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A GENERAL COMPARISON PRINCIPLE FOR HAMILTON JACOBI BELLMAN
EQUATIONS ON STRATIFIED DOMAINS ∗

OTHMANE JERHAOUI† AND HASNAA ZIDANI‡

Abstract. This manuscript aims to study finite horizon, first order Hamilton Jacobi Bellman equations on stratified domains.
This problem is related to optimal control problems with discontinuous dynamics. We use nonsmooth analysis techniques to
derive a strong comparison principle as in the classical theory and deduce that the value function is the unique viscosity solution.
Furthermore, we prove some stability results of the Hamilton Jacobi Bellman equation. Finally, we establish a general convergence
result for monotone numerical schemes in the stratified case.
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1 Introduction. In this paper, we study the well-posedness of a system of Hamilton Jacobi Bellman
(HJB) equations defined on a stratification of RN . A stratification of RN is a finite collection of disjoint open
sets of RN denoted (Mi)i=1,...,n such that

RN =
n⋃
i=1
Mi, and Mi ∩Mj = ∅, whenever i 6= j.

The union of the open sets ∪ni=1Mi is called the regular part of the stratification. The singular part of the
stratification is the union of all the interfaces between the open sets (M)i=1,...,n. It is the set

Λ := RN \
n⋃
i=1
Mi.

We consider a system of finite horizon HJB equations

(1.1)
{
−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi

u(T, x) = ψ(x) for x ∈ RN ,

where T > 0 is the final time, ψ : RN → R is the final cost, assumed to be Lipschitz continuous, and
HFi :Mi × RN → R are Bellman Hamiltonians defined the following way:

HFi(x, p) = sup
q∈Fi(x)

{−〈p, q〉} ,

with Fi : Mi  RN are set-valued maps, called the dynamics, that satisfy some standing hypotheses (see
Section 2). In the case when there exists a Lipschitz continuous set-valued map F such that the restriction
F |Mi

= Fi, equation (1.1) admits a unique solution, in the viscosity sense, called the value function defined
as follows (see [18, 3])

(1.2) u(t, x) := inf{ψ(y(T )) | ẏ(s) ∈ F (y(s)) a. e. s ∈ (t, T ) and y(t) = x}.

In viscosity theory, the uniqueness of the solution comes from the so-called comparison principle. This principle
asserts that if an upper semicontinuous sub-solution u is inferior to a lower semicontinuous super-solution v
at time T , then u ≤ v at all time t ∈ (0, T ].

The viscosity notion has been extended by Ishii to the case of discontinuous Hamiltonians, see [27]. In the
particular case of the stratified system (1.1), Ishii’s extension provides a condition on the singular set Λ in the
following form

(1.3)
{
−∂tu(t, x) + maxi=1,...n{HFi(x, ∂xu(t, x))} ≥ 0, (t, x) ∈ (0, T )× Λ
−∂tu(t, x) + mini=1,...n{HFi(x, ∂xu(t, x))} ≤ 0, (t, x) ∈ (0, T )× Λ.
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However, using Ishii’s extension to the singular set does not guarantee uniqueness of the viscosity solution in
general.

Bressan and Hong [11] were the first to study a stratified system similar to (1.1). In particular, they
introduced a regularized upper semicontinuous convex valued dynamics F on RN such that the restriction
of F on Mi coincides with Fi. They showed that when the value function of the control problem (1.2) is
continuous, then it is the unique solution that satisfies some HJB inequalities on the interface. They also
showed that a comparison result holds under the assumption that every subsolution is continuous.

Later, Barles, Briani and Chasseigne [5, 6] considered the case where the stratification is constituted by
two disjoint open sets, the interface being a hypersurface. In this setting, the authors provided a very thorough
analysis of the viscosity solution in Ishii sense. In particular, they proved that the value function of (1.2) with
the regularized upper semicontinuous convex valued dynamics F is a viscosity solution of (1.1) in Ishii sense.
They also described the minimal supersolution and maximal subsolution in Ishii sense. A sufficient condition
for uniqueness is proved by Barles-Chasseigne in [8, Corollary 10.32.2].

In [8, 7], Barles and Chasseigne considered a more general stratified setting than the one considered in the
present paper, and introduced a different condition on the interface. Furthermore, different conditions under
which the comparison principle is satisfied have been investigated in [8] (a comparison between our results and
those derived in [7] will be given in Section 2.6).

We also mention some works on Hamilton Jacobi equations on stratified networks that share the same kind
of difficulties as our layout: Imbert and Monneau [25], Imbert, Monneau and Zidani [26], Achdou, Camilli,
Cutr̀ı and Tchou [1], Camilli and Marchi [12]. Besides, Lions and Souganidis [29] investigated Hamilton Jacobi
equations on networks and considered a different class of Hamiltonians that are not necessarily convex, but
only continuous and coercive.

HJB equations are also related to a geometric notion known as flow invariance in the theory of differential
inclusions [13, chapter 12]. More precisely, nonsmooth analysis tools provide an interpretation of the sub-
solution property of the value function as the strong invariance of the hypograph of the value function and the
super-solution property as the weak invariance of its epigraph. The classical case without stratification (i.e,
when there exists F : RN → RN Lipschitz continuous such that Fi = F |Mi

), has been treated thoroughly in
the literature [13, 3]. In the case of stratified domains and discontinuous dynamics at the interfaces, Barnard
and Wolenski [10] investigated the characterization of the weak and strong invariance principles with a new
Hamiltonian that they called the essential Hamiltonian. However their statement of strong invariance was
inaccurate. Despite their valid intuition regarding the choice of the Hamiltonian, the choice of the “test
functions” (in analogy with the viscosity theory) did not take into account the singular geometry of the
problem which turns out to be crucial for comparison type results. Let us also mention that a different control
problem with a stratified set of state-constraints has been studied in [24, 23]. In these papers the dynamics
is Lipschitz continuous everywhere. Since the problem is with state constraints, the value function might not
be continuous. Then, the stratified structure of the set of constraints is exploited in [24, 23] to establish some
HJB equations on the boundary and to analyze a characterization of the value function with a generalized
notion of solution, called bilateral viscosity solution.

In this present work, we aim to prove the well-posedness of the HJB equation (1.1) on stratified domains.
We will first define a Hamiltonian HΛ at the interface Λ and consider the HJB equation:

(1.4)

 −∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi,
−∂tu(t, x) +HΛ(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Λ,
u(T, x) = ψ(x) for x ∈ RN .

The Hamiltonian HΛ is defined on the interface Λ by using the notion of essential Hamiltonian obtained
along the same lines of [10]. The essential Hamiltonian comes from the optimal control interpretation of the
system (1.1). It is defined from the set-valued map that represents the “essential velocities” of the system,
meaning the velocities that are actually taken by the trajectories of the control problem (1.2) with the classical
regularized (upper semicontinuous convex valued map F ).

A similar definition for the Hamiltonian HΛ has been considered in [32, 20, 31]. However, these papers
analyzed a comparison result only under the assumption that the sub-solution is continuous at the interface Λ.

In the present work, we will revisit the definition of viscosity solutions and give a new one that encodes
the nature of the singular geometry of the problem. This new definition will allow us to extend the strong
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comparison type results known when the Hamiltonian is Lipschitz continuous to the present setting. More
precisely, we prove the following result: Let u and v be respectively upper semicontinuous and lower semi-
continuous functions on (0, T ] × RN . If u is a sub-solution of (1.4), and if v is a super-solution of (1.4) and
u(T, .) ≤ v(T, .), then u ≤ v. The proof of this result relies on new results in nonsmooth analysis. In partic-
ular, we will establish new weak and strong invariance principles in the stratified setting. We would like to
emphasize that the extension of the invariance principles is also a contribution of this paper.

The strong comparison principle that we prove in the present paper will have two major consequences.
First, it will allow to obtain some stability results in the stratified setting and in the presence of perturbations
on the dynamics. We prove that if there exist sequences

(
F ji
)
j

of set-valued maps such that F ji −→ Fi with
respect to the Hausdorff distance, and a sequence (vj : RN → R)j of lower semicontinuous (respectively upper
semicontinuous) functions such that vj → v locally uniformly in RN and suppose for all j, vj is a super-solution
(respectively sub-solution) of

−∂tu(t, x) +HF j
i
(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi,

−∂tu(t, x) +Hj
Λ(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Λ,

u(T, x) = ψ(x) for x ∈ RN .

then v is a super-solution (respectively sub-solution) of (1.4).
Finally, we will extend the classical result due to Barles and Souganidis [9] for the convergence of monotone

numerical schemes to the stratified setting. In the context of one dimensional networks, convergence results of
finite differences numerical schemes have been established by Guerand and Koumaiha [21] and by Morfe [30].
However, to the best of our knowledge, the case of stratified systems has not been yet studied in the literature.
Here, we consider a numerical scheme in the following form

Shi (th, xh, uh(th, xh), [uh](th,xh)) = 0 for (th, xh) ∈ (Π∆t × G∆x)
⋂

((0, T )×Mi),
ShΛ(th, xh, uh(th, xh), [uh](th,xh)) = 0 for (th, xh) ∈ (Π∆t × G∆x)

⋂
((0, T )× Λ),

uh(T, xh) = ψ(xh), for (th, xh) ∈ (Π∆t × G∆x) ∩ {th = T},

where Π∆t is a time grid, G∆x is a spatial grid, h = (∆t,∆x) is the step of the grid and [uh](th,xh) are all the
values of of uh on G∆x at other points than (th, xh) on the grid. We show that under the usual hypotheses
of monotonicity, stability and consistency, the numerical scheme converges locally uniformly to the viscosity
solution of (1.4).

The paper is organized as follows: in Section 2, we define the notations and conventions used throughout
the paper. We also define the geometry of the problem, the dynamics of the HJB equation and we state the
main results. Furthermore, in the same section, we provide a comparison between our results and the results
of [7] through several examples. Section 3 is devoted to the invariance principles, a nonsmooth analysis point
of view of the HJB equation. In Section 4, we first define the optimal control problem associated to the HJB
equation, we introduce the value function and we prove that the super-optimality and sub-optimality properties
of the value function are equivalent to it being a viscosity super-solution and sub-solution respectively. Then
we prove the strong comparison result. Section 5 is devoted to the proofs of the stability results. Finally, we
prove in section 6 a general convergence result for monotone numerical schemes.

2 Main results.

2.1 Notations. Throughout the manuscript, we denote by RN the Euclidean space where the stratifi-
cation is defined, B the unit ball of center 0 of RN and B(x, r) = x + rB. For any set S ⊂ RN , we denote S,
∂S its closure and topological boundary. We denote by co(S) the convex hull of S and by L , the Lebesgue
measure on R.
The distance function associated to S is dS(x) = inf{|x − y| : y ∈ S} and the set of solutions where the
infimum is attained is called the projection of x on S and denoted by projS(x) (note that it might be empty).
The Bouligand tangent cone of S at x, denoted TS(x) is defined the following way:

TS(x) =
{
v ∈ RN : lim inf

t→0+

dS(x+ tv)
t

= 0
}
.

If A and B are two sets of RN , we define a distance between them by d(A,B) = inf {|a− b| : (a, b) ∈ A×B },
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with the convention d(∅, ∅) = 0 and d(∅, B) = +∞ if B 6= ∅. For K1 and K2 two compact sets of RN , the
Hausdorff distance is given by

dH(K1,K2) = max

{
sup
x∈K2

dK1(x) , sup
x∈K1

dK2(x)
}
,

with the convention dH(∅, ∅) = 0 and dH(∅, S) = +∞ if S 6= ∅.
For a given function f : RN → R, epi(f) and hyp(f) denote respectively its epigraph and hypograph:

epi(f) =
{

(x, r) ∈ RN × R : f(x) ≤ r
}
, hyp(f) =

{
(x, r) ∈ RN × R : f(x) ≥ r

}
.

If Γ is a set-valued map, then dom(Γ) is the set of points x such that Γ(x) 6= ∅.
Let M be a C2 embedded submanifold in RN and let Γ :M  RN be a set-valued map. For T > 0, we

define the differential inclusion associated to Γ, with the initial condition (t, x) ∈ (0, T )× RN , by

(DI)Γ(t, x) =
{
ẏ(s) ∈ Γ(y(s)) a.e. s ∈ [t, T ]
y(t) = x.

Finally the abbreviations ‘u.s.c.’, ‘l.s.c’, ‘HJB’ and ‘w.r.t’ respectively stand for: ‘upper semicontinuous’, ‘lower
semicontinuous’, ‘Hamilton Jacobi Bellman’ and ‘with respect to’.

2.2 Stratification. Let N,n ≥ 1 be two integers. Let Mi, i = 1, ..., n be pairwise disjoint, connected
open sets of RN . We suppose that RN = ∪ni=1Mi and we denote by Λ := RN \ ∪ni=1Mi the interfaces or
the singular set. Furthermore, we suppose that Λ is equal to a union of l, pairwise disjoint, C2 embedded
submanifolds Mn+1, . . . ,Mn+l of lower dimension than N , so that we have

RN =
n⋃
i=1
Mi =

(
n⋃
i=1
Mi

)⋃
Λ =

n+l⋃
i=1
Mi.

Finally, we suppose that each Mi, i = 1, . . . , n+ l, is proximally smooth and relatively wedged. All these
assumptions on the stratification are summarized as following:

(H1)



(i) EachMi is a C2 embedded submanifold,
(ii) dim(M1) = ... = dim(Mn) = N, and dim(Mn+1), ..., dim(Mn+l) < N,

(iii) RN = ∪ni=1Mi =
n+l⋃
i=1
Mi,

(iv) ∀i, j = 1, ..., n+ l, Mi ∩Mj = ∅, if i 6= j,
(v) ifMi ∩Mj 6= ∅, thenMi ⊂Mj orMj ⊂Mi,
(vi) eachMi is proximally smooth and relatively wedged.

We call
⋃n
i=1Mi the regular part of the stratification and Λ :=

⋃l
i=1Mn+i the singular part or the

interfaces.
Comments on the Hypothesis (H1). Hypotheses (H1)(i) to (H1)(v) are standard for a stratification

of RN . As for (H1)(vi), a closed set X ⊂ RN is said to be proximally smooth if there exists r > 0 such that the
projection map projX(.) is a singleton on the tube {x ∈ X, dX(x) < r} [16]. The class of proximally smooth
sets includes convex subsets of RN and C2 compact submanifolds of RN . Relative wedgeness hypothesis was
introduced in [10] for C2 submanifolds of RN such that their closure is proximally smooth. Roughly speaking,
relative wedgeness of Mi, with i ∈ {1, ..., n+ l}, means that the dimension of the Bouligand tangent cone at
every point of Mi is equal to the dimension of the manifold Mi [10]. The precise definition of this property
is presented in Appendix A.

Example 1. Figure 2.1 shows an example of the stratified setting, where N = 1, n = 2, l = 1.

M1 = (0,+∞)e1, M2 = (0,+∞)e2, M3 = {0}.

M1

e1

M2

e2
•
M3

Fig. 2.1. Example of a stratification of R.
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Example 2. Figure 2.2 shows an example of a stratified setting in R2 with n = 4 where the open sets are
given by:

M1 = R∗+ × R∗+, M2 = R∗+ × R∗−, M3 = R∗− × R∗−, M4 = R∗− × R∗+.

The interface in Figure 2.2 is constituted by the following submonifolds of dimension 1 or 0:

M5 = R∗+ × {0}, M6 = R∗− × {0}, M7 = {0} × R∗+, M8 = {0} × R∗−, M9 = {0}.

M5

M1

M2

M6

M4

M3

•M9

M7

M8

Fig. 2.2. Example of a stratification of R2.

We set for any x ∈ RN , the index set-valued map

I(x) := { i ∈ {1, ..., n+ l} : x ∈Mi }.

Remark 2.1. It is clear from the definition of the stratification that for x ∈ RN fixed, and y ∈ RN close
enough to x, we have I(y) ⊆ I(x).

2.3 Setting of the problem. We begin by defining the dynamics for the Hamiltonians presented in the
introduction. On each Mi with i = 1, ..., n, we are given a set-valued map Fi : Mi  RN that satisfies the
standard hypotheses

(SH)


(i) x Fi(x) has non empty convex and compact images,
(ii) ∃λ > 0 such that max{ |p|, p ∈ Fi(x)} ≤ λ(1+|x|),
(iii) Fi is Lipschitz continuous on bounded sets ofMi w.r.t the Hausdorff metric,

i.e. for each R > 0, there are constants K1,R, . . . ,Kn,R > 0 such that
dH(Fi(x), Fi(y)) ≤ Ki,R|x− y| if x, y ∈ B(0, R) ∩Mi, i ∈ {1, . . . , n}.

We are interested in studying the well-posedness of the following HJB equation.

(2.1)
{
−∂tu(t, x) + supν∈Fi(x) {−〈ν, ∂xu(t, x)〉 } = 0 for (t, x) ∈ (0, T )×Mi, i = 1, . . . , n,
u(T, x) = ψ(x),

where T > 0 is the final time and ψ : RN → R is the final cost required to satisfy the following assumption.

(Hψ) : ψ is locally Lipschitz continuous.

The study of HJB equations is done using a weak notion of solutions, called viscosity solutions. This setting
requires the HJB equation to be defined at every point. Hence, we need to find suitable interfaces conditions
in order to guarantee the well-posedness of the system. To do so, we aim to define the appropriate dynamics
to consider at the interfaces.
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Notice first that since the dynamics Fi, i = 1, ..., n verify hypothesis (SH), then they can be extended
to Mi while verifying the same hypothesis (SH). We denote this extension by Fi as well. In order to define
the dynamics on the whole space, a classical idea is to consider the upper semicontinuous and convex valued
regularization of (Fi)i=1,...,n, denoted F : RN  RN and defined by

F (x) :=
⋂
ε>0

co
⋃
y

{∪i∈{1...n}Fi(y) : |x− y|≤ ε}.

It is straightforward to check that F has a linear growth. However, it might not be Lipschitz in general. By
the nature of our problem, the regularization is equal to

F (x) = co {Fi(x) : i ∈ {1 . . . n} }.

For (x, p) ∈ RN × RN , we define the Hamiltonian associated to F by

HF (x, p) = sup
q∈F (x)

{−〈p, q〉} .

Since F is only upper semicontinuous, the Hamiltonian HF (., p) is also only upper semicontinuous. If HF (., p)
were to be Lipschitz continuous, we would have defined our HJB equation using the Hamiltonian associated to
F and the well-posedness of the HJB system would have followed from the classical theory, see [13, 19]. This
is generally not the case in a stratified domain.

Nevertheless, the next step is to use F to define suitable dynamics at the interfaces. We define the
dynamics Fn+i :Mn+i  RN , for i = 1, ..., l on each interface Mn+i by

Fn+i(x) = F (x) ∩ TMn+i(x),

where TMn+i(x) is the Bouligand tangent cone which coincides with the classical tangent space of Mn+i at x
since it is a C2 manifold. Furthermore, we suppose that all the interface dynamics are Lipschitz continuous
on bounded sets as well:

(HD) for i = 1, ..., l, Fn+i(.) is Lipschitz continuous on bounded sets ofMn+i.

We point out that since we have the conventions dH(∅, S) = +∞ if S 6= ∅ and dH(∅, ∅) = 0, it follows that
(HD) implies that Fn+i is either identically the empty set or nonempty on the whole domain Mn+i. Under
assumption (HD), each Fn+i :Mn+i  RN , (i = 1, ..., l) satisfies (SH). Thus each Fn+i can be extended to
Mn+i while verifying the same hypothesis (SH). We denote this extension by Fn+i as well.

A sufficient condition for (HD) to be satisfied is full controllability near Λ. We mean by full controllability
the following assumption:

(CH) ∃ r > 0 : for all i = 1, ..., n, and x ∈ Λ ∩Mi : B(0, r) ⊆ Fi(x).

Proposition 2.2. [32, Lemma 2.2]. Assume (H1) and (CH). Then, (HD) holds.

For x ∈Mi, i = 1, ..., n+ l, and p ∈ RN , we define the Hamiltonian

HFi(x, p) := sup
q∈Fi(x)

{−〈p, q〉} .

At this point, we are tempted to define the HJB equation on the stratified domain using the dynamics Fi(.)
(defined above), the following way:

(2.2)


−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi, i = 1, . . . , n,
−∂tu(t, x) + maxi∈I(x) {HFi(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× Λ,
u(T, x) = ψ(x).

However, it turns out that the set of dynamics in equation (2.2) is too large. These dynamics may contain
velocities that are not useful for the evolution of the solution at the interface. This claim is analyzed in the
next subsection.
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2.4 The essential dynamics. We define the notion of essential dynamics on each domain, introduced
in [10] for stratified Euclidean spaces. For i = 1, ....n+ l, we define the essential dynamics on each Mi by

F ]i (x) := Fi(x) ∩ TMi
(x), for all x ∈Mi,

where TMi
(x) is the Bouligand tangent cone of Mi at x. Notice that if x ∈Mi, we have F ]i (x) = Fi(x). The

associated Hamiltonian is defined as

HF ]
i
(x, p) = sup

q∈F ]
i

(x)
{−〈p, q〉} .

The essential dynamics F ]i on each domain represent the inward pointing velocities of Fi on Mi. We suppose
that each F ]i is l.s.c.

(HESS) for all i = 1, . . . , n+ l, F ]i is l.s.c.
Hypothesis (HESS) holds for many cases. In particular, if we assume the controllability assumption (CH) to
hold for the dynamics, then (HESS) holds for all stratifications presented in Examples 1 and 2. A discussion
about sufficient conditions to ensure (HESS) is given in Appendix B.

The essential dynamics on RN is defined as the union of the essential dynamics on each domain.

∀x ∈ RN , F ](x) =
n+l⋃
i=1
{Fi(x) ∩ TMi

(x) : x ∈Mi }.

Its associated Hamiltonian is also defined as usual. For (x, p) ∈ RN × RN , we have

HF ](x, p) = sup
q∈F ](x)

{−〈p, q〉} .

Example 3. We consider the stratification of R defined in Example 1. Let ci ≥ 0 with i = 1, 2 be real
positive constants. We define the following dynamics on each branch

Fi(x) = [−ci, ci] , i = 1, 2.

The resulting HJB system is the Eikonal equation on the stratification 1. The dynamics at the interface M3
and the essential dynamics are respectively equal to

F3(.) ≡ {0} , F ](x) =
{

[−ci, ci] x ∈Mi i = 1, 2,
[−c2, c1] x = 0.

Note that this simple example, in dimension 1, can be seen as a network problem. Here the essential Hamil-
tonian defined at the junction is the same one that is used in [26]. Let T > 0 be a given time horizon, and
consider the following HJB associated to the dynamics F ]i

(2.3)
{
−∂tu(t, x) + maxi∈I(x) {HF ]

i
(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× RN ,

u(T, x) = ψ(x),

where ψ : RN → R is the final cost and satisfies (Hψ).

Notice that in the HJB equation (2.3), if x belongs to the regular part of the stratification (i.e. x ∈
⋃n
i=1Mi),

then the HJB equation (2.3) is the same as the HJB equation (2.1). So equation (2.3) has the following form

(2.4)


−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi, i = 1, · · · , n,
−∂tu(t, x) + maxi∈I(x) {HF ]

i
(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× Λ, i = n+ 1, · · · , n+ l,

u(T, x) = ψ(x).

Given the singular nature of the stratification, one cannot use the classical notion of viscosity solutions.
We are going to define a new one that will turn out to be appropriate for obtaining a strong comparison result.
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Definition 2.3. (Viscosity super-solution). Let u : (0, T ] × RN → R be a l.s.c function. We say that
u is a super-solution of (2.3) at (t, x) ∈ (0, T ) × RN if and only if there exists i ∈ I(x) such that for all
φ ∈ C1((0, T )× RN ), u− φ attains a local minimum in (0, T )×Mi at (t, x), we have

−∂tφ+ HF ]
i
(x, ∂xφ) ≥ 0.

Definition 2.4. (Viscosity sub-solution). Let u : (0, T ] × RN → R be a u.s.c function. We say that u is
a sub-solution of (2.3) at (t, x) ∈ (0, T ) × RN if and only if for all i ∈ I(x), for all φ ∈ C1((0, T ) × RN ),
u− φ attains a local maximum in (0, T )×Mi at (t, x), we have

−∂tφ+HF ]
i
(x, ∂xφ) ≤ 0.

Definition 2.5. (Viscosity solution) u is a viscosity solution of (2.3) if and only if it is both a super-
solution and a sub-solution and satisfies the final condition u(T, .) = ψ(.).

The above definitions of viscosity super- and sub-solutions can be rewritten using the viscosity sub-gradient
and super-gradient (also known as the semijets [17, Page 10] or Dini sub/super gradient [13, Definition 11.18]).

Definition 2.6. (Viscosity sub/super gradient)
• Let u : RN → R∪{+∞} be a l.s.c function. The viscosity sub-gradient (or subjet) at a point x ∈ dom(u)

is defined the following way,

D−u(x) :=
{
p ∈ RN : lim inf

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≥ 0
}
.

• Similarly, for an u.s.c function u : RN → R ∪ {−∞}, the viscosity super-gradient (or superjet) at a
point x ∈ dom(u) is defined the following way,

D+u(x) := −D−(−u)(x) =
{
p ∈ RN : lim sup

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≤ 0
}
.

Remark 2.7.
• Let u : (0, T ] × RN → R be a l.s.c function. We say that u is a super-solution of (2.3) at (t, x) ∈

(0, T )× RN if and only if there exists i ∈ I(x), such that

−θ +HF ]
i
(x, ξi) ≥ 0 ∀(θ, ξi) ∈ D−ui(t, x),

with ui ≡ u on (0, T ]×Mi and ui ≡ +∞ elsewhere.
• Let u : (0, T ] × RN → R be an u.s.c function. u is a sub-solution of (2.3) at (t, x) ∈ (0, T ) × RN if

and only if for all i ∈ I(x), we have

−θ +HF ]
i
(x, ξ) ≤ 0 ∀(θ, ξ) ∈ D+ui(t, x),

with ui ≡ u on (0, T ]×Mi and ui ≡ −∞ elsewhere.
Indeed, if for example u : (0, T ] × RN → R is a l.s.c function, we set: ui ≡ u on (0, T ] ×Mi and ui ≡ +∞
elsewhere, for some i = 1, ..., n+ l. Then, for (t, x) ∈ (0, T )×Mi, we have

(θ, ξi) ∈ D−ui(t, x) ⇐⇒ ∃φ(i) ∈ C1((0, T )× RN ), such that ui − φ(i) attains a
local minimum at (t, x).

Since ui−φ(i) ≡ +∞ whenever x /∈Mi, we get that φ(i) satisfies the requirements of Definition 2.3. Conversely,
if there exists such function φ in the sense of Definition 2.3, then ui − φ attains a local maximum in RN at
(t, x). The exact same reasoning holds for sub-solutions.

Next we state the main results. In particular, we will show that equation (2.3) has a unique viscosity
solution (following Definition 2.5).



A GENERAL COMPARISON PRINCIPLE FOR HJB EQUATIONS ON STRATIFIED DOMAINS 9

2.5 Statement of the main results.
Theorem 2.8. Assume (H1), (SH), (Hψ), (HESS) and (CH). Then the HJB equation (2.3) has a unique

continuous solution in the sense of Definition 2.5.
Theorem 2.9. (Strong comparison principle). Assume (H1), (SH), (HD) and (HESS). Let u1, u2 :

(0, T ]× RN → R be respectively a l.s.c super-solution and an u.s.c sub-solution in the sense of Definition 2.5
with u2(T, .) ≤ u1(T, .). Then

u2(t, x) ≤ u1(t, x) ∀(t, x) ∈ (0, T ]× RN .

It is worth-noticing that, unlike the previous literature on the subject [31, 32, 20] or [7, 6, 5], the strong
comparison principle stated in the above theorem does not require the sub-solution to be continuous nor to
have any particular behavior on the interface. The proof of this result will clearly show the importance of the
use of essential dynamics with the notion of viscosity as it is defined in Definitions 2.3-2.4 (and more precisely
the choice of the test functions in those definitions). Furthermore, the unique viscosity solution in Theorem
2.8 is the value function associated to the Mayer optimal control problem with the dynamics F (.). A study
of the value function and the associated optimal control problem is presented in Section 4. Hypothesis (CH)
in Theorem 2.8 is only used to give sufficient conditions for the value function to be continuous. Therefore,
Theorem 2.8 holds if one assumes that the value function is continuous instead of assuming (CH).
The proofs of Theorems 2.8, 2.9 are given in Section 4. The proofs will rely on invariance theorems stated in
Section 3 and proven in Appendix C. Furthermore, we will establish stability results of the super-solution and
sub-solution in presence of perturbations of the Hamiltonian in Section 5. Section 6 is devoted to stating and
proving a general convergence result of monotone numerical schemes. The numerical scheme has the following
form in each Mi, i = 1, . . . , n+ l,

Shi (th, xh, uh(th, xh), [uh](th,xh) } = 0 for (th, xh) ∈ (Π
∆t
× G∆x

i ),

where Π∆t is time grid, G∆x
i is a spatial grid of Mi and h = (∆t,∆x) is the step of the grid. We show that

under the usual hypotheses of monotonicity, stability and consistency, the numerical scheme converges. This
result generalizes the classical convergence theorem of monotone numerical schemes in the classical case, due
to Barles and Souganidis [9].

2.6 Comparison with existing literature. Recently, control problems and Hamilton Jacobi equa-
tions on stratified structures have been investigated in several works. A similar setting to the one considered in
this article can be found in [6, 5, 32, 31, 20]. The techniques used in [32, 31, 20] are also all based on invariance
principles and on the use of the essential Hamiltonian to describe the behavior of the value function. Here,
we investigate further the essential dynamics and its corresponding Hamiltonian. In particular, we show that
the invariance principles (weak and strong) can be fully characterized by using the essential Hamiltonian (for
both principles). This result is new, it generalizes to the stratified case the invariance principles known in
the literature for a Lipschitz dynamics. As consequence of the invariance principles, particularly the strong
invariance principle, we obtain a strong comparison principle for equation (2.3) by assuming further that the
essential dynamics F ]i (.) are l.s.c in their domains. The comparison principle states that for any u1 u.s.c
sub-solution of (2.3) and for any u2 l.s.c super-solution of (2.3), we have u1 ≤ u2 in RN × (0, T ]. Unlike the
results established in [6, 5, 32, 31, 20], the comparison principle does not require any additional controllability
assumption nor the continuity of the sub-solution around the interface.

The setting of control problems considered in [11, 7] is very close to ours. However, in those papers, the
HJB equation considered on the singular set Λ is different from the one we use in (2.3). Indeed, in [11, 7], the
Hamiltonian on each stratum is built by using only local information with the dynamics defined on the stratum
without taking into account the behavior of the dynamics at the boundary of each stratum. Therefore, the
Hamiltonian on the interface does not take into account the information coming from neighboring strata. As
consequence, the comparison principle in [11] requires an additional controllability condition and the continuity
of sub-solutions. The work of [7] is more general, it requires a weaker controllability assumption and gives a
comparison between u.s.c solutions and l.s.c solutions if the sub-solution satisfies Ishii’s condition or a weak
continuity requirement.
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To compare our results with those presented in [7], we will analyze different examples. In the first case,
we start from a control problem as considered in [7], then we compare on this problem our assumptions and
results to those in [7].

Example 4. Notice that the setting in [7] concerns optimal control problems, with final and running costs,
on a general stratifications of RN . For a simple comparison, we will restrict ourselves to a framework without
a distributed cost. We also suppose that N = 2 and the stratification is composed simply of two half-spaces of
R2 separated by a line (n = 2 and l = 1)

R2 =M1 ∪M2 ∪M3,

with

M1 := {(x1, x2) ∈ R2, x1 < 0}, M2 := {(x1, x2) ∈ R2, x1 > 0}, M3 := {(x1, x2) ∈ R2, x1 = 0}.

This stratification satisfies (H1) and it is a regular stratification in the sense of [7] as well. Let F (.) be an
u.s.c dynamics defined on RN , with

(2.5) Fi(x) = F (x) ∩ TMi
(x) for x ∈Mi, and for i = 1, 2, 3.

We define the value function the following way

ϑ(x, t) := inf{ψ(y(T )), ẏ(s) ∈ F (y(t)) for a.e. s ∈ [t, T ], y(t) = x}.

We will discuss the properties of the value function in Section 4. In [7], the cost function ψ and the dynamics
Fi(.) satisfy

(HD,[7])


(i) The dynamics F is uniformly bounded on RN .

(ii) For i = 1, 2, 3, Fi is Lipschitz continuous on Mi.

(iii) The cost function ψ is bounded and uniformly continuous on RN .

Besides, a normal controllability assumption is introduced in [7]. In the simple setting of this example, this
normal controllability is the following

(HN,[7]) For i ∈ {1, 2} and every x ∈Mi, and r > 0, there exists C > 0 and δ > 0 such that

HFi(y, p) ≥ δ|p2| − C(1 + |p1|) ∀y ∈ B(x, r) ∩M3, p = (p1, p2) ∈ TM3(x)× T ⊥M3
(x).

The set T ⊥M3
(x) is the orthogonal complement of the tangent space TM3(x) in RN . According to [7], under

assumptions (HD,[7]) and (HN,[7]), the value function ϑ is bounded and continuous. Moreover, ϑ is a super-
solution of the equation

−∂tv(x, t) +HF (x, ∂xv(x, t)) ≥ 0,(2.6a)

and ϑ is a sub-solution to the system of equations

−∂tv(x, t) +HFi(x, ∂xv(x, t)) ≤ 0 ∀x ∈Mi, and for i = 1, 2, 3.(2.6b)

Furthermore, let v2 be l.s.c super-solution of (2.6a), and let v1 be a u.s.c sub-solution of (2.6b) satisfying one
of the following conditions:

• (i) v1 is continuous on M3,
• (ii) v1 satisfies Ishii’s condition, i.e, u is sub-solution to

−∂tv(x, t) +H∗(x, ∂xv(x, t)) ≤ 0, for x ∈M3,

where H∗ is the l.s.c envelope of H:

H∗(x, p) := lim inf
(y,q)→(x,p)

HF (y, q).
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Then, under assumptions (HD,[7]) and (HN,[7]), by [7, Theorem 4.1] we have v1 ≤ v2 on RN × [0, T ]. The
result is even more precise and provides a local strong comparison result.

Now, let us see how our work differs from [7]. Our assumptions (SH), (HD) and (HESS) require the
dynamics Fi(.) to be Lipschitz continuous on bounded sets of Mi with a linear growth. No boundedness is
required. Furthermore, the essential dynamics F ]i (.) are l.s.c. on Mi under assumption (HESS), the result of
Theorem 2.9 provides a comparison between sub-solutions and super-solutions of the following HJB system

(2.7)


−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi, i = 1, 2,
−∂tu(t, x) + max

i=1,2,3
{HF ]

i
(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )×M3,

u(T, x) = ψ(x).

This result does not require a controllability assumption and it states that for every u.s.c sub-solution u1 of
(2.7) and for every l.s.c super-solution of (2.7), we have u1 ≤ u2 on (0, T ]×RN . Note that in the system (2.7),
we use the same Hamiltonian maxiHF ]

i
on M3 to describe the sub and super optimality. This Hamiltonian

includes all the dynamics of trajectories starting from a position inM3. Therefore, the Hamiltonian maxiHF ]
i

contains more information than Hamiltonian HF3 . Theorem 2.9 gives a comparison principle for (2.7) without
requiring additional information on sub-solutions.

The controllability assumption (CH), which is stronger than (HN,[7]) is used only to prove that the value
function is continuous (see Section 4). The assumption (CH) is not necessary and the continuity of the value
function can be obtained in some cases without assumption (HN,[7]) or (CH).

Example 5. Consider the same stratification as in Example 4. The dynamics F1(.) and F2(.) defined on
M1 and M2 respectively, with

F1(x) := B(0, 1) on M1, F2(x) := B(0, 2) on M2.

We define F (.) as the regularization of the dynamics F1(.) and F2(.). It is given by

F (x) =


F1(x) = B(0, 1) if x ∈M1,

F2(x) = B(0, 2) if x ∈M2,

B(0, 2) if x ∈M3.

The essential dynamics are given by

F ]1(.) = F1(.) on M1 and F ]1(.) = [−1, 0]× [−1, 1] on M3 =M1 \M1,

F ]2(.) = F2(.) on M2 and F ]2 = [0, 2]× [−2, 2] on M3 =M2 \M2,

F ]3(.) = {0} × [−2, 2] on M3 =M3.

The dynamics of this example satisfy assumptions (SH), (HD), (HESS) and (CH). Furthermore, it satisfies
hypotheses (HD,[7]) and (HN,[7]) from [7]. Hence, our results give a comparison principle for any u.s.c sub-
solution u1 and any l.s.c.super-solution u2, in the sense of Theorem 2.9, of the following equation

−∂tv(t, x)+|∂xv(t, x)| = 0 on (0, T )×M1,

−∂tv(t, x) + 2|∂xv(t, x)| = 0 on (0, T )×M2,

−∂tv(t, x) + max
(

maxθ∈[−π2 ,
π
2 ]〈∂xv(t, x),

(
cos(θ)
sin(θ)

)
〉, 2 maxθ∈[π2 ,

3π
2 ]〈∂xv(t, x),

(
cos(θ)
sin(θ)

)
〉
)

= 0

on (0, T )×M3,

v(T, x) = ψ(x), x ∈ R2.

Moreover, by Theorem 2.8, the above equation admits a unique continuous viscosity solution. The viscosity
solution is the value function ϑ associated to the optimal control problem defined using the dynamics F (.) and
the final cost ψ (see Section 4). By [7, Theorem 4.1], ϑ is also the unique continuous function that satisfies
v(T, x) = ψ(x) and is both a viscosity super-solution of

(2.8)
{
−∂tv(t, x)+|∂xv(t, x)| ≥ 0 on (0, T )×M1,

−∂tv(t, x) + 2|∂xv(t, x)| ≥ 0 on (0, T )×M2 ∪M3.
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and a viscosity sub-solution of

(2.9)


−∂tv(t, x)+|∂xv(t, x)| ≤ 0 on (0, T )×M1,

−∂tv(t, x) + 2|∂xv(t, x)| ≤ 0 on (0, T )×M2,

−∂tv(t, x) + max
(
∂xv(t, x) ·

(
0
2

)
, ∂xv(t, x) ·

(
0
−2

))
≤ 0 on (0, T )×M3,

The comparison theorem in [7] allows also to compare any l.s.c super-solution of (2.8) and any u.s.c sub-
solution of (2.9).

Example 6. This example is inspired from [8, Section 10.4]. Consider the same stratification as in the
previous example and introduce a new dynamics defined by

F1(x) =
{(

a
a

)
, a ∈ [−1, 1]

}
when x ∈M1, F2(x) =

{(
a
−a

)
, a ∈ [−1, 1]

}
when x ∈M2.

For x ∈ M3, the convexified dynamics is F (x) =
{(

a
b

)
, |a| ≤ 1, |b| ≤ 1

}
, and the tangent dynamics on M3

is given by F3(x) =
{(

0
a

)
, a ∈ [−1, 1]

}
.

Fig. 2.3. Dynamics of Example 6.

For this setting, the essential dynamics is given by

F ]1(x) = F1(x) on M1, F ]1(x) =
{(
−a
−a

)
, a ∈ [0, 1]

}
on M3,

F ]2(x) = F2(x) on M2, F ]2(x) =
{(

a
−a

)
, a ∈ [0, 1]

}
on M3, and F ]3(x) = F3(x) on M3.

Figure 2.3 shows the essential dynamics where F ]1 is represented in red, F ]2 in blue and F ]3 in green. Theorem 2.9
states a comparison principle for the following HJB equation

(2.10)


−∂tu(t, x) + |∂x1u(t, x) + ∂x2u(t, x)| = 0 for (t, x) ∈ (0, T )×M1,

−∂tu(t, x) + |∂x1u(t, x)− ∂x2u(t, x| = 0 for (t, x) ∈ (0, T )×M2,

−∂tu(t, x) + max(|∂x1u(t, x)|+ ∂x2u(t, x), |∂x2u(t, x)|) = 0 for (t, x) ∈ (0, T )×M3,

u(T, x) = |x1|+ x2,

where ψ(x) =|x1|+x2 is the final cost. We can also prove that this equations has a unique continuous viscosity
solution that happens to be the value function associated with the following optimal control problem:

u(t, x) = inf {|y1(T )|+ y2(T ) : ẏ(s) ∈ F (y(t)) for a.e. s ∈ [t, T ], y(t) = x} .
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Let us notice that in this setting, the viscosity solution in Ishii’s sense is not unique, as shown in [8, Section
10.4].

Example 7. In this example, we consider a different stratification of R2 given by

M1 := {x = (x1, x2) ∈ R2, x1 < 0}, M2 := {x = (x1, x2) ∈ R2, x1 > 0},

M3 := {0}×]−∞, 0[, M4 := {0}×]0,+∞[, and M5 := {0}.

The stratification satisfies (H1). Consider the dynamics F1(.) and F2(.) on M1 and M2 respectively defined
as follows:

F1(x) := c1

(
x2
−x1

)
on M1, F2(x) := c2

(
x2
−x1

)
on M2.

The convexified dynamics F (.) is given by

Fig. 2.4. The dynamics: In red the dynamics F1(.) and in blue the dynamics F2(.).

F (x) =


F1(x), x ∈M1,

F2(x), x ∈M2,

[min(c1, c2),max(c1, c2)]x2ex1 elsewhere.

Assume that c1, c2 > 0. Then we have

F3(.) = ∅ on M3, F4(.) = ∅ on M4, F5(.) = {0} on M5.

Notice that in this example the normal controllability is not satisfied and the results of [7] do not apply (see
some remarks on problems without controllability in [8, Section 12.2].

The essential dynamics are defined by

F ]1(x) =


F1(x), on M1,

F1(x), on M3,

∅, on M4,

{0}, on M5.

F ]2(x) =


F2(x) on M2,

∅, on M3,

F2(x), on M4,

{0}, on M5.

F ]3(x) =
{
∅, on M3,

{0} on M5.
F ]4(x) =

{
∅, on M4,

{0} on M5.
F ]5(0) = {0}.
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We consider the following HJB system

−∂tu(t, x) + supν∈Fi(x){−〈∂xu(t, x), ν〉} = 0 for (t, x) ∈ (0, T )×Mi, i = 1, 2,
−∂tu(t, x) + supν∈F1(x){−〈∂xu(t, x), ν〉} = 0 for (t, x) ∈ (0, T )×M3,

−∂tu(t, x) + supν∈F2(x){−〈∂xu(t, x), ν〉} = 0 for (t, x) ∈ (0, T )×M4,

−∂tu(t, 0) = 0 for t ∈ (0, T ),
u(T, x) = ψ(x) for x ∈ RN .

The dynamics of this example satisfy the assumptions (SH), (HD) and (HESS) but not the controllability
assumptions (HN,[7]). However, whenever we choose ψ Lipschitz continuous and bounded, we can prove that
there exists a unique continuous solution to the above HJB system and it is the value function associated to the
optimal control problem defined with F (.) (see Section 4). Moreover, Theorem 2.9 provides a strong comparison
principle for the above HJB system.

3 Invariance Principles. In this section, we present weak and strong invariance principles. These
principles are known in the classical case, when the dynamics F (.) is Lipschitz continuous, see [13, Chapter
11]. Here, we give an extension of the weak and strong principles in the stratifies case.

First, we recall some tools from nonsmooth analysis.
Definition 3.1. (Proximal sub-gradient and super-gradient).
• Let u : RN → R∪{+∞} be a l.s.c function. We say that ζ is proximal sub-gradient at a point x ∈ dom(u)

for some σ = σ(x, ζ) and some neighborhood V = V (x, ζ) of x if we have

u(y)− u(x) + σ|y − x|2≥ 〈ζ, y − x〉, ∀ y ∈ V.

The collection of such ζ form the proximal sub-gradient. It is denoted ∂pu(x).

• Similarly, Let u : RN → R ∪ {−∞} be an u.s.c function. We say that ζ is proximal super-gradient at a
point x ∈ dom(u) for some σ = σ(x, ζ) and some neighborhood V = V (x, ζ) of x if we have

u(y)− u(x) + σ|y − x|2≤ 〈ζ, y − x〉, ∀ y ∈ V.

The collection of such ζ forms the proximal super-gradient. It is denoted ∂pu(x). We also have the property
∂pu(x) = −∂p(−u)(x).

Definition 3.2. (Proximal normal cone).
Let S ⊆ RN be a closed set and x ∈ S. A vector ζ is a proximal normal to the closed set S at the point x if
there exists σ > 0 such that 〈ζ, y − x〉 ≤ |ζ|

2σ |y − x|
2 ∀y ∈ S. The set of all proximal normal vectors at x is

denoted by Np
S(x).

Definition 3.3. (Weak invariance).
Let Γ : RN  RN be a set-valued map. Let S ⊆ RN be a closed set. We say that (S,Γ) is weakly invariant
provided that for x ∈ S, t ∈ [0, T ] there exists y(.) a solution of (DI)Γ(t, x) such that y(τ) ∈ S for all τ in
[t, T ].

Definition 3.4. (Strong invariance).
Let Γ : RN  RN be a set-valued map. Let S ⊆ RN be a closed set. We say that (S,Γ) is strongly invariant
provided that for x ∈ S, t ∈ [0, T ] and every y(.) a solution of (DI)Γ(t, x) we have y(τ) ∈ S for all τ in [t, T ].

Theorem 3.5. Assume (H1), (SH) and (HD). Let S be a closed set of RN . We denote by Si :=Mi ∩ S.
The following assertions are equivalent:

• (i) (S, F ) is weakly invariant,
• (ii) ∀x ∈ S, ∃ i ∈ I(x) : ∀ηi ∈ Np

Si
(x), HFi(x, ηi) ≥ 0,

• (iii) ∀x ∈ S, ∃ i ∈ I(x) : ∀ηi ∈ Np
Si

(x), HF ]
i
(x, ηi) ≥ 0.

Theorem 3.6. Assume (H1), (SH) and (HD). Let S be a closed set of RN . We denote by Si :=Mi ∩ S.
The following assertions are equivalent:

• (i) (S, F ) is strongly invariant,
• (ii) ∀x ∈ S, ∀i ∈ I(x), ∀ηi ∈ Np

Si
(x), HF ]

i
(x,−ηi) ≤ 0.
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The complete proof of Theorems 3.5 and 3.6 are given in Appendix C.

For stratified systems, the first attempt to prove the invariance results was in [10], using the essential
Hamiltonian strategy. In particular, for the strong invariance principle, under assumptions (H1), (SH) and
(HD), [10, Theorem 5.1] states that (S, F ) is strongly invariant for some closed set S ⊆ RN if and only if

(3.1) ∀x ∈ S, ∀ξ ∈ Np
S(x), HF ](x,−ξ) ≤ 0.

Although the intuition of using the essential Hamiltonian was very interesting, the proximal normal cone Np
S(x)

used in (3.1) is the same as the one in the classical case, which does not take into account the geometry of the
problem. More precisely, the sufficient implication in (3.1) fails to be true in general. Here is a counterexample.

NP
S (x̄) = {(0, 0)}x̄ = (0, 0)

R

R

S = {x3
1 ≤ x5

2}

F3(x1, x2) = {−ex2}F2(x1, x2) = {(0, 0)}

F4(x1, x2) = {(0, 0)}F1(x1, x2) = {(0, 0)}

Fig. 3.1. Counterexample with a stratification in RN , with N = 2, n = 4 and l = 5.

Consider a stratification as follows

M1 = {(x1, x2) ∈ R2 : x1 < 0 & x2 > 0} M2 = {(x1, x2) ∈ R2 : x1 < 0 & x2 < 0},

M3 = {(x1, x2) ∈ R2 : x1 > 0 & x2 < 0} M4 = {(x1, x2) ∈ R2 : x1 > 0 & x2 > 0},

M5 = (0,+∞)ex1 M6 = (−∞, 0)ex1 M7 = (0,+∞)ex2 M8 = (−∞, 0)ex2 M9 = {0}.

This stratification satisfies assumptions (H1), (SH) and (HD). Take S to be the closed set defined by

S = {(x1, x2) ∈ R2 : x3
1 ≤ x5

2},

represented in red in Figure 3.1, and consider the following dynamics

F1(x1, x2) = F2(x1, x2) = F4(x1, x2) = F5(x1, x2) = {(0, 0)},

F6(x1, x2) = F7(x1, x2) = F9(x1, x2) = {(0, 0)}, F3(x1, x2) = F8(x1, x2) = {−ex2}.

Since the proximal normal cone to S at x̄ = (0, 0) is equal to Np
S(x̄) = {(0, 0)}, the Hamiltonian inequality

(3.1) is therefore verified at x̄ = (0, 0). Moreover, the inequality (3.1) is also verified, for any other point in
S \ {0} since the dynamics F is reduced to {(0, 0)}. However, (S, F ) is not strongly invariant since F (0, x2) =
co{0,−ex2} if x2 ≤ 0, and the trajectory

Z̃(s) = (0, t− s) ∈ S(t,T )(0, 0)

is a trajectory of F that starts at x̄ = (0, 0) ∈ S, but Z̃(.) 6⊂ S. In conclusion, in this counterexample the
Hamiltonian inequality

∀x ∈ S, ∀ξ ∈ Np
S(s), HF ](x,−ξ) ≤ 0,
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is verified. Nonetheless, (S, F ) is not strongly invariant (so, the sufficient condition of strong invariance (3.1)
is not correct).

In Theorem 3.6, we give a correct characterization of the strong invariance, in the stratified case, using the
essential Hamiltonian and by involving, for every i ∈ I(x), the normal cone Np

Si
(x). Notice that (S, F ), defined

in the above counterexample, does not satisfy the characterization of strong invariance given in Theorem 3.6.
Indeed, we have

S8 := S ∩M8 = S ∩ (−∞, 0]ex2 = {(0, 0)}.

Therefore, the proximal normal to S8 at x̄ := (0, 0) is equal to R2. Moreover, we have F ]8(x̄) = co{0,−ex2} =
[0,−ex2 ]. Thus

HF ]8
(x̄,−Np

S8
(x̄)) ≥ 〈−ex2 ,−ex2〉 = 1 > 0.

4 Proof of Theorems 2.8 and 2.9.

4.1 Optimal control problem and the value function. In this section, we consider the differential
inclusion associated with the set-valued map F :{

ẏ(s) ∈ F (y(s)), s ∈ [t, T ] a.e.,
y(t) = x.

Since F is u.s.c with nonempty, convex and compact images, then the above differential inclusion admits
Lipschitz solutions for any (t, x) ∈ [0, T ] × RN . Furthermore, the set of solutions is compact in the topology
of uniform convergence [2, Theorem 1, pp 60]. We denote by S(t,T )(x) the set of solutions of the differential
inclusion associated to F (.):

S(t,T )(x) :=
{
y(t,x)(.) ∈W 1,1([t, T ];RN ) :

{
ẏ(t,x)(s) ∈ F (y(t,x)(s)), s ∈ [t, T ], a.e.,
y(t) = x.

}
.

We consider the following Mayer optimal control problem defined for (t, x) ∈ [0, T ]× RN by

(4.1)

 inf ψ(y(t,x)(T ))
such that ẏ(t,x)(s) ∈ F (y(t,x)(s)), s ∈ [t, T ]

y(t,x)(t) = x,

where the infimum is taken over all trajectories y(t,x)(.) ∈ S(t,T )(x) and it is reached.
Next, we consider the value function associated to the optimal control problem defined on (t, x) ∈ [0, T ]×RN
by

ϑ(t, x) = inf{ ψ(y(t,x)(T )) , y(t,x)(.) ∈ S(t,T )(x) }.

We now proceed to define some properties of the value function.
Definition 4.1. Let u : (0, T ]× RN → R be a function. u is said to enjoy
• the super-optimality property if for all (t, x) ∈ (0, T ] ∈ RN , there exists y(t,x)(.) ∈ S(t,T )(x) such

that
u(t, y(t,x)(t)) ≥ u(s, y(t,x)(s)), ∀s ∈ [t, T ];

• the sub-optimality property if for all (t, x) ∈ [0, T ] ∈ RN , for all y(t,x)(.) ∈ S(t,T )(x) we have

u(t, y(t,x)(t)) ≤ u(s, y(t,x)(s)), ∀s ∈ [t, T ].

As in the classical case, the value function ϑ satisfies the Dynamic programming principle, which corresponds
to the super-optimality and the sub-optimality properties.

Lemma 4.2 ([22] ). Let u : (0, T ]× RN → R be a function.
• If u(T, x) ≥ ψ(x) and u has the super-optimality property, then: ϑ(t, x) ≤ u(t, x) for all (t, x) ∈

(0, T ] ∈ RN .
• If u(T, x) ≤ ψ(x) and u has the sub-optimality property, then: ϑ(t, x) ≥ u(t, x) for all (t, x) ∈

(0, T ]× RN .
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The next proposition states that the controllability hypothesis (CH) is a sufficient condition to ensure that
the value function is locally Lipschitz continuous.

Proposition 4.3. Suppose (H1), (CH) and (Hψ) hold. Then, ϑ : [0, T ] × RN −→ R is locally Lipschitz
continuous.

Proof. From the controllability assumption (CH), there exists a neighborhood of Λ (the interfaces), de-
noted V := Λ + εB, and there exists r > 0, such that for all x ∈ V , we have rB ⊂ F (x).

First, we prove that ϑ(t, .) is locally Lipschitz. Let x, z ∈ RN . We suppose first that x, z ∈ V . Let M be
the local supremum bound of F and Lψ be the Lipschitz constant of ψ in some open ball with radius large
enough. Without loss of generality, we suppose ϑ(t, x) ≥ ϑ(t, z).

Let yt,z(.) ∈ S(t,T )(z) such that ϑ(t, z) = ψ(yt,z(T )). Set

h = | x− z |
r

and ξ(s) = x+ r
z − x
| x− z |

(s− t) for s ∈ [t, t+ h].

We define :
ỹ(s) =

{
ξ(s) for s ∈ [t, t+ h]
yt,z(s− h) for s ∈ [t+ h, T ]

It is easy to see that ỹ(.) ∈ S(t,T )(x). If t+ h ≤ T , we get

ϑ(t, x)− ϑ(t, z) ≤ ψ(ỹ(T ))− ψ(yt,z(T )) ≤ Lψ|ỹ(T )− yt,z(T )| = Lψ|yt,z(T − h)− yt,z(T )|

≤ LψMh = Lψ
M

r
|x− z|.

If t+ h > T , then we get

ϑ(t, x)− ϑ(t, z) ≤ ψ(ỹ(T ))− ψ(yt,z(T )) ≤ Lψ (|ξ(T )− z|+ |z − yt,z(T )|)

≤ Lψ
(
|x− z + r

z − x
| x− z |

(T − t)|+M |T − t|
)

≤ Lψ(1 + r +M

r
)|x− z|.

Thus in all cases we get

ϑ(t, x)− ϑ(t, z) ≤ Lψ(2 + M

r
)|x− z|.

Suppose now for example z /∈ V (we can do the same reasoning on x instead). Then by taking them close
enough to each other, there exists i ∈ {1, ..., n} such that x, z ∈ Mi. Let yt,z(.) ∈ S(t,T )(z) such that
ϑ(t, z) = ψ(yt,z(T )). Suppose yt,z(.) crosses the boundary of Mi. Let t0 ∈ [t, T ] be such that

yt,z([t, t0]) ⊂Mi, and yt,z(t0) ∈ V.

Let yt,x(.) ∈ S(t,T )(x) such that yt,x([t, t0]) ⊂Mi. We have

|yt,x(t0)− yt,z(t0)|≤ eMt0 |x− z|≤ eMT |x− z|

Since they are both Fi-trajectories on [t, t0], see [15, Theorem 4.3.11]. Furthermore, we can also suppose that

yt,x(t0) ∈ V ∩Mi.

We can always find such a trajectory if x and z are close enough and yt,z(t0) ∈ V ∩Mi.
Set h = |yt,z(t0)−yt,x(t0)|

r and ξ(s) = yt,x(t0) + r
yt,z(t0)−yt,x(t0)
|yt,z(t0)−yt,x(t0)| (s− t0) for s ∈ [t0, t0 + h]. We define

ỹ(s) =

 yt,x(s) for s ∈ [t, t0]
ξ(s) for s ∈ [t0, t0 + h]
yt,z(s− h) for s ∈ [t0 + h, T ]
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It is easy to see that ỹ(.) is an F -trajectory. So, arguing in the same way as the previous case, we get

ϑ(t, x)− ϑ(t, z) ≤ ψ(ỹ(T ))− ψ(yt,z(T )) ≤ Lψ|ỹ(T )− yt,z(T )|

≤ Lψ(2 + M

r
)eMT |x− z|.

If the trajectory yt,z(.) does not cross the boundary of Mi, then, it is an Fi -trajectory. Furthermore,
we can always find a F -trajectory yt,x(.) that stays in Mi by the controllability assumption. Indeed one
can always choose a trajectory with zero velocity once it reaches the neighborhood V . So yt,x(.) is also an
Fi-trajectory. Hence the result follows again from the classical case, see [15, theorem 4.3.11]. This finishes the
proof of ϑ(t, .) is locally Lipschitz.

Now we prove that ϑ is locally Lipschitz w.r.t the time variable. Let x ∈ RN . Let t, s ∈ [0, T ] such that
t < s. By the super-optimality property, there exists y(.) ∈ S(t,T )(x) such that ϑ(t, x) = ϑ(s, y(s)). Then

|ϑ(t, x)− ϑ(s, x)| = |ϑ(s, y(s))− ϑ(s, x)| ≤ |ϑ(s, y(s))− ϑ(s, y(t))|.

Since both ϑ(s, .) and y(.) are locally Lipschitz, then from the expression above, ϑ(., x) is locally Lipschitz.
This ends the proof.
The next proposition shows that F -trajectories are the same as F ]-trajectories. This implies that the essential
dynamics completely characterize the optimal control problem 4.1.

Proposition 4.4. ([10, Proposition 2.1]).
Let (t, x) ∈ [0, T ]× RN and y(.) ∈ S(t,T )(x). The following statements are equivalent:
(i) y(.) is a solution of (DI)F (t, x),
(ii) y(.) is a solution of (DI)F ](t, x),
(iii) y(.) is a solution of (DI)Fi(t, x) whenever y(.) ∈Mi.

Proof. (iii) =⇒ (ii) =⇒ (i) is obvious since Fi(.) ⊆ F ](.) ⊆ F (.). Now, suppose (i) and let y(.) ∈ S(t,T )(x).
For k ∈ {1, ..., n + l}, let Jk := {s ∈ [t, T ] : y(s) ∈ Mk}. Without loss of generality, we suppose L (Jk) > 0
(otherwise there is nothing to prove). We set

J̃k := {s ∈ Jk : ẏ(s) exists in F (y(s)) and s is a Lebesgue point of Jk}.

Clearly L (Jk) = L (J̃k) (L stands for the Lebesgue measure). Let s ∈ J̃k. So, there exists a sequence
(sn)n ⊂ Jk such that sn → s and sn 6= s for all n. Since y(sn) ∈Mk, we have

ẏ(s) = lim
sn→s

y(sn)− y(s)
sn − s

∈ TMk
(y(s)),

which is the required result.
The above proposition shows in particular that the optimal control problem could be defined using F or

F ] or F ]i , i = 1, . . . , n+ l.

4.2 The super-optimality and super-solution property. In this section, we characterize functions
that are super-solutions of equation (2.3) with super-optimality property. The characterization using the
Hamiltonian HF is standard in the literature since the set-valued map F satisfies the usual hypotheses (upper
semicontinuity with nonempty, convex and compact images). Here, we will prove a more general result. We
show that super-solutions are characterized using the Hamiltonians HF ]

i
, i = 1, . . . , n+ l, In the viscosity sense

given in Definition 2.3. We recall that for a l.s.c function u : (0, T ]× RN → R and i = 1, . . . , n+ l, we define
the function ui : (0, T ]× RN → R ∪ {+∞} by

ui ≡ u on (0, T ]×Mi and ui ≡ +∞ elsewhere.

Theorem 4.5. Suppose (H1), (SH) and (HD). Let u : (0, T ]×RN → R be l.s.c. The following assertions
are equivalent:

(i) u is a super-solution of (2.3) in the sense of Definition 2.3,
(ii) u satisfies the super-optimality principle.
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Proof. The fact that (i) is equivalent to

(4.2) − θ +HF (x, ξ) ≥ 0 ∀(θ, ξ) ∈ D−u(t, x),

is well known since F (.) is u.s.c with nonempty, convex and compact images. For more on this, see [32,
Proposition 3.5] or [13, Chapter 19]. Moreover, it is obvious from this that (i) =⇒ (ii) since HF ]

i
(., .) ≤

HFi(., .) ≤ HF (., .) and D−u(., .) ⊂ D−ui(., .), for all i ∈ [1, n+ l].

It remains to prove (ii) =⇒ (i). Let y(.) : [t, T ] → RN be a trajectory solution of (DI)F (t, x) such that
the super-optimality property holds in y(.). We claim the following:

Claim: ∃ j ∈ I(x) such that there exists a sequence (tn)n, tn ↓ t and xn := y(tn) ∈Mj , so that xn−x
tn−t → ν

and ν ∈ F ]j (x).

Deferring the proof of the claim, let φ ∈ C1((0, T ) × RN ) such that uj − φ attains a local minimum at
(t, x) in (0, T )×Mj . For n big enough the super-optimality property gives

uj(t, x)− uj(tn, xn) ≥ 0.

This inequality combined with the fact that uj(tn, xn)− φ(tn, xn) ≥ uj(t, x)− φ(t, x) lead to

1
tn − t

(φ(t, x)− φ(tn, xn)) ≥ 0.

By letting n tend to +∞, we obtain −∂tφ(t, x)− 〈ν, ∂xφ(t, x)〉 ≥ 0 and then

−∂tφ(t, x) +HF ]
j
(x, ∂xφ(t, x)) ≥ −∂tφ(t, x)− 〈ν, ∂xφ(t, x)〉 ≥ 0.

This concludes the proof.

Now we turn our attention to the proof of the claim. We distinguish two cases: either there exists r > 0
such that y([t, t+ r]) stays in one domainMj for some j ∈ {1, . . . , n}∩ I(x), almost everywhere, or it touches
or crosses the singular set Λ infinitely many times no matter how we are close to x. We begin with the first
case: suppose there exists r > 0 such that y([t, t+ r]) ⊂Mj for some j ∈ {1, . . . , n}∩ I(x) almost everywhere.
So, there exists a sequence (tn)n, tn ↓ t and xn := y(tn) ∈Mj , so that xn−x

tn−t → ν.
Notice that ν = limn→+∞

xn−x
tn−t ∈ TMj

(x), since xn ∈ Mj . It remains to prove that ν belongs to Fj(x).
Denote by κ and M respectively the Lipschitz constant of Fj(.) and the Lipschitz constant of y(.). We have

ν = lim
n→+∞

1
tn − t

ˆ
[t,tn]

ẏ(s) ds

∈ lim
n→+∞

( 1
tn − t

ˆ
[t,tn]

projFj(x)(ẏ(s)) ds+ κ

tn − t

ˆ
[t,tn]
|y(s)− x|B ds

)
⊆ lim
n→+∞

(
Fj(x) + κM

tn − t
[ ˆ

[t,tn]
(s− t) ds

]
B
)

⊆ lim
n→+∞

(
Fj(x) + κM

|tn − t|
2 B

)
= Fj(x).

In conclusion, we get ν ∈ Fj(x) ∩ TMj
(x) = F ]j (x).

Now we get to the second case. Since y(.) touches or crosses Λ infinitely many times no matter how we
are close to x, then there exists j ∈ {n+ 1, . . . , n+ l} ∩ I(x), a sequence (tn)n, tn ↓ t and xn := y(tn) ∈ Mj ,
so that xn−x

tn−t → ν.
Notice that ν = limn→+∞

xn−x
tn−t ∈ TMj

(x), since xn ∈ Mj . It remains to prove that ν belongs to Fj(x). For
k = 1, . . . , n+ l, we set

Jkn := { s ∈ [t, t+ tn] : y(s) ∈Mk }, µkn := L (Jkn), K(x) := {k : µkn > 0, ∀n ∈ N},
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where we recall that L is the Lebesgue measure on R. We obviously have K(x) ⊂ I(x). Furthermore, up to
a subsequence, there exist 0 ≤ λk ≤ 1 and pk ∈ RN such that

µkn
tn − t

→ λk,
∑

k∈K(x)

λk = 1, 1
µkn

ˆ
Jkn

ẏ(s)ds→ pk, as n→∞.

Denote by κ and M respectively the Lipschitz constant of Fk(.) and the Lipschitz constant of y(.), we get

pk = lim
n→+∞

1
µkn

ˆ
Jkn

ẏ(s) ds

∈ lim
n→+∞

( 1
µkn

ˆ
Jkn

projFk(x)(ẏ(s)) ds+ κ

µkn

ˆ
Jkn

|y(s)− x|B ds
)

⊆ lim
n→+∞

(
Fk(x) + κM

µkn

[ ˆ
Jkn

(s− t) ds
]
B
)

⊆ lim
n→+∞

(
Fk(x) + κM |tn − t|B

)
= Fk(x).

Therefore, we have

ν = lim
n→+∞

1
tn − t

ˆ
[t,tn]

ẏ(s) ds =
∑

k∈K(x)

lim
n→+∞

µkn
tn − t

[
1
µkn

ˆ
Jkn

ẏ(s) ds
]

⊂ co {Fk(x) : k ∈ K(x)}.

Finally, we get

ν ∈ co
{
Fk(x) : k ∈ K(x)

}
∩ TMj

(x) ⊂ co
{
Fk(x) : k ∈ I(x)

}
∩ TMj

(x) = F ]j (x).

This ends the proof of the claim.
Remark 4.6. By the arguments presented at the beginning of the above proof, it is easy to see that under

the same assumptions of Theorem 4.5, the following statements are equivalent:
(i) u satisfies the super-optimality principle,
(ii) u is a super-solution of (2.3) in the sense of Definition 2.3,
(iii) u is a super-solution of (2.2) in the sense of Definition 2.3,
(iv) u verifies inequality (4.2).
Remark 4.7. It was already known from [32], that the inequality (4.2) is equivalent to the super-optimality

property if we only use the classical definition of viscosity. The importance of this result lies in the fact that
the equivalence is valid even if we take the notion of viscosity stated in Definition 2.3.

4.3 The sub-optimality and sub-solution property. This section aims at establishing the link
between the sub-optimality principle and the the sub-solution property of (2.3).

Theorem 4.8. Suppose (H1), (SH), (HD) and (HESS) hold. Let u : (0, T ]×RN → R be an u.s.c function.
The following assertions are equivalent:
(i) u satisfies the sub-optimality principle,
(ii) u is a sub-solution of (2.3).

Proof. We prove (i) =⇒ (ii) first. Let i ∈ {1, ..., n + l} and (t, x) ∈ [0, T ] ×Mi. By [32, Lemma 3.9],
for every p ∈ F ]i (x), there exists a C1 trajectory y(.) defined on some interval [t, t+ ε], with ε > 0, such that
y(t) = x, ẏ(t) = p and y(.) ⊆Mi.

Let ui ≡ u on (0, T ]×Mi and ui ≡ −∞ otherwise. Let (θ, ξ) be in D+ui(t, x). For any sequence ((tn, xn))n
such that (tn, xn) ∈ dom(ui) and (tn, xn)→ (t, x), we have

lim sup
n→∞

u(tn, xn)− u(t, x)− θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

≤ 0.
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Setting xn = y(t+ ε
n ) and tn := t+ ε

n , we get by sub-optimality of u

−θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

≤ u(tn, xn)− u(t, x)− θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

,

By letting n→∞ we get

−θ − 〈ξ, p〉
|p|+ 1 ≤ 0 =⇒ −θ − 〈ξ, p〉 ≤ 0.

Since p is arbitrary, we get the result by taking the supremum over F ]i (x).

It remains to prove (ii) =⇒ (i). We define the augmented stratification by

Mi := R×Mi × R.

Furthermore, for all i = 1, ..., n + l, we define v := −u (so v is l.s.c) and we denote by vi ≡ v on (0, T ] ×Mi

and vi ≡ +∞ otherwise. Next, we divide the proof into 2 steps.

Step 1.. We show that
∀i ∈ {1, ..., n+ l}, epi(vi) = epi(v) ∩M i.

Let (t, x, r) ∈ epi(vi). So vi(t, x) ≤ r. Hence x ∈ Mi and v(t, x) ≤ r. Thus we get (t, x, r) ∈ epi(v) ∩M i.

Conversely, if (t, x, r) ∈ epi(v) ∩M i, then v(t, x) ≤ r and x ∈ Mi. So vi(t, x) = v(t, x), whence vi(t, x) ≤ r,
which finishes the proof of step 1.

Step 2. (Augmented dynamics). Let us first point out the fact that assertion (ii) is equivalent to

−θ +HF ]
i
(x, ν) ≤ 0 for all (t, x) ∈ (0, T )×Mi, (θ, ν) ∈ −D−vi(t, x),

since D+ui(t, x) = −D−(−ui)(t, x) = −D−vi(t, x). We establish the following claim

Claim. Let G]i be the augmented dynamics defined by

G]i(t, x, z) := {1} × F ]i (x)× {0}, for any (t, x, z) ∈M i.

If we have
−θ +HF ]

i
(x, ν) ≤ 0 for all (t, x) ∈ (0, T )×Mi, (θ, ν) ∈ −D−vi(t, x),

Then it holds

(4.3) sup
ν∈G]

i
(t,x,z)

{ 〈η, ν〉 } ≤ 0 ∀(t, x, z) ∈ epi(vi), η ∈ Np
epi(vi)(t, x, z).

Let (t, x, z) ∈ epi(vi). If F ]i (x) = ∅ then the result holds by vacuity. Otherwise, let (ξ,−λ) ∈ Np
epi(vi)(t, x, z).

So we have λ ≥ 0 because (ξ,−λ) belongs to the proximal normal cone of the epigraph of vi. If λ > 0. Then
we have z = vi(t, x) and there exists (θ, ζ) ∈ −∂pvi(t, x) ⊂ −D−vi(t, x) such that ξ = (−λθ,−λζ). Hence, by
[13, Theorem 11.32], for any ν ∈ G]i(t, x, z) we have, for some p ∈ F ]i (x):

〈(ξ,−λ), ν〉 = −λ(θ + 〈ζ, p〉) ≤ λ(−θ +HF ]
i
(x, ζ)) ≤ 0

We take the supremum over ν and we get the result. Now, if λ = 0, then by [13, Theorem 11.31], there exist
sequences ((tn, xn))n ⊆ [0, T ]×Mi, (ξn)n ⊆ RN+1 and (λn)n ⊆ (0,∞) such that

(tn, xn, λn)→ (t, x, 0), v(tn, xn)→ z ξn → ξ,
1
λn
ξn ∈ −∂pvi(tn, xn).

Thus the argument above shows that

〈(ξn,−λn), νn〉 ≤ 0 ∀νn ∈ G]i(tn, xn, ui(tn, xn)), ∀n ∈ N.
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Furthermore, by Hypothesis (HESS) we have that G]i(.) is lower semicontinuous. So for any ν ∈ G]i(t, x, z),
there exists a sequence (νn)n → ν such that νn ∈ G]i(tn, xn, vi(tn, xn)). By evaluating the last inequality at
this sequence and letting n→ +∞, then taking the supremum over ν, we get the result.

Consequently, since equation (4.3) holds from (ii), then we can apply Theorem 3.6 to the augmented
dynamics G(.) := {1} × F (.) × {0}, the stratification RN+2 = ∪n+l

i=1Mi and the set S = epi(v). Thus we get
that (epi(v), G) is strongly invariant. Let (t, x) ∈ (0, T ) × RN and y(.) be a solution of (DI)F (t, x). So we
have that

Y (s) = (s, y(s), v(t, y(t)) s ∈ [t, T ],
is a solution of the differential inclusion with the augmented dynamicsG(.) and initial condition (t, y(t), v(t, y(t))) =
(t, x, v(t, x)) ∈ epi(v). Thus, by Theorem 3.6, we get

(t+ h, y(t+ h), v(t, y(t)) ∈ epi(v)

for all h ∈ [0, T − t]. Hence

v(t+ h, y(t+ h)) ≤ v(t, y(t))⇐⇒ u(t, y(t)) ≤ u(t+ h, y(t+ h)) (since u = −v).

This ends the proof of (ii) =⇒ (i) and Theorem 4.8.

4.4 Proof of Theorems 2.8 and 2.9.
Proof. (Theorem 2.8). Proposition 4.3 shows that the value function ϑ is locally Lipschitz continuous.

Furthermore, we have ϑ(T, x) = ψ(x). Theorem 4.5 shows that ϑ is a viscosity super-solution since it enjoys
the super-optimality property. In addition, Theorem 4.8 shows that ϑ is a viscosity sub-solution since it enjoys
the sub-optimality property. Finally, uniqueness comes from the global comparison result in Theorem 2.9.

Proof. (Theorem 2.9). Let u1 and u2 respectively be a l.s.c super-solution and an u.s.c sub-solution of
equation (2.3). By Theorem 4.5, we conclude that u1 satisfies the super-optimality principle which means that
for all (t, x) ∈ (0, T ]× RN , there exists a trajectory y(.) ∈ S(t,T )(x) such that

u1(t, x) ≥ u1(T, y(T )).

Likewise, by Theorem 4.8, we conclude that u2 satisfies the sub-optimality principle. Then for the same
trajectory y(.) we have

∀ (t, x) ∈ (0, T ]× RN , u2(t, x) ≤ u2(T, y(T )).
Henceforth, using the fact that u2(T, ·) ≤ u1(T, ·), we get the desired result u2(t, x) ≤ u1(t, x) for any (t, x) ∈
(0, T ]× RN .

5 Stability.

Theorem 5.1. For i = 1, . . . , n + l, let
(
F ji : Mi  RN

)
j

be a sequence of set-valued maps satisfying
(SH) and such that F ji −→ Fi w.r.t the Hausdorff metric (i.e. uniform convergence). Let (vj : RN → R)j be
a sequence of l.s.c functions such that vj → v locally uniformly in RN . Suppose in addition that for all j, vj
is a super-solution of

−∂tvj(t, x) + max
i∈I(x)

{HF j]
i

(x, ∂xvj(t, x)) } ≥ 0 for all (t, x) ∈ (0, T )× RN ,

in the sense of Definition 2.3. Then v is a super-solution of (2.3).
Proof. Let (t, x) ∈ (0, T )×RN . Using Remark 4.6, it suffices to prove that v is a super-solution of (4.2). Let

φ ∈ C1((0, T )×RN ) such that u−φ attains a local minimum at (t, x). Then, there exists (tj , xj) ∈ (0, T )×RN
such that vj − φ attains local minimum and such that (tj , xj)→ (t, x). Since the stratification is finite and vj
is a super-solution of (2.3), then up to a subsequence (not relabeled), there exists i0 ∈ [1, n+ l] such that for
all j, we have

−∂tφ(tj , xj) +HF j]
i0

(xj , ∂xφ(tj , xj)) ≥ 0.

Since F j]i0 (.) ⊆ F ji0(.), we get
−∂tφ(tj , xj) +HF j

i0
(xj , ∂xφ(tj , xj)) ≥ 0.
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So by letting j tend to infinity, we get

−∂tφ(t, x) +HFi0
(x, ∂xφ(t, x)) ≥ 0.

Finally, since Fi0(.) ⊆ F (.), then we get

−∂tφ(t, x) +HF (x, ∂xφ(t, x)) ≥ 0,

which is the required result by Remark 4.6.
Theorem 5.2. For i = 1, ..., n+ l, let

(
F ji :Mi  RN

)
j

be a sequence of set-valued maps satisfying (SH).
We denote By

F j]i (.) = F ji (.) ∩ TMi
(.).

Suppose that F j]i −→ F ]i w.r.t the Hausdorff metric. Let (vj : RN → R)j be a sequence of u.s.c functions such
that vj → v locally uniformly in RN . Suppose in addition that for all j ∈ N, vj is a sub-solution of

−∂tvj(t, x) +HF j]
i

(x, ∂xvj(t, x)) ≤ 0 for all (t, x) ∈ (0, T )× RN , i ∈ I(x),

in the sense of definition 2.4. Then v is a sub-solution of (2.3).
Proof. Let (t, x) ∈ (0, T ) × RN and i ∈ I(x). Let φ ∈ C1((0, T ) × RN ), such that u − φ attains a local

maximum in (0, T ) ×Mi, at (t, x). Without loss of generality, we can always suppose that the maximum is
strict. Then by [4, Lemma 2.2] there exists (tj , xj) ∈ (0, T )×Mi, such that vj − φ attains local maximum in
(0, T )×Mi at (tj , xj), and such that (tj , xj)→ (t, x). Since vj is a sub-solution, we get

−∂tφ(tj , xj) +HF j]
i

(xj , ∂xφ(tj , xj)) ≤ 0.

Now let ν ∈ F ]i (x). Then by the Hausdorff convergence of the sequence (F j]i )j there exists a sequence
νj ∈ F j]i (xj) such that νj → ν. Finally, we arrive at

−∂tφ(tj , xj) + 〈−νj , ∂xφ(tj , xj)〉 ≤ −∂tφ(tj , xj) +HF j]
i

(xj , ∂xφ(tj , xj)) ≤ 0.

By letting j tend to infinity, we get

−∂tφ(t, x) + 〈−ν, ∂xφ(t, x)〉 ≤ 0.

Lastly, since ν is arbitrary, we take the supremum over ν and we get the required result.

6 General convergence result for monotone schemes. In this section, we aim at studying the
convergence of monotone numerical schemes approximating the HJB equation (2.3).

Let G∆x =
⋃n+l
i=1 G∆x

i be a spatial grid of RN of step ∆x, such that each G∆x
i is a discretization ofMi and

G∆x is compatible with the stratification (Mi)i=1,...,n+l in the following sense:

(CC):
{

(i) For all i, j = 1, ..., n+ l, such thatMj ⊂Mi, G∆x
i and G∆x

j coincide on G∆x
j ,

(ii) ∀R > 0, ∀i = 1, ..., n+ l, lim∆x→0 dH

(
Mi ∩ B(0, R) , G∆x

i ∩ B(0, R)
)

= 0.

Comments on the hypothesis (CC). Hypothesis (CC)(i) implies that the grid G∆x is divided into n+l
subgrids (G∆x

i )i with a partial order relation that ensures compatibility with the stratification. Hypothesis
(CC)(ii) asserts that for each i = 1, . . . , n + l, the subgrid G∆x

i approaches Mi in the the sense of Hausdorff
convergence for locally compact sets. Notice that this implies in particular that the points of a subgrid G∆x

i

don’t have to belong to Mi meaning that we do not require that

G∆x
i ⊂Mi.

What is important here is that the grid G∆x is divided into n+ l subgrids compatible with the stratification,
and each subgrid converges in the Hausdorff sense to its corresponding domain.

We define for any x ∈ G∆x, the index set-valued map of the grid

IG∆x(x) := { i ∈ {1, ..., n+ l} : x ∈ G∆x
i }.
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Let ∆t be a constant time step of a regular grid Π∆t of [0, T ]. We denote h = (∆t,∆x). We consider the
following numerical scheme:{

maxi∈IG∆x (xh) {Shi (th, xh, uh(th, xh), [uh](th,xh) } = 0 for (th, xh) ∈ (Π∆t × G∆x) \ {th = T},
uh(T, xh) = ψ(xh), for (th, xh) ∈ (Π∆t × G∆x) ∩ {th = T}

with uh : Π∆t × G∆x → R is the approximate solution and [uh](th,xh) are all the values of of uh on G∆x at
other points than (th, xh). Each Shi , i = 1, . . . , n+ l, is supposed to verify the following hypotheses:

• Monotonicity : Shi (s, z, u, [w1]h(s,z)) ≤ Shi (s, z, u, [w2]h(s,z)), if w1 ≥ w2.
• Stability :

– each uh is bounded on bounded sets of RN independently from h, for h small enough, i.e. for all
ρ > 0, there exists a Cρ > 0, independent of h, such that

|uh(thi , xhi )| ≤ Cρ if (thi , xhi ) ∈
(

[0, T ]× B(0, ρ)
)
∩
(

Π
∆t
× G∆x

)
.

– uh verifies the following inequality on a neighborhood of the interfaces: there exists r > 0 and
Cr > 0, independent of h, such that

|uh(th, xh)− uh(sh, yh)| ≤ Cr(|th − sh|+ |xh − yh|),

for all (th, xh), (sh, yh) ∈
(

[0, T ]× (Λ + B(0, r))
)
∩
(

Π
∆t
× G∆x

)
.

• Consistency : for all φ ∈ C1((0, T )× RN ) and (t, x) ∈ (0, T )× RN , we have

lim
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0
ζ→0

Shi (s, z, φ(s, z) + ζ, [φ+ ζ]h(s,z)) = −∂tφ(t, x) + HF ]
i
(x, ∂xφ(t, x)),

where [φ+ ζ]h(s,z), is a function representing the values of φ+ ζ on the grid at other points than (s, z).
The following theorem is an extension of the result by Barles and Souganidis [9], to the case of HJB

equations defined on stratified domains.
Theorem 6.1. Suppose that the HJB equation (2.3) admits a continuous viscosity solution u and the

comparison principle in Theorem 2.9 holds. Assume that for every h > 0 small enough, the numerical scheme
admits a solution uh. Assume further that the spatial grid verifies hypothesis (CC) and that each Shi verifies
the monotonicity, stability and consistency hypotheses.

Then, uh converges locally uniformly to u on [0, T ]× RN .
Proof. First, we begin by defining the following functions

u(t, x) := lim sup
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z), u(t, x) := lim inf
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z).

We aim to prove that u = u = u. We already have u ≤ u. Therefore to prove the result it suffices to prove
that u is a l.s.c super-solution and u is an u.s.c sub-solution of the HJB equation (2.3). We first prove that u
is a sub-solution.

Let (t, x) ∈ (0, T )×RN . Without loss of generality, we suppose that x ∈ B(0, ρ) for some ρ > 0 big enough
and we restrict our analysis on this bounded open set. Let i ∈ I(x) and let φ ∈ C1((0, T ) × RN ) such that
ui − φ attains its local maximum at (t, x) ∈ (0, T )×Mi. We recall that ūi = u in (0, T )×Mi and ui ≡ −∞
otherwise.

Without loss of generality, we can suppose that

ui(t, x) = φ(t, x), ui(s, z) < φ(s, z) if (s, z) 6= (t, x),

φ ≥ Cρ + 1 outside of a neighborhood Ω of (t, x), Ω ( (0, T )× B(0, ρ),
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where Cρ is defined from the first part of the stability assumption. Furthermore, from the second part of the
stability assumption, u is Lipschitz continuous in a neighborhood of the interfaces. So we get

0 = ui(t, x)− φ(t, x) = lim sup
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z)− φ(s, z) = lim sup
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0

uh(s, z)− φ(s, z).

The second part of the stability assumption is essential here to get the last equality since the limit sup might
not be reached from every subsgrid G∆x

i . Moreover, outside of Ω, we have ui−φ ≤ −1. So, there exists r > 0,
such that

0 ≥ uh(s, z)− φ(s, z) ≥ −1 for all (s, z) ∈ ([t− r, t+ r] ∩Π∆t)× (B(0, r) ∩ G∆x
i ) ⊂ Ω.

So, the maximum of uh − φ is attained in the compact set

([t− r, t+ r] ∩Π∆t)× (B(0, r) ∩ G∆x
i ) ⊂ Ω.

Let (thi , xhi ) be the maximum and (ti, xi) the limit when h→ 0 of a subsequence not relabeled. we have

lim
h→0

uh(thi , xhi )− φ(thi , xhi ) ≥ lim sup
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0

uh(s, z)− φ(s, z) = ui(t, x)− φ(t, x) = 0.

On the other hand, since ui − φ is u.s.c, we get

0 ≥ ui(ti, xi)− φ(ti, xi) ≥ lim
h→0

uh(thi , xhi )− φ(thi , xhi ).

Thus, we conclude
(ti, xi) = (t, x), uh(thi , xhi )→ ui(t, x).

Let ζh := uh(thi , xhi )− φ(thi , xhi ). We get

uh(thi , xhi ) = φ(thi , xhi ) + ζh, uh(s, z) ≤ φ(s, z) + ζh, (thi , xhi ) 6= (s, z) ∈ Π∆t × G∆x
i .

From the monotonicity of the scheme and uh being a solution, we get

Shi (thi , xhi , uh(thi , xhi ), [φ+ ζh]h(th
i
,xh
i

)) ≤ S
h
i (thi , xhi , uh(thi , xhi ), [uh](th

i
,xh
i

)) ≤ 0,

and by the consistency hypothesis and passing to the limit, we get

lim
(thi ,x

h
i )→(t,x)
h→0
ζh→0

Shi (thi , xhi , φ(thi , xhi ) + ζh, [φ+ ζh]h(th
i
,xh
i

)) = −∂tφ(t, x) + HF ]
i
(x, ∂xφ(t, x)) ≤ 0.

This is true for any i ∈ I(x), which ends the proof.

Now we prove that u is a super-solution. Following Remark 4.6, it suffices to prove that u is a super-solution
of (4.2).

Let (t, x) ∈ (0, T )×RN . Let φ ∈ C1((0, T )×RN ) such that u−φ attains its local minimum in (0, T )×RN
at (t, x) and φ(t, x) = u(t, x). Using the same arguments as in the first part of the proof, we get a sequence
(hn)n such that

hn ↓ 0, uhn − φ attains a local maximum at (tn, xn) ∈ Π∆t × G∆x, and

(tn, xn)→ (t, x), uhn(tn, xn)→ u(t, x).

Furthermore, since the stratification is finite and uhn is a solution to the numerical scheme, there exists a
subsequence (not relabeled) of (hn)n such that there exists i0 ∈ IG∆x(xn), for all n ∈ N and (xn)n ⊆ G∆x

i0
such

that we have
max

i∈IG∆x (xn)
Shni (tn, xn, uhn(tn, xn), uhn) = Shni0 (tn, xn, uhn(tn, xn), uhn) ≥ 0.
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Let ζn := uhn(tn, xn)− φ(tn, xn). So

uhn(tn, xn) = φ(tn, xn) + ζn, uhn(s, z) ≥ φ(s, z) + ζh, (thi , xhi ) 6= (s, z) ∈ Π∆t × G∆x.

From the monotonicity assumption and uhn being a solution, we get

Shni0 (tn, xn, φ(tn, xn) + ζh, [φ+ ζh]hn(thn,xhn)) ≥ S
hn
i0

(tn, xn, uhn(tn, xn), [uhn ]hn(thn,xhn)) ≥ 0.

and by the consistency hypothesis and passing to the limit, we get

lim
(tn,xn)→(t,x)

hn→0
ζn→0

Shni0 (tn, xn, φ(tn, xn) + ζh, [φ+ ζh]hn(thn,xhn)) = −∂tφ(t, x) + HF ]
i
(x, ∂xφ(t, x)) ≥ 0.

By Remark 4.6 and the fact that F ]i (.) ⊆ F (.), we get the required result.

Finally, with similar arguments as above, we prove that at time t = T , u (resp. u) is sub-solution (resp.
super-solution) of

min
(
−∂tu(t, x) + max

i∈I(x)
{HF ]

i
(x, ∂xu(t, x)) }, u(T, x)− ψ(x)

)
≤ 0,

resp.

max
(
− ∂tu(t, x) +HF (x, ∂xu(t, x)), u(T, x)− ψ(x)

)
≥ 0,

for (t, x) ∈ (0, T ]× RN . Finally, by the same reasoning as in [4, Theorem 4.7], we obtain that

u(T, ·) ≤ ψ(.) ≤ u(T, ·).

In conclusion, u(., .) = u(., .) = u(., .) and uh converges locally uniformly to u, which ends the proof.

Appendix A. Relative wedgeness.. This appendix presents the concept of relative wedgeness first
introduced in [10]. Let S ⊂ RN be a closed set. S is said to be proximally smooth if there exists R > 0 such
that the projection map projS(.) is a singleton on the set {x ∈ RN : dS(x) < R }. If S is proximally smooth,
then its Clarke tangent cone is equal to its Bouligand tangent cone TS(.). Clarke tangent cone is always closed
and convex.

Now, let M be a C2 embedded manifold in RN such that M is proximally smooth and let d = dim(M)
be its dimension. Then, for every x ∈M, the tangent cone TM(x) is closed and convex, hence it has a relative
interior (in the sense of convex analysis), denoted by r-int(TM(x)).

The setM is said to be relatively wedged if for every x ∈M, the dimension of r-int(TM(x)) (in the sense
of convex analysis) is equal to the dimension of M:

dim(r-int(TM(x)) = dim(M) = d.

Appendix B. Lower semicontinuity of the essential dynamics.. In this section, we give sufficient
conditions for Hypothesis (HESS) to hold. For i = 1, . . . , n + l, we recall from Section 2 that the essential
dynamics F ]i (.) defined on Mi is of the form

F ]i (x) = Fi(x) ∩ TMi
(x), ∀x ∈Mi.

We suppose that the dynamics Fi(.) verify Hypotheses (SH), (CH) and (HD). Let (Mi)i=1,...,n+l be a
stratification of RN such that any Mi is either vector subspace of RN or a half space of a vector subspace of
RN . All Examples 1 and 2 of a stratification of RN verify this condition. Furthermore, it immediately follows
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that the stratification verifies (H1). IfMi is a vector subspace of RN , then we haveMi =Mi. Consequently
we get

Fi(.) = F ]i (.), ∀x ∈Mi.

Therefore, F ]i (.) is locally Lipschitz continuous. Hence it is l.s.c.
Suppose now thatMi is a half space of a vector subspace of RN . For simplicity we denote the vector subspace
by E ⊂ RN . Since Mi is a convex subset of E, then by [15, Corollary 3.6.13], the set-valued map

Mi 3 x TMi
(x)

is l.s.c as a set-valued map from Mi to E. Furthermore, since Mi is a half space of E, then we have

TMi
(x) =Mi, ∀x ∈Mi.

Hence, TMi
(x) is convex with nonempty interior in E for all x ∈ Mi. On the other hand, by Hypotheses

(CH) and (HD) the set-valued map x Fi(x) is l.s.c as a set-valued map fromMi with images in E that are
convex and have nonempty interior. Therefore, following [28, Theorem B], the set-valued map

F ]i (x) = Fi(x) ∩ TMi
(x)

is l.s.c as a set-valued map from Mi to E. Whence, x F ]i (x) is l.s.c as a set-valued map from Mi to RN .
The condition (CH) is merely a sufficient condition for (HESS) to hold. Example 7 gives a setting where the
dynamics do not verify (CH) and (HESS) still holds.

Appendix C. Proof of invariance theorems..
Proof. (Theorem 3.5). Since F is an u.s.c set-valued map with convex, compact non-empty images, and

since S is a closed set of RN , it is known that assertion (i) is equivalent to (see for instance [13, Theorem
12.11])

HF (x, η) ≥ 0 ∀η ∈ Np
S(x), ∀x ∈ RN .

Let x ∈ RN . We have F ]i (.) ⊆ Fi(.) ⊆ F (.). We have

(C.1) HFi(x, ηi) ≥ HF ]
i
(x, ηi), ∀ηi ∈ Np

Si
(x).

From this inequality, we deduce easily the implication (iii) =⇒ (ii). Moreover, since Np
S(x) ⊆ Np

Si
(x) for all

i ∈ I(x), then
HF (x, η) ≥ max

i∈I(x)
HFi(x, η) ≥ max

i∈I(x)
HF ]

i
(x, η), ∀η ∈ Np

S(x).

Hence, the implication (ii) =⇒ (i) holds. It remains to prove the implication (i) =⇒ (iii). Suppose (S, F ) is
weakly invariant. Let x ∈ RN and t ∈ [0, T ]. So there exists a trajectory y(.) solution of (DI)F (t, x) such that
y(.) ⊂ S. We claim the following:

Claim: ∃ j ∈ I(x) such that there exists a sequence (tn)n, tn ↓ t and xn := y(tn) ∈Mj , so that xn−x
tn−t → ν

and ν ∈ F ]j (x).

The proof of the claim is the same as the proof of the same claim in Proposition 4.5. With this claim, we
are almost done. Indeed let ηj ∈ Np

Sj
(x) be such that the proximal normal inequality is satisfied with σ > 0.

we get

〈ν, ηj〉 = lim
n→+∞

〈xn − x
tn − t

, ηj
〉
≤ lim
n→+∞

1
2σ(tn − t)

|xn − x|2= 0.

Thus, we have
HF ]

j
(x, ηj) ≥ −〈ν, ηj

〉
≥ 0,

Which is the required result.
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Proof. (Theorem 3.6). The implication (ii) =⇒ (i) is proven first. We separate the proof into 3 parts.
First we prove the result for every trajectory that lies entirely in one of the domainsMi, i = 1, ..., n+ l. Then,
we prove the result for every trajectory that does not present any chattering phenomenon, also known as Zeno
effect, using an induction argument. Finally we prove the result for every trajectory using Filippov’s theorem
[14, Theorem 3.1.6].
Step 1. (Inspired from [13, Theorem 12.15]). Let y(.) be a trajectory of F such that y((t, T )) ⊂Mi and such
that y(t) = α ∈ S ∩Mi. We show that for some ε ∈ (0, T − t), we have y([t, t+ ε]) ⊂ S which is sufficient to
conclude.
Let r > 0 small enough such that B(α, r) ∩Mi is a relative neighborhood in Mi. Let κ > 0 be The Lipschitz
constant of Fi on B(α, r) and ||Fi||> 0 be an upper bound for any velocities that my appear in B(α, r). So
y(.) is Lipschitz continuous on [t, t+ ε]. There exists ε ∈ (0, T − t) such that

∀ τ ∈ [t, t+ ε], s ∈ projSi(y(τ)) =⇒ y(τ) ∈ B(α, r) ∩Mi, s ∈ B(α, r) ∩Mi.

We define f(τ) := dSi(y(τ)). f is Lipschitz continuous on [t, t+ ε]. We prove the following Lemma:
Lemma C.1. f ′(τ) ≤ κf(τ) for almost all τ ∈ (t, t+ ε).
Proof. Let τ∗ ∈ (t, t + ε) such that f ′(τ∗) exists, y′(τ∗) exists and y′(τ∗) ∈ Fi(y(τ∗)) (almost all points

satisfy those conditions). If f(τ∗) = 0 then f attains a minimum at τ∗ and therefore f ′(τ∗) = 0 and the
inequality holds. Suppose now f(τ∗) > 0 and let s ∈ projSi(y(τ∗)). Then by [13, Proposition 11.29] we have

η := y(τ∗)− s
|y(τ∗)− s|

∈ Np
Si

(s).

Since Fi(= F ]i on Mi) is Lipschitz continuous on B(α, r) with constant κ, there exists ν ∈ Fi(s) such that

|y′(τ∗)− ν|≤ κ|y(τ∗)− s|.

Therefore we get

〈η, y′(τ∗)〉 = 〈η, ν〉+ 〈η, y′(τ∗)− ν〉 ≤ HF ]
i
(s,−η) + κ|y(τ∗)− s|≤ κ|y(τ∗)− s|,

where the last inequality is obtained since HF ]
i
(s,−η) ≤ 0 by assumption (ii). Hence, we get

f ′(τ∗) = lim
δ→0

dSi(y(τ∗ + δ))− dSi(y(τ∗))
δ

≤ lim
δ→0

|y(τ∗ + δ)− s|−|y(τ∗)− s|
δ

= 〈η, y′(τ∗)〉 ≤ κ|y(τ∗)− s|= kf(τ∗).

Since f is Lipschitz, positive and f(t) = 0 (y(t) = α ∈ Si), then by using the Lemma above and Gronwall
Lemma [13, Theorem 6.41], we get that f ≡ 0 on [t, t+ ε], which finishes the proof of step 1.
Notice that, every trajectory that lies entirely in ∪ni=1Mi also verifies Step 1 since it is a disjoint union.

Step 2. Let M be a union of subdomains such that ∪ni=1Mi ⊆ M and denote by δM the minimum
dimension of the subdomains of M. Let Mk0 be a subdomain such that Mk0 ⊂M\M and its dimension is
inferior or equal to δM. We show the following proposition:

Proposition C.2. If we have (ii) =⇒ (i) for every trajectory that lies entirely in M or lies entirely in
Mk0 , then (ii) =⇒ (i) holds true for every trajectory that lies in M∪Mk0 .

Proof. Let y(.) ⊆M∪Mk0 be a trajectory of F on [t, T ] such that y(t) ∈ S. We define

J = {τ ∈ [t, T ] : y(τ) /∈Mk0}.

The set J is open since Mk0 is of inferior dimension than M, then it is a closed set relative to M∪Mk0

(equipped with the inherited topology from RN ). Thus J can be written as a countable union of open intervals
in the following way:

J =
∞⋃
i=1

(ai, bi),
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such that the open sets (ai, bi) are pairwise disjoint and ai < bi ≤ ai+1, ∀i ≥ 1. Notice that we necessarily
have y(ai), y(bi) ∈Mk0 . Set b0 = t. First, we prove that

∀ i ∈ N, y(bi), y(ai+1) ∈ S and y((ai+1, bi+1)) ⊂ S.

We have y(b0) ∈ S by assumption. If b0 = a1 then we have y(a1) ∈ S. If b0 < a1 then y(b0) ∈ S ∩Mk0

and y((b0, a1)) ⊂ Mk0 almost everywhere. Hence, by assumption of the proposition, we have y((b0, a1)) ⊂ S
and therefore y(a1) ⊂ S since S is a closed set. Moreover, since y(a1) ∈ S ∩M and y((a1, b1)) ⊂ M, then
by assumption of the proposition, we have that y((a1, b1)) ⊂ S and therefore y(b1) ∈ S since S is closed. By
induction, following the same argument, we get that

∀ i ∈ N, y(bi), y(ai+1) ∈ S and y((ai+1, bi+1)) ⊂ S.

It remains to prove y([t, T ] \ J) ⊂ S. If the set J was equal to a finite union of open intervals then the
above argument would have been sufficient to prove that y([t, T ] \ J) ⊂ S. However, this is not the case for
all trajectories y(.). The trajectories y(.) can move in and out of Mk0 infinitely many times exhibiting the
phenomenon known as the Zeno effect, or can reside in Mk0 for sets of time that have a strictly positive
Lebesgue measure but are nowhere dense in [t, T ] (think of a Cantor set for example). To deal with this case,
we will approximate such trajectories y(.) by ones such that that behave well on the partition J .
We fix m ≥ 1 and set

Jm =
m⋃
k=1

(ak, bk),

Which we can assume to satisfy

t = b0 ≤ a1 < b1 ≤ a2 < b2 ≤ ... ≤ am < bm ≤ am+1 := T.

We choose m large enough such that
L (J \ Jm) < r

2eκT ||F || ,

with κ being the Lipschitz constant of Fk0 and r is equal to

r := inf
w∈Mk0\Mk0

s∈[t,T ]

|y(s)− w|,

(notice that r is strictly positive and can be infinite). The choice of m is made in such a way to be able
to apply Filippov’s approximation theorem [14, Theorem 3.1.6] on manifolds (see [10, Remark 3.1]). We

will approximate the arc y([bi, ai+1]), for some i = 0, ...,m, by trajectories that remain entirely in Mk0 .
By Filippov’s approximation theorem ([14, Theorem 3.1.6]) and [10, Proposition 3.2]), there exists zi(.) a
trajectory of Fk0 on [bi, ai+1] such that zi(bi) = y(bi) ∈Mk0 ∩ S, zi(.) ⊂Mk0 and

||y(.)− zi(.)||L∞[bi,ai+1]≤ eκ(ai+1−bi)ρi ≤ 2 eκT ||F ||εi,

where we denote εi = L (J ∩ (bi, ai+1)) and

ρi :=
ˆ ai+1

bi

d(ẏ(s), Fk0(zi(s)))ds ≤ 2 ||F ||εi.

Since εi ≤ L (J\Jm), we get

||y(.)− zi(.)||L∞[bi,ai+1]≤ 2 eκT ||F ||L (J\Jm).

Furthermore, from the assumption of the proposition we have zi(.) ⊂ S. Thus we get

dS(y(.)) ≤||y(.)− zi(.)||L∞[bi,ai+1]≤ 2 eκT ||F ||L (J\Jm), ∀m ≥ 1.

By letting m→∞, we have L (J\Jm)→ 0. Therefore y(.) ⊂ S, which is the required result.
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Step 3. From the above Proposition, we deduce that (ii) =⇒ (i) by a simple finite induction argument
starting fromM = ∪ni=1Mi and adding an interfaceMk0 ⊂ Λ, with k0 ∈ {n+ 1, ..., n+ l}, in such a way that
decreases the dimension of Mk0 at each iteration.

Now we prove the direct implication (i) =⇒ (ii). For that, we use [32, Lemma 3.9]. See also [10,
Proposition 5.1 and Lemma 5.2]. Suppose (S, F ) is strongly invariant. Let x ∈ S ∩ Mi, ν ∈ F ]i (x) and
η ∈ Np

Si
(x) such that |η|= 1 a proximal normal realised at σ > 0 (from the definition of the proximal normal).

Since ν ∈ F ]i (x), then by [32, Lemma 3.9], there exists a C1 trajectory y(.) of F ]i , defined on some interval
[t, t+ ε] with ε > 0 such that y(t) = x and ẏ(t) = ν and y(.) ⊆Mi. By the strong invariance hypothesis, we
have y(.) ⊆ Si. So we get

〈ν, η〉 = lim
τ↓t

〈y(τ)− x
τ − t

, η
〉
≤ lim

τ↓t

1
2σ(τ − t) |y(τ)− x|2 = 0.

By taking the supremum over F ]i (x), we obtain the desired result.
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