n. For more details about these interpretations,
see [28, Chapter 7], in particular Corollary 7.12.3 therein.

Now we illustrate the potential gain of this reduction, already in a very small example:

Example 5.1. Consider the support set {α0, . . . , α7} = {(0, 0, 0)T , (7, 0, 0)T , (0, 7, 0)T ,
(0, 0, 7)T , (1, 1, 2)T , (1, 2, 1)T , (2, 1, 1)T , (2, 2, 2)T} and let G := S3 be the symmetric group

on three elements. In order to avoid too heavy notation, we will write c
(i)
j instead of c

(αi)
αj

and ν
(i)
j instead of ν

(αi)
αj . Consider a signomial

f(x1, x2, x3) =
7∑
i=0

cie
〈αi,(x1,x2,x3)〉,

with c0, c1, c2, c3 > 0 and c4, c5, c6, c7 < 0, i.e., set A = {α0, . . . , α3}, B = {α4, . . . , α7}.
Then Â = {α0, α1} and B̂ = {α4, α7} are sets of orbit representatives. The corresponding
partitions are Λ(α0) = Λ(α7) = (3), and Λ(α1) = Λ(α4) = (2, 1). Then, by Corollary 4.3,

f ∈ CSAGE(A,B) if and only there exist c(4) = (c
(4)
0 , c

(4)
1 , c

(4)
3 ), ν(4) = (ν

(4)
0 , ν

(4)
1 , ν

(4)
3 ),
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c(7) = (c
(7)
0 , c

(7)
1 ) and ν(7) = (ν

(7)
0 , ν

(7)
1 ) satisfying the conditions

ν
(4)
0 (α0 − α4) + ν

(4)
1 (α1 + α2 − 2α4) + ν

(4)
3 (α3 − α4) = 0,

ν
(7)
0 (α0 − α7) + ν

(7)
1 (α1 + α2 + α3 − 3α7) = 0,

ν
(4)
0 ln

ν
(4)
0

c
(4)
0

+ 2ν
(4)
1 ln

ν
(4)
1

c
(4)
1

+ ν
(4)
3 ln

ν
(4)
3

c
(4)
3

6 c4,

ν
(7)
0 ln

ν
(7)
0

c
(7)
0

+ 3ν
(7)
1 ln

ν
(7)
1

c
(7)
1

6 c7,

3c
(4)
0 + c

(7)
0 6 c0,

2c
(4)
1 + c

(4)
3 + c

(7)
1 6 c1.

Note that here len(α4) = 2 and len(α7) = 1 so that the two vectorial equations bring
together 2 + 1 scalar equations. In total, we get 2(1 + 1 + 2 + 1) = 10 variables and
2 + 1 + 2 + 2 = 7 linear constraints, against 2 · 4 · 4 = 32 variables and 4 · 3 + 4 + 4 = 20
linear constraints forgetting about symmetries.

In the context of the symmetric group it is natural to consider situations in which the
number of variables grows. Such situations were studied for example in the context of
sums of squares relaxations. Several examples were observed in which the complexity of
the symmetry-adapted semi-definite program is independent of the number of variables.
Analogously, we now describe natural sequences of signomials where the size of the relative
entropy program stabilizes when the number of variables is large enough.

Fix n0 ∈ N and start with a signomial fn0 in n0 variables, represented by the orbit

representatives of the exponent vectors Â and B̂, as well as the corresponding coefficients.
For each of these exponents α, we denote by Λ̃(α) the orbit type of α where we forget about

the 0 entries. For instance, when n0 = 3, Â = {α̂} = {(1, 1, 2)} and B̂ = {β̂} = {(0, 0, 1)},
then Λ̃(α̂) = (2, 1) while Λ̃(β̂) = (1). Note that these sequences do not have to be partitions
of n, we therefore introduce

wt(α) =
∑

λ∈Λ̃(α)

λ,

counting the number of non-zero coordinates of α, and refer to it as the weight of α. Hence
wt(1, 1, 2) = 3, while wt(0, 0, 1) = 1. Now, for every n > n0, we can see α as an exponent
in Rn, by adding n − n0 zeroes. This procedure does not affect Λ̃(α) and wt(α). In this
way, we can define for every n > n0, the unique Sn-invariant signomial fn whose support
is made of the Sn-orbits of Â and B̂ with the corresponding coefficients. Clearly, in this
situation, the number of constraints Cn in Corollary 4.3 does not depend on n, since it
only involves |B̂|, |Â|, and the length of the elements in B̂, which does not change when
n > n0 + 1. In this framework, a similar phenomenon holds for the number of variables:

Theorem 5.2. Let n0 ∈ N, and Â, B̂ be finite orbit representatives of exponent vectors
in Rn0. Consider, for n > n0, the signomial fn previously defined, and denote by Vn the
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number of variables in the symmetry-adapted relative entropy program in Corollary 4.3.
Let

m = max{wt(α) : α ∈ Â ∪ B̂}.
Then, for every n > 2m, Vn = V2m.

Proof. We shall show by induction that for every n > 2m, Vn = V2m. The initial step
being obvious, assume n > 2m. The definition of m ensures that for n ≥ 2m, for every α
in Â ∪ B̂, the coordinate occurring the most in α is 0, and therefore

Λ(α) = (n− wt(α), λ1, . . . , λk),

where (λ1, . . . , λk) = Λ̃(α). Remember that the number of variables is given by

Vn = 2
∑

α̂∈Â,β̂∈B̂

Nn
Λ(α̂),Λ(β̂)

,

where, if Λ(α̂) = (n−wt(α̂), λ1, . . . , λk) and Λ(β̂) = (n−wt(β̂), µ1, . . . , µ`), the quantity
Nn

Λ(α̂),Λ(β̂)
counts the number of matrices of size (k+1)× (`+1) with non-negative integer

coefficients of the form

(5.1)

n− wt(β̂) µ1 µ2 . . . µ`


· · · . . . · n− wt(α̂)
· · · . . . · λ1
...

...
...

. . .
...

...
· · · . . . · λk

where the labels give the sum of the coefficients in the corresponding row/column. Since

Â and B̂ keep the same number of elements, we only need to show that for every α̂ ∈ Â,
β̂ ∈ B̂, then Nn

Λ(α̂),Λ(β̂)
= Nn−1

Λ(α̂),Λ(β̂)
.

If we start with a matrix of the form

(5.2)

n− 1− wt(β̂) µ1 µ2 . . . µ`


· · · . . . · n− 1− wt(α̂)
· · · . . . · λ1
...

...
...

. . .
...

...
· · · . . . · λk

,

adding 1 to the top left coefficients provides a matrix of the form (5.1), wich proves
Nn

Λ(α̂),Λ(β̂)
> Nn−1

Λ(α̂),Λ(β̂)
.

In order to show the reverse inequality, we claim that the top left coefficient in (5.1)
cannot be 0. Indeed, if it is 0, then the sum of the coefficients in the first row is at most

µ1 + µ2 + . . .+ µ` = wt(β̂).

This implies n− wt(α̂) 6 wt(β̂), which forces n 6 2m and gives a contradiction.
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Now, if the top left coefficient is a positive integer, substracting 1 to this coefficient pro-
vides a matrix of the form (5.2), which proves Nn

Λ(α̂),Λ(β̂)
6 Nn−1

Λ(α̂),Λ(β̂)
, and hence Vn = Vn−1.

�

Building on this, we can actually show that for a large class of problems we have a
stabilization.

Theorem 5.3. Let k, l, w ∈ N be fixed. Then for every integer n > 2w and every Sn-
invariant signomial f ∈ C(A,B) with |Â| 6 k, |B̂| 6 l, and

max
γ̂∈Â∪B̂

wt(γ̂) 6 w,

the number of constraints and the number of variables of the symmetry adapted program
are bounded by constants only depending on k, l and w:

Cn 6 k + l + l(w + 1) and Vn 6 2lku(w),

where u(w) =
w∑
i=0

(
w

i

)2

i! .

Proof. Let us begin with the number of constraints. This follows from Theorem 5.2, be-
cause |Â| 6 k, |B̂| 6 l and nβ̂ 6 w + 1, since wt(β̂) 6 w. As in the previous proof, we

have Λ(α̂)1 = n − wt(α̂) and similarly for β̂. For the number of variables, we will show
that

(5.3) NΛ(α̂),Λ(β̂) 6 N(n−w,1w),(n−w,1w) = u(w)

for every α̂, β̂ satisfying the conditions of the theorem. This will be done in two steps.
First, we show that if λ = (λ1, . . . , λt, 1) is a partition, and λ′ = (λ1, λ2, . . . , λt−1, λt + 1),
then for every partition µ, we have

Nλ′,µ > Nλ,µ and Nµ,λ′ > Nµ,λ.

Indeed, there is a surjection from the setMλ′,µ ontoMλ,µ. Namely let (x1, . . . , xk) denote
the t-th line of an element in Mλ,µ. Let s be such that xs > 0. Replacing the t-th line of
this element by (x1, . . . , xs−1, xs− 1, xs+1, . . . xk) and inserting (0, . . . , 0, 1, 0, . . . , 0) as the
(t+ 1)-th line we get an element in Nλ′,µ. By applying this procedure recursively for rows
and columns we get the inequality in (5.3).

To show the equality in (5.3), observe that the top-left element of N(n−w,1w),(n−w,1w)has
to be an integer k between n−2w and n−w. For every such choice, we have to distribute

n−w−k ones in the first row and first column. This gives
(

w
n−w−k

)2
possibilities. Restricted

to the w × w lower right submatrix, these selected lines and columns contain only 0. For
each of these possibilities, after removing these chosen lines and columns, we get an
(n − k) × (n − k) matrix which contains exactly one 1 per line and column. There are
(n− k)! such matrices. By a change of the index variable, we get the desired result:

Vn =2
∑
α̂∈Â
β̂∈B̂

α̂(Sn)β̂ = 2
∑
α̂∈Â
β̂∈B̂

NΛ(α),Λ(β) ≤ 2lku(w).
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�

We conclude this section by giving explicit estimates on the signomials where |B̂| = 1,

and Â = {0, α̂}. We have chosen four different classes of examples that show the influence
of the sizes of the orbits on the numbers of variables and constraints. These classes rep-
resent extremal situations, namely when the orbits are either very large or very small. In
these situations, we can actually compute the exact number of variables and constraints
in both cases according to the previous discussions. Note that the last case falls into the
framework of Theorem 5.2, where wt(α̂) = wt(β̂) = 1. There is also a stabilization in the

first sequence: when len(β̂) = 1, for every α̂ ∈ Â, the number of variables α̂(Sn)β̂ is equal
to 1. The subsequent table summarizes our analysis. Specific signomials realizing the cases
are given in Examples 6.1–6.4 in the next section.

Standard method Symmetric method

|Sn · β̂| |Sn · α̂| Vn Cn Vn Cn Example
1 n! 2n! + 3 n! + n+ 2 5 4 6.1
n! n 2(n+ 1)n! + 1 (n+ 1)(n! + 1) 2n+ 3 n+ 3 6.2
n! n! 2(n! + 1)n! + 1 n!(n+ 2) + 1 2n! + 3 n+ 3 6.3
n n 2n(n+ 1) + 1 (n+ 1)2 7 5 6.4

Table 1. Comparison of the parameters when Â = {0, α̂} and B̂ = {β̂}.

6. Numerical experiments

To illustrate the previous considerations, we present in this section classes of examples
that spotlight the computational gains by the comparison of calculation times in the case
of the symmetric group. For these computations, we used the ECOS solver and Python
3.7 on an Intel(R) Xeon(R) Platinum 8168 CPU with 2.7 GHz and 768 GB of RAM under
CentOS Linux release 7.9.2009. Keeping the previous notation, for the standard method,
that is the method that does not exploit the symmetries, the input consists of A, B as
well as the coefficients, while for the symmetry-adapted version, the input is Â, B̂ and
the coefficients. This difference of input is mainly due to practical considerations and does
not in itself influence the comparison of the time used by the solver. When both methods
give an answer, the bounds coincide.

In all the tables in the sequel, dim is the dimension, Vn and Cn are the number of
variables and constraints of the program, while ts and tr denote the solver time and
the overall running time (including the building of the optimization program) in seconds.
While it might happen that the standard method is slightly faster for very small instances,
the size growth of the program in the standard method makes it quickly unsolvable. In
that case this is represented by “−” in the table. The symmetric approach allows however
to go further, and we give all the results until the solver warns about a possible inaccuracy.
In this case, we mark the bound with “∗”.
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The first four examples give numerical results for each of the classes discussed in Table 1.
We tried to choose the coefficients in a way that avoids numerical issues, namely preventing
the bound to be either too small or too large.

Example 6.1. Consider first the signomial

f (1)
n =

1

n!

∑
σ∈Sn

σ exp(〈α, x〉)− exp(〈β, x〉),

where β = (1, . . . , 1) and α = (1, 2, . . . , n). The numerical results are shown in Table 2.

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr

2 -0.1481 7 6 0.0113 0.0121 5 4 0.0147 0.0158
3 -0.2499 15 11 0.0148 0.0160 5 4 0.0141 0.0149
4 -0.3257 51 30 0.0304 0.0337 5 4 0.0139 0.0147
5 -0.3849 243 127 – – 5 4 0.0140 0.0147
6 -0.4327 1443 728 – – 5 4 0.0136 0.0144
7 -0.4724∗ 10083 5049 – – 5 4 0.0211 0.0222

Table 2. Numerical results for f
(1)
n .

Example 6.2. Consider now the signomial

f (2)
n = (n− 1)!

n∑
i=1

exp(n2xi)−
∑
σ∈Sn

σ exp(〈β, x〉),

where β = (1, 2, . . . , n) (and α = (n2, 0, . . . , 0)). The numerical results are shown in
Table 3.

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr

2 -0.2109 13 9 0.0173 0.0185 7 5 0.0297 0.0311
3 -0.8888 49 28 0.0427 0.0454 9 6 0.0248 0.0264
4 -4.111 241 125 0.152 0.1701 11 7 0.0296 0.0318
5 -22.30 1441 726 0.7888 0.8433 13 8 0.0356 0.0384
6 -141.0 10081 5047 5.422 5.843 15 9 0.0423 0.0458
7 -1024 80641 40328 57.26 66.67 17 10 0.0491 0.0538
8 -8418 725761 362889 1514 2211 19 11 0.0568 0.0626
9 -77355 7257601 3628810 – – 21 12 0.0661 0.0835
10 79833601 39916811 – – 23 13 – –

Table 3. Numerical results for f
(2)
n .
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Example 6.3. Next, we consider the case where both orbits are of maximal size. Let

f (3)
n =

1

n

∑
σ∈Sn

exp(〈α, x〉)− 1

n

∑
σ∈Sn

σ exp(〈β, x〉),

where β = (1, 2, . . . , n) and α = (2, 8, . . . , 2n2).
The numerical results are shown in Table 4.

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr

2 -0.4178 13 9 0.0301 0.0323 7 5 0.0431 0.0465
3 -1.0323 85 31 0.0558 0.0603 15 6 0.0531 0.0569
4 -3.494 1201 145 – – 51 7 0.1212 0.1301
5 -15.13 29041 841 – – 243 8 0.5750 0.6215
6 1038241 5761 – – 1443 9 – –

Table 4. Numerical results for f
(3)
n .

Example 6.4. Finally, we consider the case where both orbits are small. Let

f (4)
n =

1

n

n∑
i=1

exp(n2xi)−
1

n

n∑
i=1

exp((n− 1)(x1 + · · ·+ xn) + xi),

(β = (n, n− 1, n− 1, . . . , n− 1) and α = (n2, 0, . . . , 0)). The numerical results are shown
in Table 5.

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr

2 -0.1054 13 9 0.019 01 0.0204 7 5 0.0213 0.0229
3 -0.092 25 16 0.0268 0.0287 7 5 0.0205 0.0218
4 -0.076 41 25 0.0341 0.0367 7 5 0.0205 0.0218
68 -0.0053 9385 4761 – – 7 5 0.0475 0.0519
95 -0.0038∗ 18241 9216 – – 7 5 0.0267 0.0281

Table 5. Numerical results for f
(4)
n .

Example 6.5. Finally, we give an example where A and B consist of two orbits each:

Â = {(n2, 0, . . . , 0), (1, 4, . . . , n2)} and B̂ = {(1, . . . , 1), (1, 2, . . . , n)}.
In this case, we are still able to compute the number of constraints and the number of

variables. With the standard approach,

Vn = 2(n! + n+ 1)(n! + 1) + 1, Cn = (n! + 1)(n+ 2) + n,

while using symmetries,

Vn = 2n! + 2n+ 9, Cn = n+ 6.
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Table 6 shows the numerical results for the signomials

gn =
1

n

n∑
i=1

exp(n2xi) +
1

n

∑
σ∈Sn

σ exp(〈α, x〉)− exp(x1 + · · ·+ xn)− 1

n

∑
σ∈Sn

σ exp(〈β, x〉)

for α = (1, 4, . . . , n2) and β = (1, 2, . . . , n).

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr

2 -0.1918 31 14 0.0272 0.0292 17 8 0.0738 0.0776
3 -0.5223 141 38 0.0679 0.0727 27 9 0.0623 0.0663
4 -2.118 1451 154 – – 65 10 0.1436 0.1539
5 -10.45 30493 852 – – 259 11 0.5856 0.6320
6 1048335 5774 – – 1461 12 – –

Table 6. Numerical results for gn.

7. Conclusion and open questions

We have developed techniques to exploit symmetries in AM/GM-based optimization
and confirmed their benefit in terms of computational results. In particular, in the case of
symmetric signomials, we showed that both theoretically as well as practically our orbit
reduction allow for substantial computational gains. This motivates a theoretical study
of the strength of the AM/GM bounds in this framework. In particular, it encourages
the comparison of the symmetric SAGE cones with respect to the cone of symmetric
non-negative signomials.
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