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ON THE DENSITY OF CYCLOTOMIC LATTICES

CONSTRUCTED FROM CODES

PHILIPPE MOUSTROU

Abstract. Recently, Venkatesh improved the best known lower bound for
lattice sphere packings by a factor log logn for infinitely many dimensions n.
Here we prove an effective version of this result, in the sense that we exhibit,
for the same set of dimensions, finite families of lattices containing a lattice
reaching this bound. Our construction uses codes over cyclotomic fields, lifted
to lattices via Construction A.

1. Introduction

The sphere packing problem in Euclidean spaces asks for the biggest proportion
of space that can be filled by a collection of balls with disjoint interiors having the
same radius. Here we focus on lattice sphere packings, where the centers of the
balls are located at the points of a lattice, and we denote by ∆n the supremum of
the density that can be achieved by such a packing in dimension n. Let us recall
that the exact value of ∆n is known only for dimensions up to 8 [CSB87] and for
dimension 24 ([CK09]). For other dimensions, only lower and upper bounds are
known. Moreover, asymptotically, the ratio between these bounds is exponential.

Here we focus on lower bounds. The first important result goes back to the

celebrated Minkowski-Hlawka theorem [Hla43], stating the inequality ∆n >
ζ(n)

2n−1

for all n, where ζ(n) denotes the Riemann zeta function. Later, Rogers [Rog47]

improved this bound by a linear factor: he showed that ∆n >
cn

2n
for every n > 1,

with c ≈ 0.73. The constant c was successively improved by Davenport and Rogers
[DR47] (c = 1.68), Ball [Bal92] (c = 2) and Vance [Van11] (c = 2.2 when n is
divisible by 4). Recently Venkatesh has obtained a more dramatic improvement

[Ven13], showing that for n big enough, ∆n >
65963n

2n
. Most importantly, he

proves that for infinitely many dimensions n, ∆n >
n log logn

2n+1
, thus improving for

the first time upon the linear growth of the numerator.
Unfortunately, all these results are of existential nature: their proofs are non

constructive by essence, due to the fact that they generally use random arguments
over infinite families of lattices. It is then natural to ask for effective versions of
these results. It is worth to explain what we mean here by effectiveness. Indeed,
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designing a practical algorithm, i.e running in polynomial time in the dimension,
to construct dense lattices appears to be out of reach to date. More modestly, one
aims at exhibiting finite and explicit sets of lattices, possibly of exponential size, in
which one is guaranteed to find a dense lattice.

In this direction, the first to give an effective proof of Minkowski-Hlawka theorem
was Rush [Rus89]. Later, Gaborit and Zémor [GZ07] provided an effective analogue
of Roger’s bound for the dimensions of the form n = 2p with p a big enough prime
number. In both constructions, the lattices are lifted from codes over a finite field,
and run in sets of size of the form exp(kn logn), with k a constant.

Let us now explain with more details two ingredients that play a crucial role in
the proofs of the results above. The first one is Siegel’s mean value theorem [Sie45]
which in particular states that, on average over the set L of n-dimensional lattices
of volume 1,

EL[|B(r) ∩ (Λ \ {0})|] = Vol(B(r)).

It follows that, if Vol(B(r)) < 1, then there exists a lattice Λ ∈ L such that
B(r) ∩ (Λ \ {0}) = ∅, i.e such that the minimum norm µ of its non zero vectors is
greater than r. The density of the sphere packing associated to Λ then satisfies

∆(Λ) =
Vol(B(µ))

2n
>

1

2n
.

It is worth to point out that the same reasoning holds if Vol(B(r)) < 2, because
lattice vectors of given norm come by pairs {±x}. From this simple remark we get

∆n >
2

2n
,

which is essentially Minkowski-Hlawka bound.
The second idea follows almost immediately from the previous observation: con-

sidering lattices affording a group of symmetries larger than the trivial {±Id} should
allow to replace the factor 2 in the numerator by a greater value. To this end, one
needs a family of lattices, invariant under the action of a group, for which an ana-
logue of Siegel’s mean value theorem holds. This idea is exploited in [GZ07], [Van11]
and [Ven13]. In particular, this is how Venkatesh obtains the extra log logn term,
by considering cyclotomic lattices, i.e lattices with an additional structure of Z[ζm]-
modules. It turns out that, for a suitable choice of m, one can find such lattices in

dimension n = O(
m

log logm
).

In this paper, we consider cyclotomic lattices constructed from codes, in order
to deal with finite families of lattices. To be more precise, the codes we take are the
preimages through the standard surjection associated to a prime ideal P of Q[ζm]

Z[ζm]2 → (Z[ζm]/P)2

of all one dimensional subspaces over the residue field Z[ζm]/P.
Our approach is simpler and more straightforward than the previous ones in

several respects. On one hand, the analogue of Siegel’s mean value theorem in our
situation boils down to a simple counting argument on finite sets (see Lemma 4).
On the other hand, the group action, which is, as in [GZ07], that of a cyclic group,
is in our case easier to deal with, because it is a free action. As a consequence, we
can cope with arbitrary orders m, while Gaborit and Zémor only consider prime
orders.

Our main theorem is an effective version of Venkatesh’s result:
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Theorem 1. For infinitely many dimensions n, a lattice Λ such that its density

∆(Λ) satisfies

∆(Λ) >
0.89n log logn

2n

can be constructed with exp(1.5n logn(1 + o(1)) binary operations.

This result follows from a more general analysis of the density on average of the
elements in the families of m-cyclotomic lattices described above, see Theorem 2
and Proposition 1 for precise statements.

A lattice Λ is said to be symplectic if there exists an isometry σ exchanging
Λ and its dual lattice, and such that σ2 = −Id. Symplectic lattices are closely
related to principally polarized Abelian varieties. In [Aut15], Autissier has adapted
Venkatesh’s approach to prove the existence of symplectic lattices with the same
density. We show that, with some slight modifications, our construction leads to
symplectic lattices, thus providing an effective version of Autissier’s result (see
Theorem 3 and Corollary 2 ).

The article is organized as follows: Section 2 recalls basics notions about lattices
and cyclotomic fields, and introduces the construction of cyclotomic lattices from
codes. In Section 3 we state and prove the main results discussed above. Section 4
is dedicated to the case of symplectic lattices.

Acknowledgements. I am most grateful to Christine Bachoc for introducing me
to this problem, and for her support all along this work. I would also like to thank
Arnaud Pêcher and Gilles Zémor for fruitful discussions, and Pascal Autissier for
useful remarks that lead to improvements on the first version of the paper.

2. Notations and preliminaries

2.1. Lattices in Euclidean spaces. Let E be a Euclidean space equipped with
the scalar product 〈, 〉. We denote by ||.|| the norm associated to this scalar product,
by n the dimension of E, and by B(r) the closed ball of radius r in E:

B(r) = {x ∈ E, ||x|| 6 r}.
By Stirling formula, we have

Vol(B(1)) =
π

n
2

Γ(n2 + 1)
∼ 1√

nπ

(

√

2πe

n

)n

where f ∼ g means lim
n→∞

f/g = 1. Thus, if Vol(B(r)) = V , we get that

(1) r ∼
√

n

2πe
V

1
n .

A lattice Λ ∈ E is a free discrete Z-module of rank n (for a general reference on
lattices, see e.g [CSB87]). A fundamental region of Λ is a region R ⊂ E such that

for any λ 6= λ′ ∈ Λ, the measure of (λ +R) ∩ (λ′ +R) is 0, and E =
⋃

λ∈Λ

(λ +R).

The volume Vol(Λ) of Λ is defined as the volume of any of its fundamental region.
The Voronoi region of Λ is the particular fundamental region:

V = VΛ = {z ∈ E, ∀ x ∈ Λ, ||z − x|| > ||z||}.
3



We denote by µ the minimum of Λ:

µ = µΛ = min{||x||, x ∈ Λ \ {0}}
and by τ its covering radius:

τ = τΛ = sup
z∈E

inf
x∈Λ

||z − x||.

Taking balls of radius µ/2 centered at the points of Λ, we get a packing in E, i.e a
set of spheres with pairwise disjoint interiors. The density of this packing is given
by

∆(Λ) =
Vol(B(µ))

2n Vol(Λ)
.

Finally, we define Λ#, the dual lattice of the lattice Λ:

Λ# = {x ∈ E, ∀ y ∈ Λ, 〈x, y〉 ∈ Z}.

2.2. Cyclotomic fields. Let K be the cyclotomic field Q[ζm], where ζm is a prim-
itive m-th root of unity. This is a totally imaginary field of degree φ(m) over Q.
Let us define KR = K ⊗Q R. The trace form tr(xy) where tr denotes the trace
form of the number field K induces a scalar product on KR, denoted by 〈, 〉, giving
KR the structure of a Euclidean space of dimension φ(m). We refer to [Was97] for
general properties of cyclotomic fields.

For every fractional ideal A, we will use the same notation A for the lattice in
KR which is the image of A under the natural embedding K → KR. We will need
informations about lattices defined by fractional ideals of K.

The volume of OK is by definition the square root of the absolute value of the
discriminant dK of K. It is well known (e.g [Was97]) that for the cyclotomic fields

(2) |dK | = mφ(m)

∏

l∈P
l|m

lφ(m)/(l−1)

where P is the set of prime numbers.

It is easy to see that the minimum of OK is
√

φ(m): indeed ||1|| =
√

φ(m) and

the arithmetic geometric inequality gives ||x|| >
√

φ(m) for all x ∈ OK . For the
minimum and the covering radius of general fractional ideals, we will apply the
following estimates:

Lemma 1 ([Flu06], propositions 4.1 and 4.2.). Let A be a fractional ideal of K,

where K is a number field of degree n over Q. Then we have :

(i)
µA

Vol(A)
1
n

>

√
n

√

|dK |
1
n

,

(ii)
τA

Vol(A)
1
n

6

√
n

2

√

|dK |
1
n .

2.3. Cyclotomic lattices constructed from codes. A standard construction of
lattices lifts codes over Fp to sublattices of Zn, this is the well known Construc-

tion A (see [CSB87, Chapter 7]). Here we will deal with a slightly more general
construction in the context of cyclotomic fields.
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Let us consider as before K = Q[ζm] and KR the Euclidean space associated
with K. Let P be a prime ideal of OK lying over a prime number p which does not
divide m. Then the quotient F = OK/P is a finite field of cardinality q = pf .

Let E = Ks
R. We still denote by 〈, 〉 the scalar product 〈x, y〉 =

s
∑

i=1

〈xi, yi〉

induced on the sφ(m)-dimensional R-vector space E by that of KR. Let Λ0 be a
lattice in E which is a OK-submodule of E. We consider the canonical surjection

π : Λ0 → Λ0

/

PΛ0.

The norm ||.|| on E associated with 〈, 〉 induces a weight on the quotient space
Λ0

/

PΛ0: if c ∈ Λ0

/

PΛ0,

wt(c) = min{||z||, π(z) = c}.
The quotient Λ0

/

PΛ0 is a vector space of dimension s over the finite field F . We

will call a F -subspace C of Λ0

/

PΛ0 a code. We denote by k its dimension and by
d its minimal weight, with respect to the weight defined above. Finally we denote
by ΛC the lattice obtained from C

ΛC = π−1(C)

and give in the following lemma a summary of its properties:

Lemma 2. Let C be a code of Λ0

/

PΛ0 of dimension k and minimal weight d.
Then :

(i) The volume of ΛC is

Vol(ΛC) = qs−k Vol(Λ0).

(ii) The minimum of ΛC is µΛC
= min{d, µPΛ0}.

(iii) If d 6 µPΛ0 , the packing density of ΛC is:

∆(ΛC) =
Vol(B(d))

2nqs−k Vol(Λ0)
,

where n = sφ(m) is the dimension of E.

Proof. (i) The lattice π−1(C) contains the lattice PΛ0 and we have:

|π−1(C)/PΛ0| = |C| = qk,

so

Vol(ΛC) =
1

qk
Vol(PΛ0) = qs−k Vol(Λ0).

(ii) and (iii) follow directly from the definitions.
�

To conclude this subsection, we state a lemma that relates the Euclidean ball
and the discrete ball B(r) := {c ∈ Λ0

/

PΛ0, wt(c) 6 r}.

Lemma 3. Assuming r <
µPΛ0

2
, we have:

(i) |B(r)| = |Λ0 ∩B(r)|
(ii) Vol(B(r − τΛ0)) 6 |B(r)|Vol(Λ0) 6 Vol(B(r + τΛ0)).
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(iii) If B(r) ∩ (C \ {0}) = ∅, then

(3) ∆(ΛC) >
Vol(B(r))

2nqs−k Vol(Λ0)
.

Proof. (i) Let c ∈ Λ0

/

PΛ0 such that wt(c) 6 r. We want to prove that c has
exactly one representative x ∈ Λ0 which satisfies ||x|| 6 r. Indeed, if y ∈ Λ0

with y 6= x and π(y) = π(x) = c, we have y = x+ z with z ∈ PΛ0 \ {0}. Then
||x− y|| = ||z|| > µPΛ0 > 2r, a contradiction.

(ii) Let us consider

A =
⋃

x∈Λ0∩B(r)

(x+ VΛ0)

where VΛ0 is the Voronoi region of Λ0. The volume of A is

Vol(A) = |Λ0 ∩B(r)|Vol(Λ0) = |B(r)|Vol(Λ0)

so the wanted inequalities will follow from the inclusions

B(r − τΛ0) ⊂ A ⊂ B(r + τΛ0).

Let us start with the second inclusion. If z ∈ x+ VΛ0 , by definition of the
covering radius, we have

||z − x|| 6 τΛ0 ,

so if ||x|| 6 r, ||z|| 6 r + τΛ0 . For the first inclusion, let y be such that
||y|| 6 r − τΛ0 . If x denotes the closest point to y in Λ0, we have y ∈ x+ VΛ0

and ||x|| 6 ||y||+ ||x− y|| 6 r, so that y ∈ A.
(iii) It follows directly from Lemma 2.

�

3. The density of cyclotomic lattices constructed from codes

In this section, we introduce a certain family of lattices obtained from codes as
described in the previous subsection, and show that for high dimensions, this family
contains lattices having good density.

As before, K = Q[ζm], F = OK/P ≃ Fq. Let us set s = 2 and consider the

Euclidean space E = K2
R, of dimension 2φ(m), in which we fix Λ0 = O2

K .

Definition 1. We denote by C the set of the (q+1) F -lines of Λ0

/

PΛ0 = F 2, and

by LC the set of lattices of E constructed from the codes in C:

LC = {ΛC , C ∈ C}.

The following lemma evaluates the average of the value of |B(r) ∩C \ {0}| over
the family C:

Lemma 4. We have:

E(|B(r) ∩ (C \ {0})|) < |B(r)|
q

.

6



Proof. It is a straightforward computation:

E(|B(r) ∩ (C \ {0})|) = 1

|C|
∑

C∈C

|B(r) ∩ (C \ {0})|

=
1

|C|
∑

C∈C

∑

c∈C
0<wt(c)6r

1

=
1

|C|
∑

c∈B(r)\{0}

|{C ∈ C , c ∈ C}|.

There is exactly one line passing through every non zero vector in F 2. So

E(|B(r) ∩ (C \ {0})|) = |B(r) \ {0}|
|C| <

|B(r)|
q

.

�

From now on, q will vary with m, so we adopt the notation qm instead of q. We
show that the family LC of lattices contains, when m is big enough and when qm
grows in a suitable way with m, lattices having high density.

Theorem 2. For every 1 > ε > 0, if φ(m)2m = o(qm
1

φ(m) ), then for m big enough,

the family of lattices LC contains a lattice Λ ⊂ R2φ(m) satisfying

∆(Λ) >
(1− ε)m

22φ(m)
.

We start with a technical lemma.

Lemma 5. Let ρm =

√

φ(m)

πe
(qm Vol(Λ0))

1
2φ(m) . If φ(m)2m = o(qm

1
φ(m) ), then

(i) lim
m→∞

φ(m)τΛ0

ρm
= 0,

(ii) For m big enough, ρm <
µPΛ0

2
.

Proof. (i) We have:

φ(m)τΛ0

ρm
=

√

πeφ(m)τΛ0

(qm Vol(Λ0))
1

2φ(m)

.

Since Λ0 = OK × OK , we have τΛ0 =
√
2τOK

and Vol(Λ0) = Vol(OK)2.
Then, by (ii) of Lemma 1,

τOK

Vol(OK)
1

φ(m)

6

√

φ(m)

2
|dK | 1

2φ(m) .

Applying |dK | 6 mφ(m) (following (2)), we obtain

τOK

Vol(OK)
1

φ(m)

6

√

mφ(m)

2
.

So
φ(m)τΛ0

ρm
6

√

πe

2
φ(m)

√
mq

− 1
2φ(m)

m

which tends to 0 when m goes to infinity, by hypothesis.
7



(ii) We have:

ρm =

√

φ(m)

πe

(

qm Vol(Λ0)
)

1
2φ(m) 6

1

2

√

φ(m)q
1

2φ(m)
m |dK | 1

2φ(m)

6
1

2

√

φ(m)q
1

2φ(m)
m

√
m

.

Because PΛ0 = P × P, µPΛ0 = µP. Then, by (i) of Lemma 1, since

Vol(P) = qm
√

|dK |,
µP > q

1
φ(m)
m

√

φ(m).

The hypothesis on qm ensures in particular that for m big enough, we have

m < q
1

φ(m)
m , and thus

ρm <
1

2

√

φ(m)q
1

φ(m)
m 6

µPΛ0

2
.

�

Now we can prove Theorem 2.

Proof of Theorem 2. Let us fix 1 > ε > 0. Let rm > 0 be the radius such that
Vol(Brm) = (1− ε)mqm Vol(Λ0). By (1), rm ∼ ρm, where ρm is the radius defined
in Lemma 5. Applying Lemma 4, we get

E(|B(rm) ∩ (C \ {0})|) < |B(rm)|
qm

.

Because rm ∼ ρm, by (ii) of Lemma 5, rm <
µPΛ0

2
, so we can apply (ii) of Lemma 3,

so that

E(|B(rm) ∩ (C \ {0})|) < Vol(B(rm + τΛ0))

qm Vol(Λ0)
=

Vol(B(rm))

qm Vol(Λ0)

(

1 +
τΛ0

rm

)2φ(m)

= (1− ε)m

(

1 +
τΛ0

rm

)2φ(m)

.

Now applying (i) of Lemma 5, we have lim
m→∞

(

1 +
τΛ0

rm

)2φ(m)

= 1, and so, for m

big enough,

(4) E(|B(rm) ∩ (C \ {0})|) < m.

Now comes the crucial argument involving the action of the m-roots of unity.
From (4), there is at least one code C in C which satisfies |B(rm)∩ (C \ {0})| < m.
Because the codes we consider are stable under the action of the m-roots of unity,
which preserves the weight of the codewords, and because the length of every non
zero orbit under this action is m, we can conclude that B(rm)∩ (C \ {0}) = ∅, and
so by (iii) of Lemma 3 that,

∆(ΛC) >
Vol(B(rm))

22φ(m)qm Vol(Λ0)
=

(1− ε)m

22φ(m)
.

�
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Theorem 2 shows that for every big enough dimension of the form n = 2φ(m) our

construction provides lattices having density approaching
m

2n
, thus larger than

cn

2n
with c = 1/2. A particular sequence of dimensions leads to a better lower bound:

Corollary 1. For infinitely many dimensions, the family LC contains a lattice

Λ ⊂ Rn satisfying

∆(Λ) >
0.89n log logn

2n
.

Proof. To get the optimal gain between m and 2φ(m), we take m =
∏

l∈P
l6X

l, where

X is a positive real number, which tends to infinity. Thanks to Mertens’ theorem
[Har], we can evaluate:

(5)
m

φ(m)
∼ eγ log logm.

where γ is the Euler-Mascheroni constant which satisfies γ > 0.577.
So we get

(6) m ∼ φ(m)eγ log logm ∼ eγ

2
n log logn.

Let us set δ := 2e−γ0.89. Because
eγ

2
> 0.89, δ < 1. Then by Theorem 2, we

get a lattice Λ ⊂ Rn such that

∆(Λ) >
δm

2n
.

So by (6), for m big enough,

∆(Λ) >
0.89n log logn

2n
.

�

Finally we evaluate the complexity of constructing a lattice Λ with the desired
density:

Proposition 1. Let n = 2φ(m). For every 1 > ε > 0, the construction of a lattice

Λ ⊂ Rn satisfying

∆(Λ) >
(1 − ε)m

22φ(m)

requires exp(1.5n logn(1 + o(1)) binary operations.

We need to find a prime ideal P such that qm = |OK/P| satisfies the condition

required in Theorem 2. Let us recall that qm = pfmm where pm is the prime number
lying under P, and fm is the order of pm in the group (Z/mZ)∗ (see [Was97]). We
will restrict our attention to the case fm = 1, i.e when pm = 1 mod m. In that
case, pm decomposes totally in Q[ζm], and qm = pm. We use Siegel-Walfisz theorem
in order to give an upper bound for the smallest such prime number:

Lemma 6. For m big enough, there is a prime number pm congruent to 1 mod m
such that:

1

2
(m3 logm)φ(m)

6 pm 6 (m3 logm)φ(m).

9



Proof. Let us denote by π(x,m, a) the number of primes p < x such that p = a
mod m. Siegel-Walfisz theorem (see [IH04]) gives that for any A > 0:

π(x,m, a) =
Li(x)

φ(m)
+O(

x

(log x)A
),

where the implied constant depends only on A, and Li(x) =

∫ x

2

dt

log t
. Applying

this theorem to x = (m3 logm)φ(m), a = 1, and A = 2 we get

π(x,m, 1)− π(x/2,m, 1) =
1

φ(m)

∫ x

x/2

dt

log t
+O(

x

(log x)2
).

We have
1

φ(m)

∫ x

x/2

dt

log t
>

x

2φ(m) log x
, which grows faster than the error term

since log x ∼ 3φ(m) log(m), and thus ensures the existence of a prime pm between
x/2 and x. �

Proof of Proposition 1. Applying Lemma 6, the complexity of finding qm satisfying
the condition of Theorem 2 is

O(m3 logm)φ(m) = e3φ(m) log(m)(1+o(1)) = e1.5n log(n)(1+o(1)).

The corresponding family of lattices LC has qm+1 elements. By construction, each
of these lattices is generated by vectors with coefficients which are polynomial in n.
So, the cost of computing their density, which can be done with 2O(n) operations,
following [HPS], is negligible compared with the enumeration of the family. �

4. Symplectic cyclotomic lattices

For a survey about symplectic lattices, we refer to [Ber97]. Here we briefly
introduce this notion.

Let E be a Euclidean space, and Λ a lattice in E. Then an isoduality is an
isometry σ of E such that σ(Λ) = Λ#. If Λ affords an isoduality, then it is called
isodual. If moreover σ satisfies σ2 = −Id, then Λ is called symplectic.

Now we explain how to change the lattice Λ0 in such a way that our construction
provides symplectic lattices.

Let

Λ0 = α−1OK × αP−1O#
K ,

where α = (q|dK |) 1
2φ(m) . The volume of Λ0 is now

(7) Vol(Λ0) = Vol(OK)Vol(P−1O#
K) =

Vol(OK)Vol(O#
K)

q
=

1

q
.

Let us define the map

σ : K2
R → K2

R

(x1, x2) 7→ (−x2, x1)
.

It is clear that σ is an isometry, and that σ2 = −Id.
In the following lemma, we show that the lattices we defined in Definition 1 are

now symplectic:

Lemma 7. If C is a F -line of Λ0/PΛ0, then the lattice ΛC is symplectic.

10



Proof. Let us prove that σ(ΛC) ⊂ Λ#
C . Let us take (x1, x2) ∈ ΛC . We have to show

that for every (y1, y2) ∈ ΛC , 〈σ(x1, x2), (y1, y2)〉 ∈ Z, that is

(8) tr(−x2y1) + tr(x1y2) ∈ Z.

According to the definition of C, we have C = F (u1, u2) with u1 ∈ α−1OK and

u2 ∈ αP−1O#
K . So there exists λ, µ ∈ OK such that

{

x1 = λu1 mod α−1P

x2 = λu2 mod αO#
K

and

{

y1 = µu1 mod α−1P

y2 = µu2 mod αO#
K

.

This implies that

tr(x1y2) = tr(λµu1u2) mod Z

and

tr(x2y1) = tr(λµu1u2) mod Z,

so that (8) is satisfied.
To conclude the proof it is enough to notice that Vol(ΛC) = qVol(Λ0) = 1, which

implies σ(ΛC) = Λ#
C . �

We again consider the set C of lines of Λ0/PΛ0. It is clear that the result
of Lemma 4 remains valid for this new family of codes. The general strategy
underlying the proof of Theorem 2 applies to the family of lattices associated to
these codes, so that we get analogues in this context :

Theorem 3. For every 1 > ε > 0, if φ(m)2m = o(qm
1

φ(m) ), then for m big enough,

the family of symplectic lattices LC contains a lattice Λ ⊂ R2φ(m) satisfying

∆(Λ) >
(1− ε)m

22φ(m)
.

Corollary 2. For infinitely many dimensions, the family LC contains a symplectic

lattice Λ ⊂ Rn satisfying

∆(Λ) >
0.89n log logn

2n
.

The proofs of Theorem 3 and Corollary 2 are similar to those of Theorem 2
and Corollary 1. However, we need to prove that Lemma 5 still holds, even if we
changed Λ0:

Lemma 8. Let ρm =

√

φ(m)

πe
(qm Vol(Λ0))

1
2φ(m) =

√

φ(m)

πe
.

If φ(m)2m = o(qm
1

φ(m) ), then

(i) lim
m→∞

φ(m)τΛ0

ρm
= 0,

(ii) For m big enough, ρm <
µPΛ0

2
.

Proof. (i) We have:
φ(m)τΛ0

ρm
=
√

πeφ(m)τΛ0 .

Let us set A1 = α−1OK and A2 = αP−1O#
K . Then Λ0 = A1 × A2 and

the covering radius of Λ0 is τΛ0 =
√

τ2A1
+ τ2A2

. So we have to bound both
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covering radii τA1 and τA2 . Applying (ii) of Lemma 1, and because Vol(A1) =

Vol(A2) =
1√
q
, we have, for i ∈ {1, 2},

τAi
6

√

φ(m)

2
|dK | 1

2φ(m) q−
1

2φ(m) 6

√

mφ(m) q−
1

2φ(m)

2
.

So

τΛ0 6
√
2max{τA1 , τA2} 6

√

mφ(m)q−
1

2φ(m)

and finally

φ(m)τΛ0

ρm
6

√
πe φ(m)

√
mq

− 1
2φ(m)

m

which tends to 0 when m goes to infinity, by hypothesis.

(ii) Let us set B1 = α−1P and B2 = αO#
K . Then PΛ0 = B1 ×B2, and clearly

µPΛ0 = min{µB1 , µB2}. Then, applying (i) of Lemma 1, since Vol(B1) =
Vol(B2) =

√
q, we have, for i ∈ {1, 2},

µBi
>

√

φ(m) q
1

2φ(m)

|dK | 1
2φ(m)

>

√

φ(m) q
1

2φ(m)

√
m

.

So

µPΛ0 >

√

φ(m) q
1

2φ(m)

√
m

.

The hypothesis on qm ensures in particular that for m big enough, m satisfies
√
m < q

1
2φ(m)
m , and thus

ρm =

√

φ(m)

πe
<

1

2

√

φ(m) q
1

2φ(m)

m
6

µPΛ0

2
.

�

As the condition on the growth of qm does not change, the estimation for the
complexity of construction in this context is the same:

Proposition 2. Let n = 2φ(m). For every 1 > ε > 0, the construction of a

symplectic lattice Λ ⊂ Rn satisfying

∆(Λ) >
(1 − ε)m

22φ(m)

requires exp(1.5n logn(1 + o(1)) binary operations.
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