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COLORING THE VORONOI TESSELLATION OF LATTICES

MATHIEU DUTOUR SIKIRIĆ, DAVID A. MADORE, PHILIPPE MOUSTROU,
AND FRANK VALLENTIN

Abstract. In this paper we define the chromatic number of a lattice: It is
the least number of colors one needs to color the interiors of the cells of the
Voronoi tessellation of a lattice so that no two cells sharing a facet are of the
same color.

We compute the chromatic number of the root lattices, their duals, and of
the Leech lattice, we consider the chromatic number of lattices of Voronoi’s first
kind, and we investigate the asymptotic behaviour of the chromatic number
of lattices when the dimension tends to infinity.

We introduce a spectral lower bound for the chromatic number of lattices
in spirit of Hoffman’s bound for finite graphs. We compute this bound for
the root lattices and relate it to the character theory of the corresponding Lie
groups.

Contents

1. Introduction 2
1.1. Determination of the chromatic number 3
1.2. Generic and extremal behaviour of the chromatic number 4
2. Background and first observations 5
2.1. Lattices, Voronoi cells, Voronoi vectors 5
2.2. Simple upper bounds for the chromatic number 5
2.3. Simple lower bounds for the chromatic number 6
2.4. Root lattices and their duals 6
2.5. The chromatic number of an orthogonal sum of lattices 7
3. On the chromatic number of lattices of Voronoi’s first kind 8
3.1. Definitions and first examples 8
3.2. Interpretation in terms of graphs and more general results 9
3.3. Application: the chromatic number of 3-dimensional lattices 11
4. Sphere packing lower bounds 12
4.1. First application: Chromatic number of E8 and of the Leech lattice 12
4.2. Second application: Exponential growth of the chromatic number 13
5. Spectral lower bounds 14
5.1. Setup 14
5.2. Computing the spectral bound for irreducible root lattices 17
6. The chromatic number of irreducible root lattices and their duals 21
6.1. Dn and its dual 22
6.2. E6,E7,E8 and their duals 22

Date: March 22, 2021.
2020 Mathematics Subject Classification. 05C15, 52C07.
Key words and phrases. lattice, Voronoi cell, chromatic number.

1

http://arxiv.org/abs/1907.09751v2
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1. Introduction

Let Λ ⊆ Rn be an n-dimensional lattice in n-dimensional Euclidean space. One
can tessellate space by lattice translates of the lattice’ Voronoi cell, which is defined
as

V (Λ) = {x ∈ Rn : ‖x‖ ≤ ‖x− v‖ for all v ∈ Λ}.
By V (Λ)◦ we denote the topological interior of V (Λ). Now we consider translates
v+V (Λ)◦, with v ∈ L, as colored tiles of an n-dimensional mosaic in which one has
infinitesimal small interstices between the mosaic tiles. How many colors does one
need at least to get a colorful mosaic? In a colorful mosaic two neighboring tiles
receive different colors. This defines the chromatic number χ(Λ) of the lattice.
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Figure 1. Optimal coloring of the hexagonal lattice, χ(A2) = 3.

More formally, we can also define the chromatic number of a lattice in graph
theoretical terms: Two distinct lattice translates of Voronoi cells v + V (Λ) and
w + V (Λ), with v 6= w, are defining neighboring tiles whenever they share a facet,
i.e. their intersection is a polytope of maximal dimension n − 1. The differences
v − w are called strict Voronoi vectors and the set of these vectors is denoted by
Vor(Λ). Now the chromatic number of Λ equals the chromatic number of the Cayley
graph on the additive group Λ with generating set Vor(Λ):

χ(Λ) = χ(Cayley(Λ,Vor(Λ))).

Here, the set of vertices of the Cayley graph are all elements of Λ and two vertices
v, w are adjacent whenever the difference v − w lies in the set of strict Voronoi
vectors Vor(Λ). Note that the Cayley graph is an r-regular infinite graph with
r = |Vor(Λ)|.

In Section 2.1 we recall all the definitions and properties of lattices, their Voronoi
cells, and the Voronoi vectors, which we need later.

The chromatic number of a lattice seems to be a natural parameter. However, to
the best of the authors’ knowledge, see [40] and [25], χ(Λ) has not been considered
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before. The aim of this paper is to start a systematic investigation of it. Then, the
following questions immediately come to mind:

1.1. Determination of the chromatic number. What is the chromatic number
of some interesting lattices? How to find lower and upper bounds? Is there an
algorithm to determine χ(Λ) for a given lattice Λ?

For instance, it is obvious that the chromatic number of the integer lattice Zn

is two, an optimal coloring is given by the black/white checkerboard pattern; see
also Theorem 2.5.

We discuss simple lower and upper bounds for the chromatic number of a general
lattice in Section 2.2 and in Section 2.3. For instance, we show that χ(Λ) is at
most 2n.

All two- and three-dimensional lattices are of Voronoi’s first kind. We consider
the chromatic number of this class of lattices in Section 3 where we compute the
chromatic number of all three-dimensional lattices. It would be interesting to have
a better understanding of the chromatic number of this class of lattices.

One of the most important classes of lattices are the root lattices. We recall the
definitions and classification in Section 2.4. One main result of our paper is the
determination of the chromatic number of all root lattices and their duals. Table 1
summarizes our results.

Note that we currently do not know the numerical value of χ(Dn). We only
know it is equal to the chromatic number of the (finite) vertex-edge-graph of the
half-cube polytope

1

2
Hn = conv

{
x ∈ {0, 1}n :

n∑

k=1

xk is even

}
,

which at the moment is only known up to dimension n = 9: For n = 4, 5, 6, 7, 8
and 9 we have χ(12Hn) = 4, 8, 8, 8, 8 and 13 (see [36]).

lattice chromatic number

Zn 2 Sec. 1, Thm. 2.5, Sec. 3
An n + 1 Thm. 3.6, Thm. 5.3
A
∗
n n + 1 Thm. 3.6

Dn χ(12Hn) Thm. 6.1
D

∗
n 4 Sec. 1

E6 9 Sec. 5.2.4, Thm. 6.3, Thm. B.2
E
∗
6 16 Thm. 6.4

E7 14 Sec. 5.2.3, Thm. 6.3, Thm. B.4
E
∗
7 16 Thm. 6.4

E8 16 Sec. 4.1, Sec. 5.2.3, Thm. 6.3, Thm. B.3
Λ24 4096 Sec. 4.1

Table 1. The chromatic number of important lattices, in partic-
ular the (irreducible) root lattices and their duals.

For the proof we use a generalization of a lower bound for the chromatic number
of finite graphs originally due to Hoffman [28]. Hoffman’s bound is based on spectral
considerations: Let A ∈ RV×V be the adjacency matrix of a finite graph G = (V,E).
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Let m(A) be the smallest eigenvalue of A and respectively let M(A) be the largest
eigenvalue of A, then

χ(G) ≥ 1 − M(A)

m(A)
.

Bachoc, DeCorte, Oliveira, and Vallentin [2] showed how to generalize the spectral
bound (and its weighted variant due to Lovász [38]) from finite to infinite graphs.
In Section 5.1 we review this generalization and specialize it to χ(Λ). Here, classical
Fourier analysis is used. We show in Corollary 5.2 that

χ(Λ) ≥ 1 −


 inf

x∈Rn

1

|Vor(Λ)|
∑

u∈Vor(Λ)

e2πiu·x




−1

,

holds.
In Section 5 we compute this bound for all irreducible root lattices. Surprisingly,

the result of this computation can already be found in an Oberwolfach report by
Serre [50] albeit in a different language and with a different motivation. In his report
Serre computed all critical values of the characters of the adjoint representation of
compact Lie groups. However, the report does not contain proofs. In Section 5.2
we provide proofs for the easy cases An and Dn. The cases E6, E7, and E8 are
much harder and we give Serre’s proof in Appendix B after recalling relevant facts
about compact Lie groups in Appendix A. We sketch an alternative, computational
proof, which is based on optimization, in particular using sum of squares for the
cases E7 and E8 at the end of Section 5.2. The case E6 is easier and does not require
computer assistance.

Then, in Section 6, we construct several efficient colorings of irreducible root
lattices.

It would be nice to know the chromatic number of more important lattices.
Following the book [13] by Conway and Sloane the next candidates one should
consider are the 12-dimensional Coxeter-Todd lattice K12 and the 16-dimensional
Barnes-Wall lattice BW16. We expect that the spectral lower bound gives a close
approximation to the chromatic number.

We show in Section 4.1 that the chromatic number of the Leech lattice Λ24 in 24
dimensions is 4096. This is a consequence of the sphere packing optimality of Λ24.
It would be nice to have an independent (spectral) proof of this fact.

Going back to general lattices: At the moment we do not know whether there
is a finite algorithm to compute the chromatic number of a lattice which is given
for example by a basis. Determining the strict Voronoi vectors—and thus the
Cayley graph Cayley(Λ,Vor(Λ)) and the Voronoi cell V (Λ)—is possible by a finite
algorithm, see for example [20], although it can occupy exponential space (and
therefore needs exponential time). The theorem of de Bruijn and Erdős [9] implies
that the chromatic number of Λ is equal to the largest chromatic number of all
finite subgraphs of Λ. This shows that the decision problem: “Is χ(Λ) ≤ k?” is at
least semidecidable.

1.2. Generic and extremal behaviour of the chromatic number. What is
χ(Λ) of a random n-dimensional lattice? How fast can χ(Λ) grow depending on the
dimension n?

In Section 4.2 we prove that the chromatic number of a generic n-dimensional
lattice grows exponentially with the dimension. There we show that there are
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n-dimensional lattices Λn with

χ(Λn) ≥ 2 · 2(0.0990...−o(1))n.

It would be very interesting to understand the extremal behaviour.

2. Background and first observations

2.1. Lattices, Voronoi cells, Voronoi vectors. A lattice Λ is a discrete free
Z-module in an n-dimensional Euclidean space. If its rank is strictly lower than n,
then Λ also defines a lattice in its linear span over R. We implicitly identify these
two lattices, and assume for the following definitions that Λ is a full-rank lattice in
Rn. We denote by Λ∗ the dual lattice of Λ:

Λ∗ = {x ∈ Rn : x · y ∈ Z for all y ∈ Λ},
where x · y denotes the standard Euclidean scalar product between x and y. A
fundamental region of Λ is a region R ⊂ Rn such that for any u 6= v ∈ Λ, the
volume of (u+R)∩ (v+R) is 0, and Rn =

⋃
v∈Λ(v+R). The volume vol(Rn/Λ) of

Λ is defined as the volume of any of its fundamental region. A fundamental region
of particular interest is the Voronoi cell of Λ:

V (Λ) = {x ∈ Rn : ‖x‖ ≤ ‖x− v‖ for all v ∈ Λ}.
A vector u ∈ Λ \ {0} is called a strict Voronoi vector, or sometimes a “relevant”
vector, if the intersection (u + V (Λ)) ∩ V (Λ) is a facet, a face of dimension n− 1,
of V (Λ). By a well-known characterization of Voronoi (see for example [13, Chap-
ter 21, Theorem 10] or [15]) the set of these vectors is

(1) Vor(Λ) = {u ∈ Λ \ {0} : ±u only shortest vectors in u + 2Λ}.
Now the chromatic number of Λ equals the chromatic number of the Cayley graph
on the additive group Λ with generating set Vor(Λ):

χ(Λ) = χ(Cayley(Λ,Vor(Λ))).

Here, the set of vertices of the Cayley graph are all elements of Λ and two vertices
v, w are adjacent whenever the difference v − w lies in the set of strict Voronoi
vectors Vor(Λ).

2.2. Simple upper bounds for the chromatic number. One can color a lattice
Λ periodically by using translates of one of its sublattices Λ′ which does not contain
Voronoi vectors. More precisely it is enough to color the vertices of the graph
G = (V,E) with

V = Λ/Λ′ and E = {{v + Λ′, w + Λ′} : v − w + u ∈ Vor(Λ) for some u ∈ Λ′}.
This immediately gives the following upper bound on χ(Λ):

Lemma 2.1. Let Λ′ ⊂ Λ be a sublattice of Λ with Λ′ ∩ Vor(Λ) = ∅. Then, χ(Λ) is
at most |Λ/Λ′|.

Sometimes, we can improve this bound by coloring the vertices of the graph
G = (V,E) greedily. This shows, see for example [6, Chapter V.1], that

(2) χ(Λ) ≤ χ(G) ≤ ∆(G) + 1,

where ∆(G) is the largest degree of a vertex in G.
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Now we take Λ′ = 2Λ. Lemma 2.1 implies that χ(Λ) ≤ 2n. If the number of
Voronoi vectors is not maximal, if |Vor(Λ)| < 2(2n − 1), then we can improve this
bound by using (2):

Lemma 2.2. The chromatic number of Λ is at most |Vor(Λ)|/2 + 1.

For generic lattices, the number of Voronoi vectors is 2(2n−1), so that Lemma 2.2
also gives an upper bound of 2n for the chromatic number of Λ.

2.3. Simple lower bounds for the chromatic number. For a general graph
G one has χ(G) ≥ χ(H) for every induced subgraph H of G. In particular, when
choosing H to be a largest complete subgraph of G, we have χ(G) ≥ ω(G), where
ω(G) is the clique number of G.

Canonical finite induced subgraphs of Cayley(Λ,Vor(Λ)) are the vertex-edge
graphs of Delaunay polytopes of Λ. A Delaunay polytope of the lattice Λ is de-
fined as follows: Let x be a vertex of the Voronoi cell V (Λ). Consider all vectors
v1, . . . , vm ∈ Λ so that x is contained in all the translates v1 +V (Λ), . . . , vm +V (Λ).
Then, the convex hull P = conv{v1, . . . , vm} of v1, . . . , vm is a Delaunay polytope
of Λ. Clearly, all edges of P lie in Vor(Λ).

Lemma 2.3. The chromatic number of a lattice Λ is at least the chromatic number
of the vertex-edge graph of any Delaunay polytope of Λ.

2.4. Root lattices and their duals. One of the most important classes of lattices
are the root lattices. Assume that Λ ⊆ Rn is an even lattice, i.e. we have v · v ∈ 2Z
for all v ∈ Λ. Lattice vectors v ∈ Λ with v · v = 2 are called root vectors, or simply
roots. A root lattice Λ ⊆ Rn is an even lattice which is spanned by roots. Root
lattices have been classified by Witt in 1941, see for example [22, Section 1.4], and
they are orthogonal direct sums of the irreducible root lattices An, Dn, E6, E7, and
E8. The strict Voronoi vectors of root lattices are precisely the root vectors [13,
Chapter 21, §3.A] (and in fact, this condition that only the shortest nonzero vectors
are relevant characterizes root lattices, see [47]). Also, the combinatorial description
of the Voronoi cells of root lattices is well known: it is described in more detail
in [41]. Here we recall the definitions of the irreducible root lattices and their
duals.

Living inside the hyperplane Π := {x ∈ Rn+1 :
∑n

k=0 xk = 0} (the coordinates
being here numbered 0 through n), the irreducible root lattice An is defined as

An =

{
x ∈ Zn+1 :

n∑

k=0

xk = 0

}
.

The dual lattice A
∗
n naturally lives in the vector space Π∗ dual to Π, which can

be identified with the quotient of Rn+1 by the diagonal line {(t, . . . , t) : t ∈ R}.
But we can identify Π∗ with Π itself by choosing the representatives (x0, . . . , xn)
of Rn+1 modulo the diagonal which belong to Π.

For every n ≥ 4, the irreducible root lattice Dn is defined as

Dn =

{
x ∈ Zn :

n∑

k=1

xk is even

}

and its dual lattice D
∗
n equals

D
∗
n = Zn ∪ ((1/2, . . . , 1/2) + Zn) .
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The root lattice E8 can be constructed as the union of two translates of the
lattice D8:

E8 = D8 ∪ ((1/2, . . . , 1/2) + D8).

The lattice E8 is unimodular, i.e. E∗
8 = E8. The lattice E7 (resp. E6) can be defined

as a 7-dimensional (resp. 6-dimensional) sublattice of E8:

E7 = {(x1, . . . , x8) ∈ E8 : x7 = x8}
and

E6 = {(x1, . . . , x8) ∈ E8 : x6 = x7 = x8}.
Then, if we define

u =
1

4
(1, 1, 1, 1, 1, 1,−3,−3) and v =

1

3
(0,−2,−2, 1, 1, 1, 1, 0),

the dual lattices of E7 and E6 are

E
∗
7 = E7 ∪ (u + E7) and E

∗
6 = E6 ∪ (v + E6) ∪ (−v + E6).

2.5. The chromatic number of an orthogonal sum of lattices. Eichler [23]
showed that one can decompose every lattice as a pairwise orthogonal sum of in-
decomposable lattices and that this decomposition is unique up to permutation of
the summand; Kneser [34] gave a constructive and much simpler proof of Eichler’s
result.

We prove that the chromatic number of a lattice is the maximum of the chromatic
numbers of its orthogonal summands.

This reduces in particular the study of the chromatic number of root lattices to
the irreducible root lattices An, Dn, E6, E7, and E8.

Lemma 2.4. Let Λ ⊆ Rn be a lattice which can be written as the orthogonal direct
sum of lattices Λ1, . . . ,Λm ⊆ Rn:

Λ = Λ1 ⊥ Λ2 ⊥ . . . ⊥ Λm, with m ∈ N,

so that every lattice vector v ∈ Λ can be uniquely decomposed as v = v1 + · · · + vm
with vi ∈ Λi and vi is orthogonal to vj whenever i 6= j. Then,

Vor(Λ) =

m⋃

i=1

Vor(Λi).

Proof. By induction, we may assume that Λ = Λ1 ⊥ Λ2.
Every v ∈ Vor(Λ) we can write as v = v1 + v2 with vi ∈ Vi. If both v1 and v2

are non zero, then w = v1 − v2 is different from ±v. It lies in v + 2Λ and satisfies
‖w‖ = ‖v‖, yielding a contradiction. So v = vi for i ∈ {1, 2}. In particular, ±vi
must be the only minimal vectors in vi + 2Λi, so that v ∈ Vor(Λi).

Conversely, let for instance v1 ∈ Vor(Λ1), and let w ∈ v1 + 2Λ. Let us write
w = v1 + 2(u1 + u2) = (v1 + 2u1) + 2u2 for ui ∈ Λi. Since v1 ∈ Vor(Λ1), we have
‖v1 + 2u1‖ ≥ ‖v1‖, with equality if and only if v1 + 2u1 = ±v1. Thus,

‖w‖2 = ‖v1 + 2u1‖2 + ‖2u2‖2 ≥ ‖v1 + 2u1‖2 ≥ ‖v1‖2

with equality if and only if u2 = 0 and v1 + 2u1 = ±v1, namely w = ±v1. So
v1 ∈ Vor(Λ). �
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Theorem 2.5. Let Λ be a lattice such that

Λ = Λ1 ⊥ Λ2 ⊥ . . . ⊥ Λm, with m ∈ N.

Then,

χ(Λ) = max
i∈{1,...,m}

χ(Λi).

Proof. We again assume Λ = Λ1 ⊥ Λ2.
By Lemma 2.4, Vor(Λ) = Vor(Λ1) ∪ Vor(Λ2), and so Cayley(Λ,Vor(Λi)) is a

subgraph of Cayley(Λ,Vor(Λ)). Hence, χ(Λ) ≥ max{χ(Λ1), χ(Λ2)}.
Conversely, let k = max{χ(Λ1), χ(Λ2)}. By definition, for i ∈ {1, 2}, there is a

proper coloring ci : Λi → Z/kZ such that if vi − v′i ∈ Vor(Λi), then ci(vi) 6= ci(v
′
i).

We shall show that

c : Λ → Z/kZ
v1 + v2 7→ c1(v1) + c2(v2) mod k

is a proper coloring of Λ. For this let u, v ∈ Λ such that v = u+w with w ∈ Vor(Λ).
Following Lemma 2.4, w ∈ Vor(Λ1)∪Vor(Λ2). Assume for instance that w = w1 ∈
Vor(Λ1). Then, we write u = u1 + u2 with ui ∈ Λi, and

c(v) = c1(u1 + w1) + c2(u2) 6= c1(u1) + c2(u2) = c(u) mod k.

So c is a proper coloring of Λ and χ(Λ) ≤ k. �

3. On the chromatic number of lattices of Voronoi’s first kind

In this section we give lower and upper bounds for the chromatic number of
lattices of Voronoi’s first kind. Lattices of Voronoi’s first kind form a nice class
of lattices: All lattices in dimensions 2 and 3 belong to this class as well as An

and A
∗
n. Our lower and upper bounds coincide for all these cases. For dimension 4

and greater the bounds can differ. We like to pose the question of computing the
chromatic number of a lattice of Voronoi’s first kind as an open problem.

3.1. Definitions and first examples. Lattices of Voronoi’s first kind are treated
in detail for example in [14]. Here we start by collecting some facts about them.

Definition 3.1. A lattice Λ is called a lattice of Voronoi’s first kind if it admits
an obtuse superbasis: There exist lattice vectors v0, v1, . . . , vn such that:

(1) The set {v1, . . . , vn} forms a basis of Λ,
(2) We have v0 + v1 + · · · + vn = 0,
(3) For every 0 ≤ i < j ≤ n, the vectors vi and vj enclose an obtuse angle,

vi · vj ≤ 0.

The lattices An and A
∗
n are of Voronoi’s first kind. The lattice An possesses

an obtuse superbasis. Let e1, e2, . . . , en+1 be the canonical basis of Rn+1. For
1 ≤ i ≤ n, let vi = ei− ei+1, and let v0 = en+1− e1. Then {v0, . . . , vn} is an obtuse
superbasis of An. The dual lattice A

∗
n possesses a strictly obtuse superbasis. Let

v0 =

(
− n

n + 1
,

1

n + 1
, . . . ,

1

n + 1

)
, . . . , vn =

(
1

n + 1
, . . . ,

1

n + 1
,− n

n + 1

)
.

Then {v0, . . . , vn} is an obtuse superbasis:

vi · vj = −1 for every 0 ≤ i < j ≤ n.
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If Λ is a lattice of Voronoi’s first kind, then it is known (see [14]) that

Vor(Λ) ⊆
{
vI =

∑

i∈I

vi : I ⊆ {0, . . . , n}, I 6= ∅, I 6= {0, . . . , n}
}
.

This immediately gives an upper bound for the chromatic number.

Lemma 3.2. Let Λ be a lattice of Voronoi’s first kind, with an obtuse superbasis
{v0, . . . , vn}. Then, χ(Λ) is at most n + 1.

Proof. By definition {v1, . . . , vn} is a basis of Λ. Let us show that the linear map

c : Λ → Z/(n + 1)Z
n∑

i=1

xivi 7→
n∑

i=1

xi mod (n + 1)

is a proper coloring of Λ. Because of linearity it is enough to check that it does not
vanish on the strict Voronoi vectors. Let vI be such a vector. If 0 ∈ I we replace
vI by −vI = v{0,...,n}\I (by Definition 3.1 (2)) to make sure that 0 /∈ I. Since I is
nontrivial, 0 < |I| < n + 1. In other words, c(vI) 6= 0. �

With this lemma it is easy to see that the chromatic numbers of An and of its
dual A∗

n are both equal to n + 1. For An and for every 1 ≤ i < j ≤ n, the vector
v{i,i+1,...,j} = ei − ej+1 is a minimal vector, and thus is a strict Voronoi vector. So,

(3) {0, v{1}, v{1,2}, . . . , v{1,...,n}}
is a clique in Cayley(An,Vor(An)) and so χ(An) ≥ n+1. For A∗

n we know (see [14])
that every vI is a strict Voronoi vector. Again, (3) is a clique, and χ(A∗

n) ≥ n + 1.

3.2. Interpretation in terms of graphs and more general results. In order
to get a better understanding of the chromatic number of lattices of Voronoi’s first
kind, we need to know which vectors vI are strict Voronoi vectors.

Let Λ be a lattice of Voronoi’s first kind with superbasis {v0, . . . , vn}.

Definition 3.3. The Delaunay graph D(Λ, {v0, . . . , vn}) is an undirected graph
with vertex set {0, . . . , n} and where i and j are connected by an edge whenever
vi · vj < 0.

The combinatorics of the Delaunay graph D(Λ, {v0, . . . , vn}) determines the Cay-
ley graph Cayley(Λ,Vor(Λ)). Recall some standard terminology in graph theory.
Let G = (V,E) be a graph, a subset of the vertex set U ⊆ V defines a cut by

δ(U) = {e ∈ E : |e ∩ U | = 1}.
The strict Voronoi vectors of Λ are the vI such that the cut δ(I) is minimal with
respect to inclusion, see for example [20] or [53]. The minimal cuts are also known to
be the ones such that, when removing the edges of the cut, the number of connected
components in the graph increases by one.

A connected graph G = (V,E) is called biconnected (a block) if it remains con-
nected when we remove any of its vertices. One can decompose every connected
graph into biconnected components (block decomposition). The set of edges E can
be uniquely written as a disjoint union E =

⋃m
i=1 Ei such that the subgraph Gi of G

induced by Ei is a maximal biconnected subgraph of G. Let Gi, with i = 1, . . . ,m,
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be the biconnected components of the Delaunay graph D(Λ, {v0, . . . , vn}). Then,
there exist lattices Λi of Voronoi’s first kind with obtuse superbasis Bi such that

Λ = Λ1 ⊥ Λ2 ⊥ . . . ⊥ Λm and D(Λi,Bi) = Gi

holds, see for example [45, Chapter 4, Chapter 5]. Then Theorem 2.5 and Lemma 3.2
yield the following upper bound for the chromatic number of Λ.

Corollary 3.4. Let Λ be a lattice of Voronoi’s first kind with obtuse superbasis
{v0, . . . , vn}. Let Gi, 1 ≤ i ≤ m, be the biconnected components of the Delaunay
graph D(Λ, {v0, . . . , vn}). Then,

χ(Λ) ≤ max
i=1,...,m

|V (Gi)| + 1

Now we go for lower bounds. Recall that a cycle in a graph is a collection of
vertices i1, . . . , il such that |{i1, . . . , il}| = l and such that ij is connected to ij+1,
where indices are computed modulo l. Its length is equal to l.

Theorem 3.5. Let Λ be a lattice of Voronoi’s first kind with obtuse superbasis
{v0, . . . , vn}. Then, the chromatic number of Λ is at least the maximal length of a
cycle in the Delaunay graph D(Λ, {v0, . . . , vn}).

Proof. Up to a permutation of the indices, we may assume that {0, 1, . . . , σ − 1} is
a cycle C in D(Λ, {v0, . . . , vn}). We shall construct a clique of Cayley(Λ,Vor(Λ))
of size σ.

For any k in {0, . . . , n}, we say that c ∈ C is a connector between k and C if
there exists a path γ = (k1 = k, k2, . . . , ks = c) in D(Λ, {v0, . . . , vn}) such that c is
the only vertex on the path that belongs to C.

Let 0 ≤ ℓ ≤ σ−1. We define the set Iℓ as the subset of all vertices k in {0, . . . , n}
such that every connector from k to C is in {0, 1, . . . , ℓ}. In particular, for ℓ = σ−1,
Iσ−1 = {0, . . . , n}. An example is depicted in Figure 2. Then, if we define uℓ = vIℓ
for all 0 ≤ ℓ ≤ σ − 1, then for every 0 ≤ i < j ≤ σ − 1,

uj − ui = vIj\Ii .

In order to show that the set {u1, u2, . . . , uσ} is a clique in Cayley(Λ,Vor(Λ)), we
need to prove that for every 0 ≤ i < j ≤ σ−1, the vector vIj\Ii is in Vor(Λ). Equiv-
alently, since D(Λ, {v0, . . . , vn}) is connected, we need to check that both Ij \Ii and
its complementary in {0, . . . , n} induce connected subgraphs of D(Λ, {v0, . . . , vn}).

Take k in Ij \Ii. Since k is not in Ii, there is a connector between k and C which
is not in {0, . . . , i}; but since k is in Ij , this connector must be in {i + 1, . . . , j}.
So k, as well as all the vertices in this path, are in Ij \ Ii and are connected to
{i + 1, . . . , j}, which is obviously connected and included in Ij \ Ii. Regarding the
complementary set, take k not in Ij \ Ii. Then either k is not in Ij , and there is a
connector between k and C in {j + 1, . . . , σ− 1}, or k is in Ii, and every connector
between k and C is in {0, . . . , i}. Thus for every such k, one can find a path made
of vertices not in Ij \ Ii, going to {j + 1, . . . , σ − 1} ∪ {0, . . . , i}.

�

Theorem 3.6. χ(An) = χ(A∗
n) = n + 1.

Proof. For A∗
n the Delaunay graph D(A∗

n, {v0, . . . , vn}) is the complete graph Kn+1.
For An the Delaunay graph D(An, {v0, . . . , vn}) is a cycle of length n + 1. In both
cases, our upper bound and lower bound coincide. �
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Figure 2. Constructing a clique in Cayley(Λ,Vor(Λ)) from the
Delaunay graph D(Λ, {v0, . . . , vn}).

Example 3.7. In general, our upper bound differs from the lower bound. Both
bounds can be attained: On the left of Figure 3, the longest cycle has size 4 and one
can find a coloring of the corresponding 5-dimensional lattice with 4 colors, whereas
the lattice associated with the graph depicted on the right of Figure 3, whose longest
has size 5, has chromatic number 6. This can be seen by computing the chromatic
number of a small subgraph of Cayley(Λ,Vor(Λ)).

σ = 4, n+ 1 = 5, χ = 4 σ = 5, n+ 1 = 6, χ = 6

Figure 3. In the inequality σ ≤ χ ≤ n + 1, both bounds can be
sharp.

3.3. Application: the chromatic number of 3-dimensional lattices. Every
lattice in dimensions 2 and 3 is of Voronoi’s first kind, see [14]. We can compute
the chromatic number of these lattices by applying our bounds which coincide in
these cases, see Table 2.

lattice Z3
A2 ⊥ Z A3 Z





2
0
0



 ⊕ Z





0
2
0



 ⊕ Z





−1
−1
2



 A
∗
3

Voronoi
cell

cube
hexagonal rhombic elongated truncated

prism dodecahedron dodecahedron octahedron

Delaunay
graph

chromatic
2 3 4 4 4

number

Table 2. The chromatic number of 3-dimensional lattices
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4. Sphere packing lower bounds

In this section we prove lower bounds for the chromatic number of a lattice by
considering connections to the classical sphere packing problem.

A subset P of Rn defines a packing of unit spheres if the distance between all
pairs of distinct points in P is at least 2. Define the center density of P as the
number of points in P per unit volume, more precisely the (upper) center density
of P is defined as

δ(P) = lim sup
R→∞

|P ∩ [−R,R]n|
vol[−R,R]n

,

where [−R,R]n is the regular n-dimensional cube with side length 2R. The largest
center density of a packing of unit spheres in Rn is

δRn = sup{δ(P) : P ⊆ Rn defines a packing of unit spheres}.
Theorem 4.1. Let Λ be an n-dimensional lattice which defines a packing of unit
spheres. Let ρ be a positive real number so that all strict Voronoi vectors of Λ have
length strictly less than ρ. Then,

χ(Λ) ≥
(ρ

2

)n δ(Λ)

δRn

.

Proof. Suppose that the chromatic number of Λ equals k. Then one can decompose
Λ into k color classes C1, . . . , Ck. We may assume that the first color class C1 has
the largest density among these color classes. In particular, inequality

kδ(C1) ≥ δ(Λ)

holds. Then for all v, w ∈ C1 with v 6= w we have ‖v−w‖ ≥ ρ. Hence, 2
ρC1 defines

a packing of unit spheres. So,

δRn ≥ δ

(
2

ρ
C1

)
=
(ρ

2

)n
δ(C1),

and the claim of the theorem follows by combining the two inequalities above. �

The following lemma gives a lower bound for ρ.

Lemma 4.2. Let Λ be an n-dimensional lattice which defines a packing of unit
spheres. If v ∈ Λ \ {0} is not a strict Voronoi vector, then ‖v‖ ≥

√
8.

Proof. By Voronoi’s characterization of strict Voronoi vectors (1) there is a lattice
vector w ∈ v + 2Λ with w 6= ±v and ‖w‖ ≤ ‖v‖. We may assume that v · w ≥ 0,
otherwise we replace w by its negative −w. Define u = 1

2 (v − w) ∈ Λ \ {0}. Then,

4‖u‖2 = ‖v − w‖2 = ‖v‖2 − 2v · w + ‖w‖2 ≤ ‖v‖2 + ‖w‖2 ≤ 2‖v‖2.
So, ‖v‖ ≥

√
2‖u‖ ≥

√
8, since ‖u‖ ≥ 2. �

4.1. First application: Chromatic number of E8 and of the Leech lattice.

Theorem 4.3. The chromatic number of the Leech lattice Λ24 equals 4096.

Proof. It is known that the strict Voronoi vectors of Λ24 are all vectors v ∈ Λ24

with v · v ∈ {4, 6}, see [13]. Dong, Li, Mason, and Norton showed [18, Theorem

4.1] that one can find an isometric copy of
√

2Λ24 as a sublattice Γ of Λ24; in [43]
Nebe and Parker classified all 16 orbits of such sublattices under the action of the
automorphism group of Λ24. Clearly, such a sublattice Γ has index 212 = 4096 and
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any nonzero vector v in this sublattice satisfies v · v ≥ 8. Hence, we can color Λ24

by using the 4096 cosets v + Γ as color classes, with v ∈ Λ24. Thus, χ(Λ24) ≤ 4096.
For the lower bound, we apply Theorem 4.1. The Leech lattice defines the densest

sphere packing in dimension 24, see [12], δ(Λ24) = δR24 . We can apply Theorem 4.1

with ρ =
√

8 and get

χ(Λ24) ≥
(√

8

2

)24

= 4096.

�

Similarly, one can show χ(E8) = 16 by using the fact that E8 is the densest
sphere packing in dimension 8, see [55].

4.2. Second application: Exponential growth of the chromatic number.
In this section we investigate the asymptotic behaviour of the chromatic number of
lattices when the dimension tends to infinity.

For a lattice Λ ⊂ Rn, we denote by µ = µ(Λ) the norm of its smallest nonzero
vector. Then 2

µΛ defines a packing of unit spheres, and we extend the notation

δ(Λ) for the center density of this packing by

δ(Λ) := δ

(
2

µ
Λ

)
=

1

vol
(
Rn/( 2

µΛ)
) =

µn

2n · vol(Rn/Λ)
.

The best upper bound known for δRn is the Kabatiansky-Levenshtein bound,
[30], which states

δRn ≤ 2(−0.5990...+o(1))n · V −1
n ,

where Vn is the volume of the n-dimensional unit ball. So by using Theorem 4.1
and Lemma 4.2, we get, for any lattice Λ ⊂ Rn,

(4) χ(Λ) ≥ (
√

2)n · 2(0.5990...−o(1))n · Vn · δ(Λ) = 2(1.0990...−o(1))n · Vn · δ(Λ).

Let us now recall Siegel’s mean value theorem (see [49]): For any lattice Λ ⊂ Rn

and any r > 0, we denote by NΛ(r) the number of nonzero lattice vectors of Λ in
the open ball B(r) having radius r. The Siegel mean value theorem states that the
expected value of NΛ(r) in a random lattice Λ of volume 1 is

E[NΛ(r)] = vol(B(r)).

To compute the expectation one uses the Haar measure on SLn(R)/SLn(Z).
This equality implies two remarkable consequences: First, by choosing rn such

that vol(B(rn)) = 2, it proves the existence of a lattice Λn with strictly less than
two nonzero vectors in B(rn). Since such a vector would come with its opposite,
the minimum of Λn has to be at least rn, and therefore the density of Λn satisfies

δ(Λn) ≥
(rn

2

)n
=

vol(B(rn))

2n · Vn
=

2

2n · Vn
,

which essentially is the Minkowski-Hlawka lower bound for lattice sphere packings
(see [27]). The second consequence concerns the density of a random lattice: Let
us fix ε > 0, and rn such that vol(B(rn)) = 2 · (1 + ε)−n. Following the previous
idea, whenever NΛn

(rn) < 2, the density of Λn satisfies

δ(Λn) ≥ 2

(2(1 + ε))n · Vn
.
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By using Siegel’s mean value theorem and Markov’s inequality, we prove that this
happens with high probability when n grows:

P[NΛn
(rn) ≥ 2] ≤ E[NΛn

(rn)]

2
=

1

(1 + ε)n
→ 0,

if n tends to infinity.
Combined with (4), these observations provide:

Theorem 4.4. With high probability, the chromatic number of a random n-dim-
ensional lattice grows exponentially in n. Moreover, there are n-dimensional lattices
Λn with

χ(Λn) ≥ 2 · 2(0.0990...−o(1))n.

Note that the Minkowski-Hlawka lower bound has been improved, in such a
way that the constant 2 in the numerator could be replaced with some quasi-linear
function in n, see [48], [4], [52], [54]. Even though any random lattice should be
dense, and consequently should have an exponential chromatic number, to date
there is no efficient way to construct such a lattice: The only algorithms for this
purpose run in exponential time with respect to the dimension (see [42]).

However, explicit examples of subexponential growth are known. For n ≥ 3
the cut polytope CUTn (see [16]) is an n(n − 1)/2-dimensional polytope which
is a Delaunay polytope of lattice (see [17]) . The vertex-edge graph of CUTn is
the complete graph on 2n−1 vertices. Thus we get an infinite family of Delaunay
polytope with chromatic number lower bounded by 2O(

√
n).

We think it is an interesting question to construct explicit families of lattices
whose chromatic number grows exponentially with the dimension.

5. Spectral lower bounds

In this section we derive a lower bound for the chromatic number of a lattice
where we apply the generalization of Hoffman’s bound as developed by Bachoc,
DeCorte, Oliveira, and Vallentin [2]. In Section 5.1 we recall some terminology and
facts from [2]. Then we compute the spectral bound for the irreducible root lattices
case by case in Section 5.2. Table 3 summarizes the results obtained.

5.1. Setup. For an n-dimensional lattice Λ ⊆ Rn define the (complex) Hilbert
space

ℓ2(Λ) =

{
f : Λ → C :

∑

u∈Λ

|f(u)|2 < ∞
}

which has inner product

〈f, g〉 =
∑

u∈Λ

f(u)g(u).

The convolution of two elements f, g ∈ ℓ2(Λ) is f ∗ g ∈ ℓ2(Λ) defined by

(f ∗ g)(v) =
∑

u∈Λ

f(u)g(v − u).

Assume that µ ∈ ℓ2(Λ) is real-valued, that its support is contained in Vor(Λ),
and that it satisfies µ(v) = µ(−v) for all v ∈ Λ. Consider the convolution operator

Aµ : ℓ2(Λ) → ℓ2(Λ)
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defined by

Aµf(v) =
∑

u∈Vor(Λ)

µ(u)f(v − u) = (µ ∗ f)(v).

In a certain sense, Aµ is a weighted adjacency operator of Cayley(Λ,Vor(Λ)). It is
easy to verify that Aµ is a bounded and self-adjoint operator. Its numerical range
is

W (Aµ) = {〈Aµf, f〉 : f ∈ ℓ2(Λ), 〈f, f〉 = 1}.
The numerical range is known to be an interval in R. By

m(Aµ) = inf{〈Aµf, f〉 : f ∈ ℓ2(Λ), 〈f, f〉 = 1},
M(Aµ) = sup{〈Aµf, f〉 : f ∈ ℓ2(Λ), 〈f, f〉 = 1}

we denote the endpoints of the interval W (Aµ).
We say that a subset I ⊆ Λ is an independent set of the operator Aµ if 〈Aµf, f〉 =

0 for each f ∈ ℓ2(Λ) which vanishes outside of I. The chromatic number of Aµ is
the smallest number k so that one can partition Λ into k independent sets. By [2,
Theorem 2.3] one has the following lower bound for χ(Aµ):

1 − M(Aµ)

m(Aµ)
≤ χ(Aµ).

Since every independent set of Cayley(Λ,Vor(Λ)) is also an independent set of the
operator Aµ we see that

χ(Aµ) ≤ χ(Cayley(Λ,Vor(Λ))) = χ(Λ).

Therefore, we are interested in determining the parameters m(Aµ) and M(Aµ)
and in choosing µ so that the bound becomes as large as possible.

For determining m(Aµ) and M(Aµ) for a given convolution operator Aµ we
apply standard facts from Fourier analysis, in particular the Parseval identity, the
theorem of Riesz-Fischer, and the fact that the Fourier transform of a convolution
is a product.

The only non-standard item here is that in standard texts on Fourier analysis, see
for example [19], the role of primal and dual spaces are interchanged. In order not
to confuse the reader (and to some extend not to confuse the authors) we consider
a new n-dimensional lattice Γ. In our context Γ will play the role of the dual lattice
Λ∗. When Γ = Λ∗, then Γ∗ = (Λ∗)∗ = Λ.

Consider the Hilbert space of square-integrable Γ-periodic functions

L2(Rn/Γ) =

{
F : Rn/Γ → C :

∫

Rn/Γ

|F (x)|2 dx < ∞
}

with inner product

(F,G) =

∫

Rn/Γ

F (x)G(x) dx,

where we normalize the Lebesgue measure dx so that the n-dimensional volume of
a fundamental domain vol(Rn/Γ) equals one. The exponential functions

Ev : x 7→ e2πiv·x with v ∈ Γ∗

form a complete orthonormal system for L2(Rn/Γ). We define the Fourier coeffi-
cient of F at v by

F̂ (v) = (F,Ev) with v ∈ Γ∗.
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By Parseval’s identity and by the Riesz-Fischer theorem the map

̂: L2(Rn/Γ) → ℓ2(Γ∗), F̂ (v) = (F,Ev)

is an isometry:

(F,G) = 〈F̂ , Ĝ〉 for all F,G ∈ L2(Rn/Γ).

We consider two functions f, g ∈ ℓ2(Γ∗). By the isometry of ̂ there are functions
F,G ∈ L2(Rn/Γ) with

F̂ = f and Ĝ = g.

Furthermore,

(f ∗ g)(v) = F̂ ·G(v).

Back to the lattice Λ = Γ∗ and the convolution operator Aµ. For µ = Ĝ,

f = F̂ ∈ ℓ2(Λ), we have

G(x) =
∑

u∈Vor(Λ)

µ(u)e2πiu·x,

and

〈Aµf, f〉 = 〈µ ∗ f, f〉 = 〈Ĝ · F , F̂ 〉 = (GF,F )

=

∫

Rn/Λ∗

∑

u∈Vor(Λ)

µ(u)e2πiu·x|F (x)|2 dx.

Hence, by choosing two appropriate sequences (see [2, Section 3.1])) approximating
the corresponding Dirac measures, we see

m(Aµ) = inf





∑

u∈Vor(Λ)

µ(u)e2πiu·x : x ∈ Rn/Λ∗



 ,

M(Aµ) = sup





∑

u∈Vor(Λ)

µ(u)e2πiu·x : x ∈ Rn/Λ∗



 .

We summarize our considerations in the following theorem.

Theorem 5.1. Let Λ ⊆ Rn be an n-dimensional lattice. Suppose that µ ∈ ℓ2(Λ)
is real-valued, µ(v) = µ(−v) for all v ∈ Λ, and the support of µ is contained in
Vor(Λ). Then,

χ(Λ) ≥ 1 −
sup

x∈Rn/Λ∗

∑
u∈Vor(Λ)

µ(u)e2πiu·x

inf
x∈Rn/Λ∗

∑
u∈Vor(Λ)

µ(u)e2πiu·x
.

If we uniformly choose

µ(v) =

{
1/|Vor(Λ)|, for v ∈ Vor(Λ),

0, otherwise,

then the bound in the previous theorem simplifies to the following generalization
of the Hoffman bound for infinite graphs:
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Corollary 5.2. Let Λ ⊆ Rn be an n-dimensional lattice. Then,

χ(Λ) ≥ 1 −


 inf

x∈Rn/Λ∗

1

|Vor(Λ)|
∑

u∈Vor(Λ)

e2πiu·x




−1

.

5.2. Computing the spectral bound for irreducible root lattices. In this
section we compute the lower bound given by Corollary 5.2 for each of the irre-
ducible root lattices. By the classification of Witt these are the families of lattices
An, Dn and the three sporadic lattices E6, E7, and E8.

As recalled in Section 2.4, the set Vor(Λ) of strict Voronoi vectors for a root lat-
tice Λ is simply its set of roots. Now the latter constitutes a root system (sometimes
known as a “crystallographic” root system, but these are the only ones which we
will consider): see A.9; the root systems are themselves classified, [29, §11], and the
ones which arise from root lattices are known as “simply laced” or “A-D-E” root
systems. (We will review the simply laced irreducible root systems below along
with the corresponding lattices.)

Computing the lower bound of Corollary 5.2 for an irreducible root lattice is
therefore equivalent to finding the smallest value attained by the Fourier transform
of a simply laced irreducible root system. Here, a finite set Φ ⊆ Rn defines the
function FΦ : x 7→ ∑

u∈Φ e2πiu·x on Rn which is the Fourier transform of the sum
of delta measures concentrated on the elements of Φ. Let us emphasize that since
Φ is a (crystallographic!) root system, this function is, in fact, a trigonometric
polynomial; and since Φ is symmetric (Φ = −Φ), it is real.

Now this reformulation affords a link with representation theory (the required
facts of which are recalled in Appendix A). Namely, if Φ is a (reduced, but not
necessarily simply laced) root system of rank n then the function n+FΦ is “essen-
tially” the character of the adjoint representation of the — say, simply connected —
compact real Lie group GΦ associated with Φ (namely SLn+1 in the case of An, or
Spin2n in the case of Dn, or one of the exceptional Lie groups E6,E7,E8 in the case
of the correspondingly named E6,E7,E8); the precise statement and explanation of
why the two problems are equivalent is given in Proposition A.13.

The problem of computing our spectral lower bound is therefore essentially that
of computing the least value attained by the adjoint character of a simple compact
real Lie group of type A-D-E. The values in question have been considered and
computed by Serre in [50, Theorem 3’]: In Table 3 we state Serre’s result in the
form in which it is useful for the main part of the paper.

lattice spectral lower bound

An n + 1 Thm. 5.3
Dn n, when n even Thm. 5.4

n + 1, when n odd Thm. 5.4
E6 9 Thm. B.2, Sec. 5.2.4
E7 10 Thm. B.4, Sec. 5.2.3
E8 16 Thm. B.3, Sec. 5.2.3

Table 3. The spectral lower bounds on the chromatic number for
the irreducible root lattices.
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Again, the equivalence of the result as stated here with that as stated in Serre’s
note is provided by Proposition A.13.

Serre’s note does not contain a proof of the stated result1. In this paper we pro-
vide one for the A-D-E case. We treat An and Dn in Theorem 5.3 and Theorem 5.4
below, and we defer the case En to Appendix B. For E7 and E8 we suggest an alter-
native proof technique based on sums of squares and semidefinite optimization in
Section 5.2.3. Using the link to the chromatic number of lattices, the case E6 turns
out to be the easiest of the En cases. We treat it in Section 5.2.4.

5.2.1. An. The irreducible root lattice An has n(n + 1) roots

R(An) = {er − es : 0 ≤ r, s ≤ n, r 6= s},
where er denotes the r-th standard unit vector in Rn+1.

Theorem 5.3. The critical values of FAn
are n(n+1) and −(n+1). In particular,

χ(An) ≥ n + 1.

Proof. Given x ∈ Rn+1 such that x0 + · · · + xn = 0, we define z0, . . . , zn by zr =
e2πixr , so that z0 · · · zn = 1. The sum

S = FAn
(x) =

∑

u∈R(An)

e2πiu·x

is equal to
S =

∑
r 6=s

zr/zs

=
∑
r,s

zr/zs − (n + 1)

=

(∑
r
zr

)(∑
s

1/zs

)
− (n + 1)

=

(∑
r
zr

)(∑
s
zs

)
− (n + 1)

=

∣∣∣∣
∑
r
zr

∣∣∣∣
2

− (n + 1).

Clearly |∑r zr|
2 critical values are 0 (when

∑
i zi = 0) and (n + 1)2 (when all zi

are identical). The critical values can be obtained when z0 · · · zn = 1, for example
by the (n + 1)-th roots of unity2 or by z0 = · · · = zn = 1. Then, the lower bound
on χ(An) follows from Corollary 5.2. �

5.2.2. Dn. The irreducible root lattice Dn has 2n(n− 1) roots

R(Dn) = {±(er + es) : 1 ≤ r, s ≤ n, r 6= s} ∪ {±(er − es) : 1 ≤ r, s ≤ n, r 6= s}.
Theorem 5.4. The critical values of FDn

are:

{
−2(n− 1) if

n is odd

}
∪





2 (n1−n−1)
2

1−no
− 2n1 − 2n−1 where n1, n−1, no ∈ Z+,

n1 + n−1 + no = n with no = 0 or
∣∣∣n1−n−1

no−1

∣∣∣ < 1



 .

1Serre writes: “The classical groups are easy enough, but F4, E6, E7 and E8 are not (especially
E6, which I owe to Alain Connes). I hope there is a better proof.”

2For example we have zr = e2πi/(n+1) for all r, by letting x1 = · · · = xn = 1/(n + 1) and
x0 = 1/(n + 1) − 1 = −n/(n + 1). More explicitly, we have a bijection between the set of all
x ∈ Rn+1 with x0 + · · ·+ xn = 0, modulo the lattice dual to An and the set of complex vectors
(z0, . . . , zn) which all lie on the unit circle, and whose product equals 1, modulo (ζ, . . . , ζ) where
ζ is some (n+ 1)-th root of unity obtained by taking (x0, . . . , xn) to zr = e2πixr .
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In particular,

inf
x∈Rn

FDn
(x) =

{
−2n, n even,

−2(n− 1), n odd,

and χ(Dn) ≥ n for even n, and χ(Dn) ≥ n + 1 for odd n.

Proof. By the symmetries of the function we can restrict ourselves to 0 ≤ xi ≤ 1/2.
We consider the sum

S =
∑

u∈R(Dn)

e2πiu·x

= 2
∑

1≤r<s≤n

(cos(2πxr + 2πxs) + cos(2πxr − 2πxs))

= 4
∑

1≤r<s≤n

cos(2πxr) cos(2πxs)

= 2

(
W 2 −

n∑

r=1

(cos(2πxr))2

)
.

where W =
∑n

r=1 cos(2πxr). To find the critical values we compute the gradient
of S (as a function of the xr), which is

∂S

∂xr
= −8π sin(2πxr) (W − cos(2πxr)) , r = 1, . . . , n.

Let x be a critical point. Define S1, S−1 and So the set of i ∈ {1, . . . , n} such that
xi = 0, xi = 1/2 and 0 < xi < 1/2 so that cos(2πxi) = 1 or cos(2πxi) = −1 or
cos(2πxi) ∈ (−1, 1).

For i ∈ So we have W = cos(2πxi). Thus, |W | < 1 if So 6= ∅.
We define n1 = |S1|, n−1 = |S−1| and no = |So| and we have n1 +n−1 +no = n,

and

(5) W = cos(0)n1 + cos(π)n−1 + noW.

If no = 1 we have

S = 2


W 2 −W 2 −

∑

r∈S−1∪S1

(cos(2πxr))2


 = −2(n− 1).

If no 6= 1 then the equation for W (5) gives

W =
n1 − n−1

1 − no
.

The value of the function is then

S = 2
(
W 2 − (n1 + n−1 + noW

2)
)

= 2 (n1−n−1)
2

1−no
− 2n1 − 2n−1.

The lower bound on χ(Dn) then follows from Corollary 5.2. �
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5.2.3. E7, E8 and sums of squares. We start by giving an alternative construction of
the E8 lattice which is based on lifting the (extended) Hamming code H8, which is
the vector space over the finite field F2 (consisting of the elements 0 and 1) spanned
by the rows of the matrix

G =




1000 0111
0100 1011
0010 1101
0001 1110


 ∈ F4×8

2 ,

It consists of 24 = 16 code words:

0000|0000 1000|0111 1100|1100 0111|1000 1111|1111
0100|1011 1010|1010 1011|0100
0010|1101 1001|1001 1101|0010
0001|1110 0110|0110 1110|0001

0101|0101
0011|0011

We can define the lattice E8 by the following lifting construction (which is usually
called Construction A):

E8 =

{
1√
2
x : x ∈ Z8, x mod 2 ∈ H8

}
.

Now it is immediate to see that E8 has 240 shortest (nonzero) vectors:

16 = 24 vectors: ±
√

2ei, i = 1, . . . , 8

224 = 24 · 14 vectors: 1√
2

∑8
j=1(±cj)ej , c ∈ H8 and wt(c) = 4,

where e1, . . . , e8 are the standard basis vectors of R8 and where wt(c) = |{i : ci 6= 0}|
denotes the Hamming weight of a code word c.

Observe that the lower bound χ(E8) ≥ 16 is implied trough the spectral bound
by the following inequality (Theorem B.3 gives a stronger result by providing a
complete list of all critical values)

S(x) =

8∑

i=1

2 cos(2π
√

2xi) +
∑

c∈H8,wt(c)=4

∑

±
cos


2π

1√
2

8∑

j=1

(±cj)xj


+ 16 ≥ 0.

for all x ∈ R8.
To simplify the formula we apply a change of variables by setting T (x) = S(

√
2

2π x).
Then,

T (x) =

8∑

i=1

2 cos(2xi) +
∑

c∈H8,wt(c)=4

∑

±
cos




8∑

j=1

(±cj)xj


+ 16.

Applying the cosine addition formula multiple times we get

T (x) = 4

8∑

i=1

cos(xi)
2 +

∑

c∈H8,wt(c)=4

16

8∏

j=1

cos(cjxj).

Function T is globally nonnegative if and only if the polynomial

p(t) =

8∑

i=1

t2i + 4
∑

c∈H8,wt(c)=4,supp c={i,j,k,l}
titjtktl
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is nonnegative on the cube t ∈ [−1,+1]8. This nonnegativity can be verified algo-
rithmically. By

Σn,d = {p ∈ R[x1, . . . , xn] : deg p ≤ d, there are p1, . . . , pm ∈ R[x1, . . . , xn] :

p = p21 + · · · + p2m}
denote the cone of real polynomials in n indeterminates of degree at most d. One can
verify membership in this cone by using semidefinite optimization, see for example
[37]. We checked numerically (up to machine precision) that there are polynomials

q ∈ Σ8,8, q1, . . . , q8 ∈ Σ8,6

so that the following identity holds true:

p(t) = q(t) +

8∑

i=1

(1 − t2i )qi(t).

It is interesting to observe that using smaller degree did not work.
One can easily modify this proof technique for the case E7 to show χ(E7) ≥ 10.

To define E7 we apply Construction A on the [7, 3, 4] code H∗
7, which one obtains

from H8 by deleting its first coordinate. Here one shows that the polynomial

7∑

i=1

t2i + 4
∑

c∈H∗

7
,wt(c)=4,supp c={i,j,k,l}

titjtktl

is nonnegative on the cube t ∈ [−1,+1]7 again using sum of squares.

5.2.4. E6. The E6 lattice we can handle without computer as follows: In the proof
of Theorem 6.3 we shall color E6 with nine colors. On the other hand, the Schläfli
polytope is a Delaunay polytope of E6 whose vertex-edge graph—the Schläfli graph
on 27 vertices having 216 edges—is a finite subgraph of Cayley(E6,Vor(E6)). It
is known, see for example [5, Chapter 8, page 55] that the Hoffman bound of the
Schläfli graph equals nine. It is also known, see [3, Section 10.1], that the Hoffman
bound of an infinite edge transitive graph is at least the Hoffman bound of any of
its finite subgraphs. Hence, the spectral bound of E6 equals nine.

6. The chromatic number of irreducible root lattices and their
duals

In this section, we complete our study of the chromatic number of irreducible root
lattices and their duals. The knowledge that we use about Delaunay polytopes of
root lattices can be found in [16, Section 14.3]. Our claims regarding the sublattices
that we consider and the colorings of certain small graphs can be conveniently
checked with computer assistance, for example by using Magma [8] or Polyhedral

[21].
When we cannot directly compute the chromatic number of a graph, we apply

other methods, computationally easier, in order to get lower and upper bounds.
A lower bound for the chromatic number of a graph G = (V,E) is given by its
fractional chromatic number : Denote by IG the set of all independent sets of G.
The fractional chromatic number of G is the solution of the following linear program:

min

{
∑

I∈IG

λI : λI ∈ R≥0 for I ∈ IG,
∑

I∈IG with v∈I

λI ≥ 1 for v ∈ V

}
.
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If G affords symmetries, one can use them to reduce the number of variables of this
linear program. Regarding upper bounds, given a number k of colors and a graph
G, proving the existence of a k-coloring of G can be turned into a satisfiability
problem, that can be solved for instance by using Minisat [24].

6.1. Dn and its dual. The half cube 1
2Hn, sometimes also called the parity poly-

tope, is defined as

1

2
Hn = conv

{
x ∈ {0, 1}n :

∑

i

xi = 0 mod 2

}
.

It is one of the two Delaunay polytopes of the root lattice Dn.

Theorem 6.1. For all n ≥ 4 we have χ(Dn) = χ(12Hn), where we consider the
vertex-edge graph of the half cube.

Proof. The inequality χ(Dn) ≥ χ(12Hn) comes from the fact that 1
2Hn is a Delaunay

polytope of χ(Dn).
Let c be a proper coloring of 1

2Hn. We extend it to Dn by giving to any x ∈
Dn the color c(x mod 2). Assume that two vectors x1 and x2 are adjacent in
Cayley(Dn,Vor(Dn)). Since the relevant vectors of Dn are of the form ±ei± ej, the
difference x1 − x2 mod 2 is also such a vector, so that x1 mod 2 and x2 mod 2 are
adjacent in 1

2Hn, and c(x1 mod 2) 6= c(x2 mod 2). Hence, χ(Dn) ≤ χ(12Hn). �

Theorem 6.2. For every n ≥ 4, the chromatic number of D∗
n is 4.

Proof. The relevant vectors of the lattice D
∗
n = Zn ∪ ((1/2, . . . , 1/2) + Zn) are

the 2n vectors ±ei and the 2n vectors of the form (±1/2, . . . ,±1/2). The four
vectors 0, (1, 0, . . . , 0), (1/2, . . . , 1/2) and (1/2, . . . , 1/2,−1/2) define a clique in
Cayley(D∗

n,Vor(D∗
n)); and the unique way to color D∗

n with four colors is by coloring
each copy of Zn with two different colors. �

6.2. E6,E7,E8 and their duals.

Theorem 6.3. We have χ(E6) = 9, χ(E7) = 14 and χ(E8) = 16.

Proof. By Theorem 6.1 we know that χ(D8) = 8. So one can color the root lattice
E8 = D8∪((1/2, . . . , 1/2))+D8) with 16 colors. The lower bound from Theorem B.3
concludes the case of E8.

For E7 there are two orbits of Delaunay polytopes. One of them is the Gosset
polytope with 56 vertices, whose vertex-edge graph has chromatic number 14, which
shows that χ(E7) ≥ 14. Moreover, we have a lamination of E7 over the lattice A6:

E7 =
⋃

n∈Z

(nu + A6) for some u ∈ E7.

If v and w belong to two layers which differ by an even index, then v − w is not a
relevant vector. Following Section 3, we know that χ(A6) = 7. Thus we can color
the even layers by colors in {1, . . .7} and the odd layers by colors in {8, . . . , 14}.
This proves that χ(E7) = 14.

The unique Delaunay polytope of E6 is the Schläfli polytope whose vertex-edge
graph is the Schläfli graph with 27 vertices. It is well known that its chromatic
number is 9, so that χ(E6) ≥ 9. There is just one orbit of independent triples of
vertices. Moreover, there are just two orbits of colorings with 9 colors of the Schäfli
graph: One orbit of size 160 and another of size 40. Let us take a coloring from
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the orbit of size 40. It is composed of 9 different triples of elements. For each such
triple {v1, v2, v3} we consider the set of vectors {v1 − v2, v2 − v3, v3 − v1}. Since
we have 9 triples, this gives in total 27 vectors. Those vectors span a sublattice L
of E6 of index 9. It turns out that none of the relevant vectors of E6 belongs to L.
Thus following Lemma 2.1, χ(E6) ≤ 9. �

Theorem 6.4. The chromatic number of E∗
n is 16 for n = 6, 7.

Proof. Upon rescaling to an integral lattice the norms of the vectors of E∗
6 are 4,

6, 10 and so on. The norms of the relevant vectors are 4 and 6. We consider the
432 vectors of norm 10 and enumerate the sublattices of E∗

6 of dimension 6 spanned
by those vectors that do not contain any relevant vector. We found 1393 orbits of
such lattices. Exactly one of them is of index 16 which proves that χ(E∗

6) ≤ 16.
The lower bound is obtained in the following way. We consider the graph formed

by the origin 0 and the 126 relevant vectors with two vectors adjacent if their
difference is a relevant vector. The fractional chromatic number of this graph is
77/5. Thus χ(E∗

6) ≥ ⌈77/5⌉ = 16.
The lower bound on the chromatic number of E∗

7 is obtained by the same tech-
nique as for E

∗
6. The upper bound is obtained in the following way: Consider the

quotient E∗
7/4E∗

7 with 16384 elements. One coloring with 16 colors can be obtained
by solving the satisfiability problem using Minisat. �
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24 M. Dutour Sikirić, D. Madore, P. Moustrou, and F. Vallentin
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[11] T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer, 1985.
[12] H. Cohn, A. Kumar, S.D. Miller, D. Radchenko, and M. Viazovska, The sphere

packing problem in dimension 24, Annals of Mathematics 185 (2017), 1017–1033.
(https://arxiv.org/abs/1603.06518)

[13] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer, 1988.
[14] J.H. Conway and N.J.A. Sloane, Low-dimensional lattices. VI. Voronŏı reduction of three-
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Appendix A. Recollections on compact Lie groups

In this section, we collect, for the benefit of the unfamiliar reader, without proof
but with references, a few facts about semisimple compact Lie groups and repre-
sentation theory. All of the following results are standard, although it is not easy
to find them conveniently stated in a single place, so we hope this compendium will
be helpful.

The main reason for this appendix insofar as the present paper is concerned is
to explain the reason behind the reformulation which we give in theorem B.1 of
Serre’s [50, Theorem 3’], namely the connection between the Fourier transform of
a root system Φ and the character of the adjoint representation of the Lie groups
associated with Φ: this is provided by A.13. We have, however, stated a few
additional results which are not strictly necessary towards that goal but which, we
hope, help give a clearer overall picture. The secondary reason for this appendix is
to provide the necessary framework for appendix B (although the latter could, in
principle, be reworded so as to eliminate all mentions of Lie groups just like we did
for theorem B.1, we believe this would be unnecessarily contrived).

Remark A.1. We have chosen to focus these recollections on semisimple compact
real Lie groups, but the classification and representation theory of semisimple com-
plex Lie groups is identical (Weyl’s “unitarian trick”, cf. [32, §6.2] and [26, §26]):
we simply mention that the role of the tangent Lie algebra t to a maximal torus in
what follows is played, in the complex setting, by Cartan subalgebras h of g ([32,
definition 6.32] and [26, §14.1 and appendix D]).

A.2. A compact (real) Lie group is a compact connected real smooth manifold G,
together with a group structure on G such that the multiplication and inverse maps
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are smooth (C∞). The tangent space g at the identity 1 of G is then endowed with
a linear action Ad of G, called the adjoint representation of G, defined by letting
Ad(g) : g → g (for g ∈ G) be the differential at 1 of u 7→ gug−1; this in turns defines
a linear map ad(x) : g → g for x ∈ g by letting ad: g → L(g, g) (where L(U, V )
stands for the vector space of linear maps between two vector spaces U and V )
be the differential at 1 of Ad: G → L(g, g) itself (see [26, §8.1]): writing [x, y] for
ad(x)(y), this gives g the structure of a (real) Lie algebra (simply known as the Lie
algebra of G).

We also recall the exponential map exp: g → G, which takes x ∈ g to the value
at 1 of the unique smooth group homomorphism R → G (a.k.a. “1-parameter
subgroup”) whose differential at the origin is x. While exp is not a group homo-
morphism in general, it is one whenever G is abelian (whenever the Lie bracket of g
vanishes; otherwise, the so-called Baker-Campbell-Hausdorff formula expresses the
relation of exp(x) exp(y) to an exponential). Rather than using the exponential,
we will find it more convenient to use the function e : x 7→ exp(2πx); just as exp
itself, the function e in question is surjective (cf. A.5 below).

The Killing form B : g× g → g is the bilinear form B(x, y) = tr(ad(x) ◦ ad(y)),
which is G-invariant; in the real compact case in which we placed ourselves, this
form is negative semidefinite ([32, theorem 6.10] or [1, theorem 2.13]), and we
say that G or g is semisimple when B is nondegenerate ([26, prop. C10], [32,
theorem 5.53]), i.e., negative definite in the real compact case.

As an example, the group SO2n of (2n) × (2n) real orthogonal matrices with
determinant +1 is a compact real Lie group, whose Lie algebra so2n consists of
antisymmetric (2n)× (2n) matrices, the Lie bracket [x, y] being the usual xy − yx,
and the Killing form on so2n is given by B(x, y) = 2(n− 1) tr(xy), so that so2n is
semisimple if and only if n ≥ 2.

A.3. If G is a compact Lie group with Lie algebra g, the map taking a connected
closed subgroup H of G to its Lie algebra seen as a subalgebra h of g (i.e., a vector
subspace closed under the Lie bracket) is a bijection ([32, theorem 3.40]).

Two simply connected compact Lie groups are isomorphic if and only if their Lie
algebras are isomorphic ([32, theorem 3.43]); thus, two compact Lie groups with
isomorphic Lie algebras have isomorphic universal coverings: they are then said to
be isogenous. (We note that, for the purposes of this paper, isogenous Lie groups
are an irrelevant complication.) Beware, however, that the universal covering of a
compact Lie group need not be compact as the case of tori shows.

Conversely, any real Lie algebra with a negative semidefinite Killing form is the
Lie algebra of some compact Lie group (unique up to isogeny, by the previous
paragraph). We return in A.14 to the question of which Lie groups are possible in
the semisimple case.

A.4. If G is a compact Lie group, a torus in G is an abelian connected closed
subgroup of G, or equivalently, one whose Lie algebra is abelian (meaning that
its Lie bracket is trivial). A maximal torus, of course, is a torus that is maximal
for inclusion; by A.3, maximal tori of G are in bijection with maximal abelian Lie
subalgebras of the Lie algebra g of G.

As an example, a maximal torus in SO2n is given by the block diagonal matrices
whose diagonal blocks are 2 × 2 rotation matrices.

Crucial results by Cartan concerning maximal tori of compact Lie groups are
([10, theorems 16.4 and 16.5] or [1, theorem 2.15] or [33, corollaries 4.35 and 4.46]):
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(a) every element of G belongs to some maximal torus, and (b) all maximal tori
of G are conjugate; in particular, each element of G is conjugate to some element
of any fixed maximal torus of G.

The dimension of some (any) maximal torus T in G (or equivalently, of its Lie
algebra) is known as the rank of G. The quotient NG(T )/T of the normalizer of
T (in G) by T itself is known as the Weyl group W of G: so a W -orbit in T is
precisely a full set of G-conjugate elements of T , and the set of conjugacy classes
in G can be identified (as a set) with T/W . We note that W acts as a group of
automorphisms of T , so it also acts (linearly) on the Lie algebra t of T and (by
inverse transpose) on the dual t∗ of t.

A.5. If T is an abstract torus, i.e., an abelian compact Lie group, and t is its Lie
algebra, the map x 7→ e(x) := exp(2πx) (in other words the differentiable group
homomorphism t → T whose differential at 0 is 2π times the identity) defines a
surjective homomorphism t → T , whose kernel is a discrete subgroup Γ of t. Thus,
we can identify T with t/Γ (as a differentiable group), and functions on T with
Γ-periodic functions on t. We will call Γ the period lattice of the torus T .

A.6. If G is a compact Lie group, a (finite-dimensional) representation of G on
a finite-dimensional complex vector space V is a differentiable linear action of G
on V , i.e., a differentiable group homomorphism ρ : G → GL(V ). The character of
said representation is the map g 7→ tr ρ(g) (a differentiable function on G, invariant
under conjugation). The representation is said to be irreducible when the only G-
invariant subspaces of V are 0 and V . It turns out that every representation of G is a
direct sum of irreducible representations ([32, theorem 4.40]); and a representation
is characterized (up to isomorphism) by its character ([10, theorem 2.5] or [32,
theorem 4.46]).

Furthermore, although we will not use this, it might be worth pointing out
the Peter-Weyl theorem: the characters of the irreducible representations of G
form a Hilbert orthonormal basis for the closed subspace consisting of conjugation-
invariant functions in the Hilbert space L2(G) of square-integrable functions on G
([32, theorem 4.50]; incidentally, these functions are also eigenvalues of the Laplace-
Beltrami operator on G seen as a Riemannian manifold).

Among the representations of G, the adjoint representation (defined in A.2 above
as a map Ad: G → GL(g), which we see as an action on the complexified vector
space gC := g⊗RC) is of particular importance; its character g 7→ tr Ad(g) is called
the character of the adjoint representation, or simply the adjoint character, of G;
the adjoint representation is irreducible if and only if G is simple (this can be taken
as a definition3).

A.7. Representation theory on a torus T is well known: writing T = t/Γ
through x 7→ e(x) := exp(2πx) as in A.5, the irreducible characters of T are of
the form e(λ) : e(x) 7→ exp(2πiλ(x)) with λ ranging over the lattice Γ∗ dual to Γ
(in the vector space t∗ dual to t), which we call the character lattice of T . The
corresponding representations are all one-dimensional (acting by multiplication by
the character just defined). In other words, the irreducible representations of T
are indexed by Γ∗, and the orthonormal basis of characters of T predicted by the
Peter-Weyl theorem is the usual Fourier basis on T = t/Γ. (As mentioned in A.5,

3A Lie group G is called “simple” when it does not have nontrivial connected normal subgroups:
this allows for a finite center (the term “quasisimple” might be more appropriate).
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we write e(λ) both for the function T → C defined earlier, and for the Γ-periodic
function t → C given by x 7→ exp(2πiλ(x)).)

We note that the ring of linear combinations (over Z, resp. C) of the e(λ), or
character ring (resp. character C-algebra) of T (cf. A.19 below), is the group ring
(resp. group C-algebra) of the lattice Γ∗. (Choosing a basis for Γ∗ shows that this
is a ring of Laurent polynomials.)

A.8. If now G is a compact Lie group and T is a maximal torus in G with
corresponding Lie algebras t ⊆ g, given a representation V of G having character
χ, we can restrict them to T and consider the Fourier decomposition of χ|T , i.e., its
decomposition χ|T =

∑
λ∈Γ∗ mλe(λ) in terms of the characters e(λ) (for λ ∈ Γ∗)

defined in the previous paragraph: clearly mλ is the dimension of the subspace V λ

of V consisting of those z ∈ V such that ρ(u)(z) = e(λ)(u) for each u ∈ T . In
particular, mλ ∈ N. The λ such that mλ > 0 are known as the weights of the
representation V (or of the character χ), and we emphasize that they belong to Γ∗;
the value mλ is know as the multiplicity of the weight λ (in V or in χ), and the
subspace V λ on which T acts through e(λ) is known as the weight (eigen)space;
we note that the weight space can be defined at the Lie algebra level as the set of
z such that dρ1(x)(z) = iλ(x) z for all x ∈ t (where dρ1 is the differential of ρ at 1;
compare [32, definition 8.1]: we have added a factor i here for convenience in the
compact case, but it is a matter of convention).

Since, as explained in A.4 above, all maximal tori of G are conjugate, the weights
and multiplicities do not depend on the choice of T ; furthermore, they are invariant
under the action of the Weyl group W . Seen as a function on t, the character values
are both Γ-periodic and W -invariant, so they are Γ⋊W -invariant. (Let us mention
here the paper [46], which can serve as link between the “Fourier” and “Lie group
characters” points of view.)

A.9. We temporarily leave aside Lie groups to recall the following definitions
and facts in relation with abstract root systems (see [29, §9.2], [32, §7.1] and [7,
chap. VI]). A (reduced, crystallographic) root system is a set Φ of vectors in a finite
dimensional real vector space E such that (1) Φ is finite, does not contain 0, and
spans E, (2) for every α ∈ Φ, there exists α∨ in the dual space E∗ of E such that
α∨(α) = 2 and such that the (symmetry) map sα : x 7→ x−α∨(x)α leaves Φ stable
(it is easy to see that α∨ is uniquely defined, cf. [7, chap. VI, §1, no1, lemme 1],
so that the notation is legitimate), (3) for every α, β ∈ Φ we have α∨(β) ∈ Z, and
(4) if α ∈ Φ and cα ∈ Φ then c ∈ {±1}. The elements of Φ are called roots, and the
α∨ are the coroots. The set Φ∨ := {α∨ : α ∈ Φ} of coroots is itself a root system
(with (α∨)∨ = α), known as the dual root system to Φ. The group generated by
the sα is known as the Weyl group of Φ, and it is finite.

Two root systems Φ ⊆ E and Φ′ ⊆ E′ are said to be isomorphic when there is
a linear isomorphism between E and E′ taking Φ to Φ′. In this case, they have
isomorphic dual systems and isomorphic Weyl groups.

The root system Φ ⊆ E is said to be reducible when it is the union (“sum”) of
root systems Φ1,Φ2 in E1, E2 with E = E1⊕E2 respectively, irreducible otherwise.
Every root system can be written in a unique way as the sum of irreducible root
systems, and any sum of root systems is a root systems.

Given a root system Φ in E, there exists a Euclidean structure on E such that
every sα (and consequently, every element of the Weyl group) is orthogonal; equiva-
lently, a Euclidean structure which identifies E with its dual E∗ so that each coroot
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α∨ is proportional to the corresponding root α. Such a Euclidean structure is said
to be compatible with Φ. (The definition of root systems is often written in a man-
ner that preassumes the Euclidean structure: in this case, the coroot α∨ associated
to α is defined as 2α/‖α‖2.) For Φ irreducible, this Euclidean structure is unique
up to a multiplicative constant, i.e., up to the definition of the lengths of the roots;
in the case of the simply laced root system (those in which every root has the same
length), which concerns us in the present paper, the constant is generally chosen
such that the squared root length is 2, so that Φ and Φ∨ can be identified. Never-
theless, it might be useful for expositional clarity to keep the distinction between
Φ and Φ∨ and the greater generality afforded by the not necessarily simply laced
root system, so we do not perform this identification (but the reader may choose
to do so).

Associated with a root system Φ as above are four lattices: the lattice Q :=
ZΦ ⊆ E generated by Φ is known as the root lattice, the lattice Q∨ := ZΦ∨ ⊆ E∗

generated by Φ∨ is known as the coroot lattice; the lattice P := (Q∨)∗ (in E) dual
to the coroot lattice is known as the weight lattice and contains the root lattice;
and the lattice P∨ := Q∗ (in E∗) dual to the root lattice is known as the coweight
lattice and contains the coroot lattice. The quotient of the weight lattice by the root
lattice, or equivalently of the coweight lattice by the coroot lattice, is sometimes
known as the fundamental group of Φ for reasons that will be clarified in A.14.

A.10. Continuing the exposition of root systems started in A.9, if h is a linear
form on E such that h(α) 6= 0 for each α ∈ Φ, the roots such that h(α) > 0 are
then known as the positive roots, and those such that h(α) < 0 as the negative
roots relative to h: a subset Φ+ := {α ∈ Φ : h(α) > 0} which can be obtained in
this manner is known as a choice of positive roots for Φ. The positive roots which
cannot be written as sums of other positive roots are known as simple roots (for
this choice of positive roots): it is then a fact that the simple roots form a basis
of E, and that every positive root is a linear combination of the simple roots with
nonnegative integer coefficients (not all zero); so the choice of positive roots can
be defined equivalently by the set of simple roots. The Weyl group acts simply
transitively on the set of all choices of positive roots (or the set of all choices of
simple roots).

The choice of positive roots also gives a choice of positive coroots, (defined from
h as above by identifying E with E∗, or by saying that the positive coroots are
the coroots associated with positive roots). The dual basis ̟1, . . . , ̟n to the set
α∨
1 , . . . , α

∨
n of simple coroots is known as the set of fundamental weights (for the

choice of positive roots); symmetrically, the dual basis to the set of simple roots is
known as the set of fundamental coweights.

The convex cone in E generated by the fundamental weights, is known as the
closed Weyl chamber in E corresponding to the choice of positive roots: it is the
dual cone to the positive coroot cone, in other words, it is defined by the inequalities
α∨(x) ≥ 0 for all positive coroots (or equivalently, for all simple coroots) α∨; the
open Weyl chamber, defined by the inequalities α∨(x) > 0, is the interior of the
closed Weyl chamber (and the closed Weyl chamber is its closure). Dually, the
cone in E∗ generated by the fundamental coweights, which is the dual cone to the
positive root cone, is also known as the closed Weyl chamber (in E∗). The choice
of a Weyl chamber is equivalent to a choice of positive roots: the Weyl group acts
simply transitively on the set of Weyl chambers.
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Figure 4. Simply laced Dynkin diagrams with the Bourbaki num-
bering of their nodes

Given a choice of positive roots Φ+ ⊆ Φ, there exists a unique β ∈ Φ+ such
that β + α 6∈ Φ+ for all α ∈ Φ+: this is known as the highest root of Φ (relative
to this choice of positive roots), and it belongs to the open Weyl chamber. The
(integer) coefficients mi of β on the basis of simple roots, i.e., the mi such that
β =

∑n
i=1 miαi where α1, . . . , αn are the simple roots, often come up in formulae

involving G or its root system. It is often more convenient to define α0 = −β (the
lowest root) and m0 = 1 so that

∑n
i=0 miαi = 0.

A.11. Given a root system Φ and a choice of positive roots, we define the
Dynkin diagram of Φ as the graph whose vertices (“nodes”) are the simple roots,
two nodes α, β being connected by a single, double or triple edge, or by no edge at
all, according as the angle between them is 2π/3, 3π/4 or 5π/6, or π/2 for no edge
at all, these being the only possible values; in the case of a double or triple edge,
it is oriented by pointing from the simple root with the larger norm to that with
the smaller norm. (These constructions rely on a Euclidean structure compatible
with Φ, but are independent of the choice of such a structure.)

The Dynkin diagram of a root system Φ determines the latter up to isomorphism.
Furthermore, all possible irreducible root systems can be classified, with the help
of Dynkin diagrams. The simply laced Dynkin diagrams are shown on Figure 4.

A.12. We now return to the setup of a compact Lie group G as in A.8, and we
furthermore assume G to be semisimple.

The nonzero weights of the adjoint representation of G are known as the roots
of G (or of g), and each one occurs with multiplicity 1; as for the zero weight
space, it is the complexification of t itself (in other words, its multiplicity is the
rank of G). So, writing gα

C
:= {z ∈ gC : [x, z] = iα(x) z for all x ∈ t} for the weight

space of α ∈ Φ acting on gC := g ⊗R C, we have the weight space decomposition
gC = tC ⊕⊕α∈Φ gα

C
(compare [33, formula (2.16)] and [32, theorem 6.38]).

The set Φ of these roots is an abstract (reduced, crystallographic) root system
([10, theorem 19.2] or [32, theorem 6.44]), whose Weyl group is that which we
have already associated to G (cf. A.4); it is irreducible if and only if G is simple.
Furthermore, this induces a bijection between the isomorphism classes of semisimple
compact Lie algebras and root systems ([32, corollary 7.55] or [33, corollary 7.3]),
or equivalently, isogeny classes of semisimple compact Lie groups or isomorphism
classes of semisimple simply connected compact Lie groups ([26, §7.3]); we clarify
in A.14 below the classification of groups inside an isogeny class.

Note that, as a set, Φ depends not only on G but on the choice of the maximal
torus T used to define the weights (cf. A.8), or equivalently, not only on g but also
on t: in fact, Φ is a subset of the dual t∗ of t; however, as an abstract root system,
it does not depend on this choice.

The following proposition follows immediately from what has already been said:
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Proposition A.13. If G is a semisimple compact Lie group with rank n, then the
range of values taken by the adjoint character chad of G is precisely the range of
the function n + FΦ where FΦ : x 7→∑

α∈Φ e2πiα(x) is the Fourier transform of Φ.
More precisely, if T is a maximal torus in G with Lie algebra t, and u ∈ T is

written exp(2πx) for x ∈ t, then chad(u) = n + FΦ(x) (and we have pointed out
in A.4 that each element g of G is conjugate to an element u of T , which then
obviously has chad(g) = chad(u)).

Proof. As explained in A.12, the weights of the adjoint representation are the el-
ements of Φ each with multiplicity 1, and 0 with multiplicity n, i.e., chad |T =
n ·e(0)+

∑
α∈Φ e(α), which is precisely the statement of the second paragraph. �

A.14. We briefly clarify the relation between isogenous (cf. A.3) compact Lie
groups in the semisimple case (this subsection is required for completeness, but for
the purposes of this paper we care only about the simply connected groups):

If G is a semisimple compact Lie group, we have noted its root system Φ can be
defined directly from its Lie algebra g and that t of a maximal torus T of G (which
is the same as a maximal abelian subalgebra of g, cf. A.4), namely as the set of
nonzero α ∈ t∗ (where t∗ is the dual vector space to t) such that gα

C
:= {z ∈ g⊗RC :

[x, z] = iα(x) z for all x ∈ t} is nontrivial (cf. A.8). So the root lattice Q := ZΦ
and weight lattice P := (ZΦ∨)∗ defined in A.9, inside t∗, are defined at the Lie
algebra level: they depend only on the isogeny class of G. We have Q ⊆ Γ∗ ⊆ P
or equivalently Q∨ ⊆ Γ ⊆ P∨ where Q∨ is the coroot and P∨ the coweight lattice
(the inclusion Q ⊆ Γ∗ follows from the fact that the weights of any representation
of G, as defined in A.8, belong to Γ∗, and in particular the roots belong to Γ∗; the
inclusion Q∨ ⊆ Γ follows from the fact that the coroots can also be defined at the
Lie algebra level).

The classification of compact Lie groups having Lie algebra g is then as follows:
G is uniquely defined by giving the lattice Γ satisfying Q ⊆ Γ∗ ⊆ P , or equivalently
Q∨ ⊆ Γ ⊆ P∨; and conversely, for any such Γ, there exists a unique correspond-
ing Lie group G; furthermore, the fundamental group of G is Abelian, finite and
canonically isomorphic to Γ/Q∨, and the center Z(G) of G is finite and canoni-
cally isomorphic to P∨/Γ. ([44, chap. 4, §3, 6o, theorems 9 and 10]; see also [10,
theorem 23.1] and [33, corollary 5.109].)

(In particular, the universal covering of a semisimple compact Lie group G is
still compact, and corresponds to taking Γ equal to the coroot lattice Q∨. At the
other extreme, the centerless group G/Z(G) corresponds to taking Γ equal to the
coweight lattice P∨; this is also known as the “adjoint” form, because it is the
image of the adjoint representation G → GL(g). The fundamental group of the
adjoint form, or equivalently the center of the universal covering, is defined at the
Lie algebra level, and is P∨/Q∨.)

Remark A.15. If G is a semisimple compact Lie group with maximal torus T =
t/Γ, we have already pointed out in A.4 that the set of conjugacy classes of G can
be identified (as a set) with T/W , where W is the Weyl group. Lifting to the Lie
algebra t of T , it can be identified with t/(Γ⋊W ). This point of view is particularly
important when G is simply connected (Γ is the coroot lattice) because then it can
be shown that the “affine Weyl group” Γ ⋊W is an affine Coxeter group, having a
fundamental domain, known as the Weyl alcove, which is the simplex whose vertices
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are 0 and the ̟∨
i /mi, where the ̟∨

i are the fundamental coweights (cf. A.10) and
mi are the coefficients of the highest root (cf. A.10). (See [31, chapter 11].)

A.16. We now briefly review the classification of irreducible representations of
a semisimple compact Lie group as provided by “highest weight theory”.

As explained in A.8, the weights of a (finite-dimensional) representation V of a
semisimple compact Lie group G (relative to the choice of a maximal torus T ⊆ G)
are the λ ∈ Γ∗ such that V λ := {z ∈ V : (∀u ∈ T )u · z = e(λ)(u)} is nonzero, the
multiplicity mλ being dimV λ. Now fix a choice of positive roots of G (cf. A.10):
a highest weight of V (or of its character, χ) is a weight λ such that λ + α is not
a weight for any positive root α; a dominant integral weight (for G) is a λ ∈ Γ∗

belonging to the closed Weyl chamber, i.e., such that λ(α∨) ≥ 0 for each simple (or
equivalently, positive) coroot α∨.

Highest weight theory tells us that ([33, theorem 5.5], [32, §8.3] or [44, chap. 4,
§3, 7o, theorem 11] or [11, VI.1.7]):

• every irreducible representation of G has a unique highest weight, which is
a dominant integral weight, and its multiplicity is 1;

• if V is an irreducible representation of G with highest weight λ, then the
set of weights of V is the intersection of λ+Q, where Q is the root lattice,
and of the convex hull of the orbit of λ under the Weyl group;

• two irreducible representations of G are isomorphic if and only if they have
the same highest weight (thus, we can speak of “the” irreducible represen-
tation with highest weight λ);

• every dominant integral weight is the highest weight of an irreducible rep-
resentation of G (it is unique by the previous point);

• if V and V ′ are irreducible representations of G with highest weights λ and
λ′ respectively, then V ⊗ V ′ has highest weight λ + λ′ and has a unique
irreducible factor with that weight ([11, VI.2.8]).

The highest weight of the adjoint representation is the highest root (−α0).

A.17. If G is a semisimple compact Lie group and T a maximal torus of G, then
the Weyl character formula ([32, §8.5], [33, theorems 5.75–5.77] or [11, VI.1.7])
expresses the value of the irreducible character χλ with highest weight λ (i.e., the
character of the irreducible representation with highest weight λ) as the ratio of
two skew-W -invariant polynomials on T , namely

chλ =

∑
w∈W sgn(w) e(w(λ + ρ))∑

w∈W sgn(w) e(w(ρ))

where W is the Weyl group and sgn: W → {±1} the group homomorphism taking
the value −1 on each reflection sα (i.e., sgn(w) is the determinant of w acting on
the Lie algebra t of T ); and the Weyl vector ρ := 1

2

∑
α∈Φ+

α is half the sum of

the positive roots, which is also the sum
∑n

i=1 ̟i of the fundamental weights. The
denominator of the above expression can be factored using the Weyl denominator
formula: ∑

w∈W

sgn(w) e(w(ρ)) =
∏

α∈Φ+

(e(α/2) − e(−α/2)).

A.18. Assuming that G (still a semisimple compact Lie group) is simply con-
nected (so that Γ∗ is the weight lattice, cf. A.14), the irreducible representations
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having the fundamental weights (cf. A.10) as highest weights are known as funda-
mental representations, and their characters as the fundamental characters of G.

A.19. The character ring of a compact Lie group G is the ring generated by the
characters of G (that is, the set of differences χ1−χ2 between two characters of G)
for pointwise sum and product. Equivalently, if we define a virtual representation
of G to be the formal difference V1 ⊖V2 of two (finite dimensional) representations,
identifying V1 ⊖ V2 with V ′

1 ⊖ V ′
2 whenever V1 ⊕ V ′

2 and V ′
1 ⊕ V2 are isomorphic

(“Grothendieck ring” construction), and if we define the (virtual) character of V1⊖
V2 to be χ1 − χ2 where χi is the character of Vi, the character ring can be defined
as the set of virtual representations of G with addition and multiplication being
defined as the direct sum and tensor product (extended in the obvious fashion to
virtual representations).

To put it differently, the character ring of G consists of Z-linear combinations
of the irreducible characters (or representations) of G, the product being defined
by the decomposition into irreducibles of a product of characters (tensor product
of representations). One can similarly define the character C-algebra as the set of
C-linear combinations of the irreducible characters (or representations) of G.

Highest weight theory implies that: (1) for a semisimple compact Lie group G
with maximal torus T , the character ring of G is simply the invariant part under
the Weyl group of the character ring of T (the latter being the group ring of Γ∗,
cf. A.7), and (2) when G is, additionally, simply connected, the character ring is
isomorphic to the polynomial algebra, with coefficients in Z, over indeterminates
corresponding to the fundamental representations. ([11, VI.2.1 and VI.2.11].) The
corresponding statements also hold with complex coefficients instead of integers.

Remark A.20. If G is a semisimple simply connected compact Lie group with
maximal torus T = t/Γ, then the character C-algebra of G can be identified (via
restriction to T ) with the set of W -invariant trigonometric polynomials on T (with
complex coefficients), where W is the Weyl group, or, lifting to t, of W -invariant
(hence Γ ⋊W -invariant) combinations of the e(λ) for λ ∈ Γ∗. Also note that such
functions are entirely defined by their values on the Weyl alcove (cf. A.15).

If we are mostly interested in the character values on T (they determine those
on G by A.4), and in this paper we are, the irreducible representations of G are
something of a needless complication: the character ring of a semisimple simply
connected compact Lie group has a Z-basis consisting of the sums

∑
λ∈Wλ0

e(λ) for
λ ranging over an orbit of the Weyl group W acting on Γ∗.

A.21. We have recalled in A.4 that every element g of a compact Lie group G
belongs to a maximal torus T ; when the torus in question is unique, the element
g is said to be regular. Assuming that G is semisimple, this is equivalent ([10,
theorem 22.3(ii)]) to saying that g is not in the kernel of any e(α) for root α ∈ Φ
(cf. A.7). Correspondingly, we say that an element x of the Lie algebra g of G is
regular when e(x) is regular, i.e., when α(x) 6∈ Z for all α ∈ Φ (this means that x is
represented by an element in the interior of the Weyl alcove, cf. A.15; also compare
[11, V.7.8]).

The following fact is crucial to the proof given in appendix B:

Proposition A.22. Let G be a semisimple simply connected compact Lie group.
If g ∈ G and T is a maximal torus containing g, then the following are equivalent:

• the element g is regular,
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• the differentials d ch1, . . . , d chn of the fundamental characters of G (cf. A.18)
are independent at g,

• the differentials d ch1 |T , . . . , d chn |T of the fundamental characters of G
restricted to T are independent at g.

In a more general context, the equivalence of the first two statements is due to
Kostant ([35, theorem 0.1]) and Steinberg ([51, theorem 8.1]); however, since we are
only considering compact Lie group, every element g belongs to a maximal torus
(i.e., is “semisimple”), making the proof of the equivalence considerably easier and
giving the third statement as a byproduct (as detailed in [51, §8.2–8.6]).

A.23. We now briefly discuss how a subset of the nodes of the Dynkin diagram
of a semisimple compact Lie group defines a Lie subgroup with the Dynkin diagram
defined by the subset in question (i.e., the induced subgraph).

So let G be a semisimple compact Lie group, fix a maximal torus T in G, and
let g, t be the corresponding Lie algebras and Φ the root system of G (cf. A.12);
choose a system of simple roots α1, . . . , αn ∈ Φ (where n is the rank of G). Now if
I ⊆ {1, . . . , n}, this defines a root system ΦI ⊆ Φ, sometimes known as the parabolic
subsystem associated to I, namely the set ΦI := Φ ∩⊕i∈I Zαi = Φ ∩⊕i∈I Rαi

“generated by” the αi for i ∈ I (see [31, §5.1] for a discussion, or [39, §12.1]), so
that its Dynkin diagram consists of the nodes of that of Φ labeled by elements of I.

We now fix such an I and explain how to define a Lie subgroup of G with root
system Ψ := ΦI . See also [1, §7.3–7.4] for a more detailed and pedagogical account
of this construction.

For α ∈ Φ, let gα
C

:= {z ∈ gC : [x, z] = iα(x) z for all x ∈ t} inside gC :=
g ⊗R C be the corresponding weight space. Then (see [33, corollary 5.94], or [39,
proposition 12.6] in a different context) lC := tC ⊕⊕α∈Ψ gα

C
is a (complex) Lie

subalgebra of gC (sometimes known as a “parabolic Levi factor”), which can be
further factored as a Lie algebra direct sum (i.e., with trivial bracket between the
summands) of its center z(lC) =

⋂
α∈Ψ kerα ⊆ tC and its semisimple subalgebra

l′
C

= [lC, lC] = t′
C
⊕⊕α∈Ψ gα

C
where t′

C
is the complex subspace spanned by the

coroots α∨ for α ∈ Ψ (seen as elements of tC). Since lC and l′
C

are stable under
complex conjugation, they define (real!) Lie subalgebras l := lC ∩ g and l′ := l′

C
∩ g

of g, hence compact Lie subgroups L, L′ of G having these Lie algebras (see [33,
theorem 5.114]). Then L′ is a semisimple Lie subgroup of G having root system Ψ
and maximal torus T ′ with Lie algebra t′ (as for L, it is isogenous to the product
of L′ with a torus of rank n− #I, so that it has the same rank n as G).

(In fact, the only properties of Ψ used above are that it is a “closed” subsystem
of Φ: see [39, definition 13.2 and theorem 13.6].)

In appendix B, we will use the above construction in the case where I is the
complement of a single node {i} in the Dynkin diagram.

Appendix B. Serre’s result on characters of compact Lie groups

In this section, we prove the En cases of [50, Theorem 3’]. The proof in the E7

and E8 cases has been kindly communicated to us by J.-P. Serre and only slightly
adapted for symbolic computation with Sage (J.-P. Serre was able to perform the
entire computation by hand and we have not attempted to reproduce this feat; any
errors in the following expositions are, of course, entirely our own) and straight-
forwardly extended to compute all critical values of the adjoint character; in the
E6 case, J.-P. Serre referred us to a proof devised by A. Connes, which we do not
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follow here, preferring instead a straightforward analogue of the E7 and E8 cases, at
the cost of considerably more computing power (the E6 case does not seem doable
by hand with the technique presented below).

Theorem B.1. If G is a semisimple compact Lie group of type E6, E7 or E8

respectively, and chad its adjoint character (cf. A.6); then infg∈G chad(g) is equal
to −3, −7 or −8 respectively.

(The proof for An and Dn has been given in 5.3 and 5.4 respectively.)
In each case, we divide the proof in two steps: the reduction step and the com-

putation step, the second being itself subdivided into an elimination substep and a
ruling-out substep.

We will call G the simply connected semisimple compact Lie group of type E6,
E7 or E8 as the case may be, T its maximal torus (cf. A.4) and t the Lie algebra of
the latter.

The reduction step uses the trick (†) explained below (and based essentially
on A.22) to reduce the number of variables by observing that any critical point
of chad must lie on certain linear subspaces of t. The computation step then finds
the critical values of some polynomial function h of several variables x1, . . . , xr

by elimination theory: there are slight variations in each of the cases below, but
broadly speaking, consider the ideal of C[x1, . . . , xr, y] generated by ∂h

∂xi
and y − h

(defining the — often 0-dimensional — algebraic variety of critical points of h)
and use a Gröbner basis for some elimination order (that is, a monomial order

such that y < xi1
1 · · ·xir

r for all i1, . . . , ir not all zero) to find the projection of this
variety on the y coordinate (represented by a polynomial in y which one factors
to find the actual values, which for some currently mysterious reason happen to
be always rational); unfortunately, elimination theory considers all complex values
of x1, . . . , xr, so there are many spurious values, and one must then consider each
computed value, or at least those that are smaller than the actual minimum, and
rule them out by showing that, for some reason, they cannot be realized for real
values x1, . . . , xr (generally by noticing that some other element in the Gröbner
basis does not have roots in the domain considered).

Let us now explain the idea of the reduction step in more detail. We generally
follow appendix A for notation: for example, we call Φ the root system of G.

The reduction trick (†) is as follows. Suppose z ∈ t is a critical value of the adjoint
character (which is a fundamental character in each of E6, E7 and E8), or more
generally that it is a critical value of any polynomial in the fundamental characters
in which no fundamental character appears more than once; then the result of
Kostant and Steinberg A.22 implies that z is on a root hyperplane t′ = {α = m}
(where α ∈ Φ and m ∈ Z); now the affine Weyl group Γ ⋊ W (cf. A.15) acts
transitively on the set of such root hyperplanes and preserves all character values,
so we can assume that the z lies on the root hyperplane {α0 = 0}, where −α0 is
the highest root, which (for Dn, E6, E7, E8) is also one of the fundamental weight,
say ̟i. (This i can be read by taking the extended Dynkin diagram for Φ: it is
the node to which the extender node attaches.) In other words, the coordinates of
z on the basis of coroots α∨

1 , . . . , α
∨
n have a zero at coordinate i (the one which is

measured by ̟i): so z lives, in fact, in the hyperplane generated by α∨
j for j 6= i.

Now, as explained in A.23, the linear subspace t′ of t generated by α∨
j for j ∈ I

(here I := {1, . . . , n} \ {i}) is, in a natural way, the Lie algebra of the maximal
torus T ′ of a semisimple Lie subgroup G′ of G (denoted L′ in A.23), whose root



36 M. Dutour Sikirić, D. Madore, P. Moustrou, and F. Vallentin

system Φ′ has a Dynkin diagram obtained from that of Φ by keeping only the roots
labeled by an element of I, so, in our case, by deleting node i. So by restricting the
character (initially the adjoint character of G) to G′, we are left with a character on
a Lie group G′ having a rank smaller by 1. Of course, the character restricted to the
subgroup G′ in question is no longer the adjoint character, but it can be expressed
in terms of the fundamental characters of G′ using standard tables of “branching
rules” or a computer program like Sage4 (in fact, branching are typically given first
for the restriction from G to an intermediate subgroup G ⊇ G1 ⊇ G′, maximal
in G, and described through the removal of the node i from the extended Dynkin
diagram of G by means of so-called “Borel-de Siebenthal theory: see [56, §8.10]
or [31, chapter 12]; the restriction from G1 to G is then straightforward as G is a
factor of G1, and we will give both in what follows).

In what follows, we number the nodes of the Dynkin diagrams as in Bourbaki
(cf. figure 4). We write chG

i for the i-th fundamental representation of the simple

group G, and chad for the adjoint representation: thus, chE6

ad = chE6

2 and chE7

ad = chE7

1

and chE8

ad = chE8

8 . More generally, we write chλ for the character with highest
weight λ (written as a combination of fundamental weights ̟i), so that chi is an
abbreviation for ch̟i

.

Theorem B.2. The set of critical values of chE6

ad is −3, −2, 6, 14 and 78. We
therefore have infx FE6

= −9 and χ(E6) ≥ 9.

Proof. If z is a critical point of chE6

ad = chE6

2 , i.e., if the differential d chE6

2 vanishes
there, then by (†) we can assume that z belongs to (the Lie algebra t of the maximal
torus of) the Lie subgroup A5 defined by removing node 2 from the Dynkin diagram
of E6.

Now chE6

2 |A5
= 2 chA5

3 + chA5

1 chA5

5 +2. In more detail, the branching rule for the

maximal subgroup A1×A5 of E6 gives: chE6

2 |A1×A5
= chA1

̟1
chA5

̟3
+ chA5

̟1+̟5
+ chA1

2̟1

as witnessed by Sage:

sage: E6 = WeylCharacterRing("E6", style="coroots")

sage: br = branching_rule(E6, "A1xA5","extended")

sage: br.branch(E6(E6.fundamental_weights()[2]))

A1xA5(1,0,0,1,0,0) + A1xA5(2,0,0,0,0,0) + A1xA5(0,1,0,0,0,1)

We then observe that
chA5

̟1+̟5
= chA5

1 chA5

5 −1

and that
chA1

2̟1
= (chA1

1 )2 − 1,

so that
chE6

2 |A1×A5
= chA1

1 chA5

3 +(chA5

1 chA5

5 −1) + ((chA1

1 )2 − 1).

Evaluating at the identity of A1 (where chA1

1 = 2), we get

chE6

2 |A5
= 2 chA5

3 + chA5

1 chA5

5 +2

as announced.
Now the fundamental characters chi of A5 are the elementary symmetric func-

tions σi of six variables u0, . . . , u5 ranging over the unit circle U := {u ∈ C : |u| = 1}
and constrained by u0u1u2u3u4u5 = 1 (the eigenvalues of the element of SU 6).

4http://doc.sagemath.org/html/en/thematic_tutorials/lie/branching_rules.html

http://doc.sagemath.org/html/en/thematic_tutorials/lie/branching_rules.html
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This means that we are to compute the critical values of h := 2σ3 + σ1σ5 + 2 over
{(u0, . . . , u5) ∈ U6 : u0u1u2u3u4u5 = 1} (which is the maximal torus of A5).

This concludes the reduction step (which is simpler in the case of E6 than for
E7,E8), and we now proceed to the computation step (which, compared to E7,E8,
has fewer cases to consider, but is computationally more challenging).

By elimination theory, we can compute the critical values for u0, . . . , u5 ranging
over C6 subject to u0u1u2u3u4u5 = 1: consider the ideal of C[u0, . . . , u5, y] gener-
ated by ui

∂h
∂ui

− u0
∂h
∂u0

for i = 1, . . . , 5 (because saying that dh is proportional to

d(u0 · · ·u5) means ui
∂h
∂ui

= u0
∂h
∂u0

) and also y − h; and perform elimination of the

variables u0, . . . , u5 (by computing a Gröbner basis for a monomial order for which

y < ui0
0 · · ·ui5

5 for any i0, . . . , i5 not all zero) in this ideal to obtain the projection
on the y coordinate of the critical points.

By computing the Gröbner basis of the corresponding ideal we obtain that the
resulting set of possible critical values is −66, −3, −2, 6, 14 and 78.

Now the critical value −66 cannot be attained on

{(u0, . . . , u5) ∈ U6 : u0u1u2u3u4u5 = 1}.
We add the inequality y + 66 to the ideal and recompute a Gröbner basis. In this
basis we have σ3

5 = −63.
And this is impossible because σ5 is the sum of the u−1

i , which can only take the
value 6 in absolute value provided all the ui are equal to one and the same 6-th root
of unity ζ, in which case σ1 = 6ζ and σ5 = 6ζ−1 and σ3 = 20ζ3 and by checking
the possible ζ one notices that h = 2σ3 + σ1 σ5 + 2 does not, in fact, take the value
−66.

The value −3, on the other hand, is attained, namely when three of the ui are
equal to one primitive cube root of unity and the other three are equal to the other.
So it is its minimum and so a critical value.

By further Gröbner basis computation we obtain the 78 is attained only at ui = 1.
We also obtained that the critical value 14 is attained only with four ui set at −1
and two ui set at 1. The critical value 6 is attained only by fixing two ui at 1, two
at ei2π/3 and two at e−2iπ/3. The critical value −2 corresponds to a manifold of
dimension 2. In this manifold is the point with four ui set at 1 and two ui set at
−1.

From the formula FE6
(x) = chE6

ad(x) − 6 we get infxFE6
(x) = −9 and then using

Corollary 5.2 χ(E6) ≥ 1 − (−9/72)−1 = 9. �

Theorem B.3. The set of critical values of chE8

ad is −8, −4, − 104
27 , − 57

16 , −3, −2,
0, 5, 24, 248. We therefore have infxFE8

= −16 and χ(E8) ≥ 16.

Proof. If z is a critical point of chE8

ad = chE8

8 , i.e., if the differential d chE8

8 vanishes
there, then by (†) we can assume that z belongs to (the Lie algebra t of the maximal
torus of) the Lie subgroup E7 defined by removing node 8 from the Dynkin diagram
of E8.

Now

chE8

8 |E7
= chE7

1 +2 chE7

7 +3 (from chE8

8 |A1×E7
= chE7

1 + chA1

1 chE7

7 +((chA1

1 )2 − 1)).

Now since neither chE7

1 nor chE7

7 appear more than once (or with any exponent)

in chE7

1 +2 chE7

7 +3, we can apply (†) again: at a point z where the differential of
this expression vanishes, the differentials of the fundamental characters are not
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independent, so z belongs to (the Lie algebra t of the maximal torus of) the Lie
subgroup D6 defined by removing node 1 from the Dynkin diagram of E7.

We have

chE7

1 |D6
= chD6

2 +2 chD6

5 +3 (from chE7

1 |A1×D6
= chD6

2 + chA1

1 chD6

5 +((chA1

1 )2 − 1))

and

chE7

7 |D6
= chD6

6 +2 chD6

1 (from chE7

7 |A1×D6
= chD6

6 + chA1

1 chD6

1 ),

giving:

chE8

ad |D6
= chD6

2 +2 chD6

5 +2 chD6

6 +4 chD6

1 +6.

Again, there are no multiple occurrences of the various chD6

i , so we can apply
(†) one more time: at a point z where the differential of this expression vanishes,
the differentials of the fundamental characters are not independent, so z belongs to
(the Lie algebra t of the maximal torus of) the Lie subgroup D4 × A1 defined by
removing node 2 from the Dynkin diagram of D6.

Here the branching gets more complicated: We use

sage: WeylCharacterRing("D6").maximal_subgroups()

within Sage to find the correct rule for branching to A1 ×A1 ×D4, and in principle
the two A1 factors are not symmetric (although in the end it turns out that they
are, up to a symmetry of D4) so one must use br.describe() to chop off the correct
A1 factor (call it A

◦
1 in what follows). We find:

• chD6

2 |A1×D4
= chD4

2 +2 chA1

1 chD4

1 +((chA1

1 )2 − 1) + 3 (from chD6

2 |A◦

1
×A1×D4

=

chD4

2 + ch
A
◦

1

1 chA1

1 chD4

1 +((chA1

1 )2 − 1) + ((ch
A
◦

1

1 )2 − 1)).

• chD6

5 |A1×D4
= chA1

1 chD4

4 +2 chD4

3 (from chD6

5 |A◦

1
×A1×D4

= chA1

1 chD4

4 + ch
A
◦

1

1 chD4

3 ).

• chD6

6 |A1×D4
= chA1

1 chD4

3 +2 chD4

4 (from chD6

5 |A◦

1
×A1×D4

= chA1

1 chD4

3 + ch
A
◦

1

1 chD4

4 ).

• chD6

1 |A1×D4
= chD4

1 +2 chA1

1 (from chD6

1 |A◦

1
×A1×D4

= chD4

1 + ch
A
◦

1

1 chA1

1 ).

Finally, we get:

chE8

ad |A1×D4
= chD4

2 +2 chA1

1 chD4

1 +2 chA1

1 chD4

4 +2 chA1

1 chD4

3 +4 chD4

1 +4 chD4

4 +4 chD4

3

+ (chA1

1 )2 + 8(chA1

1 ) + 8.

We can now apply the reduction trick (†) one last time, for the D4 factor: since

chA1

1 is obviously independent from the chD4

i , at a point z where the differential

of the expression chE8

ad |A1×D4
above vanishes, the differentials of the fundamental

characters chD4

i are not independent, so z belongs to (the Lie algebra t of the
maximal torus of) the Lie subgroup A1 × (A1)3 defined by removing node 2 from
the Dynkin diagram of D4.

To compute this restriction, first examine the restriction of D4 to the maximal
subgroup A1×A1×A1×A1 of D4 (seen by extending the Dynkin diagram of D4 and
removing the node connected to the four others): if we call t1, . . . , t4 the (single)
fundamental characters of the various A1 factors, numbered in the same way as the
nodes of the extended diagram of D4 from which they come (except that t2 comes

from the extending node), then chD4

1 |(A1)4 = t1t2 + t3t4 and chD4

3 |(A1)4 = t1t4 + t2t3

and chD4

4 |(A1)4 = t1t3 + t2t4 and finally

chD4

2 |(A1)4 = t1t2t3t4 + t21 + t22 + t23 + t24 − 4.
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Finally, restricting chE8

ad to A1 × (A1)3 (the first A1 factor being the factor A1 in
A1 ×D4 earlier and the other three coming from nodes 1, 3, 4 of D4 as described in
the previous paragraphs), we have

chE8

ad |A1×(A1)3 = 2σ3 + σ2
1 + 2(s + 1)σ2 + 4(s + 2)σ1 + s2 + 8s + 4,

where s is the fundamental character from the first A1 factor and σi are the ele-
mentary symmetric functions in the fundamental characters t1, t3, t4 of the three
other A1 factors.

We now need to find the critical values of this function

h = 2σ3 + σ2
1 + 2(s + 1)σ2 + 4(s + 2)σ1 + s2 + 8s + 4.

There is one subtlety, however: “critical” means that for each ti, as well as for s,
we either have ∂h

∂ti
= 0 (resp. ∂h

∂s = 0) or ti = ±2 (resp. s = ±2). Indeed, each ti
(as well as s) is a character of A1, so it is u + u−1 for the two eigenvalues u, u−1 of
the element of SU 2 in question, so the critical values of ti itself are ±2.

This concludes the reduction step for E8. The computation step is then to use
elimination theory, in each possible case depending on how many of the ti satisfy
∂h
∂ti

= 0 and how many satisfy ti = 2 and ti = −2, and similarly for s, to find the

corresponding values of h = 2σ3 + σ2
1 + 2(s + 1)σ2 + 4(s + 2)σ1 + s2 + 8s + 4.

For this, we must consider 10 × 3 = 30 cases according to constraints placed on
the ti (which can be set equal to +2 or to −2 or to satisfy ∂h

∂ti
= 0, which we denote

as “ti = ∂” for short) and on s (similarly s = +2 or s = −2 or s = ∂). In each case,
we consider the ideal of C[s, t1, t3, t4, y] generated by the ti − 2 or ti + 2 or ∂h

∂ti
as

the case may be, and similarly for s, and also y−h; and perform elimination of the
variables s, t1, t3, t4 (by computing a Gröbner basis for a monomial order for which

y < sjti11 ti33 ti44 for any j, i1, i3, i4 not all zero) in this ideal to obtain the projection
on the y coordinate of the critical points.

By considering all cases we find that the set of possible critical values is −652,
−27, −12, − 64

7 , −8, −4, − 104
27 , − 57

16 , −3, −2, 0, 5, 24 and 248. For each such value
and each possible critical value we compute the manifold which turns out to be
always 0-dimensional. The points of those manifolds can be enumerated and we
obtain the list of critical values by keeping only the values for which at least one of
the point has |t1|, |t3|, |t4|, |s| ≤ 2.

From the formula FE8
(x) = chE8

ad(x)−8 we get infx FE8
(x) = −16 and then using

Corollary 5.2 χ(E8) ≥ 1 − (−16/240)−1 = 16. �

Theorem B.4. The set of critical values of chE7

ad is −7, −3, −2, 1, 17
5 , 5, 25, 133.

We therefore have infx FE7
= −14 and χ(E7) ≥ 10.

Proof. We have chE7

ad = chE7

1 and all the reduction step has already been explained
above in the E8 case: we get

chE7

ad |A1×D4
= chD4

2 +2 chA1

1 chD4

1 +2 chA1

1 chD4

4 +4 chD4

3 +(chA1

1 )2 + 5,

so that

chE7

ad |A1×(A1)4 = 2(σ3 − σ2) + σ2
1 + 2s(t1 + t4)(t3 + 2) + 4(t1t4 + 2t3) + s2 + 5.

The computation step is then similar to E8, except there is now less symmetry
between the ti (one can only exchange t1 and t4): one must therefore distinguish
3 × 3 × 6 cases.
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By computing a Gröbner basis we obtain that the set of possible critical values
is −191, −11, −35/4, −7, −3, −2, 1, 17

5 , 5, 25 and 133. For each case and critical
value we compute the corresponding manifold and its complex points. In each
case except one the manifold is 0-dimensional and for two 0-dimensional cases the
computation of the points does not finish. Those 3 problematic cases occur for the
value −2.

For the other cases we compute the points and keep only the values for which
one of the points has |t1|, |t3|, |t4|, |s| ≤ 2. It turns out that the value −2 is
attained by one of those points and so the 3 problematic cases do not prevent us
from concluding that −2 is a critical value.

From the formula FE7
(x) = chE7

ad(x)−7 we get infx FE7
(x) = −14 and then using

Corollary 5.2 χ(E7) ≥ 1 − (−14/126)−1 = 10. �

One possible extension of this work could be to consider the non-simply laced
diagrams, that is Bn, Cn, F4 and G2.
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