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A GENERAL COMPARISON PRINCIPLE FOR HAMILTON JACOBI BELLMAN
EQUATIONS ON STRATIFIED DOMAINS ∗

OTHMANE JERHAOUI † AND HASNAA ZIDANI†

Abstract. This manuscript aims to study finite horizon, first order Hamilton Jacobi Bellman (HJB) equations on stratified
domains. This problem is related to optimal control problems with discontinuous dynamics. We use nonsmooth analysis techniques
to derive a strong comparison principle as in the classical theory and deduce that the value function is the unique viscosity solution.
Furthermore, we prove some stability results of the Hamilton Jacobi Bellman equation. Finally, we establish a general convergence
result for monotone numerical schemes in the stratified case.
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1 Introduction. In this paper, we study the well-posedness of a system of Hamilton Jacobi Bellman
(HJB) equations defined on a stratification of RN . More precisely, let n ≥ 1 and Ωi, i = 1, ..., n be pairwise
disjoint, connected open sets of RN such that RN = ∪iΩi. A stratification of RN is the union of these open
sets and their topological boundary, denoted Λ = RN \ ∪ni=1Ωi, supposed to be a finite union of embedded
submanifolds Mi of lower dimension. Each Ωi or Mi is called a domain of RN . Consider a system of finite
horizon HJB equations

(1.1)
{
−∂tu(t, x) +HFi

(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Ωi
u(T, x) = ψ(x),

where T > 0 is the final time and ψ : RN → R is the final cost and is assumed to be Lipschitz continuous.
HFi : Ωi × RN → R are Bellman Hamiltonians defined the following way:

HFi
(x, p) = sup

q∈Fi(x)
{−〈p, q〉} .

Fi : Ωi  RN are set-valued maps, called the dynamics, that satisfy standard hypotheses. In the absence
of a stratification, the HJB equation has a unique solution (in the viscosity sense) called the value function,
which is a function linked to optimal control problems [16, 2]. The aim of this paper is to extend this result
to the stratified setting. To do so, one needs to define the HJB equation (1.1) at the interface Λ, to ensure
the well-posedness of the HJB equation and to ensure that the value function is its unique solution.

Bressan and Hong [8] were the first to provide a rather complete study of this problem. In particular, they
used Filippov’s ideas to define the dynamics at the interface and showed that the value function is the unique
solution that satisfies two HJB inequalities on each domain. They even showed that a comparison result holds.
However, in order to achieve that, an additional assumption had to be made to characterize the sub-solution
and sub-optimality property. Loosely speaking, this assumption states that every sub-solution ought to be at
least continuous at the interfaces in order for comparison-type results to hold.

These additional assumptions were used by some of the works that came after Bressan and Hong’s paper.
For instance, Barles and Chasseignes [5], required either the continuity of the sub-solution at the interfaces or
an additional junction condition in order for the comparison principle to hold. For other publications following
similar approaches see the papers by Barles, Briani and Chasseignes [4, 3] and references therein. Rao and
Zidani [28] and Ghilli, Rao and Zidani [18] have a similar layout to ours, but they used different test functions
of viscosity solution for the super-solution and the sub-solution together with the assumption that the sub-
solution is continuous at the interfaces. Similarly, Rao, Zidani and Siconolfi [27] considered a stratification in
the form of two disjoint open sets separated by an interface in the form, which is a special case of [18]. We also
mention similar publications of Hamilton Jacobi equations on stratified networks that share the same kind
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of difficulties as our layout: Imbert and Monneau [23], Imbert, Monneau and Zidani [24], Achdou, Camilli,
Cutr̀ı and Tchou [1], Camilli and Marchi [10]. Lions and Souganidis [25] also worked on Hamilton Jacobi
equations on networks and considered a different class of Hamiltonians that are not necessarily convex, but
only continuous and coercive.

HJB equations are also related to a geometric notion known as flow invariance in the theory of differential
inclusions [11, chapter 12]. The classical case, meaning absence of stratification, has been treated thoroughly
in the literature [11, 2]. In the case of stratified domains and discontinuous dynamics at the interfaces,
Barnard and Wolenski [7] analyzed the characterization of weak and strong invariance principles with a new
Hamiltonian that they called the essential Hamiltonian. However their statement of strong invariance was
inaccurate. Despite their valid intuition regarding the choice of the Hamiltonian, the choice of the “test
functions” (in analogy with the viscosity theory) did not take into account the singular geometry of the
problem which turns out to be crucial for comparison type results.

A different approach is considered by Hermosilla and Zidani in [22] and by Hermosilla, Wolenski and
Zidani in [21]. Indeed, in this point of view, one starts from an optimal control problem with state constraints
in the form of a closed stratified subset of the euclidean space. The subtle difference here is that in their
setting, the dynamics are defined first in the whole Euclidean space, then state constraints are imposed in the
form of a closed stratified subset, whereas in our case, we consider the stratified domain first, then we define
the dynamics on each region of the domain. Furthermore, the state constraints are only a subset of RN and
they are in the form of a multidimensional network. This leads to the fact that the value function associated
to the setting in [22, 21] might not even be continuous, thus requiring the use of a more generalized notion of
solution to the HJB equation, called bilateral viscosity solution.

As for numerical schemes approximating this problem, the only known results of convergence of finite
differences numerical schemes are in the setting of a one dimensional simple network and are due to Guerand
and Koumaiha [19] and Morfe [26]. However, to the best of our knowledge, there aren’t any known convergence
results in our setting.

In this present work, we aim to prove the well-posedness of the HJB equation on stratified domains. We
will first define a Hamiltonian HΛ at the interface Λ and consider the HJB equation:

(1.2)

 −∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Ωi,
−∂tu(t, x) +HΛ(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Λ,
u(T, x) = ψ(x) for x ∈ RN .

The Hamiltonian HΛ is defined on the interface Λ in the form of a maximum of lower semicontinuous
Hamiltonians obtained along the same lines of [7]. Then, we will revisit the definition of viscosity solutions
and give a new one that encodes the nature of the singular geometry of the problem. This new definition of
viscosity will allow us to extend the strong comparison type results known when the Hamiltonian is Lipschitz
continuous to the present setting. More precisely, we prove the following result:

Let u and v be respectively upper semi-continuous and lower semi-continuous functions on (0, T ]×RN . If
u is a sub-solution of (1.2), and if v is a super-solution of (1.2), then u ≤ v on (0, T ]× RN .

The proof of this result relies on nonsmooth analysis techniques. In particular, we introduce an optimal
control problem whose value function is the solution of the HJB equation. In the classical case, the nons-
mooth analysis approach consists in interpreting the sub-solution property of the value function as the strong
invariance of the hypograph of the value function and the super-solution property as the weak invariance of
its epigraph. We will extend the weak and strong invariance results to the stratified setting. We would like to
emphasize that the extension of invariance principles is also a contribution of this paper.

The strong comparison principle will have two major consequences. First, it will allow to obtain some
stability results in this setting in the presence of perturbations on the dynamics. We prove that if there
exist sequences

(
F ji
)
j

of set-valued maps such that F ji −→ Fi with respect to the Hausdorff distance, and
a sequence (vj : RN → R)j of lower semicontinuous (respectively upper semicontinuous) functions such that
vj → v locally uniformly in RN and suppose for all j, vj is a super-solution (respectively sub-solution) of



A GENERAL COMPARISON PRINCIPLE FOR HJB EQUATIONS ON STRATIFIED DOMAINS 3


−∂tu(t, x) +HF j

i
(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Ωi,

−∂tu(t, x) +Hj
Λ(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Λ,

u(T, x) = ψ(x) for x ∈ RN .

then v is a super-solution (respectively sub-solution) of (1.2).
Finally, we will extend the known result due to Barles and Souganidis [6] for the convergence of monotone

numerical schemes to the stratified setting. The numerical scheme has the following form in each demain:
Shi (th, xh, uh(th, xh), [uh](th,xh)) = 0 for (th, xh) ∈ (Π∆t × G∆x)

⋂
((0, T )× Ωi),

ShΛ(th, xh, uh(th, xh), [uh](th,xh)) = 0 for (th, xh) ∈ (Π∆t × G∆x)
⋂

((0, T )× Λ),
uh(T, xh) = ψ(xh), for (th, xh) ∈ (Π∆t × G∆x) ∩ {th = T},

where Π∆t is a time grid, G∆x is a spatial grid, h = (∆t,∆x) is the step of the grid and [uh](th,xh) are all the
values of of uh on G∆x at other points than (th, xh) on the grid. We show that under the usual hypotheses
of monotonicity, stability and consistency, the numerical scheme converges locally uniformly to the viscosity
solution of (1.2).

The paper is organized as follows: in Section 2, we define the notations and conventions used throughout
the paper. We also define the geometry of the problem, the dynamics of the HJB equation and we state the
main results. Section 3 is devoted to the invariance principles, a nonsmooth analysis point of view of the
HJB equation. In Section 4, we first define the optimal control problem associated to the HJB equation, we
introduce the value function and we prove that the super-optimality and sub-optimality properties of the value
function are equivalent to it being a viscosity super-solution and sub-solution respectively. Then we prove the
strong comparison result. Section 5 is devoted to the proofs of the stability results. Finally, we prove in section
6 a general convergence result for monotone numerical schemes.

2 Main results.

2.1 Notations. Throughout the paper, we denote by RN the Euclidean space where the stratification
is defined, B the unit ball of center 0 of RN and B(x, r) = x + rB. For any set S ⊂ RN , we denote S, ∂S its
closure and topological boundary. We denote by co(S) the convex hull of S and by L , the Lebesgue measure
on R.
The distance function associated to S is dS(x) = inf{|x − y| : y ∈ S} and the set of solutions where the
infinimum is attained is called the projection of x on S and denoted by projS(x) (note that it might be empty).
The Bouligand tangent cone of S at x, denoted TS(x) is defined the following way:

TS(x) =
{
v ∈ RN : lim inf

t→0+

dS(x+ tv)
t

= 0
}
.

If A and B are two sets of RN , we define a distance between them by d(A,B) = inf {|a− b| : (a, b) ∈ A×B },
with the convention d(∅, ∅) = 0 and d(∅, B) = +∞ if B 6= ∅. For K1 and K2 two compact sets of RN , the
Hausdorff distance is given by

dH(K1,K2) = max

{
sup
x∈K2

dK1(x) , sup
x∈K1

dK2(x)
}
,

with the convention dH(∅, ∅) = 0 and dH(∅, S) = +∞ if S 6= ∅.
For a given function f : RN → R, epi(f) and hyp(f) denote respectively its epigraph and hypograph:

epi(f) =
{

(x, r) ∈ RN × R : f(x) ≤ r
}
, hyp(f) =

{
(x, r) ∈ RN × R : f(x) ≥ r

}
.

If Γ is a set-valued map, then dom(Γ) is the set of points x such that Γ(x) 6= ∅.
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Let M be a C2 embedded manifold in RN and let Γ : M  RN be a set-valued map. For T > 0, we
define the differential inclusion associated to Γ, with the initial condition (t, x) ∈ (0, T )× RN , by

(DI)Γ(t, x) =
{
ẏ(s) ∈ Γ(y(s)) a.e. s ∈ [t, T ]
y(t) = x.

The set of solutions of (DI)Γ(t, x) might be empty. Finally the abreviations ‘u.s.c.’, ‘l.s.c’, ‘HJB’ and ‘w.r.t’
respectively stand for: ‘upper semicontinuous’, ‘lower semicontinuous’, ‘Hamilton Jacobi Bellman’ and ‘with
respect to’.

2.2 Stratification. Let N,n ≥ 1 be two integers. Let Ωi, i = 1, ..., n be pairwise disjoint, connected
open sets of RN . We suppose that RN = ∪ni=1Ωi and we denote by Λ := RN \ ∪ni=1Ωi the interfaces. It is
more convenient in this setting to see the Ωi as C2 submanifolds of RN and we adopt the following notation
throughout the paper:

Mi := Ωi, i = 1, . . . , n.
Furthermore, we suppose that Λ is equal to a union of l, pairwise disjoint, C2 embedded sumbanifolds
Mn+1, . . . ,Mn+l of lower dimension than N and with empty boundary, so that we have

RN =
n⋃
i=1
Mi =

(
n⋃
i=1
Mi

)⋃
Λ =

n+l⋃
i=1
Mi.

Finally, we suppose that each Mi, i = 1, . . . , n + l, is proximally smooth and relatively wedged. All these
assumptions on the stratification are summarized as following:

(H1)



(i) EachMi is a C2 embedded submanifold, with empty boundary,
(ii) dim(M1) = ... = dim(Mn) = N, and dim(Mn+1), ..., dim(Mn+l) < N,

(iii) RN = ∪ni=1Mi =
n+l⋃
i=1
Mi,

(iv) ∀i, j = 1, ..., n+ l, Mi ∩Mj = ∅, if i 6= j,
(v) ifMi ∩Mj 6= ∅, thenMi ⊂Mj orMj ⊂Mi,
(vi) eachMi is proximally smooth and relatively wedged.

We call
⋃n
i=1Mi the regular part of the stratification and Λ :=

⋃l
i=1Mn+i the singular part or the

interfaces.
Comments on the hypothesis (H1). Hypotheses (H1)−(i) to (H1)−(v) are standard for a stratification

of RN . As for (H1)− (vi), a closed set X ⊂ RN is said to be proximally smooth if its distance function dX(.)
is differentiable on an open tube around X [14]. Relative wedgeness hypothesis was introduced in [7] for C2

submanifolds of RN such that their closure is proximally smooth. Roughly speaking, relative wedgeness ofMi,
with i ∈ {1, ..., n+ l}, means that the dimension of the Bouligand tangent cone at every point of Mi is equal
to the dimension of the manifold Mi [7]. The precise definition of this property is presented in Appendix A.

Example 1. Figure 2.1 shows an example of the stratified setting, where N = 1, n = 2, l = 1 and the
domains

M1 = (0,+∞)e1, M2 = (0,+∞)e2, M3 = {0}.

M1

e1

M2

e2
•
M3

Fig. 2.1. Example of a stratification of R.

We set for any x ∈ RN , the index multifunction

I(x) := { i ∈ {1, ..., n+ l} : x ∈Mi }.

Remark 2.1. It is clear from the definition of the stratification that for x ∈ RN fixed, and y ∈ RN close
enough to x, we have I(y) ⊆ I(x).
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2.3 Setting of the problem. We begin by defining the dynamics for the Hamiltonians presented in the
introduction. On each Mi with i = 1, ..., n, we are given a set-valued map Fi : Mi  RN that satisfies the
standard hypotheses

(SH)


(i) x Fi(x) has non empty convex and compact images,
(ii) ∃λ > 0 such that max{ |p|, p ∈ Fi(x)} ≤ λ(1+|x|),
(iii) Fi is Lipschitz continuous on bounded sets ofMi w.r.t the Hausdorff metric,

i.e. for each R > 0, there are constants K1,R, . . . ,Kn,R > 0 such that
dH(Fi(x), Fi(y)) ≤ Ki,R|x− y| if x, y ∈ B(0, R) ∩Mi, i ∈ {1, . . . , n}.

We are interested in studying the well-posedness of the following HJB equation.

(2.1)
{
−∂tu(t, x) + supν∈Fi(x) {−〈ν, ∂xu(t, x)〉 } = 0 for (t, x) ∈ (0, T )×Mi, i = 1, . . . , n,
u(T, x) = ψ(x),

where T > 0 is the final time and ψ : RN → R is the final cost required to satisfy the following assumption

(Hψ) : ψ is locally Lipschitz continuous.

The study of HJB equations is done using a weak notion of solutions, called viscosity solutions. This setting
requires the HJB equation to be defined at every point. Hence, we need to find suitable interfaces conditions
in order to guarantee the well-posedness of the system. To do so, we aim to define the appropriate dynamics
to consider at the interfaces.

Notice first that since the dynamics Fi, i = 1, ..., n verify hypothesis (SH), then they can be extended to
Mi while verifying the same hypothesis (SH). We denote this extension by Fi as well. In order to define the
dynamics on the whole space, a classical idea is to consider the Filippov regularization F : RN  RN defined
by

F (x) =
⋂
ε>0

co
⋃
y

{∪i∈{1...n}Fi(y) : |x− y|≤ ε}.

F is upper semicontinuous and satisfies (SH)−(i) and (SH)−(ii). However, the Lipschitz property (SH)−(iii)
does not holds for F . By the nature of our problem, the Filippov regularization is equal to

F (x) = co {Fi(x) : i ∈ {1 . . . n} }.

For (x, p) ∈ RN × RN , we define the Hamiltonian associated to F by

HF (x, p) = sup
q∈F (x)

{−〈p, q〉} .

Since F is only upper semicontinuous, the Hamiltonian HF (., p) is also only upper semicontinuous. If HF (., p)
were to be Lipschitz continuous, we would have defined our HJB equation using the Hamiltonian associated
to F and the well-posedness of the HJB system would follow from the classical theory, see [11, 17]. This is
generally not the case in a stratified domain. Furthermore, in the absence of stratification, the unique viscosity
solution to HJB equation is the so called value function associated to the optimal control problem defined
with dynamics F . The value function is characterized by this fact. It turns out that in the stratified case,
this is no longer the case. Nevertheless, we use F to define a smaller set of dynamics on the singular part (the
interfaces).

We define the dynamics Fn+i :Mn+i  RN , for i = 1, ..., l on each interface Mn+i by

Fn+i(x) = F (x) ∩ TMn+i
(x),

where TMn+i(x) is the Bouligand tangent cone which coincides with the classical tangent space toMn+i at x
sinceMn+i has empty boundary. All what follows is based upon the essential hypothesis that all the interface
dynamics are Lipschitz continuous on bounded sets as well.

(HD) for i = n+ 1, ..., n+ l, Fi(.) is Lipschitz continuous on bounded sets inMi.
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We point out that since we have the convention d(∅, S) = +∞ if S 6= ∅, it follows that (HD) implies that Fn+i
is either identically the empty set or nonempty on the whole domain Mn+i. Under assumption (HD), each
Fi :Mi  RN , (i = n+ 1, ..., n+ l) satisfies (SH). Thus each Fi can be extended to Mi while verifying the
same hypothesis (SH). We denote this extension by Fi as well.

A sufficient condition for (HD) to be satisfied is full controllability near Λ. We mean by full controllability
the following assumption:

(CH) ∃ r > 0 : for all i = 1, ..., n, and x ∈ Λ ∩Mi : B(0, r) ⊆ Fi(x).

Proposition 2.2. [28, Lemma 2.2.] Assume (CH). Then, (HD) holds.

For x ∈Mi, i = 1, ..., n+ l, and p ∈ RN , we define the Hamiltonian

HFi
(x, p) := sup

q∈Fi(x)
{−〈p, q〉} .

At this point, we are tempted to define the HJB equation on the stratified domain using the dynamics Fi(.)
(defined above), the following way:

(2.2)


−∂tu(t, x) + maxi∈I(x) {HFi(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× Ωi,
−∂tu(t, x) + maxi∈I(x) {HFi(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× Λ,
u(T, x) = ψ(x).

However, it turns out that even these dynamics in equation (2.2) are too big to obtain comparison type results
that are known in viscosity theory. Thus, we consider a smaller subset of these dynamics first proposed in [7].

The essential dynamics. We define the notion of essential dynamics F ], introduced in [7] for stratified
Euclidean spaces.

Definition 2.3. For any x ∈ RN , the set-valued map F ] : RN  RN is defined by

F ](x) =
n+l⋃
i=1
{Fi(x) ∩ TMi

(x) : x ∈Mi }.

The associated Hamiltonian is defined as usual. For (x, p) ∈ RN × RN , we have

HF ](x, p) = sup
q∈F ](x)

{−〈p, q〉} .

We also denote F ]i (x) = Fi(x) ∩ TMi
(x) for all x ∈ Mi, with i = 1, ....n + l. Notice that if x ∈ Mi, we have

F ]i (x) = Fi(x), for i = 1, · · · , n+ l.

So far, two dynamics have been defined on each domain: Fi(.) and F ]i (.). The former is known to be used
when partial differential equations techniques are used to prove existence and uniqueness, see [25, 24, 1, 5].
The latter is used more in the context of optimal control interpretation and was initially introduced in [7].
Examples of such a setting can be found in [28, 18, 7]. We will show that the essential dynamics are the ones
that characterize sub-solutions without assuming continuity at the interfaces.

Example 2. Let’s go back to Example 2.1. Let ci ≥ 0 with i = 1, 2 be real positive constants. We define
the following dynamics on each branch

Fi(x) = [−ci, ci] , i = 1, 2.

The resulting HJB system is the Eikonal equation on the stratification 2.1. The dynamics at the interface
M3 and the essential dynamics are respectively equal to

F3(.) ≡ {0} , F ](x) =
{

[−ci, ci] x ∈Mi i = 1, 2,
[−c2, c1] x = 0.
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Let T > 0 be a given time horizon, and consider the following HJB associated to the dynamics F ]i

(2.3)
{
−∂tu(t, x) + maxi∈I(x) {HF ]

i
(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× RN ,

u(T, x) = ψ(x),

where ψ : RN → R is the final cost and satisfies (Hψ).

Notice that in the HJB equation (2.3), if x belongs to the regular part of the stratification (i.e. x ∈
⋃n
i=1Mi),

then the HJB equation (2.3) is the same as the HJB equation (2.1). More precisely, when x ∈Mi, i = 1, ..., n,
we have

F ]i (x) = Fi(x) and I(x) = {i}.
So equation (2.3) has the following form

(2.4)


−∂tu(t, x) +HFi

(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi, i = 1, · · · , n,
−∂tu(t, x) + maxi∈I(x) {HF ]

i
(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )×Mi, i = n+ 1, · · · , n+ l,

u(T, x) = ψ(x).

Given the singular nature of the stratification, one cannot use the classical notion of viscosity solutions.
We are going to define a new one that will turn out to be appropriate for obtaining a strong comparison result.

Definition 2.4. (Viscosity super-solution) Let u : (0, T ] × RN → R be a l.s.c function. We say that u
is a super-solution of (2.3) at (t, x) ∈ (0, T ) × RN if and only if there exists i ∈ I(x) such that for all
φ ∈ C1((0, T )× RN ), u− φ attains a local minimum in (0, T )×Mi at (t, x), we have

−∂tφ+ HF ]
i
(x, ∂xφ) ≥ 0.

Definition 2.5. (Viscosity sub-solution) Let u : (0, T ]× RN → R be a u.s.c function. We say that u is a
sub-solution of (2.3) at (t, x) ∈ (0, T )×RN if and only if for all i ∈ I(x), for all φ ∈ C1((0, T )×RN ), u−φ
attains a local maximum in (0, T )×Mi at (t, x), we have

−∂tφ+HF ]
i
(x, ∂xφ) ≤ 0.

Definition 2.6. (Viscosity solution) u is a viscosity solution of (2.3) if and only if it is both a super-
solution and a sub-solution and satisfies the final condition u(T, .) = ψ(.).

The above definitions of viscosity super and sub solutions can be rewritten using the viscosity sub-gradient
and super-gradient (also known as the semijets [15, Page 10] or Dini sub/super gradient [11, Definition 11.18]).

Definition 2.7. (Viscosity sub/super gradient)
• Let u : Rd → R ∪ {+∞} be a l.s.c function (with some d ≥ 1). The viscosity sub-gradient (or subjet)

at a point x ∈ dom(u) is defined the following way,

D−u(x) :=
{
p ∈ Rd : lim inf

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≥ 0
}
.

• Similarly, for an u.s.c function u : Rd → R ∪ {−∞}, the viscosity super-gradient (or superjet) at a
point x ∈ dom(u) is defined the following way,

D+u(x) := −D−(−u)(x) =
{
p ∈ Rd : lim sup

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≤ 0
}
.

Remark 2.8. • Let u : (0, T ] × RN → R be a l.s.c function. We say that u is a super-solution of
(2.3) at (t, x) ∈ (0, T )× RN if and only if there exists i ∈ I(x), such that

−θ +HF ]
i
(x, ξi) ≥ 0 ∀(θ, ξi) ∈ D−ui(t, x),

with ui ≡ u on Mi and ui ≡ +∞ elsewhere.
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• Let u : (0, T ] × RN → R be an u.s.c function. u is a sub-solution of (2.3) at (t, x) ∈ (0, T ) × RN if
and only if for all i ∈ I(x), we have

−θ +HF ]
i
(x, ξ) ≤ 0 ∀(θ, ξ) ∈ D+ui(t, x),

with ui ≡ u on Mi and ui ≡ −∞ elsewhere.
Indeed, if for example u : (0, T ] × RN → R is a l.s.c function, we set: ui ≡ u on Mi and ui ≡ +∞

elsewhere, for some i = 1, ..., n+ l. Then, for (t, x) ∈ (0, T )×Mi, we have

(θ, ξi) ∈ D−ui(t, x) ⇐⇒ ∃φ(i) ∈ C1(RN ), such that ui − φ(i) attains a local minimum at (t, x).

Since ui−φ(i) ≡ −∞ whenever x /∈Mi, we get that φ(i) satisfies the requirements of Definition 2.4. Conversely,
if there exists such function φ in the sense of Definition 2.4, then ui − φ attains a local maximum in RN at
(t, x). The exact same reasoning holds for sub-solutions.

Next we state the main results. We will show that equation (2.3) has a unique viscosity solution (following
Definition 2.6).

2.4 Statement of the main results.
Theorem 2.9. Assume (H1), (SH), (Hψ) and (CH). Then the HJB equation (2.3) has a unique locally

Lipschitz viscosity solution in the sense of Definition 2.6.
Theorem 2.10. (Strong comparison principle). Assume (H1), (SH) and (HD). Let u1, u2 : (0, T ] ×

RN → R be respectively a l.s.c super-solution and an u.s.c sub-solution in the sense of Definition 2.6 with
u2(T, .) ≤ u1(T, .). Then

u2(t, x) ≤ u1(t, x) ∀(t, x) ∈ (0, T ]× RN .

It is worth-noticing that, unlike the previous literature on the subject [27, 28, 18] or [5, 4, 3], the strong
comparison principle stated in the above theorem does not require the sub-solution to be continuous nor to
have any particular behavior on the interface. The proof of this result will clearly show the importance of the
use of essential dynamics with the notion of viscosity as it is defined in Definitions 2.4-2.5 (and more precisely
the choice of the test functions in those definitions).

The proofs of Theorems 2.9, 2.10 are given in Section 4. The proofs will heavily rely on invariance theorems
stated in Section 3 and proven in Appendix B. Furthermore, we will establish stability results of the super-
solution and sub-solution in presence of perturbations of the Hamiltonian in Section 5. Section 6 is devoted
to stating and proving a general convergence result of monotone numerical schemes. The numerical scheme
has the following form in each Mi, i = 1, . . . , n+ l,

Shi (th, xh, uh(th, xh), [uh](th,xh) } = 0 for (th, xh) ∈ (Π
∆t

× G∆x
i ),

where Π∆t is time grid, G∆x
i is a spatial grid of Mi and h = (∆t,∆x) is the step of the grid. We show that

under the usual hypotheses of monotonicity, stability and consistency, the numerical scheme converges. This
result generalizes the famous convergence theorem by Barles and Souganidis [6].

3 Invariance Principles. The following results are known as weak and strong invariance properties.
They are known in the classical case, when the dynamics F is Lipschitz continuous, see [11, Chapter 11]. For
the stratified case, the first attempt to prove these results was given in [7], along with the essential Hamiltonian.
Although their intuition was correct, the proximal normal cone used (or equivalently the viscosity definition
used) is the same as the one in the classical case (see [11, Chapter 11]), which does not take into account
the geometry of the problem. We start by recalling the definitions of some nonsmooth analysis tools and the
definitions of weak and strong invariance.

Definition 3.1. (Proximal sub-gradient and super-gradient).
• Let u : RN → R ∪ {+∞} be a l.s.c function. We say that ζ is proximal sub-gradient at a point
x ∈ dom(u) for some σ = σ(x, ζ) and some neighborhood V = V (x, ζ) of x if we have

u(y)− u(x) + σ|y − x|2≥ 〈ζ, y − x〉, ∀ y ∈ V.

The collection of such ζ form the proximal sub-gradient. It is denoted ∂pu(x).
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• Similarly, Let u : RN → R ∪ {−∞} be an u.s.c function. We say that ζ is proximal super-gradient at
a point x ∈ dom(u) for some σ = σ(x, ζ) and some neighborhood V = V (x, ζ) of x if we have

u(y)− u(x) + σ|y − x|2≤ 〈ζ, y − x〉, ∀ y ∈ V.

The collection of such ζ forms the proximal super-gradient. It is denoted ∂pu(x). We also have the
property ∂pu(x) = −∂p(−u)(x).

Definition 3.2. (Proximal normal cone).
Let S ⊆ RN be a closed set and x ∈ S. A vector ζ is a proximal normal to the closed set S at the point x if
there exists σ > 0 such that 〈ζ, y − x〉 ≤ |ζ|

2σ |y − x|
2 ∀y ∈ S. The set of all proximal normal vectors at x is

denoted by Np
S(x).

Definition 3.3. (Weak invariance).
Let Γ : RN  RN be a set-valued map. Let S ⊆ RN be a closed set. We say that (S,Γ) is weakly invariant
provided that for x ∈ S, t ∈ [0, T ] there exists y(.) a solution of (DI)Γ(t, x) such that y(τ) ∈ S for all τ in
[t, T ].

Definition 3.4. (Strong invariance).
Let Γ : RN  RN be a set-valued map. Let S ⊆ RN be a closed set. We say that (S,Γ) is strongly invariant
provided that for x ∈ S, t ∈ [0, T ] and every y(.) a solution of (DI)Γ(t, x) we have y(τ) ∈ S for all τ in [t, T ].

Theorem 3.5. Assume (H1), (SH) and (HD). Let S be a closed set of RN . We denote by Si :=Mi ∩ S.
The following assertions are equivalent:

(i) (S, F ) is weakly invariant,
(ii) ∀x ∈ §, ∃ i ∈ I(x) : ∀ηi ∈ Np

Si
(x), HFi

(x, ηi) ≥ 0,
(iii) ∀x ∈ S, ∃ i ∈ I(x) : ∀ηi ∈ Np

Si
(x), HF ]

i
(x, ηi) ≥ 0.

Theorem 3.6. Assume (H1), (SH) and (HD). Let S be a closed set of RN . We denote by Si :=Mi ∩ S.
The following assertions are equivalent:

(i) (S, F ) is strongly invariant,
(ii) ∀x ∈ S, ∀i ∈ I(x), ∀ηi ∈ Np

Si
(x), HF ]

i
(x,−ηi) ≤ 0,

The complete proof of Theorems 3.5 and 3.6 are given in Appendix B.
In [7], Barnard and Wolenski tried to establish similar invariance principles in the stratified case using the

essential Hamiltonian. In particular, for the strong invariance principle, if we assume that (H1), (SH) and
(HD) hold, [7, Theorem 5.1] states that (S, F ) is strongly invariant for some closed set S ⊆ RN if and only if

(3.1) ∀x ∈ S, ∀ξ ∈ Np
S , HF ](x,−ξ) ≤ 0.

However, the sufficient condition fails to be true in general. Here is a counterexample:

NP
S (x̄) = {(0, 0)}x̄ = (0, 0)

R

R

S = {x3 ≤ y5}

F3(x, y) = {−ey}F2(x, y) = {(0, 0)}

F4(x, y) = {(0, 0)}F1(x, y) = {(0, 0)}

Fig. 3.1. Counterexample with a stratification in RN , with N = 2, n = 4 and l = 5.
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Example 3. We are given a stratification as follows

M1 = {(x, y) ∈ R2 : x < 0 & y > 0} M2 = {(x, y) ∈ R2 : x < 0 & y < 0},

M3 = {(x, y) ∈ R2 : x > 0 & y < 0} M4 = {(x, y) ∈ R2 : x > 0 & y > 0},

M5 = (0,+∞)ex M6 = (−∞, 0)ex M7 = (0,+∞)ey M8 = (−∞, 0)ey M9 = {0}.

Take S to be the closed set
S = {(x, y) ∈ R2 : x3 ≤ y5},

and consider the following dynamics

F1(x, y) = F2(x, y) = F4(x, y) = F5(x, y) = F6(x, y) = F7(x, y) = F9(x, y) = {(0, 0)},

F3(x, y) = F8(x, y) = {−ey}.

Clearly, (S, F ) is not strongly invariant since F (0, y) = co{0,−ey} if y ≤ 0 and the trajectory

Z̃(s) = (0, t− s) ∈ S(t,T )(0, 0)

is a trajectory of F that starts at x̄ = (0, 0) ∈ S, but Z̃(.) 6⊂ S. On the other hand, since the proximal
normal cone to S at x̄ = (0, 0) is equal to Np

S(x̄) = {(0, 0)}, the Hamiltonian inequality (3.1) is therefore
verified at x̄ = (0, 0). For the remaining points of S, the Hamiltonian inequality (3.1) is trivially verified since
the dynamics F is reduced to {(0, 0)}. In conclusion, we have shown in this example that the Hamiltonian
inequality

∀x ∈ S, ∀ξ ∈ Np
S , HF ](x,−ξ) ≤ 0,

is verified for all the points in S. However, (S, F ) is not strongly invariant.
Example 4. Let’s go back to Figure 3.1. We have seen that (S, F ) is not strongly invariant. We can also

verify it using the new characterization of strong invariance. Indeed we have

S8 := S ∩M8 = S ∩ (−∞, 0]ey = {(0, 0)}.

Therefore, we have that the proximal normal to Si at x̄ := (0, 0) is equal to R2. Moreover we have F ]8(x̄) =
co{0,−ey} = [0,−ey]. Thus

HF ]
8
(x̄,−Np

S8
(x̄)) ≥ 〈−ey,−ey〉 = 1 > 0.

This shows that the sufficient condition in Theorem 3.6 is not satisfied in this example.

4 Proof of Theorems 2.9 and 2.10.

4.1 Optimal control problem and the value function. We denote by S(t,T )(x) the set of solutions
of the differential inclusion associated to F :

S(t,T )(x) :=
{
y(.) ∈W 1,1([t, T ];RN ) :

{
ẏ(s) ∈ F (y(s)), s ∈ [t, T ], a.e
y(t) = x.

}
.

We consider the optimal control problem defined for (t, x) ∈ [0, T ]× RN by inf ψ(y(T ))
such that ẏ(s) ∈ F (y(s)), s ∈ [t, T ]

y(t) = x,

where the infinimum is taken over all trajectories y(.) ∈ S(t,T )(x). The next proposition shows that F -
trajectories are the same as F ]-trajectories.
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Proposition 4.1. ([28, Proposition 3.4] and [7, Proposition 2.1].)
Let (t, x) ∈ [0, T ]× RN and y(.) ∈ S(t,T )(x). The following statements are equivalent:

(i) y(.) is a solution of (DI)F (t, x),
(ii) y(.) is a solution of (DI)F ](t, x),
(iii) y(.) is a solution of (DI)Fi(t, x) whenever y(.) ∈Mi.

Proof. (iii) =⇒ (ii) =⇒ (i) is obvious since Fi(.) ⊆ F ](.) ⊆ F (.). Now, suppose (i) and let y(.) ∈ S(t,T )(x).
For k ∈ {1, ..., n + l}, let Jk := {s ∈ [t, T ] : y(s) ∈ Mk}. Without loss of generality, we suppose L (Jk) > 0
(otherwise there is nothing to prove). We set

J̃k := {s ∈ Jk : ẏ(s) exists in F (y(s)) and s is a Lebesgue point of Jk}.

Clearly L (Jk) = L (J̃k) (L stands for the Lebesgue measure). Let s ∈ J̃k. So, there exists a sequence
(sn)n ⊂ Jk such that sn → s and sn 6= s for all n. Since y(sn) ∈Mk, we have

ẏ(s) = lim
sn→s

y(sn)− y(s)
sn − s

∈ TMk
(y(s)),

which is the required result.
The above proposition shows in particular that the optimal control problem could be defined using F or

F ] or F ]i , i = 1, . . . , n+ l. The latter dynamics are more suitable to our setting since it gives us the link with
the HJB equation (2.3) we want to solve. Furthermore, thanks to hypothesis (H1)− (vi), the next proposition
shows that they are l.s.c set-valued maps.

Proposition 4.2. Suppose (H1), (HD) hold. Then for all i = 1, ..., n+ l, x F ]i (x) is l.s.c on its domain
Mi.

Proof. Let i ∈ {1, ..., n+l}. We already have by (HD) that F ]i is Lipschitz continuous onMi and therefore
l.s.c on Mi. Next, since (H1) − (vi) holds, we have that Mi is a regular set (this means that the Bouligand
tangent cone is equal to Clarke’s tangent cone at every point of the set). Hence by [13, corollary 3.6.13], we
have that x  TMi

(x) is l.s.c. Let x ∈ ∂Mi. If F ]i (x) = ∅, then there is nothing to prove. Otherwise, let
p ∈ F ]i (x) = Fi(x) ∩ TMi

(x). Let (xk)k ⊂ dom(F ]i ) such that xk → x. Then, since Fi(.) and TMi
(.) are l.s.c,

there exist sequences (p1
k)k and (p2

k)k such that

p1
k ∈ Fi(xk), p1

k → p, p2
k ∈ TMi

(xk), p2
k → p.

Let (pk)k be a sequence such that for every k, pk ∈ F ]i (xk)) and satisfies

d([p1
k, p

2
k], pk) = d([p1

k, p
2
k], F ]i (xk)),

where the notation [p1
k, p

2
k] stands for the convex set co({p1

k, p
2
k}). Since (pk)k is bounded, let ν ∈ RN be an

accumulation point for (pk)k. So a subsequence of (pk)k, not relabeled here, converges to ν. Therefore, we get

|p− ν|= lim
k→∞

d([p1
k, p

2
k], F ]i (xk)) ≤ lim

k→∞
d(p1

k, F
]
i (xk)) = 0.

Thus we have pk ∈ F ]i (xk) and pk → p. This ends the proof.
Remark 4.3. Proposition 4.2 shows that assumption (H1)−(vi) is necessary. The extra regularity obtained

for the essential dynamics, by assuming (H1)− (vi), is needed for the proof of Theorem 3.6.
Next, we consider the value function associated to the optimal control problem defined on (t, x) ∈ [0, T ]×RN

ϑ(t, x) = inf{ ψ(y(T )) , y(.) ∈ S(t,T )(x) }

Note that ϑ is well defined since, by Filippov’s theorem, the set of solutions S(t,T )(x) is nonempty and compact
in C([t, T ],RN ).
We now proceed to define some properties of the value function:

Definition 4.4. Let u : [0, T ]× RN → R be a function. u is said to enjoy:
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• The super-optimality property if for all (t, x) ∈ [0, T ] ∈ RN , there exists y(.) ∈ S(t,T )(x) such that
u(t, y(t)) ≥ u(s, y(s)), ∀s ∈ [t, T ].
• The sub-optimality property if for all (t, x) ∈ [0, T ] ∈ RN , for all y(.) ∈ S(t,T )(x) we have
u(t, y(t)) ≤ u(s, y(s)), ∀s ∈ [t, T ].

Lemma 4.5 ([20] ). Let u : [0, T ]× RN → R be a function.
• If u(T, x) ≥ ψ(x) and u has the super-optimality property, then: ϑ(t, x) ≤ u(t, x) for all (t, x) ∈

[0, T ] ∈ RN .
• If u(T, x) ≤ ψ(x) and u has the sub-optimality property, then: ϑ(t, x) ≥ u(t, x) for all (t, x) ∈

[0, T ]× RN .
Lemma 4.5 shows that the value function is the unique function that verifies both the super-optimality and
the sub-optimality property and it solves the following functional equality known as the dynamic programming
principle:

ϑ(t, x) = inf { ϑ(s, y(s)) : y(.) ∈ S(t,T )(x) }, ∀(t, x) ∈ [0, T ]× RN .

The next proposition states that the controllability hypothesis (CH) is a sufficient condition to ensure
that the value function is locally Lipschitz continuous.

Proposition 4.6. Suppose (H1), (CH) and (Hψ) hold. Then, ϑ : [0, T ] × RN −→ R is locally Lipschitz
continuous.

Proof. From the controllability assumption (CH), there exists a neighborhood of Λ (the interfaces), de-
noted V := Λ + εB, and there exists r > 0, such that for all x ∈ V , we have rB ⊂ F (x).

First, we prove that ϑ(t, .) is locally Lipschitz. Let x, z ∈ RN . First suppose that x, z ∈ V close enough
that |x−z|r ≤ T − t. Let M be the local supremum bound of F . Without loss of generality, we suppose
ϑ(t, x) ≥ ϑ(t, z).

Let yt,z(.) ∈ S(t,T )(z) such that ϑ(t, z) = ψ(yt,z(T )). Set h = |x−z|
r and ξ(s) = x + r z−x

|x−z| (s − t) for
s ∈ [t, t+ h]. We define :

ỹ(s) =
{
ξ(s) for s ∈ [t, t+ h]
yt,z(s− h) for s ∈ [t+ h, T ]

It is easy to see that ỹ(.) is an F -trajectory. So we get

ϑ(t, x)− ϑ(t, z) ≤ ψ(ỹ(T ))− ψ(yt,z(T )) ≤ L|ỹ(T )− yt,z(T )| = L|yt,z(T − h)− yt,z(T )|

≤ LMh = L
M

r
|x− z|.

Suppose now for example z /∈ V (we can do the same reasoning on x instead). Then by taking them
close enough to each other, there exists i ∈ {1, ..., n} such that x, z ∈ Mi. Let yt,z(.) ∈ S(t,T )(z) such that
ϑ(t, z) = ψ(yt,z(T )). Suppose yt,z(.) crosses the boundary of Mi. Let t0 ∈ [t, T ] be such that

yt,z([t, t0]) ⊂Mi, and yt,z(t0) ∈ V.

Let yt,x(.) ∈ S(t,T )(x) such that yt,x([t, t0]) ⊂Mi and |yt,x(t0)− yt,z(t0)|≤ C|x− z|. We can also suppose that

yt,x(t0) ∈ V ∩Mi, and |yt,z(t0)− yt,x(t0)|
r

≤ T − t0.

We can always find such trajectories if we take x and z close enough, since Fi is Lipschitz. See [13, Theorem
4.3.11].

Set h = |yt,z(t0)−yt,x(t0)|
r and ξ(s) = yt,x(t0) + r

yt,z(t0)−yt,x(t0)
|yt,z(t0)−yt,x(t0)| (s− t0) for s ∈ [t0, t0 + h]. We define

ỹ(s) =

 yt,x(s) for s ∈ [t, t0]
ξ(s) for s ∈ [t0, t0 + h]
yt,z(s− h) for s ∈ [t0 + h, T ]
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It is easy to see that ỹ(.) is an F -trajectory. So we get

ϑ(t, x)− ϑ(t, z) ≤ ψ(ỹ(T ))− ψ(yt,z(T )) ≤ L|ỹ(T )− yt,z(T )| = L|yt,z(T − h)− yt,z(T )|
≤ LMh

= L
M

r
|yt,z(t0)− yt,x(t0)|,

≤ LCM
r
|x− z|.

If the trajectories yt,z(.) and yt,x(.) don’t cross the boundary of Mi, then, they are both Fi -trajectories
and the result follows again from the classical case, see [13, theorem 4.3.11]. This finishes the proof that ϑ(t, .)
is locally Lipschitz.

Now we prove that ϑ(., x) is locally Lipschitz. Let x ∈ RN . Let t, s ∈ [0, T ] such that t < s. By the
super-optimality property, there exists y(.) ∈ S(t,T )(x) such that ϑ(t, x) = ϑ(s, y(s)). Then

|ϑ(t, x)− ϑ(s, x)| = |ϑ(s, y(s))− ϑ(s, x)| ≤ |ϑ(s, y(s))− ϑ(s, y(t))|.

Since both ϑ(s, .) and y(.) are locally Lipschitz, then from the expression above, ϑ(., x) is locally Lipschitz.
This ends the proof.

4.2 The super-optimality and super-solution property. In this section, we characterize functions
that are super-solutions of equation (2.3) with super-optimality property. The characterization using F is
standard in the literature since it satisfies the usual hypotheses (upper semi-continuity with nonempty, convex
and compact images). In our case, we use the fact F and F ]i , i = 1, . . . , n+ l, give the same set of trajectories,
as shown in Proposition 4.1, to prove this Hamiltonian inequality.

Theorem 4.7. Suppose (H1) and (SH). Let, u : (0, T ] × RN → R be l.s.c. The following assertions are
equivalent:
(i) u is a super-solution of (2.3),
(ii) u satisfies the super-optimality principle.

Proof. The fact that (ii) is equivalent to

(4.1) − θ +HF (x, ξ) ≥ 0 ∀(θ, ξ) ∈ D−u(t, x),

is well known since F (.) is u.s.c. For more on this, see [28, Proposition 3.5] or [11, Chapter 19]. Moreover, it
is obvious from this that (i) =⇒ (ii) since HF ]

i
(., .) ≤ HFi

(., .) ≤ HF (., .) and D−u(., .) ⊂ D−ui(., .), for all
i ∈ [1, n+ l].

It remains to prove (ii) =⇒ (i). Let y(.) : [t, T ] → RN be a trajectory solution of (DI)F (t, x) such that
the super-optimality property holds in y(.). We claim the following:

Claim: ∃ j ∈ I(x) such that there exists a sequence (tn)n, tn ↓ t and xn := y(tn) ∈Mj , so that xn−x
tn−t → ν

and ν ∈ F ]j (x). Deferring the proof of the claim, let φ ∈ C1((0, T ) × RN ) such that uj − φ attains a local
minimum at (t, x) in Mj . For n big enough the super-optimality property gives

uj(t, x)− uj(tn, xn) ≥ 0.

This inequality combined with the fact that uj(tn, xn)− φ(tn, xn) ≥ uj(t, x)− φ(t, x) lead to

1
tn − t

(φ(t, x)− φ(tn, xn)) ≥ 0.

By letting n tend to +∞, we obtain −∂tφ(t, x)− 〈ν, ∂xφ(t, x)〉 ≥ 0 and then

−∂tφ(t, x) +HF ]
j
(x, ∂xφ(t, x)) ≥ 0.
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This concludes the proof.

Now we turn our attention to the proof of the claim. We distinguish two cases: either there exists r > 0
such that y([t, t+ r]) stays in one domainMj for some j ∈ {1, . . . , n}∩ I(x), almost everywhere, or it touches
or crosses the interface infinitely many times no matter how we are close to x. We begin with the first case:
suppose there exists r > 0 such that y([t, t+ r]) ⊂Mj for some j ∈ {1, . . . , n} ∩ I(x) almost everywhere. So,
there exists a sequence (tn)n, tn ↓ t and xn := y(tn) ∈Mj , so that xn−x

tn−t → ν.
Notice that ν = limn→+∞

xn−x
tn−t ∈ TMj

(x), since xn ∈ Mj . It remains to prove that ν belongs to Fj(x).
Denote by κ and M respectively the Lipschitz constant of Fj(.) and the Lipschitz constant of y(.). We have

ν = lim
n→+∞

1
tn − t

ˆ
[t,tn]

ẏ(s) ds ∈ lim
n→+∞

( 1
tn − t

ˆ
[t,tn]

projFj(x)(ẏ(s)) ds+ κ

tn − t

ˆ
[t,tn]
|y(s)− x|B ds

)
⊆ lim
n→+∞

(
Fj(x) + κM

tn − t
[ˆ

[t,tn]
(s− t) ds

]
B
)

⊆ lim
n→+∞

(
Fj(x) + κM

|tn − t|
2 B

)
= Fj(x).

In conclusion, we get ν ∈ Fj(x) ∩ TMj
(x) = F ]j (x).

Now we get to the second case. Since y(.) touches or crosses the interface infinitely many times no
matter how we are close to x, then there exists j ∈ {n + 1, . . . , n + l} ∩ I(x), a sequence (tn)n, tn ↓ t and
xn := y(tn) ∈Mj , so that xn−x

tn−t → ν.
Notice that ν = limn→+∞

xn−x
tn−t ∈ TMj

(x), since xn ∈ Mj . It remains to prove that ν belongs to Fj(x). For
k = 1, . . . , n+ l, we set

Jkn := { s ∈ [t, t+ tn] : y(s) ∈Mk }, µkn := L (Jkn), K(x) := {k : µkn > 0, ∀n ∈ N}.

We obviously have K(x) ⊂ I(x). Furthermore, up to a subsequence, there exist 0 ≤ λk ≤ 1 and pk ∈ RN such
that

µkn
tn − t

→ λk,
∑

k∈K(x)

λk = 1, 1
µkn

ˆ
Jk

n

ẏ(s)ds→ pk, as n→∞.

Denote by κ and M respectively the Lipschitz constant of Fk(.) and the Lipschitz constant of y(.), we get

pk = lim
n→+∞

1
µkn

ˆ
Jk

n

ẏ(s) ds

∈ lim
n→+∞

( 1
µkn

ˆ
Jk

n

projFk(x)(ẏ(s)) ds+ κ

µkn

ˆ
Jk

n

|y(s)− x|B ds
)

⊆ lim
n→+∞

(
Fk(x) + κM

µkn

[ ˆ
Jk

n

(s− t) ds
]
B
)

⊆ lim
n→+∞

(
Fk(x) + κM |tn − t|B

)
= Fk(x).

Therefore, we have

ν = lim
n→+∞

1
tn − t

ˆ
[t,tn]

ẏ(s) ds =
∑

k∈K(x)

lim
n→+∞

µkn
tn − t

[
1
µkn

ˆ
Jk

n

ẏ(s) ds
]
⊂ co {Fk(x) : k ∈ K(x)}.

Finally, we get ν ∈ co {Fk(x) : k ∈ K(x)} ∩ TMj
(x) ⊂ co {Fk(x) : k ∈ I(x)} ∩ TMj

(x) = F ]j (x). This ends
the proof of the claim.

Remark 4.8. By the arguments presented at the beginning of the above proof, it is easy to see that under
the same assumptions of Theorem 4.7, the following statements are equivalent:

(i) u satisfies the super-optimality principle,
(ii) u is a super-solution of (2.3),
(iii) u is a super-solution of (4.1),
(iv) u is a super-solution of (2.2).



A GENERAL COMPARISON PRINCIPLE FOR HJB EQUATIONS ON STRATIFIED DOMAINS 15

Remark 4.9. It was already known from [28], that the super-solution property is equivalent to the super-
optimality property if we only use the classical definition of viscosity. The importance of this result lies in the
fact that the equivalence is valid even if we take the notion of viscosity stated in Definition 2.4.

4.3 The sub-optimality and sub-solution property. This section aims at establishing the link
between the sub-optimality principle and the the sub-solution property of (2.3).

Theorem 4.10. Suppose (H1), (SH) and (HD) hold. Let u : [0, T ]× RN → R be an u.s.c function. The
following assertions are equivalent:
(i) u satisfies the sub-optimality principle,
(ii) u is a sub-solution of (2.3).

Proof. We prove (i) =⇒ (ii) first. Let i ∈ {1, ..., n + l}. Let (t, x) ∈ [0, T ] ×Mi. By [28, Lemma 3.9],
for every p ∈ F ]i (x), there exists a C1 trajectory y(.) defined on some interval [t, t+ ε], with ε > 0, such that
y(t) = x, ẏ(t) = p and y(.) ⊆Mi.

Let ui ≡ u on Mi and ui ≡ −∞ otherwise. Let (θ, ξ) be in D+ui(t, x). For any sequence ((tn, xn))n such
that (tn, xn) ∈ dom(ui) and (tn, xn)→ (t, x), we have

lim sup
n→∞

u(tn, xn)− u(t, x)− θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

≤ 0.

Setting xn = y(t+ ε
n ) and tn := t+ ε

n , we get by sub-optimality of u

−θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

≤ u(tn, xn)− u(t, x)− θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

,

By letting n→∞ we get

−θ − 〈ξ, p〉
|p|+ 1 ≤ 0 =⇒ −θ − 〈ξ, p〉 ≤ 0.

Since p is arbitrary, we get the result by taking the supremum over F ]i (x).

It remains to prove (ii)=⇒(i). We divide this proof into 2 steps.
Step 1. (Augmented dynamics). First, we establish the following claim:
Let v := −u (so v is l.s.c), Mi := R×Mi×R for all i = 1, ..., n+ l. We denote by vi ≡ v on Mi and vi ≡ +∞
otherwise. Let G]i(t, x, z) := {1} × F ]i (x)× {0} for any (t, x, z) ∈Mi. If we have

(i) −θ +HF ]
i
(x, ν) ≤ 0 for all (t, x) ∈ (0, T )×Mi, (θ, ν) ∈ −D−vi(t, x).

Then it holds:
(ii) supν∈G]

i
(t,x,z){ 〈η, ν〉 } ≤ 0 ∀(t, x, z) ∈ epi(vi), η ∈ Np

epi(vi)(t, x, z).
Let us first point out the fact that (i) is equivalent to

−θ +HF ]
i
(x, ν) ≤ 0 for (t, x) ∈ (0, T )×Mi, (θ, ν) ∈ D+ui(t, x),

since D+ui(t, x) = −D−(−ui)(t, x) = −D−vi(t, x).
Let (t, x, z) ∈ epi(vi). If F ]i (x) = ∅ then the result holds by vacuity. Otherwise, let (ξ,−λ) ∈ Np

epi(vi)(t, x, z).
So we have λ ≥ 0. Suppose we have λ > 0, then z = vi(t, x) and there exists (θ, ζ) ∈ −∂pvi(t, x) such that
ξ = (−λθ,−λζ). Hence, by [11, Theorem 11.32], for any ν ∈ G]i(t, x, z) we have, for some p ∈ F ]i (x):

〈(ξ,−λ), ν〉 = −λ(θ + 〈ζ, p〉) ≤ λ(−θ +HF ]
i
(x, ζ)) ≤ 0

We take the supremum over ν and we get the result. Now, if λ = 0, then by Rockafellar theorem [11, theorem
11.31], there exist sequences ((tn, xn))n ⊆ [0, T ]×Mi, (ξn)n ⊆ RN+1 and (λn)n ⊆ (0,∞) such that

(tn, xn, λn)→ (t, x, 0), v(tn, xn)→ z ξn → ξ,
1
λn
ξn ∈ −∂pvi(tn, xn).

Thus the argument above shows that:

〈(ξn,−λn), νn〉 ≤ 0 ∀νn ∈ G]i(tn, xn, ui(tn, xn)), ∀n ∈ N.
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Furthermore, by Proposition 4.2 we have that G]i(.) is lower semicontinuous. So there exists a sequence
(νn)n → ν such that νn ∈ G]i(tn, xn, vi(tn, xn)). By evaluating the last inequality at this sequence and letting
n→ +∞, then taking the supremum over ν, we get the result.

Step 2:. We show that
∀i ∈ {1, ..., n+ l}, epi(vi) = epi(v) ∩M i.

Let (t, x, r) ∈ epi(vi). So vi(t, x) ≤ r. Hence x ∈ Mi and v(t, x) ≤ r. Thus we get (t, x, r) ∈ epi(v) ∩M i.

Conversely, if (t, x, r) ∈ epi(v) ∩M i, then v(t, x) ≤ r and x ∈ Mi. So vi(t, x) = v(t, x), whence vi(t, x) ≤ r,
which finishes the proof of step 2.

We apply Theorem 3.6 to the augmented dynamics G(.) := {1} × F (.) × {0}, the stratification RN+2 =
∪n+l
i=1Mi and the set S = epi(v). Thus we get that (epi(v), G) is strongly invariant. Let (t, x) ∈ (0, T ) × RN

and y(.) be a solution of (DI)F (t, x). So we have that

Y (s) = (s, y(s), v(t, y(t)) s ∈ [t, T ],

is a solution of the differential inclusion with the augmented dynamics G(.) and initial condition (t, x, v(t, x)) =
(t, y(t), v(t, y(t))).

we have (t, y(t), v(t, y(t)) ∈ epi(v) and equation (ii) from step 1 is verified. Thus, by Theorem 3.6, we get
(t+ h, y(t+ h), v(t, y(t)) ∈ epi(v) for all h ∈ [0, T − t]. Hence

v(t+ h, y(t+ h)) ≤ v(t, y(t))⇐⇒ u(t, y(t)) ≤ u(t+ h, y(t+ h)) (since u = −v).

This ends the proof of (ii) =⇒ (i) and Theorem 4.10.

4.4 Proof of Theorems 2.9 and 2.10.
Proof. (Theorem 2.9). Proposition 4.6 shows that the value function ϑ is locally Lipschitz continuous.

Furthermore, we have ϑ(T, x) = ψ(x). Theorem 4.7 shows that ϑ is a super-solution since it enjoys the super-
optimality property. In addition, Theorem 4.10 shows that ϑ is a viscosity sub-solution since it enjoys the
sub-optimality property. Finally, uniqueness comes from the global comparison result in Theorem 2.10.

Proof. (Theorem 2.10). Let u1 and u2 respectively be a l.s.c super-solution and an u.s.c sub-solution of
equation (2.3). By Theorem 4.7, we conclude that u1 satisfies the super-optimality principle which means that
for all (t, x) ∈ [0, T )× RN , there exists a trajectory y(.) ∈ S(t,T )(x) such that

u1(t, x) ≥ u1(T, y(T )).

Likewise, by Theorem 4.10, we conclude that u2 satisfies the sub-optimality principle. Then for the same
trajectory y(.) we have

∀ (t, x) ∈ [0, T )× RN , u2(t, x) ≤ u2(T, y(T )).

Henceforth, using the fact that u2(T, ·) ≤ u1(T, ·), we get the desired result u2(t, x) ≤ u1(t, x) for any (t, x) ∈
[0, T ]× RN .

5 Stability.

Theorem 5.1. For i = 1, ..., n+ l, let
(
F ji :Mi  RN

)
j

be a sequence of set-valued maps satisfying (SH)
and such that F ji −→ Fi w.r.t the Hausdorff metric (i.e. uniform convergence). Let (vj : RN → R)j be a
sequence of l.s.c functions such that vj → v locally uniformly in RN . Suppose in addition that for all j, vj is
a super-solution of

−∂tvj(t, x) + max
i∈I(x)

{HF j]
i

(x, ∂xvj(t, x)) } = 0 for all (t, x) ∈ (0, T )× RN ,

in the sense of Definition 2.4. Then v is a super-solution of (2.3).
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Proof. (Theorem 5.1). Let (t, x) ∈ (0, T ) × RN . Using Remark 4.8, it suffices to prove that v is a super-
solution of (4.1). Let φ ∈ C1((0, T ) × RN ) such that u − φ attains a local minimum at (t, x). Then, there
exists (tj , xj) ∈ (0, T )×RN such that vj − φ attains local minimum and such that (tj , xj)→ (t, x). Since the
stratification is finite and vj is a super-solution of (2.3), then up to a subsequence (not relabeled), there exists
i0 ∈ [1, n+ l] such that for all j, we have

−∂tφ(tj , xj) +HF j]
i0

(xj , ∂xφ(tj , xj)) ≥ 0.

Since F j]i0 (.) ⊆ F ji0(.), we get
−∂tφ(tj , xj) +HF j

i0
(xj , ∂xφ(tj , xj)) ≥ 0.

So by letting j tend to infinity, we get

−∂tφ(t, x) +HFi0
(x, ∂xφ(t, x)) ≥ 0.

Finally, since Fi0(.) ⊆ F (.), then we get

−∂tφ(t, x) +HF (x, ∂xφ(t, x)) ≥ 0,

which is the required result by Remark 4.8.
Theorem 5.2. For i = 1, ..., n+ l, let

(
F ji :Mi  RN

)
j

be a sequence of set-valued maps satisfying (SH)
and such that F ji −→ Fi w.r.t the Hausdorff metric (i.e. uniform convergence). Let (vj : RN → R)j be a
sequence of u.s.c functions such that vj → v locally uniformly in RN . Suppose in addition that for all j, vj is
a sub-solution of

−∂tvj(t, x) +HF j]
i

(x, ∂xvj(t, x)) = 0 for all (t, x) ∈ (0, T )× RN , i ∈ I(x),

in the sense of definition 2.5. Then v is a sub-solution of (2.3).
Proof. (Theorem 5.2). Let (t, x) ∈ (0, T ) × RN and i ∈ I(x). Let φ ∈ C1((0, T ) × RN ), such that u − φ

attains a local maximum in (0, T )×Mi, at (t, x). Then there exists (tj , xj) ∈ (0, T )×Mi, such that vj − φ
attains local maximum in (0, T )×Mi at (tj , xj), and such that (tj , xj)→ (t, x). Since vj is a subsolution, we
get

−∂tφ(tj , xj) +HF j]
i

(xj , ∂xφ(tj , xj)) ≤ 0.

Since F ji → Fi w.r.t the Hausdorff metric, we have

F ji (.) ∩ TMi
(.) = F j]i (.)→ F ]i (.) = Fi(.) ∩ TMi

(.), w.r.t the Hausdorff metric.

To see this, we recall an equivalent definition of the Hausdorff metric [9, Definition 7.3.1]:

dH(A,B) = inf{r > 0 : A ⊂ Ur(B) and B ⊂ Ur(A)}, A,B compact subsets of RN ,

with Ur(A) := ∪a∈AB(a, r) and Ur(B) := ∪b∈BB(b, r) are the r-neighborhoods of A and B respectively. From
this one gets immediately

dH(F ji (.) ∩ TMi
(.), F ]i (.)) ≤ dH(F ji (.), Fi(.)).

Now let ν ∈ F ]i (x). Then by the Hausdorff convergence there exists a sequence νj ∈ F j]i (xj) such that νj → ν.
Finally, we arrive at

−∂tφ(tj , xj) + 〈−νj , ∂xφ(tj , xj)〉 ≤ −∂tφ(tj , xj) +HF j]
i

(xj , ∂xφ(tj , xj)) ≤ 0.

By letting j tend to infinity, we get

−∂tφ(t, x) + 〈−ν, ∂xφ(t, x)〉 ≤ 0.

Lastly, we take the supremum over ν and we get the required result.
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6 General convergence result for monotone schemes. In this section, we aim at studying the
convergence of monotone numerical schemes approximating the HJB equation (2.3).

Let G∆x = (G∆x
i )i be a spatial grid of RN of step ∆x, compatible with the stratification (Mi)i in the

following sense:

(CC):
{

(i) For all i, j = 1, ..., n+ l, such thatMj ⊂Mi, G∆x
i and G∆x

j coincide on G∆x
j ,

(ii) ∀R > 0, ∀i = 1, ..., n+ l, lim∆x→0 dH

(
Mi ∩ B(0, R) , G∆x

i ∩ B(0, R)
)

= 0.

Comments on the hypothesis (CC) . Hypothesis (CC)-(i) implies that the grid G∆x is divided into
n+l subgrids (G∆x

i )i with a partial order relation that ensures compatibility with the stratification. Hypothesis
(CC)-(ii) asserts that for each i = 1, . . . , n+ l, the subgrid G∆x

i approaches Mi in the the sense of Hausdorff
convergence for locally compact sets. Notice that this implies in particular that the points of a subgrid G∆x

i

don’t have to belong to Mi. What is important here is that the grid G∆x is divided into n + l subgrids
compatible with the stratification, and each subgrid converges in the Hausdorff sense to its corresponding
domain.

We define for any x ∈ G∆x, the index multifunction of the grid

IG∆x(x) := { i ∈ {1, ..., n+ l} : x ∈ G∆x
i }.

Let ∆t be a constant time step of a regular grid Π∆t of [0, T ]. We denote h = (∆t,∆x). We consider the
following numerical scheme:{

maxi∈IG∆x (xh) {Shi (th, xh, uh(th, xh), [uh](th,xh) } = 0 for (th, xh) ∈ (Π∆t × G∆x) \ {th = T},
uh(T, xh) = ψ(xh), for (th, xh) ∈ (Π∆t × G∆x) ∩ {th = T}

with [uh](th,xh) are all the values of of uh on G∆x at other points than (th, xh). Each Shi , i = 1, . . . , n + l is
supposed to verify the following hypotheses:

• Monotonicity : Shi (s, z, u, w1) ≤ Shi (s, z, u, w2), if w1 ≥ w2.
• Stability :

– each uh is locally bounded independently from h, for h small enough, i.e. for all R > 0, there is
a CR > 0, independent of h, such that

|uh(thi , xhi )| ≤ CR if (thi , xhi ) ∈
(

[0, T ]× B(0, R)
)
∩
(

Π
∆t

× G∆x
)
.

– uh verifies the following inequality on a neighborhood of the interfaces: there exists r > 0 and
Cr > 0, independent of h, such that

|uh(th, xh)− uh(sh, yh)| ≤ Cr(|th − sh|+ |xh − yh|),

if (th, xh), (sh, yh) ∈
(

[0, T ]× (Λ + B(0, r))
)
∩
(

Π∆t × G∆x
)

.
• Consistency : for all φ ∈ C1((0, T )× RN ) and (t, x) ∈ (0, T )× RN , we have

lim
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0
ζ→0

Shi (s, z, φ(s, z) + ζ, [φ+ ζ]h(s,z)) = −∂tφ(t, x) + HF ]
i
(x, ∂xφ(t, x)),

where [φ+ ζ]h(s,z), is a function representing the values of φ+ ζ on the grid at other points than (s, z).
The following theorem is an extension of the result by Barles and Souganidis [6], to the case of HJB equations
on stratified domains.

Theorem 6.1. Suppose that
• the HJB equation (2.3) admits a continuous viscosity solution u,
• for all h > 0 small enough, the numerical scheme admits a solution uh,
• the spatial grid verifies hypothesis (CC),
• each Shi verifies the monotonicity, stability and consistency hypotheses,
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then, uh converges locally uniformly to u.
Proof. First, we begin by defining the following functions

u(t, x) := lim sup
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z), u(t, x) := lim inf
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z).

We also have that u ≤ u. It suffices to prove u ≥ u. For that we will prove that u is a l.s.c super-solution and
u is an u.s.c sub-solution. We first prove that u is a sub-solution.

Let (t, x) ∈ (0, T )×RN . Without loss of generality, we suppose that x ∈ B(0, ρ) for some ρ > 0 big enough
and we restrict our analysis on this bounded open set. Let i ∈ I(x) and let φ ∈ C1((0, T ) × RN ) such that
ui − φ attains its local maximum at (t, x) ∈ (0, T )×Mi. We recall that ūi = u in (0, T )×Mi and ui ≡ −∞
otherwise.

Without loss of generality, we can suppose that

ui(t, x) = φ(t, x), ui(s, z) < φ(s, z) if (s, z) 6= (t, x),

φ ≥ CR + 1 outside of a neighborhood Ω of (t, x), Ω ( (0, T )× B(0, ρ),

where CR is defined from the first part of the stability assumption. We have, ui − φ attains a local maximum
at (t, x). Furthermore, from the second part of the stability assumption, u is Lipschitz continuous in a
neighborhood of the interfaces. So we get

0 = ui(t, x)− φ(t, x) = lim sup
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z)− φ(s, z) = lim sup
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0

uh(s, z)− φ(s, z).

The second part of the stability assumption is essential here to get the last equality since the limit sup might
not be reached from every subsgrid G∆x

i . Moreover, outside of Ω, we have ui−φ ≤ −1. So, there exists r > 0,
such that

0 ≥ uh(s, z)− φ(s, z) ≥ −1 for all (s, z) ∈ ([t− r, t+ r] ∩Π∆t)× (B(0, r) ∩ G∆x
i ) ⊂ Ω.

So, the maximum is attained in the compact set ([t − r, t + r] ∩ Π∆t) × (B(0, r) ∩ G∆x
i ) ⊂ Ω. Let (thi , xhi ) be

the maximum and (ti, xi) the limit when h→ 0 of a subsequence not relabeled. we have

lim
h→0

uh(thi , xhi )− φ(thi , xhi ) ≥ lim sup
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0

uh(s, z)− φ(s, z) = ui(t, x)− φ(t, x) = 0.

On the other hand, since u− φ is u.s.c, we get

0 ≥ ui(ti, xi)− φ(ti, xi) = ui(ti, xi)− φ(ti, xi) ≥ lim
h→0

uh(thi , xhi )− φ(thi , xhi ).

Thus, we conclude
(ti, xi) = (t, x), uh(thi , xhi )→ ui(t, x).

Let ζh := uh(thi , xhi )− φ(thi , xhi ). We get

uh(thi , xhi ) = φ(thi , xhi ) + ζh, uh(s, z) ≤ φ(s, z) + ζh, (thi , xhi ) 6= (s, z) ∈ Π∆t × G∆x
i .

From the monotonicity of the scheme and uh being a solution, we get

Shi (thi , xhi , uh(thi , xhi ), [φ+ ζh]h(th
i
,xh

i
)) ≤ S

h
i (thi , xhi , uh(thi , xhi ), [uh](th

i
,xh

i
)) ≤ 0,

and by the consistency hypothesis and passing to the limit, we get

lim
(thi ,x

h
i )→(t,x)
h→0
ζh→0

Shi (thi , xhi , φ(thi , xhi ) + ζh, [φ+ ζh]h(th
i
,xh

i
)) = −∂tφ(t, x) + HF ]

i
(x, ∂xφ(t, x)) ≤ 0.
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This is true for any i ∈ I(x), which ends the proof.

Now we prove that u is a super-solution. Following Remark 4.8, it suffices to prove that u is a super-solution
of (4.1).

Let (t, x) ∈ (0, T )×RN . Let φ ∈ C1((0, T )×RN ) such that u−φ attains its local minimum in (0, T )×RN
at (t, x) and φ(t, x) = u(t, x). Using the same arguments as in the first part of the proof, we get a sequence
(hn)n such that

hn ↓ 0, uhn − φ attains a local maximum at (tn, xn) ∈ Π∆t × G∆x, and

(tn, xn)→ (t, x), uhn(tn, xn)→ u(t, x).

Furthermore, since the stratification is finite and uhn is a solution to the numerical scheme, there exists a
subsequence (not relabeled) of (hn)n such that there exists i0 ∈ IG∆x(xn), for all n ∈ N and (xn)n ⊆ G∆x

i0
such

that we have
max

i∈IG∆x (xn)
Shn
i (tn, xn, uhn(tn, xn), uhn) = Shn

i0
(tn, xn, uhn(tn, xn), uhn) ≥ 0.

Let ζn := uhn(tn, xn)− φ(tn, xn). So

uhn(tn, xn) = φ(tn, xn) + ζn, uhn(s, z) ≥ φ(s, z) + ζh, (thi , xhi ) 6= (s, z) ∈ Π∆t × G∆x.

From the monotonicity assumption and uhn being a solution, we get

Shn
i0

(tn, xn, φ(tn, xn) + ζh, [φ+ ζh]hn

(thn,xh
n)) ≥ S

hn
i0

(tn, xn, uhn(tn, xn), [uhn ]hn

(thn,xh
n)) ≥ 0.

and by the consistency hypothesis and passing to the limit, we get

lim
(tn,xn)→(t,x)

hn→0
ζn→0

Shn
i0

(tn, xn, φ(tn, xn) + ζh, [φ+ ζh]hn

(thn,xh
n)) = −∂tφ(t, x) + HF ]

i
(x, ∂xφ(t, x)) ≥ 0.

By Remark 4.8 and the fact that F ]i (.) ⊆ F (.), we get the required result.

In conclusion, u(., .) = u(., .) = u(., .) and uh converges locally uniformly to u, which ends the proof.

Appendix A. Relative wedgeness. This appendix presents the concept of relative wedgeness first
introduced in [7].

Let S ⊂ RN be a closed set. S is said to be proximally smooth if there exists R > 0 such that the distance
function dS(.) is continuously differentiable on the set {x ∈ RN : 0 < dS(x) < R }. If S is proximally smooth,
then its Clarke tangent cone is equal to its Bouligand tangent cone TS(.). Clarke tangent cone is always closed
and convex.

Now, let M be a C2 embedded manifold in RN such that M is proximally smooth and let d = dim(M)
be its dimension. Then, for every x ∈M, the tangent cone TM(x) is closed and convex, hence it has a relative
interior (in the sense of convex analysis), denoted by r-int(TM(x)).

The setM is said to be relatively wedged if for every x ∈M, the dimension of r-int(TM(x)) (in the sense
of convex analysis) is equal to the dimension of M:

dim(r-int(TM(x)) = dim(M) = d.

Appendix B. Proof of invariance theorems.
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Proof. (Theorem 3.5). Since F is an u.s.c set-valued map with convex, compact non-empty images, and
since S is a closed set of RN , it is known that assertion (i) is equivalent to (see for instance [11, Theorem
12.11])

HF (x, η) ≥ 0 ∀η ∈ Np
S(x), ∀x ∈ RN .

Let x ∈ RN . We have F ]i (.) ⊆ Fi(.) ⊆ F (.). We have

(B.1) HFi(x, ηi) ≥ HF ]
i
(x, ηi), ∀ηi ∈ Np

Si
(x).

From this inequality, we deduce easily the implication (iii) =⇒ (ii). Moreover, since Np
S(x) ⊆ Np

Si
(x) for all

i ∈ I(x), then
HF (x, η) ≥ max

i∈I(x)
HFi

(x, η) ≥ max
i∈I(x)

HF ]
i
(x, η), ∀η ∈ Np

S(x).

Hence, the implication (ii) =⇒ (i) holds. It remains to prove the implication (i) =⇒ (iii). Suppose (S, F ) is
weakly invariant. Let x ∈ RN and t ∈ [0, T ]. So there exists a trajectory y(.) solution of (DI)F (t, x) such that
y(.) ⊂ S. We claim the following:

Claim: ∃ j ∈ I(x) such that there exists a sequence (tn)n, tn ↓ t and xn := y(tn) ∈Mj , so that xn−x
tn−t → ν

and ν ∈ F ]j (x).

The proof of the claim is the same as the proof of the same claim in Proposition 4.7. With this claim, we
are almost done. Indeed let ηj ∈ Np

Sj
(x) be such that the proximal normal inequality is satisfied with σ > 0.

we get

〈ν, ηj〉 = lim
n→+∞

〈xn − x
tn − t

, ηj
〉
≤ lim
n→+∞

1
2σ(tn − t)

||xn − x||2= 0.

Thus, we have
HF ]

j
(x, ηj) ≥ −〈ν, ηj

〉
≥ 0,

Which is the required result.

Proof. (Theorem 3.6). The implication (ii) =⇒ (i) is proven first. We separate the proof into 3 parts.
First we prove the result for every trajectory that lies entirely in one of the domainsMi, i = 1, ..., n+ l. Then,
we prove the result for every regular trajectory using an induction argument. Finally we prove the result for
every trajectory using Filippov’s theorem [12, Theorem 3.1.6].
Step 1. (Inspired from [11, Theorem 12.15]). Let y(.) be a trajectory of F such that y((t, T )) ⊂Mi and such
that y(t) = α ∈ S ∩Mi. We show that for some ε ∈ (0, T − t), we have y([t, t+ ε]) ⊂ S which is sufficient to
conclude.
Let r > 0 small enough such that B(α, r) ∩Mi is a relative neighborhood in Mi. From (SH) − (ii) (linear
growth hypothesis), we deduce that there exists M > 0 such that ||Fi||≤M on the ball B(α, r) ∩Mi. So y(.)
is Lipschitz continuous on [t, t+ ε] with constant M . There exists ε ∈ (0, T − t) such that

∀ τ ∈ [t, t+ ε], s ∈ projSi(y(τ)) =⇒ y(τ) ∈ B(α, r) ∩Mi, s ∈ B(α, r) ∩Mi.

We define f(τ) := dSi
(y(τ)). f is Lipschitz continuous on [t, t+ ε]. We prove the following Lemma:

Lemma B.1. f ′(τ) ≤ κf(τ) for almost all τ ∈ (t, t+ ε).
Proof. Let τ∗ ∈ (t, t + ε) such that f ′(τ∗) exists, y′(τ∗) exists and y′(τ∗) ∈ Fi(y(τ∗)) (almost all points

satisfy those conditions). If f(τ∗) = 0 then f attains a minimum at τ∗ and therefore f ′(τ∗) = 0 and the
inequality holds. Suppose now f(τ∗) > 0 and let s ∈ projSi(y(τ∗)). Then by [11], proposition 11.29, we have

η := y(τ∗)− s
|y(τ∗)− s|

∈ Np
Si

(s).

Since Fi(= F ]i on Mi) is Lipschitz continuous on B(α, r) with constant κ, there exists ν ∈ Fi(s) such that

|y′(τ∗)− ν|≤ κ|y(τ∗)− s|.
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Therefore we get

〈η, y′(τ∗)〉 = 〈η, ν〉+ 〈η, y′(τ∗)− ν〉 ≤ HF ]
i
(s,−η) + κ|y(τ∗)− s|≤ κ|y(τ∗)− s|.

Hence, we get

f ′(τ∗) = lim
δ→0

dSi
(y(τ∗ + δ))− dSi

(y(τ∗))
δ

≤ lim
δ→0

|y(τ∗ + δ)− s|−|y(τ∗)− s|
δ

= 〈η, y′(τ∗)〉 ≤ κ|y(τ∗)− s|= kf(τ∗).

Since f is Lipschitz, positive and f(t) = 0 (y(t) = α ∈ Si), then by using the lemma above and Gronwall
lemma, we get that f ≡ 0 on [t, t+ ε], which finishes the proof of step 1.
Notice that, every trajectory that lies entirely in ∪ni=1Mi also verifies step 1 since it is a disjoint union.
Step 2. Let M be union of subdomains such that ∪ni=1Mi ⊆M and denote by δM the minimum dimension
of the subdomains of M. Let Mk0 be a subdomain such that Mk0 ⊂M\M and its dimension is inferior or
equal to δM. We show the following proposition:

Proposition B.2. If we have (ii) =⇒ (i) for every trajectory that lies entirely in M or lies entirely in
Mk0 , then (ii) =⇒ (i) holds true for every trajectory that lies in M∪Mk0 .

Proof. Let y(.) ⊆M∪Mk0 be a trajectory of F on [t, T ] such that y(t) ∈ S. We define

J = {τ ∈ [t, T ] : y(τ) /∈Mk0}.

The set J is open since Mk0 is of inferior dimension than M, then it is a closed set relative to M∪Mk0

(equipped with inhereted topology from RN ). Thus J can be written as a countable union of open intervals
in the following way:

J =
∞⋃
i=1

(ai, bi),

such that the open sets (ai, bi) are pairwise disjoint and ai < bi ≤ ai+1, ∀i ≥ 1. Notice that we necessarily
have y(ai), y(bi) ∈Mk0 . Set b0 = t. First, we prove that

∀ i ∈ N, y(bi), y(ai+1) ∈ S and y((ai+1, bi+1)) ⊂ S.

We have y(b0) ∈ S by assumption. If b0 = a1 then we have y(a1) ∈ S. If b0 < a1 then y(b0) ∈ S ∩Mk0 and
y((b0, a1)) ⊂ Mk0 . Hence, by Step 1, we have y((b0, a1)) ⊂ S and therefore y(a1) ⊂ S since S is a closed
set. Moreover, since y(a1) ∈ S ∩M and y((a1, b1)) ⊂ M, then by Step 1, we have that y((a1, b1)) ⊂ S and
therefore y(b1) ∈ S since S is closed. By induction, following the same argument, we get that

∀ i ∈ N, y(bi), y(ai+1) ∈ S and y((ai+1, bi+1)) ⊂ S.

It remains to prove y([t, T ] \ J) ⊂ S. If the set J was equal to a finite union of open intervals then the
above argument would have been sufficient to prove that y([t, T ] \ J) ⊂ S. However, this is not the case for
all trajectories y(.). The trajectories y(.) can move in and out of Mk0 infinitely many times exhibiting the
phenomenon known as the Zeno effect. To deal with this case, we will approximate such trajectories y(.) by
ones such that the set J is equal to a finite union of open intervals.
We fix m ≥ 1 and set

Jm =
m⋃
k=1

(ak, bk),

Which we can assume to satisfy

t = b0 ≤ a1 < b1 ≤ a2 < b2 ≤ ... ≤ am < bm ≤ am+1 := T.

We choose m large enough such that
L (J \ Jm) < r

2eκT ||F || ,



A GENERAL COMPARISON PRINCIPLE FOR HJB EQUATIONS ON STRATIFIED DOMAINS 23

with κ being the Lipschitz constant of Fk0 and r is equal to

r := inf
w∈Mk0\Mk0

s∈[t,T ]

|y(s)− w|,

(notice that r is strictly positive and can be infinite). The choice of m is made in such a way to be able to
apply [12, Theorem 3.1.6] on manifolds (see [7, Remark 3.1]). We will approximate the arc y([bi, ai+1]), for

some i = 0, ...,m, by trajectories that remain entirely in Mk0 . By Filippov theorem ([12, Theorem 3.1.6])
and [7, Proposition 3.2], there exists zi(.) a trajectory of Fk0 on [bi, ai+1] such that zi(bi) = y(bi) ∈ Mk0 ∩ S,
zi(.) ⊂Mk0 and

||y(.)− zi(.)||L∞[bi,ai+1]≤ eκ(ai+1−bi)ρi ≤ 2 eκT ||F ||εi,

where we denote εi = L (J ∩ (bi, ai+1)) and

ρi :=
ˆ ai+1

bi

dH({ ẏ(s) }, Fk0(zi(s)))ds ≤ 2 ||F ||εi.

Since εi ≤ L (J\Jm), we get

||y(.)− zi(.)||L∞[bi,ai+1]≤ 2 eκT ||F ||L (J\Jm).

Furthermore, from Step 1 we have zi(.) ⊂ S. Thus we get

dS(y(.)) ≤||y(.)− zi(.)||L∞[bi,ai+1]≤ 2 eκT ||F ||L (J\Jm), ∀m ≥ 1.

By letting m→∞, we have L (J\Jm)→ 0. Therefore y(.) ⊂ S, which is the required result.
From the above proposition, we deduce that (ii) =⇒ (i) by a simple finite induction argument starting

fromM = ∪ni=1Mi and adding an interfaceMk0 ⊂ Λ, with k0 ∈ {n+1, ..., n+ l}, in such a way that decreases
the dimension of Mk0 at each iteration.

Now we prove the direct implication (i) =⇒ (ii). For that, we use [28, Lemma 3.9]. See also [7, Proposition
5.1 and Lemma 5.2]. Suppose (S, F ) is strongly invariant. Let x ∈ S ∩Mi, ν ∈ F ]i (x) and η ∈ Np

Si
(x) such

that ||η||= 1 a proximal normal realised at σ > 0 (from the definition of the proximal normal).
Since ν ∈ F ]i (x), then by [28, Lemma 3.9], there exists a C1 trajectory y(.) of F ]i , defined on some interval

[t, t+ ε] with ε > 0 such that y(t) = x and ẏ(t) = ν and y(.) ⊆Mi. By the strong invariance hypothesis, we
have y(.) ⊆ Si. So we get

〈ν, η〉 = lim
τ↓t

〈y(τ)− x
τ − t

, η
〉
≤ lim

τ↓t

1
2σ(τ − t) |y(τ)− x|2 = 0.

By taking the supremum over F ]i (x), we obtain the desired result.
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